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A RULED RESIDUE THEOREM FOR FUNCTION FIELDS OF

ELLIPTIC CURVES

KARIM JOHANNES BECHER, PARUL GUPTA, AND SUMIT CHANDRA MISHRA

Abstract. It is shown that a valuation of residue characteristic different from
2 and 3 on a field E has at most one extension to the function field of an elliptic
curve over E, for which the residue field extension is transcendental but not
ruled. The cases where such an extension is present are characterised.

Classification (MSC 2010): 12F20, 12J10, 12J20, 14H05, 16H05

Keywords: valuation, residue field extension, Gauss extension, rational func-
tion field, function field in one variable

1. Introduction

In this article, we study extensions of a valuation on a field E to function fields
in one variable over E. By a function field in one variable, we mean a finitely
generated field extension of transcendence degree one.

Let F/E be a function field in one variable. We call F/E rational if F = E(x)
for some element x ∈ F , and we call F/E ruled if F = E ′(x) for some finite
extension E ′/E and some element x ∈ F .

We now consider a valuation v on E with arbitrary value group, denoted by vE.
By an extension of v to F we mean a valuation w on F with w|E = v. In 1983,
J. Ohm [8] proved that, if F/E is ruled, then for any extension w of v to F ,
the residue field extension Fw/Ev is either algebraic or ruled. This is called the
Ruled Residue Theorem. In the case where vE = Z, this result had been obtained
already in 1967 by M. Nagata [7, Theorem 1]. What is the situation if one does
not assume F/E to be ruled?
An extension of v to F is called residually transcendental if the residue field

extension Fw/Ev is transcendental. Let Ωv(F ) denote the set of residually tran-
scendental extensions of v to F and let Ω∗

v(F ) denote the subset of those ex-
tensions w for which Fw/Ev is not ruled. Expressed in these terms, the Ruled
Residue Theorem says that Ω∗

v(F ) = ∅ when F/E is ruled.
In the case where vE = Z, it was observed in [1, Corollary 3.9] that the set

Ω∗
v(F ) is finite, and in [3, Theorem 5.3], assuming further that E is relatively

algebraically closed in F , it was shown that |Ω∗
v(F )| ⩽ g+1 where g is the genus

of F/E, and further that the inequality is strict when F/E has prime divisor of

Date: 29.06.2023.
1

ar
X

iv
:2

30
3.

02
10

0v
2 

 [
m

at
h.

A
C

] 
 2

9 
Ju

n 
20

23



2 KARIM JOHANNES BECHER, PARUL GUPTA, AND SUMIT CHANDRA MISHRA

degree 1. So for example, if vE = Z and F/E is the function field of a conic or
of an elliptic curve, then |Ω∗

v(F )| ⩽ 1.
A first step toward extending these results to the case of a valuation v with

arbitrary value group was taken in [2], where it was shown that, if F/E is the
function field of a conic and v(2) = 0, then |Ω∗

v(F )| ⩽ 1. The aim of this article is
to establish the same conclusion in the case where F/E is the function field of an
elliptic curve and v(6) = 0, without any further assumption on the value group
of v. This supports the expectation that the results from [3] can be extended so
as to eliminate the assumption on the value group vE.
We call the function field in one variable F/E elliptic if F/E has genus 1 and

carries a prime divisor of degree 1. In other terms, F/E is elliptic if and only if
it is the function field of an elliptic curve over E. Since our results concern the
case where char(E) is different from 2 and 3, we may present an elliptic function
field in a particularly nice form.

Let a, b ∈ E. We associate the quantity ∆a,b = 4a3+27b2, which is the discrim-
inant of the cubic polynomial X3+aX+ b. If ∆a,b ̸= 0, then Y 2 = X3+aX+ b is

an elliptic curve over E, and its function field is given by E(X)[
√
X3 + aX + b].

This is an elliptic curve in Weierstraß form, and if char(E) is different from 2 and
3, then every elliptic function field over E can be presented in this way.

Let v be a valuation on E with v(6) = 0. Hence char(Ev) and char(E) are
different from 2 and 3. Let F/E be an elliptic function field. We will show that
there can be at most one residually transcendental extension w of v to F such
that Fw/Ev is not ruled. We will further characterize the situations when such
an extension occurs in terms of conditions on a, b and ∆a,b. We call F/E of good

reduction with respect to v if there exist a, b ∈ Ov with ∆a,b ∈ O×
v such that

F ≃ E(X)[
√
X3 + aX + b], where Ov denotes the valuation ring of v. Note that

F/E is a regular extension, so for every finite field extension E ′/E, F ⊗E E ′ is
a field, which we denote by FE ′. We call F/E of potential good reduction with

respect to v if there exists a finite field extension E ′/E such that FE ′/E ′ is of
good reduction with respect to some extension of v from E to E ′. (We will see
that E ′/E can then be chosen to be of degree at most 6 and totally ramified with
respect to v, whereby the extension of v to E ′ is unique.)

Our main result, Theorem 7.2, can be stated as follows:

Theorem. Let F/E be an elliptic function field and let v be a valuation on E
with v(6) = 0.

(a) Assume that F/E is of good reduction with respect to v. Then |Ω∗
v(F )| = 1

and for w ∈ Ω∗
v(F ) we have that Fw/Ev is an elliptic function field.

(b) Assume that F/E is of potential good reduction but not of good reduction with

respect to v. Then Ω∗
v(F ) = ∅.

(c) Assume that F/E is not of potential good reduction with respect to v. Then

|Ω∗
v(F )| ⩽ 1. Moreover, if |Ω∗

v(F )| = 1 then for w ∈ Ω∗
v(F ) we have that

Fw/Ev is the function field of a smooth conic over Ev.
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2. Valuations on simple extensions

In this section we revisit some standard facts from valuation theory, in par-
ticular concerning extensions of valuations. This includes the Fundamental In-
equality. Our main reference is [5, Chap. 2-3].

Let K be a field. Consider a valuation v on K. We denote by Ov the valuation
ring, by mv its maximal ideal, by Kv the residue field Ov/mv, and by vK the
value group of v. We denote the group operation in vK additively. Note that vK
can be identified with the (multiplicatively written) quotient group K×/O×

v by
taking the order relation ⩽ given by letting aO×

v ⩽ bO×
v for a, b ∈ K× whenever

aOv ⊆ bOv. For x ∈ Ov we denote the residue class x+mv in Kv by xv, or just
by x if the context makes this unambiguous. A valuation v′ on K is equivalent to
v if Ov = Ov′ , or in other terms, if v′ = τ ◦ v for an order preserving isomorphism
τ : vK → v′K.

We will now recall some facts on extensions of valuations along a field extension.
Let v be a valuation on K. Let L/K be a field extension. An extension of v to L
is a valuation w on L such that vK is an ordered subgroup of wL and w|K = v.
By Chevalley’s Theorem [5, Section 3.1], v always extends to a valuation on L. In
this article, we will focus on extensions w of v to L for which the quotient group
wL/vK (naturally isomorphic to L×/K×O×

w) is finite. Note that any ordered
abelian group Γ is torsion-free and therefore embeds uniquely into its divisible
closure Γ ⊗Z Q, and that further the group ordering of Γ extends uniquely to
Γ ⊗Z Q, whereby we view Γ ⊗Z Q as an ordered group without any ambiguity.
Hence, an extension w of v to L where wL/vK is torsion (e.g. finite) can be
viewed in a unique way as a map to vK ⊗Z Q. Consider now two extensions w
and w′ of v to L such that wL/vK and w′L/vK are torsion. If w and w′ are
equivalent as valuations, then viewing them (in the only possible way) as maps
to vK ⊗Z Q, they coincide, and hence we consider them as equal. We therefore
call w and w′ distinct if they are not equivalent.
This applies in particular to all extensions of v to L when [L : K] < ∞. In

fact, if [L : K] < ∞, then for any extension w of v to L, we have [wL : vK] ⩽
[L : K] < ∞, by [5, Cor. 3.2.3], and hence wL = [wL : vK]−1 · vK as a subgroup
of vK ⊗Z Q. We can now formulate the Fundamental Inequality, which is crucial
in understanding the mutual relations between distinct extensions of a valuation
in a finite field extension.

2.1. Theorem (Fundamental Inequality). Assume that L/K is a finite field ex-

tension. Let r ∈ N and let w1, . . . , wr be distinct extensions of v to L. Then

r∑

i=1

[wiL : vK] · [Lwi : Kv] ⩽ [L : K].

Proof: See [5, Theorem 3.3.4]. □
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2.2. Corollary. Assume that L/K is a quadratic field extension. Let w be an

extension of v to L. Then [wL : Kv] · [Lw : Kv] ⩽ 2, and if this is an equality,

then w is the unique extension of v to L.

Proof: Since [L : K] = 2, this follows by Theorem 2.1. □

Let w be an extension of v to L. We call w unramified in L/K if Lw/Kv is
separable and wL = vK, and otherwise we call w ramified in L/K.

For f = anT
n + · · ·+ a0 ∈ Ov[T ], we set f = anT

n + · · ·+ a1T + a0 ∈ Kv[T ].

2.3. Lemma. Let L/K be a finite separable field extension. Let α ∈ L be such

that L = K[α] and let f ∈ Ov[T ] irreducible in K[T ] and with f(α) = 0. Assume

that f ∈ Kv[T ] ∖ Kv and let q be an irreducible factor of f in Kv[T ]. Then

there exists an extension w of v to L such that α ∈ Ow and q(α) = 0 in Lw.
Furthermore, given such an extension w of v to L, if α ∈ Lw is a simple root of

f , then the extension w of v is unramified and Lw = Kv[α].

Proof: Let N be the splitting field of f over L. Let G be the Galois group of
N/K. Let w̃ be an extension of v to N . We write

f = c

n∏

i=1

(T − αi)

with c ∈ K×, n ∈ N and α1, . . . , αn ∈ N such that w̃(α1) ⩾ . . . ⩾ w̃(αn). Let
r ∈ {0, . . . , n} be such that α1, . . . , αr ∈ Ow̃ and α−1

r+1, . . . , α
−1
n ∈ mw̃. Note that

f = cαr+1 · · ·αn

r∏

i=1

(T − αi)
n∏

i=r+1

(α−1
i T − 1)

and

f = (−1)n−r(cαr+1 · · ·αn)
r∏

i=1

(T − αi).

Thus deg(f) = r and α1, . . . , αr ∈ Nw̃ are roots of f . Since q is an irreducible

factor of f in Kv[T ], there exists σ ∈ G such that σ(α) ∈ Ow̃ and q(σ(α)) = 0 in
Nw̃. Set w = w̃ ◦ σ. Then α ∈ Ow and q(α) = 0 in Lw.
Assume now that α in Lw is a simple root of f . In particular, α is separable

over Kv. Let (K∗, v∗) and (L∗, w∗) denote the henselizations of (K, v) and (L,w),
respectively (see [5, page 121]). We may view K∗ as a subfield of L∗ in such way
that w∗|K∗ = v∗. By [5, Theorem 5.2.5], we have K∗v∗ = Kv, v∗K∗ = vK,
L∗w∗ = Lw and w∗L∗ = wL. In particular, by Theorem 2.1, we have

[wL : vK] · [Lw : Kv] ⩽ [L∗ : K∗] .

By [5, Theorem 5.2.2], we have L∗ = K∗[α] and w∗ is the unique extension of v∗ to
K∗[α]. Let g be the minimal polynomial of α over K∗. Then deg(g) = [L∗ : K∗].
Since q ∈ Kv[T ] is irreducible and q(α) = 0, we obtain that q is separable. Since
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K∗ is henselian, we obtain by [5, Theorem 4.1.3 (2)] that g ∈ Ov∗ [T ] and g = q.
Hence

[Kv[α] : Kv] = deg(q) = deg(g) = deg(g) = [L∗ : K∗] ⩾ [Lw : Kv] .

As α ∈ Lw, we conclude that Lw = Kv[α]. In particular, Lw/Kv is separable
and [Lw : Kv] = [L∗ : K∗], whereby [wL : vK] = 1. Therefore w is an unramified
extension of v. □

Let p be a prime number. For a ∈ K× ∖ K×p, the polynomial Xp − a is
irreducible in K[T ], and we denote by K[ p

√
a] its root field over K. For a ∈ K×p,

we set K[ p
√
a] = K.

2.4. Corollary. Let p be a prime number such that v(p) = 0. Let a ∈ K× ∖K×p

be such that v(a) ∈ pvK. Then aK×p∩O×
v ̸= ∅ and any extension of v to K[ p

√
a]

is unramified. Furthermore, fixing u ∈ aK×p ∩ O×
v , one has:

(i) If u /∈ Kv×p, then v extends uniquely to K[ p
√
a], and the residue field of this

extension is Kv[ p
√
u].

(ii) If u ∈ Kv×p, then for any extension w of v to K[ p
√
a], the residue field

extension K[ p
√
a]w/Kv is either trivial or given by adjoining a primitive

pth root of unity.

Proof: Since v(a) ∈ pvE, we can find an element x ∈ K× with v(a) = pv(x).
We set u = ax−p. Then u ∈ aK×p ∩ O×

v . In particular, this set is not empty.
Furthermore K[ p

√
a] = K[ p

√
u].

Let w be an extension of v to K[ p
√
a]. Since char(Kv) ̸= p, the polynomial

T p − u ∈ Kv[T ] is separable, so we obtain by Lemma 2.3 that wK[ p
√
a] = vK

and that w is an unramified extension of v.
(i) Assume that u /∈ Kv×p. Then K[ p

√
a]w = Kv[ p

√
u], by Lemma 2.3, and

[K[ p
√
a]w : Kv] = p = [K[ p

√
a] : K]. Hence it follows by Theorem 2.1 that w is

the unique extension of v to K[ p
√
a].

(ii) Assume that u ∈ Kv×p. Let ϑ ∈ Kv be such that u = ϑp. Then it follows
by Lemma 2.3 that K[ p

√
a]w = Kv[β] for a root β of T p − u ∈ Kv[T ]. Since

βp = ϑp, it follows that β = ρϑ for some root ρ of T p − 1. Since ϑ ∈ Kv, we
obtain that K[ p

√
a]w = Kv[ρ]. □

The following special case of Corollary 2.4 for a quadratic extension will be
used multiple times in this article.

2.5. Corollary. Assume that v(2) = 0. Let a ∈ K× ∖K×2 with v(a) ∈ 2vK and

let w be an extension of v to K[
√
a]. Then the extension w of v is unramified

and aK×2 ∩ O×
v ̸= ∅. Furthermore, given u ∈ aK×2 ∩ O×

v , if u /∈ Kv×2, then

K[
√
a]w = Kv[

√
u] and w is the unique extension of v to K[

√
a], and otherwise

K[
√
a]w = Kv.

Proof: It follows from Corollary 2.4 for p = 2. □
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2.6. Lemma. Let p be a prime number such that v(p) = 0. Let a, b ∈ K be such

that v(a) < v(b). Let L = K[ p
√
a+ b] and let w be an extension of v to L. Then

one of the following three conditions holds:

(i) Lw = K[ p
√
a]w′ for an extension w′ of v to K[ p

√
a].

(ii) Lw = Kv.
(iii) Lw = Kv[ρ] for a primitive pth root of unity ρ.

Proof: Since v(a) < v(b), we have v(a + b) = v(a). If v(a) /∈ pvK then for any
extension w′ of v to K[ p

√
a], we have [wL : vK] = p = [w′K[ p

√
a] : vK] and hence

Lw = Kv = K[ p
√
a]w′, by Theorem 2.1.

Now suppose that v(a) ∈ pvK. Let x ∈ K be such that axp ∈ O×
v . Set u = axp.

Then (a+ b)xp = axp = u in Kv. If u /∈ Kv×p then by Corollary 2.4 (i), for the
unique extension w′ of v to K[ p

√
a] we have Lw = Kv[ p

√
u] = K[ p

√
a]w′.

If u ∈ Kv×p, then by Corollary 2.4 (ii), we have either Lw = Kv or Lw = Kv[ρ]
for a primitive pth root of unity ρ. □

3. Residually transcendental extensions

Let E be a field and v a valuation on E. In this section, we consider residually
transcendental extensions of v to certain function fields in one variable over E.

Let F/E be a function field in one variable over E. An extension w of v
to F is called residually transcendental if the residue field extension Fw/Ev is
transcendental. The following well-known statement gives a standard example of
a residually transcendental extension of v from E to the rational function field
E(X), given in terms of the variable X.

3.1. Proposition. There exists a unique valuation w on E(X) with w|E = v,
w(X) = 0 and such that the residue X of X in E(X)w is transcendental over

Ev. For this valuation w, we have that E(X)w = Ev(X) and wE(X) = vE. For

n ∈ N and a0, . . . , an ∈ E, we have w(
∑n

i=0aiX
i) = min{v(a0), . . . , v(an)}.

Proof: See [5, Corollary 2.2.2]. □

The valuation on E(X) defined in Proposition 3.1 is called the Gauss extension

of v to E(X) with respect to X. More generally, we call a valuation on E(X) a
Gauss extension of v to E(X) if it is the Gauss extension with respect to Z for
some Z ∈ E(X) with E(Z) = E(X).

3.2. Corollary. Let F/E be a function field in one variable. Let w be a residually

transcendental extension of v to F . Then Fw/Ev is a function field in one

variable.

Proof: Since w is residually transcendental extension of v to F , there exists
Z ∈ O×

w such that Z is transcendental over Ev. By Proposition 3.1, w|E(Z) is the
Gauss extension of v with respect to Z. Since F/E(Z) is a finite field extension,
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using Theorem 2.1 we see that Fw is a finite extension of Ev(Z). Thus Fw/Ev
is a function field in one variable. □

For a residually transcendental extension w of v to F , we define

ind(w, F/E) = min{[F : E(Z)] | Z ∈ O×
w and Z is transcendental over Ev},

and call this the Ohm index of w for F/E.

3.3. Remark. Note that ind(w, F/E) = 1 if and only if F is a rational function
field over E and w is a Gauss extension of v to F .

An element Z ∈ O×
w is called an Ohm element of w for F/E if Z is transcen-

dental over Ev and [F : E(Z)] = ind(w, F/E). It is clear that for any residually
transcendental extension of a valuation to a function field in one variable there
exists an Ohm element; see [2, Lemma]. We recall Ohm’s Ruled Residue Theo-
rem, which is the starting point of this investigation as well as a crucial ingredient
in obtaining related results.

3.4. Theorem (Ohm). Let w be a residually transcendental extension of v to

E(X). Let ℓ be the relative algebraic closure of Ev in E(X)w. Then E(X)w
is a rational function field over ℓ. More precisely, E(X)w = ℓ(Z) for any Ohm

element Z of w over E.

Proof: See [8, Theorem 3.3] and its proof. □

3.5. Corollary. Let F/E be a function field in one variable and v valuation on

E. If F/E is ruled, then Fw/Ev is ruled for every residually transcendental

extension w of v to F .

Proof: Assume that F/E is ruled. Hence F = E ′(X) for a finite field extension
E ′/E and some X ∈ F transcendental over E ′. Let w be a residually tran-
scendental extension of v to F . Then Fw/E ′w is ruled by Theorem 3.4, and as
[E ′w : Ev] ⩽ [E ′ : E] < ∞, we conclude that Fw/Ev is ruled. □

We will now draw some consequences from the preceding statements, in par-
ticular from Theorem 3.4. This will provide us with various sufficient conditions
for ruledness of certain residue field extensions of valuations on a function field.
These statements will later be applied to the case of an elliptic function field.

3.6. Lemma. Let p be a prime number with v(p) = 0. Let f, g ∈ E(X) and

let F = E(X)[ p
√
f + g] and F ′ = E(X)[ p

√
f ]. Suppose that F ′w′/Ev is ruled

for every residually transcendental extension w′ of v to F ′. Let w be a residually

transcendental extension of v to F such that w(f) < w(g). Then Fw/Ev is ruled.

Proof: By Theorem 3.4, E(X)w/Ev is ruled. Hence also E(X)w[ρ]/Ev is ruled
for a primitive pth root of unity ρ. In view of the hypotheses on w and F ′, the
statement now follows by Lemma 2.6. □
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3.7. Proposition. Let n ∈ N∖{0, 1} and let p be a prime number with v(p) = 0.
Let a, b ∈ E and F = E(X)[ p

√
Xn + aX + b]. Let w be a residually transcen-

dental extension of v to F . If w(Xn) ̸= w(aX + b) then Fw/Ev is ruled.

Proof: Since E(X)[ p
√
aX + b]/E and E(X)[ p

√
Xn]/E are rational function fields

in one variable, the statement follows by Theorem 3.4 and Lemma 3.6. □

3.8. Lemma. Assume that v(p) = 0. Let F/E be a function field in one variable

and w be an extension of v to F such that Fw/Ev is non-ruled. Let b ∈ E×∖E×p

and F ′ = F [ p
√
b]. Assume that there exists u ∈ bF×p ∩ O×

w such that u ∈ Fw×p.

Then there exists an extension w′ of w to F ′ such that F ′w′/Ev is non-ruled.

Proof: Let u ∈ bF×p ∩O×
w such that u ∈ Fw×p. Then T p − u ∈ Ow[T ] is a monic

irreducible polynomial and the residue polynomial T p − u ∈ Fw[T ] has a simple
root in Fw. Thus by Lemma 2.3, there is an extension w′ of w to F ′ such that
F ′w′ = Fw and wF = w′F ′. □

4. Function fields of conics

Let E be a field and v a valuation on E. Given a function field in one variable
F/E, we want to count and describe the extensions w of v to F for which the
residue field extension Fw/Ev is a non-ruled function field in one variable. In
the lack of a method to approach this problem in general, one may consider
this problem for special classes of function fields F/E. In this section, we will
look at quadratic extensions of the rational function field E(X) with residually
transcendental extension of v having special properties. We will further recall
some results from [2] for function fields of conics. These results will turn out to
be useful later for the case of an elliptic function field.

4.1. Lemma. Assume that v(2) = 0. Let f ∈ E[X] and F = E(X)[
√
f ]. Let w be

a residually transcendental extension of v to F and let ℓ be the relative algebraic

closure of Ev in Fw. Assume that Fw ̸= E(X)w. Then ℓ ⊆ E(X)w if and

only if, for every ϕ ∈ E(X) with w(fϕ2) = 0, we have that fϕ2 is transcendental

over Ev.

Proof: Since Fw ̸= E(X)w, by Corollary 2.2, we have that

[Fw : ℓE(X)w] · [ℓE(X)w : E(X)w] = [Fw : E(X)w] = 2 .

It follows by Corollary 2.5 that there exists ϕ ∈ E(X) with w(fϕ2) = 0 and

Fw = E(X)w
[√

fϕ2
]
.

If fϕ2 is algebraic over Ev, then

√
fϕ2 ∈ ℓ, whence ℓE(X)w = Fw ̸= E(X)w,

that is ℓ ̸⊆ E(X)w.
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Assume now conversely that ℓ ̸⊆ E(X)w. Then [ℓE(X)w : E(X)w] = 2 and
Fw = ℓE(X)w. Let ℓ0 = ℓ ∩ E(X)w. Then [ℓ : ℓ0] = 2. Hence there exists
γ ∈ ℓ ∖ ℓ0 with γ2 ∈ ℓ0. Hence we may choose ϕ ∈ E(X) with w(fϕ2) = 0 in

such a way that γ2 = fϕ2 and with this choice, fϕ2 is algebraic over Ev. □

For a separable quadratic field extension E ′/E and a residually transcendental
extension w of v to E ′(X), the relation between the Ohm indices of w and w|E(X)

was described in [2, Lemma 2.8]. We now obtain an analogue for the case of a
quadratic extension F/E(X) such that F/E is rational.

4.2. Proposition. Assume that v(2) = 0. Let F = E(
√
X). Let w be a residually

transcendental extension of v to F . Let ℓ be the relative algebraic closure of Ev
in Fw. Assume that Fw ̸= E(X)w and ℓ ⊆ E(X)w. Then there exists an

element ϕ ∈ E(X)× such that
√
Xϕ is an Ohm element of w for F/E and

E(X)w = ℓ
(
Xϕ2

)
.

Proof: Let θ ∈ F be an Ohm element of w for F/E. Write θ = θ1
θ2

with coprime

polynomials θ1, θ2 ∈ E[
√
X] such that θ1 is monic. Let f0, f1, g0, g1 ∈ E[X] be

such that θ1 = f0 +
√
Xf1 and θ2 = g0 +

√
Xg1. Since θ is an Ohm element of w

for F/E, we have ind(w, F/E) = [F : E(θ)], and by [2, Proposition 2.1], we have

[F : E(θ)] = max{deg√X(θ1), deg
√
X(θ2)}

= max{deg√X(f0), deg
√
X(

√
Xf1), deg√X(g0), deg

√
X(

√
Xg1)}.

Assume that w(f0) = w(
√
Xf1). By Lemma 4.1, we get that

√
Xf1f

−1
0 is tran-

scendental over Ev. By [2, Proposition 2.1],

[F : E(
√
Xf1f

−1
0 )] ⩽ max{deg√X(f0), deg

√
X(

√
Xf1)} ⩽ ind(w, F/E).

We conclude that
√
Xf1f

−1
0 is an Ohm element of w for F/E. Similarly, if

w(g0) = w(
√
Xg1), then

√
Xg1g

−1
0 is an Ohm element of w for F/E.

We now assume that w(f0) ̸= w(
√
Xf1) and w(g0) ̸= w(

√
Xg1). In this case,

the property of θ to be an Ohm element of w for F/E is not affected if we replace

θ1 and θ2 by the element of smaller w-value among the pairs (f0,
√
Xf1) and

(g0,
√
Xg1), respectively. We may further r eplace θ by θ−1, if necessary. After

these changes, if required, θ is of the form ϕ or
√
Xϕ for some ϕ ∈ E(X)×.

Since ℓ(ϕ) ⊆ E(X)w and Fw ̸= E(X)w, we have Fw ̸= ℓ(ϕ). As F/E is a
rational function field in one variable, we conclude by Theorem 3.4 that ϕ cannot
be an Ohm element of w for F/E. Therefore we have θ =

√
Xϕ and Fw = ℓ(θ).

Since ℓ(θ
2
) ⊆ E(X)w and [Fw : E(X)w] = 2 = [ℓ(θ) : ℓ(θ

2
)], we get that

E(X)w = ℓ(θ
2
) = ℓ(Xϕ2). □

We apply the above result to quadratic extensions of E(X) and obtain sufficient
conditions for Fw/Ev being ruled.
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4.3. Corollary. Assume that v(2) = 0. Let f ∈ E[X] and F = E(X)[
√
f ]. Let w

be a residually transcendental extension of v to F and let ℓ be the relative algebraic
closure of Ev in Fw. Assume that wE(X) = wE(f) and E(X)w ⊆ ℓE(f)w.
Then Fw/Ev is ruled.

Proof: If Fw = E(X)w then Fw/Ev is ruled by Theorem 3.4. Thus we may
assume that Fw ̸= E(X)w. We note that in this case, [Fw : E(X)w] = 2 and
wF = wE(X) by Corollary 2.2. If ℓ ̸⊆ E(X)w, then it follows by [2, Lemma 3.2]
that Fw/Ev is ruled. Hence we may assume now that ℓ ⊆ E(X)w.

As wF = wE(X) = wE(f) and f ∈ F×2, we have w(f) ∈ 2wE(X) = 2wE(f).

By Lemma 4.1, for every ϕ ∈ E(X) such that w(fϕ2) = 0, we get that fϕ2 is tran-
scendental over Ev. Let ℓ′ be the relative algebraic closure Ev in E(

√
f)w. Since

E(f) ⊆ E(X), we have that fϕ2 is transcendental over Ev for every ϕ ∈ E(f)
with w(fϕ2) = 0. Hence applying Lemma 4.1 to the field extension E(

√
f)/E(f),

we obtain that ℓ′ ⊆ E(f)w. By Proposition 4.2, we obtain that E(f)w = ℓ′(fϕ2)
for some ϕ ∈ E(f)× with w(fϕ2) = 0.
In view of the hypothesis and using that ℓ′ ⊆ ℓ ⊆ E(X)w, we conclude that

E(X)w = ℓE(f)w = ℓ
(
fϕ2

)
.

By Corollary 2.5 we get that

Fw = E(X)w
[√

fϕ2
]
= ℓ

(√
fϕ2

)
,

whereby Fw/Ev is ruled. □

4.4. Corollary. Assume that v(2) = 0. Let w be a residually transcendental ex-

tension of v to E(X). Let f ∈ E[X]. Let θ ∈ E(X) be such that E(X) = E(f)[θ]
and let Pθ ∈ E(f)[T ] be the minimal polynomial of θ over E(f). Assume that Pθ ∈
Ow[T ] and that θ is a simple root of Pθ. Then wE(X) = wE(f) and E(X)w =
E(f)w[θ]. Furthermore, if θ is algebraic over Ev, then E(X)[

√
f ]w′/Ev is ruled

for any extension w′ of w to E(X)[
√
f ].

Proof: The first statement follows by Lemma 2.3. The second statement follows
by Corollary 4.3. □

4.5. Proposition. Assume that v(2) = 0. Let u ∈ E(X) and F = E(X)[
√
uX].

Let w be a residually transcendental extension of v to F with w(u) = 0 and such

that u is algebraic over Ev. Then Fw/Ev is ruled.

Proof: If Fw = E(X)w then Fw/Ev is ruled by Theorem 3.4. Thus we may
assume that Fw ̸= E(X)w. Then [Fw : E(X)w] = 2 and wF = wE(X) by
Corollary 2.2. Hence w(X) = w(uX) ∈ 2wF = 2wE(X). Let ℓ denote the
relative algebraic closure of Ev in Fw. In view of [2, Lemma 3.2], we may further
assume that ℓ ⊆ E(X)w.
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Let w′ be an extension of w|E(X) to E(
√
X). For every ϕ ∈ E(X)× with

w(Xϕ2) = 0, it follows by Lemma 4.1 that uXϕ2 is transcendental over Ev,

whereby Xϕ2 is transcendental over Ev, because u ∈ ℓ. Using Lemma 4.1 now
for the extension E(

√
X)/E(X), we get that ℓ is relatively algebraically closed

in E(
√
X)w′.

By Proposition 4.2, there exists ϕ ∈ E(X) with w(Xϕ2) = 0 such that, for

ϑ = Xϕ2, we have E(X)w = ℓ(ϑ). Hence using Corollary 2.5 and because u ∈ ℓ,
we get that

Fw = E(X)w[
√
uϑ] = ℓ(ϑ)[

√
uϑ] = ℓ(

√
uϑ) .

Hence Fw/Ev is ruled. □

We conclude this section by a short discussion of our problem in the case of
function fields of conics.

Recall that we assume that char(E) ̸= 2. Consider a, b ∈ E×. We associate
the plane affine conic

Ca,b : Y 2 = aX2 + b .

We observe that this curve is smooth and that its function field over E is given
by E(X)[

√
aX2 + b]. We recall the following basic fact:

4.6. Proposition. Let a, b ∈ E×. The following are equivalent:

(i) Ca,b has a rational point over E.

(ii) E(X)[
√
aX2 + b]/E is a rational function field.

(iii) E(X)[
√
aX2 + b]/E is ruled.

Proof: See [6, Remark 1.3.5] for the equivalence of (i) and (ii). Since E is rela-
tively algebraically closed in E(X)[

√
aX2 + b], (ii) and (iii) are equivalent. □

We recall the following extension of Theorem 3.4 to the case of function fields
of conics obtained in [2]. It will be useful in proving our main result.

4.7. Theorem. Assume that v(2) = 0. Let F = E(X)[
√
aX2 + b] with a, b ∈ E×.

Let w be a residually transcendental extension of v to F . Then Fw/Ev is non-

ruled if and only if the following conditions hold:

(i) v(a), v(b) ∈ 2vE, and for a′ ∈ aE×2 ∩ O×
v and b′ ∈ bE×2 ∩ O×

v , the conic

Ca′,b′ over Ev has no rational point.

(ii) w|E(X) is the Gauss extension of v to E(X) with respect to cX for c ∈ E×

with v(c2ba−1) = 0.

Moreover, if these conditions hold, then w is the unique extension of w|E(X) to F ,

the extension w of v is unramified and Fw/Ev is the function field of the conic

Ca′,b′ over Ev.

Proof: Suppose that Fw/Ev is non-ruled. Then by [2, Theorem 3.5], we have
that w|E(X2) is the Gauss extension of v to E(X2) with respect to b−1aX2,
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whereby b−1aX2 is transcendental over Ev. By [2, Proposition 3.4], this im-
plies v(a), v(b) ∈ 2vE. Let c ∈ E× be such that v(c2ba−1) = 0. Since (cX)2 =

(c2ba−1)(b−1aX2) is transcendental over Ev, we get that cX is transcendental
over Ev. This shows (ii). By [2, Proposition 3.4] and Proposition 4.6, we get
that for a′ ∈ aE×2 ∩ O×

v and b′ ∈ bE×2 ∩ O×
v , the conic Ca′,b′ over Ev has no

rational point.
For the converse assume that (i) and (ii) hold. From (ii), it follows that w|E(X2)

is the Gauss extension of v to E(X2) with respect to b−1aX2. From (i), using [2,
Proposition 3.4] and Proposition 4.6, we get that Fw/Ev is non-ruled.
The uniqueness of w follows by [2, Corollary 3.6]. □

5. Ruled valuations on elliptic function fields

Let E be a field of characteristic different from 2 and 3. Let a, b ∈ E. To these
elements, we associate the plane affine curve

Ea,b : Y 2 = X3 + aX + b

and the quantity

∆a,b = 4a3 + 27b2 ∈ E ,

which is the discriminant of the cubic polynomial X3 + aX + b and also referred
to as the discriminant of Ea,b. Note that X3 + aX + b is separable if and only if
∆a,b ̸= 0, and in this case Ea,b is a smooth elliptic curve.
For the rest of the section, we fix a, b ∈ E with ∆a,b ̸= 0. Let F be the function

field of Ea,b over E, that is,

F = E(X)[
√
X3 + aX + b] .

We further fix the element

Z = (aX + b)−1X3 ∈ E(X) .

Let v be a valuation on E and let w be a residually transcendental extension
of v to F . By Proposition 3.7, Fw/Ev is ruled for any residually transcendental
extension w of v to F with w(Z) ̸= 0. In the following, we consider residually
transcendental extensions w of v to F such that w(Z) = 0. We will obtain
sufficient conditions on a, b and ∆a,b in this case for Fw/Ev to be ruled.

5.1. Lemma. Let w be a residually transcendental extension of v to F such that

w(Z) = 0. Then v(a3) = v(b2) if and only if w(X3) = w(aX) = w(b). In

particular, if a, b ∈ O×
v , then w(X) = 0.

Proof: Since w(Z) = 0, we have w(X3) = w(aX + b) ⩾ min{w(aX), w(b)}.
If w(X3) = w(aX) = w(b), then v(b2) = w(X6) = 3w(X2) = v(a3).
If w(aX) < w(b), then w(X3) = w(aX + b) = w(aX) < w(b) and hence

v(a3) = w(X6) < v(b2).
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If w(aX) > w(b), then w(X3) = w(aX + b) = w(b) < w(aX) and hence
v(a) > w(X2) and v(a3) > w(X6) = v(b2).
If w(X3) > w(aX) = w(b), then w((a−1b)3) = w(X3) > w(b) and hence

v(a3) < v(b2).
If v(a) = v(b) = 0, then v(a3) = 0 = v(b2) and hence w(X3) = w(b) = 0. □

5.2. Lemma. Assume that v(2) = 0. Let w be a residually transcendental exten-

sion of v to F such that w(Z) = 0. Assume that wF = wE(X) and Z is tran-

scendental over Ev. Then w(X3) ∈ 2vE. Let c ∈ E be such that w(cX3) = 0.
Then Fw/Ev is ruled if one of the following holds :

(i) cX3 is algebraic over Ev.

(ii) c(aX + b) is algebraic over Ev and w(X) /∈ 2vE.

Proof: We first claim that if w(X) ∈ vE then wE(X) = vE. Since w(Z) = 0,
we have w(X3) = w(aX + b). Let d ∈ E× be such that w(dX) = 0. Then

w(d3(aX + b)) = w(d3X3) = 0. We get that (dX)3 = (d3(aX + b)) Z, and since
Z is transcendental over Ev, we get that at least one of the residues dX and
d3(aX + b) is transcendental over Ev. Since E(X) = E(dX) = E(d3(aX + b)),
we conclude by Proposition 3.1 that wE(X) = vE.

Since Z is transcendental, we have w(Z + 1) = 0, and hence

w(Y 2) = w(X3 + aX + b) = w((aX + b)(Z + 1)) = w(aX + b) = w(X3).

Thus w(X3) ∈ 2wF = 2wE(X). Furthermore wE(Z) = vE.
If wE(X) = vE , then w(X3) ∈ 2wE(X) = 2vE. Thus we now assume

that [wE(X) : vE] > 1. In particular, by the above claim, w(X) /∈ vE. Thus
w(X) /∈ 2vE, whereby 1

2
w(X) /∈ vE. This shows that [wE(X) : vE] ⩾ 3. On the

other hand, since [E(X) : E(Z)] = 3, using Theorem 2.1, we get that [wE(X) :
vE] ⩽ 3. This together shows that [wE(X) : vE] = 3. Then 6wE(X) ⊆ 2vE.
Since w(X) ∈ 2wE(X), we conclude that 3w(X) ∈ 2vE.
Let c ∈ E× such that w(c(aX + b)) = w(cX3) = 0. Since 3w(X) ∈ 2vE, we

can choose d ∈ E× such that w(d2) = w(c). Set U = d2(aX + b) and V = d2X3.
Then w(U) = w(V ) = 0 and V = UZ. Furthermore

d2Y 2 = d2X3 + d2(aX + b) = V + U.

(i) Assume that cX3 is algebraic over Ev, then so is V . Since Z is transcen-

dental over Ev, we get that U = Z−1 V is also transcendental over Ev. Since
E(X) = E(U), by Proposition 3.1, we have E(X)w = Ev(U). Using Corol-

lary 2.5, we get that Fw = E(X)w(dY ) = Ev(U)(
√

U + V ), whereby Fw/Ev is
ruled.

(ii) Assume that c(aX + b) is algebraic over Ev, then so is U . Also, assume
that w(X) /∈ 2vE. Since Z is transcendental over Ev, we get that V = U Z
is transcendental over Ev. It follows by Proposition 3.1 that wE(V ) = vE
and E(V )w = Ev(V ). Since w(X) ∈ 2wE(X) ∖ 2vE, arguing as before we
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get that 3 ⩽ [wE(X) : vE] = [wE(X) : wE(V )]. Thus E(X)w = Ev(V ) by
Theorem 2.1. Therefore Ev is algebraically closed in E(X)w and hence U ∈ Ev.

Using Corollary 2.5, we get that Fw = E(X)w[dY ] = Ev(V )[
√
V + U ], whereby

Fw/Ev is ruled. □

5.3. Lemma. Assume that v(6) = 0. Let w be a residually transcendental exten-

sion of v to F such that w(Z) = 0. Set Z = Z + mw in Fw. Then Fw/Ev is

ruled in each of the following cases:

(i) Z is algebraic over Ev and Z ̸= −1.
(ii) v(∆a,b) > min{v(a3), v(b2)} and Z is transcendental over Ev.
(iii) v(∆a,b) = min{v(a3), v(b2)} and Z = −1.
(iv) v(∆a,b) = min{v(a3), v(b2)} and w(X) /∈ 2vE.

Proof: Set Y =
√
X3 + aX + b. By Corollary 3.5, if F/E is ruled, then so is

Fw/Ev. Hence we may assume that F/E is not ruled. In particular we have
E(X) ̸= F ̸= E(Y ). Hence [F : E(X)] = 2. If wE(X) ̸= wF then E(X)w = Fw
by Corollary 2.2, and hence Fw/Ev is ruled. Thus in order to show that Fw/Ev
is ruled, we may further assume the following:

wE(X) = wF and w(Y 2) ∈ 2wE(X). (5.3.1)

(i) Suppose that Z is algebraic over Ev and Z ̸= −1. Then w(Z + 1) = 0
and Z + 1 is algebraic over Ev. Note that Y 2 = (aX + b) (Z + 1). It follows by
Proposition 4.5 that Fw/Ev is ruled.

(ii) Suppose that v(∆a,b) > min{v(a3), v(b2)} and Z is transcendental over Ev.
Then v(4a3 + 27b2) = v(∆a,b) > min{v(a3), v(b2)}, whereby v(a3) = v(b2). By
Lemma 5.1, it follows that w(X3) = w(aX) = w(b).

Furthermore, we have a3b−2 = −27
4
̸= 0 in Ev and w(aX+ b) = w(X3) = w(b).

Set θ = b−1aX. Then w(θ + 1) = 0, w(θ) ⩾ 0 and θ ̸= −1. We observe that
Z = a−3b2(θ+1)−1θ3. Since Z is transcendental over Ev, θ is also transcendental
over Ev. We have E(X) = E(θ) and w|E(X) is the Gauss extension of v to
E(X) with respect to θ. By Proposition 3.1, we get that wE(X) = vE and
E(X)w = Ev(θ). Since

Y 2 = a−3b3(θ3 + a3b−2(θ + 1)),

we obtain that w(Y 2) = 3w(a−1b) and by (5.3.1) we get that wF = wE(X) = vE
and w(a−1b) ∈ 2vE. Hence a−1bE×2∩O×

v ̸= ∅. Note that θ3+a3b−2(θ+1) ∈ Ow

and a3b−2 = −27
4
, whereby θ

3
+ a3b−2(θ + 1) = (θ − 3)(θ + 3

2
)2. We fix u ∈

a−1bE×2 ∩ O×
v and by Corollary 2.5 we obtain that

Fw = Ev

(√
u(θ − 3)

)
.

Hence Fw/Ev is rational, and in particular, ruled.
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(iii) Suppose that v(∆a,b) = min{v(a3), v(b2)} and Z = −1. Hence we have
w(Z + 1) > 0. Since Y 2 = (aX + b)(Z + 1), we obtain that

w(Y 2) > w(aX + b) = w(X3).

For any θ ∈ E(X) we denote by Pθ the minimal polynomial of θ over the field
E(Y 2) = E(X3 + aX + b) expressed in the variable T . In particular, we have

PX = T 3 + aT + (b− Y 2) .

We will distinguish three cases according to the comparison between the values
w(aX) and w(b). In view of Corollary 4.4, it will be sufficient to find an element
θ ∈ E(X)∩O×

w such that E(X) = E(Y 2)[θ], for which Pθ ∈ Ow[T ], θ is a simple
root of Pθ and θ is algebraic over Ev.

Assume first that w(aX) < w(b). Then w(aX) = w(aX+b) = w(X3), whereby
a−1X2 ∈ O×

w , and

a−1X2 = (aX)−1X3 = (aX + b)−1X3 = Z = −1 in Fw.

To show that Fw/Ev is ruled, we may use Lemma 3.8 and assume that there
exists c ∈ E with c2 = −a−1. We set θ = cX. It follows that

Pθ = T 3 − T + c3(b− Y 2) .

Since we have w(Y 2) > w(X3) and w(b) > w(aX) = w(X3), we obtain that
w(Y 2−b) > w(X3) = −w(c3). Hence Pθ ∈ Ow[T ] and Pθ = T 3−T in E(Y 2)w[T ].
Thus Pθ is separable over Ev and θ is a simple root of Pθ. It follows by Corol-
lary 4.4 that Fw/Ev is ruled.

Assume now that w(aX) > w(b). Then w(b) = w(aX + b) = w(X3). In order
to show that Fw/Ev is ruled, we may in view of Lemma 3.8 assume that b−1 = c3

for some c ∈ E. We set θ = cX. It follows that

Pθ = T 3 + ac2T + (1− c3Y 2) ∈ Ow[T ] .

Since w(Y 2) > w(X3) = −w(c3) we have w(c3Y 2) > 0, and since further
w(ac−1) = w(aX) > w(b) = w(X3) = −w(c3) we have w(ac2) > 0. Hence
Pθ ∈ Ow[T ] and Pθ = T 3 + 1 in E(Y 2)w[T ]. Thus Pθ is separable over Ev and θ
is a simple root of Pθ. It follows by Corollary 4.4 that Fw/Ev is ruled.

Assume finally that w(aX) = w(b). Since aX + b ̸= 0, we have a, b ∈ E×. Set
θ = (aX)−1b ∈ O×

w . It follows that

Pθ = T 3 + (1− b−1Y 2)−1(T 2 + a−3b2).

Since w(Y 2) > w(aX + b) ⩾ w(b), we have w(b−1Y 2) > 0. Since further
w(a−3b3) = w(X3) = w(aX+b) ⩾ w(b) we have w(a−3b2) ⩾ 0. Hence Pθ ∈ Ow[T ]

and Pθ = T 3 + T 2 + a−3b2 in E(Y 2)w[T ].

If a−3b2 = 0, then Pθ = T 3 + T 2 and, since θ ̸= 0 we have that θ is a simple
root of Pθ and it follows by Corollary 4.4 that Fw/Ev is ruled. Suppose that

a−3b2 ̸= 0. Since v(∆a,b) = min{v(a3), v(b2)}, we have that a−3b2 ̸= − 4
27
. Thus



16 KARIM JOHANNES BECHER, PARUL GUPTA, AND SUMIT CHANDRA MISHRA

Pθ = T 3 + T 2 + (a−3b2) is separable over Ev, whereby θ is a simple root of Pθ. It
follows by Corollary 4.4 that Fw/Ev is ruled.
(iv) Assume that v(∆a,b) = min{v(a3), v(b2)} and w(X) /∈ 2vE. In order to

show that Fw/Ev is ruled, we may in view of (i) and (iii) assume that Z is
transcendental over Ev. By Lemma 5.2, we have 3w(X) = w(X3) ∈ 2vE. Let

c ∈ E× be such that w(X3) = w(aX+ b) = −v(c). If c(aX + b) is transcendental
over Ev, then by Proposition 3.1, wE(X) = vE and hence 2w(X) ∈ 2vE. Since
3w(X), 2w(X) ∈ vE, we get that w(X) ∈ 2vE, which is a contradiction. Thus

c(aX + b) is algebraic over Ev. It follows from Lemma 5.2(ii) that Fw/Ev is
ruled. □

5.4. Theorem. Assume that v(6) = 0, v(∆a,b) = min{v(a3), v(b2)} and v(∆a,b) /∈
12vE. Let w be a residually transcendental extension of v to F . Then Fw/Ev is

ruled.

Proof: Set Z = (aX + b)−1X3. If w(Z) ̸= 0, then Fw/Ev is ruled, by Proposi-
tion 3.7. Thus we may assume that w(Z) = 0. Using Lemma 5.3(i), (iii) and (iv),
we may assume that Z is transcendental over Ev and w(X) ∈ 2vE. We fix c ∈ E×

with v(c2X) = 0. If c2X is transcendental over Ev, then by Proposition 3.1 we
have

0 = w(c6(aX + b)) = w(ac4(c2X) + bc6) = min{w(ac4), w(bc6)},
whereby v(∆a,b) ∈ 12vE. Since v(∆a,b) /∈ 12vE, we get that c2X is algebraic

over Ev. Hence c6X3 is also algebraic over Ev. It follows by Lemma 5.2(i) that
Fw/Ev is ruled. □

6. Non-ruled valuations on elliptic function fields

Let E be a field and v be a valuation on E such that v(6) = 0. As before, we
fix two elements a, b ∈ E with ∆a,b ̸= 0. Let F/E be the elliptic function field
given by Ea,b, that is,

F = E(X)[
√
X3 + aX + b] .

In Theorem 5.4, we have seen that, if v(∆a,b) = min{v(a3), v(b2)} /∈ 12vE, then
Fw/Ev is ruled for any residually transcendental extension w of v to F . We
now investigate the situation where v(∆a,b) = min{v(a3), v(b2)} and v has an
extension w to F such that Fw/Ev is transcendental and non-ruled.

6.1. Theorem. Assume that a, b ∈ Ov and ∆a,b ∈ O×
v . Let w be a residually

transcendental extension of v to F . Then Fw/Ev is non-ruled if and only if

w|E(X) is the Gauss extension of v to E(X) with respect to X. Moreover, in this

case, w is the unique extension of w|E(X) to F , the extension w of v is unramified

and Fw/Ev is the function field of the elliptic curve Ea,b over Ev.
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Proof: Suppose first that w|E(X) is the Gauss extension of v to E(X) with respect

to X. By Proposition 3.1, we have that wE(X) = vE, E(X)w = Ev(X) and
w(Y 2) = w(X3 + aX + b) = min{v(1), v(a), v(b)} = 0, where we are using that
a, b ∈ Ov and 4a3 + 27b2 = ∆a,b ∈ O×

v . By Corollary 2.5, we obtain that

Fw = E(X)w
[
Y
]
= Ev(X)

[√
X

3
+ aX + b

]
.

Since ∆a,b = ∆a,b ̸= 0 in Ev, we obtain that Fw/Ev is the function field of the
elliptic curve Ea,b over Fv, so in particular it is non-ruled.

To prove the converse implication, we suppose now that Fw/Ev is non-ruled.
Set Z = (aX + b)−1X3. Since Fw/Ev is non-ruled, we have w(Z) = 0, by
Proposition 3.7. Since v(∆a,b) = 0 = min{v(a3), v(b2)}, it follows by Lemma 5.3
(i) and (iii) that Z is transcendental over Ev. In particular w(Z) = w(Z+1) = 0.
Since Y 2 = (aX + b)(Z + 1), we get that

w(Y 2) = w(X3) = w(aX + b) ⩾ min{w(aX), w(b)}.
We claim that w(X) = 0.

If w(aX) < w(b), then w(X3) = w(aX + b) = w(aX) < w(b) and hence
w(b2) > w(X6) = w(a3) = w(∆a,b) = 0, whereby w(a) = 0 = w(X).
If w(aX) > w(b), then w(X3) = w(aX + b) = w(b) < w(aX) and hence

w(a3) > w(X6) = w(b2) = w(∆a,b) = 0, whereby w(b) = 0 = w(X).
Assume now that w(aX) = w(b). Then w(X) = w(a−1b). Set V = b−1aX.

Since Fw/Ev is non-ruled, wF = wE(X). Otherwise, if wF ̸= wE(X) then by
Corollary 2.2, Fw = E(X)w and hence Fw/Ev is ruled by Theorem 3.4. Now

Lemma 5.2(i) yields that V
3
is transcendental over Ev. Thus V is transcendental

over Ev, and in particular w(V + 1) = w(V ) = 0. Since aX + b = b(V + 1), it
follows that w(b3a−3) = w(X3) = w(aX + b) = w(b), whereby w(b2) = w(a3).
Since min{v(a3), v(b2)} = v(∆a,b) = 0, we conclude that w(a) = w(b) = 0 and
hence w(X) = 0.

Hence we have in every case that w(X) = 0. Since Z = (aX + b)−1X
3
is

transcendental over Ev, we get that X is also transcendental over Ev. Thus
w|E(X) is the Gauss extension with respect to X.
Since [Fw : E(X)w] = 2 = [F : E(X)], it follows by Corollary 2.2 that w is

the unique extension of w|E(X) to F and wF = wE(X) = vE. □

6.2. Corollary. Suppose that a, b ∈ Ov and ∆a,b ∈ O×
v . Then there exists a

unique extension w of v to F such that Fw/Ev is transcendental and non-ruled.

Moreover, for this extension, we have wF = vE, and Fw/Ev is the function field

of an elliptic curve defined over Ev.

Proof: This is clear by Theorem 6.1. □

Using Theorem 6.1 we can easily obtain examples of elliptic function fields
F/E for which v(∆a,b) = min{v(a3), v(b2)} and an extension w of v to F such
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that Fw/Ev is transcendental and non-ruled. We now give such an example
where v(∆a,b) > min{v(a3), v(b2}). The following example stems from [9, (3.10)].

6.3. Example. Let E = R((t)) and v be the t-adic valuation on E, which has
vE = Z and Ev = R. Consider the polynomial f = (tS − 1)(S2 + 1) ∈ E[S]
and the elliptic curve E : Y 2 = f . Let F be the function field of E , that is
F = E(S)[

√
f ]. Let w be a valuation on F such that w|E(S) is the Gauss extension

of v to E(S) with respect to S. Then S = S + mw ∈ Fw is transcendental over
Ev, and by Proposition 3.1, we have E(S)w = R(S) and wE(S) = vE. Note
that w(f(S)) = 0. Using Corollary 2.5, we get that wF = vE and

Fw = E(S)w
[√

f
]
= R

(
S
) [√

−(S
2
+ 1)

]
.

Hence Fw/Ev is the function field of the the conic C−1,−1. Since this conic has no
rational point over R, using Proposition 4.6, we get that Fw/Ev is not a rational
function field. Thus Fw/Ev is non-ruled.

Substituting S = tX + 1
3t

in Y 2 = f , we get the equation

Y 2 = X3 +
1

3t4
(
3t2 − 1

)
X − 2

27t6
(
9t2 + 1

)
.

Thus F/E is the function field of the elliptic curve Ea,b where a = 1
3t4

(3t2 − 1)

and b = − 2
27t6

(9t2 + 1). We observe that ∆a,b = 4
t10

(t2 + 1)2 and further that
v(∆a,b) = −10 > −12 = v(a3) = v(b2).

6.4. Lemma. Assume that v(∆a,b) > min{v(a3), v(b2)} and v(ab) ∈ 2vE. Then

there exists d ∈ E× such that v(d12a3) = v(d12b2) = 0, and letting α = d4a and

β = d6b, we have that v(∆α,β) > 0 and F/E is the function field of the elliptic

curve Eα,β over E.

Proof: Since v(∆a,b) = v(4a3 + 27b2) > min{v(a3), v(b2)} we have v(a3) = v(b2).
Thus v(a) ∈ 2vE, and since v(ab) ∈ 2vE, we also have v(b) ∈ 2vE. It follows
that v(a3) = v(b2) ∈ 12vE. We fix d ∈ E× with v(d12a3) = v(d12b2) = 0. Then
(d3Y )2 = (d2X)3 + ad4(d2X)+ d6b. Letting α = ad4 and β = d6b, we obtain that
the desired conditions are satisfied. □

In view of Corollary 6.2 and Lemma 6.4, we turn our attention to residually
transcendental extensions of v to F in the case where a, b ∈ O×

v and v(∆a,b) > 0.
The following proposition describes a type of residually transcendental extension
v on F/E whose residue field extension is possibly non-ruled.

6.5. Proposition. Assume that a, b ∈ O×
v , v(∆a,b) > 0 and v(∆a,b) ∈ 2vE. Let

c ∈ E be such that v(c2∆a,b) = 0. Set S = c(6aX+9b) and u = c2∆a,b. Let w be a

valuation on F such that w|E(X) is the Gauss extension of v to E(X) with respect

to S. Then wF = vE and Fw/Ev is the function field of the conic C−2ab,u. In

particular, Fw/Ev is ruled if and only if the conic C−2ab,u over Ev has a rational

point.
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Proof: Since E(X) = E(S) and w|E(X) is the Gauss extension with respect to S,

we have E(X)w = Ev(S) and wE(X) = vE, by Proposition 3.1. Note that

(6a)3c2Y 2 = c−1S(S2 + 9c2∆a,b)− 27b(S2 + c2∆a,b).

Since w(c2∆a,b) = 0, we have w(S2 + c2∆a,b) = w(S(S2 + 9c2∆a,b)) = 0, and
since v(c) < 0 = w((6a)3), we obtain that w(c2Y 2) = w(S2 + c2∆a,b) = 0 and

(4a2cY )
2
= −2ab(S

2
+ c2∆a,b) ∈ Ev(S)

×
∖ Ev(S)

×2
. By Corollary 2.5, we get

that

Fw = Ev(S)

[√
−2ab(S

2
+ c2∆a,b)

]
.

Hence Fw/Ev is the function field of the conic C−2ab,−2abu, which is isomorphic
to the function field of the conic C−2ab,u. Hence the final statement follows from
Proposition 4.6. □

6.6. Proposition. Assume that v(∆a,b) > v(a3) = v(b2). Let w be a residually

transcendental extension of v to F . Then Fw/Ev is non-ruled if and only if the

following conditions hold:

(i) v(ab), v(∆a,b) ∈ 2vE, and for u1 ∈ abE×2∩O×
v and u2 ∈ ∆a,bE

×2∩O×
v , the

conic C−2u1,u2
does not have a rational point over Ev.

(ii) w|E(X) is the Gauss extension with respect to c(6aX + 9b) for c ∈ E× such

that v(c2∆a,b) = 0.

Moreover, if these conditions hold, then w is the unique extension of w|E(X) to F ,

the extension w of v is unramified and Fw/Ev is the function field of the conic

C−2u1,u2
over Ev.

Proof: Suppose first that (i) and (ii) hold. By Lemma 6.4, there exists d ∈ E×

with v(d4a) = v(d6b) = 0. Let α = ad4 and β = d6b. Then ∆α,β = d12∆a,b,
v(∆α,β) > 0 and F/E is the function field of the elliptic curve Eα,β over E. In view
of (ii), we fix c ∈ E× such that v(c2∆a,b) = 0 and w|E(X) is the Gauss extension
with respect to c(6aX + 9b). Taking X ′ = d2X, we get that E(X) = E(X ′) and
c(6aX + 9b) = d−6c(6αX ′ + 9β). For u1 = αβ and u2 = c2d−12∆α,β = c2∆a,b,
we have v(u1) = v(u2) = 0, and we obtain by Proposition 6.5 that Fw/Ev is the
function field of C−2u1,u2

over Ev. We conclude by (i) and Proposition 4.6 that
Fw/Ev is non-ruled.

Suppose now conversely that Fw/Ev is non-ruled. Set Z = (aX + b)−1X3. By
Proposition 3.7, we have w(Z) = 0. Set Z = Z + mw. By Lemma 5.3, (i) and
(ii), we obtain that Z = −1, whereby w(Z+1) > 0. Then Y 2 = (aX+ b)(Z+1),
and it follows that w(Y 2) > w(aX + b) = w(X3).
Since w(a3) = w(b2), by Lemma 5.1, we further have w(X3) = w(aX) = w(b).

Set θ = b−1aX. The minimal polynomial of θ over the field E(Y 2) expressed in
the variable T is given by

Pθ = T 3 + b−2a3(T + 1− b−1Y 2) .
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Since w(Y 2) > w(X3) = w(b) and v(∆a,b) > v(a3) = v(b2), we have b−1Y 2 = 0

and b−2a3 = −27
4
in Fw. It follows that θ is a root of

Pθ = T 3 + b−2a3(T + 1) = T 3 − 27
4
(T + 1) = (T − 3)

(
T + 3

2

)2
.

Hence θ = 3 or θ = −3
2
in Fw.

Since Fw/Ev is non-ruled, Corollary 4.4 excludes the possibility that θ = 3.
Therefore θ = −3

2
. We set S = 6θ+9 = b−1(6aX +9b). Then E(X) = E(S) and

w(S) > 0. In particular w(S − 27) = w(S − 3) = 0. We have

(36a2b−1)2Y 2 = 6ab((S − 27)S2 + 9(S − 3)b−2∆a,b)

= 6ab(S(S2 + 9b−2∆a,b)− 27(S2 + b−2∆a,b)).

Hence F ≃ E(S)[
√
f1 + f2] for f1 = 6ab(S − 27)S2 and f2 = 54ab(S − 3)b−2∆a,b.

For i ∈ {1, 2}, we have that E(S)(
√
fi)/E is a rational function field. Since

F ≃ E(S)(
√
f1 + f2) and Fw/Ev is non-ruled, we conclude by Corollary 3.5 and

Lemma 3.6 that w(f1) = w(f2).
Hence w(S2) = w(b−2∆a,b) and consequently w(S2 + b−2∆a,b) ⩾ w(S2). We

claim that w(S2 + b−2∆a,b) = w(S2).

Suppose on the contrary that w(S2+b−2∆a,b) > w(S2). Then −(bS)−2∆a,b = 1.
Let δ =

√
−∆a,b. In order to obtain a contradiction with the hypothesis that

Fw/Ev is non-ruled, we may by Lemma 3.8 extend w to F (δ) and then replace
E by E(δ) and F by F (δ). We may thus assume that δ ∈ E.

We have

S3 − 27S2 + 9b−2∆a,bS − 27b−2∆a,b − (6ab−1)3Y 2 = 0 .

Since w(S) = w(b−1δ) > 0, we have w(b−2∆a,bS) = w(S3) > w(S2) = w(b−2∆a,b)
and w(S2 + b−2∆a,b) > w(S2) = w(b−2∆a,b). Hence w((6ab

−1)3Y 2) > w(b−2∆a,b),
whereby b−1∆−1

a,b(6a)
3Y 2 ∈ mw.

Set θ0 = δ−1bS. Then E(X) = E(θ0) and w(θ0) = 0. The minimal polynomial
of θ0 over E(Y 2) in the variable T is

Pθ0 = T 3 − 27δ−1bT 2 − 9T + 27δ−1b+ (6a)3∆−1
a,bδ

−1Y 2.

We set Qθ0 = b−1δPθ0 ∈ E(Y 2)[T ] and obtain that

Qθ0 = b−1δT 3 − 27T 2 − 9b−1δT + 27 + b−1∆−1
a,b(6a)

3Y 2 .

Since b−1δ ∈ mw and b−1∆−1
a,b(6a)

3Y 2 ∈ mw, it follows that Qθ0 ∈ Ow[T ] and

Qθ0 = −27(T 2 − 1) in E(Y 2)w[T ]. In particular the residue polynomial Qθ0

is separable and splits into linear factors. By Lemma 2.3, we conclude that
wE(X) = wE(Y 2) and E(X)w = E(Y 2)w. It follows by Corollary 4.3 that
Fw/Ev is ruled, which is a contradiction.

Thus we have established that w(S2 + b−2∆a,b) = w(S2). Note that

F ≃ E(S)[
√

Sg1 + g2]
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for g1 = 6ab(S2 + 9b−2∆a,b) and g2 = −2 · 92ab(S2 + b−2∆a,b). Since w(S) > 0,
we obtain that w(Sg1) ⩾ w(S3) > w(S2) = w(g2). It follows by Lemma 2.6
that Fw = F ′w′ for some extension w′ of w|E(X) to F ′ = E(S)

[√
g2
]
. We now

conclude by Theorem 4.7 that (i) and (ii) hold, w is an unramified extension of
v and Fw/Ev is the function field of the conic C−2u1,u2

over Ev. □

7. Reductions types and non-ruled residue field extensions

Let E be a field and let v be a valuation on E with v(6) = 0. Let F/E be an
elliptic function field. We say that F/E is of good reduction with respect to v if
F ≃ E(Ea,b) for some a, b ∈ Ov with ∆a,b ∈ O×

v . In the following proposition, we
characterize elliptic function fields with good reduction with respect to v.

7.1. Proposition. Let a, b ∈ E be such that ∆a,b ̸= 0 and let F/E be the function

field of Ea,b. Then F/E is of good reduction with respect to v if and only if

v(∆a,b) = min{v(a3), v(b2)} ∈ 12vE.

Proof: Assume that v(∆a,b) = min{v(a3), v(b2)} ∈ 12vE. Let d ∈ E× be such
that v(d12∆a,b) = 0. Set a′ = d4a and b′ = d6b. Then E(Ea′,b′) ≃ E(Ea,b) ≃ F ,
a′, b′ ∈ Ov and ∆a′,b′ ∈ O×

v . Hence F/E is of good reduction with respect to v.
Assume now that F/E is of good reduction with respect to v. By Corollary 6.2,

there exists a residually transcendental extension w of v to F such that Fw/Ev is
function field of an elliptic curve over E. In particular, Fw/Ev is transcendental
and neither ruled nor the function field of a conic. We conclude by Proposition 6.6
and Theorem 5.4 that v(∆a,b) = min{v(a3), v(b2)} ∈ 12vE. □

We say that F/E is of potential good reduction with respect to v if F = E(Ea,b)
for certain a, b ∈ E× with v(∆a,b) = min{v(a3), v(b2)}.
7.2. Theorem. Let a, b ∈ E such that ∆a,b ̸= 0 and let F/E be the function

field of Ea,b. There is at most one extension w of v to F such that Fw/Ev is

transcendental and non-ruled. Moreover, if such an extension w of v to F exists,

then it is unramified and one of the following holds:

(i) F/E is of good reduction with respect to v and Fw/Ev is the function field

of an elliptic curve.

(ii) F/E not of potential good reduction with respect to v, v(ab), v(∆a,b) ∈ 2vE
and Fw/Ev is the function field of a conic having no Ev-rational point.

Proof: If v(∆a,b) = min{v(a3), v(b2)} /∈ 12vE, then it follows by Theorem 5.4
that Fw/Ev is ruled for every residually transcendental extension w of v to F .

Assume now that v(∆a,b) = min{v(a3), v(b2)} ∈ 12vE. By Proposition 7.1, Ea,b
is of good reduction with respect to v. By Corollary 6.2, there exists a unique
extension w of v to F such that Fw/Ev is transcendental and non-ruled, and for
this valuation w, the residue field extension Fw/Ev is the function field of an
elliptic curve.
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Assume finally that v(∆a,b) > min{v(a3), v(b2)}. Hence Ea,b is not of potential
good reduction with respect to v. By Proposition 6.6, there exists at most one
extension w of v to F such that Fw/Ev is transcendental and non-ruled, and if
such an extension w exists, then v(ab), v(∆a,b) ∈ 2vE and Fw/Ev is the function
field of a conic having no rational point over Ev. □

Elliptic function fields F/E are function fields of genus one curves having a
rational point over E. Finally, we give an example of a field E with a valuation
v and a function field F/E of genus one such that there exist two residually
transcendental extensions of v to F for which the corresponding residue field
extensions are non-ruled.

The following example stems from [4, Example 5.12]. There it is used for a
discussion of a problem of sums of squares. For the relation of that topic with
the problem on valuation extensions, we refer to the introduction of [3].

7.3. Example. Let E = R((t)) and v be the t-adic on E with value group Z.
Then Ev = R. Consider the polynomial f = −(X2 + t2)(X2 + 1) ∈ E[X] and
the curve E : Y 2 = f . Let F be the function field of E , that is, F = E(X)

[√
f
]
.

Then F/E is a regular function field of genus one.
Let w0 denote the Gauss extension of v to E(X) with respect to X. Then

E(X)w0 = R(X). Since w0(f) = 0 and f = −X
2
(X

2 − 1) /∈ R(X)
×2
, it follows

by Corollary 2.5 that w0 extends uniquely to a valuation w on F such that
wF = wE(X) = vE = Z and

Fw = E(X)w

[√
f

]
= R

(
X
) [√

−(X
2
+ 1)

]
.

Now let w′
0 denote the Gauss extension of v to E(X) with respect to the

variable X ′ = t−1X. Note that w(X) = 0 and w′(X) = v(t) = 1. Hence
w and w′ are not equivalent. Then E(X) = E(X ′) and F = E(X ′)[

√
f ′] for

f ′ = t−2f = −(X ′2 + 1)(t2X ′2 + 1). Thus we obtain similarly that w′
0 extends

uniquely to a valuation w′ on F such that w′F = Z and

Fw′ = R
(
X ′

) [√
−(X ′2 + 1)

]
.

Hence both function fields Fw/Ev and Fw′/Ev are isomorphic to the function
field of the conic C−1,−1 over Ev = R. Since C−1,−1 has no rational point over R,
we get that Fw/Ev and Fw′/Ev are non-ruled.
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