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ABSTRACT  9 

In recent years, the Fiber Bragg Grating (FBG) sensor technology has been increasingly utilized as an 10 

optical measurement system in various engineering applications, particularly for structural health 11 

monitoring (SHM) purposes. This trend can be attributed to the inherent benefits of FBG sensors, such as 12 

their small size, immunity to electromagnetic interference, resistance to corrosion, and high accuracy and 13 

sensitivity. Various factors cause noise in the FBG sensor signal, which has a significant effect on 14 

measurement precision. As a result, de-noising plays an important role in the use of FBG sensor systems. 15 

In this study, strain data collected from FBG sensors embedded in a road section were used to evaluate 16 

the performance of discretized wavelet transform (DWT) for denoising FBG signals. The presence of noise 17 

poses a significant challenge in accurately measuring low-amplitude strains and light loads. To address 18 

this issue, various approaches have been investigated, including the selection of appropriate mother 19 

wavelets, levels of decomposition, thresholding functions, and thresholding selection approaches, with 20 

the aim of identifying the optimal parameters for effective denoising. The results show that FBG signals 21 

could be denoised successfully and low amplitude strains appeared completely without any loss of 22 

valuable data. 23 

Keywords: FBG sensor, signal de-nosing, optical measurement, discretized wavelet transform, asphalt 24 

pavement  25 
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1. INTRODUCTION 31 

The ongoing advancement of optical technology has led to fiber Bragg grating (FBG) sensors with 32 

excellent immunity to electromagnetic interference, corrosion resistance, high sensitivity, and a tiny 33 

body. FBG sensors are widely applied in civil, aerospace, and other fields due to their relatively low cost 34 

and unmatched advantages over conventional sensors. However, in engineering applications, various 35 

factors create noise in the collected FBG signal, which has a significant impact on precision[1].            36 

Optical return loss (ORL) is a phenomenon in which light reflected back from an optical fiber or 37 

component causes interference with the transmitted light. In FBG sensors, ORL can cause noise in the 38 

reflected signal, leading to errors in the measurement of strain, temperature, or other physical 39 

parameters [2]. Several factors, including imperfections in the fiber or FBG fabrication, mismatched 40 

connectors, patch cords, mechanical splices, and environmental factors such as temperature changes or 41 

vibrations, can cause ORL in FBG sensors. To reduce the impact of ORL, advanced signal processing 42 

algorithms can filter out the ORL-induced noise and improve the precision of the measurement. 43 

In order to improve the quality of FBG signals, some studies on denoising were conducted [3], but they 44 

had some limitations. The previous studies used the fast Fourier transform (FFT) and moving average 45 

filter to deal with the noise of FBG signals [4], but the coarse scale of the Fourier transform hindered 46 

noise removal. As the discrete wavelet transform (DWT) provides enhanced time-frequency localization 47 

and multi-rate filtering, it can be utilized to reduce noise in signals. Using DWT-based denoising, a signal 48 

is decomposed into a number of sub-bands with various frequency ranges. The DWT coefficients of the 49 

signal components are high and constrained to a single frequency band whereas the coefficients of the 50 

noise components are low and dispersed throughout the various frequency bands [5]. Therefore, 51 

denoising can be achieved by suppressing the small coefficients. The success of DWT-based denoising 52 

depends on parameters such as the mother wavelet utilized, the number of decomposition levels (DLs), 53 

the threshold function employed, and the type of thresholding approach performed [6]. The best mother 54 

wavelets are Daubechies, Symlets, Coiflets, and Bio-orthogonal because they produce excellent 55 

reconstruction results [7,8]. Furthermore, it is important to choose an optimal number of DLs so that the 56 

levels are adequately distributed across the useful and unwanted signal components.  57 

The most popular thresholding approaches for DWT-based signal denoising are rigsure, sqtwolog, 58 

heursure, and minimaxi. The threshold function, which is the last decision factor, controls how the 59 

wavelet coefficients are handled when the approximative threshold value is employed. The two types of 60 

thresholding functions utilized for signal denoising are hard thresholding (HT) and soft thresholding 61 

(ST), each with benefits and drawbacks. Therefore, choosing the appropriate parameters for denoising is 62 

a significant difficulty for scholars working on signal data [9].  63 

In this section, some previous studies on the denoising of FBG signals have been reviewed.  For example, 64 

Chen et al. [10] developed a new FBG wavelength demodulation approach that uses an improved 65 
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denoising technique based on translational invariant wavelet and a Gaussian fitting peak finding 66 

methodology. They used the enhanced translational invariant wavelet without the threshold adjust factor 67 

to improve the de-noising of the FBG sensor output. This denoising approach is intended to be combined 68 

with the Gaussian fitting peak finding algorithm to provide a high wavelength demodulation accuracy of 69 

the signal. The outcomes of the simulation demonstrated that a far better degree of precision can be 70 

achieved with a small wavelength measurement error that is less than 1 pm. According to Zhang et al. 71 

[11], there are several undesirable noise sources between the local circuits and the remote sensing fiber 72 

that are difficult to remove and that reduce the system's performance. They used two FBG sensors with 73 

different central wavelengths to create two interferometric signals as a unique technique to decrease the 74 

noise caused along the transmission fiber. A theoretical study revealed that most of the noise could be 75 

removed by subtracting the two signals, and simulation calculations demonstrated that the remaining 76 

noise is less than 1% under usual conditions. Besides, an analysis was performed on the variables that 77 

influenced the amount of residual noise. In another investigation, a new wavelet adaptive threshold 78 

technique developed by Chen et al. [12] was utilized to filter a noisy spectrum signal from an FBG system. 79 

A threshold function was used to improve the noisy FBG signal after the best wavelet basis and 80 

decomposition layer were selected through simulation. In another study, Jiang et al. [13] presented a 81 

denoising algorithm that combined local complementary ensemble empirical mode decomposition 82 

(LCEEMD) and lifting wavelet transform technology (LWT) to address crosstalk noise in high-capacity 83 

fiber grating multiplexing networks. The proposed method utilizes complementary ensemble empirical 84 

mode decomposition (CEEMD) to decompose the original spectral signal and the normalization 85 

permutation entropy (NPE) to identify high-frequency nonlinear sequences in low-order intrinsic mode 86 

function for suppressing random noise. The high-frequency intrinsic mode function is further 87 

decomposed using LWT, which enhanced filtering accuracy. Also, Su et al. [14] discussed using Phase-88 

sensitive optical time-domain reflectometer  (Φ-OTDR) for long-distance measurements and applied fast 89 

non-local means (NLM) filtering, increasing noise suppression ratio (NSR) by 10 dB, peak signal-to-noise 90 

ratio (PSNR) by 12 dB, and SSIM from 0.9361 to 0.9931. The study also explored parameter effects. 91 

Besides, Wu et al. [15] proposed an improved denoising algorithm with wavelet theory and a hybrid 92 

approach with a bandpass filter. Furthermore, Lv et al. [16] proposed a precise multi-peak detection 93 

algorithm using wavelet packet denoising and Hilbert transform that outperformed other methods in 94 

noise reduction and achieved high stability and accuracy in real-time temperature detection, making it 95 

suitable for FBG monitoring in noisy conditions with faster computation. 96 

In this work, information collected from FBG sensors embedded in a road section for pavement 97 

monitoring was utilized to assess the efficiency of the discretize wavelet transform (DWT) for de-noising 98 

FBG sensor signals. Various mother wavelets, levels of decomposition, thresholding functions, and 99 

thresholding selection approaches were tested to find the best de-noising parameters that successfully 100 

eliminate the noise that hides low amplitude strain measurements and light loads. Finally, the 101 
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performance of this method was compared with other signal filtering methods such as low-pass filter, 102 

median filter, and moving average filter. The results showed that FBG signals could be properly de-noised 103 

and low amplitude strains could be identified without losing any data. 104 

2. RESEARCH METHODOLOGY 105 

FBG signal denoising based on DWT requires three steps, as illustrated in Figure 1, including: 106 

I. Decomposition of noisy FBG signals into selected-level of wavelet coefficients.  107 

II. Applying a threshold using a thresholding function and a threshold selection rule to the 108 

coefficients.  109 

III. Reconstruction of the denoised FBG signal using the remaining coefficients. 110 

 

Figure 1 Proposed denoising technique flow 

Raw strain data was collected during a pavement monitoring campaign conducted at the Port of Antwerp 111 

on May 17, 2022. The pavement section is composed of 21 cm of asphalt concrete (AC) and 40 cm of 112 

crushed stone. An FBG fiber with 12 sensing points was placed across the top of the crushed stone prior 113 

to laying the first asphalt lift. Thus, the FBG sensors capture the maximum horizontal strain in the 114 

transverse direction (i.e., perpendicular to the direction of traffic) at the bottom of the AC layer. The 115 

measurements were conducted with an 8-channel FBG-Scan 908 interrogator at a sampling frequency of 116 

200 Hz; the data were collected and processed with ILLumiSense v2.3.5.5 and MATLAB software, 117 

respectively. Concurrent with the FBG measurements, the researchers annotated the timestamps and 118 

number of axles of all vehicles that drove over the instrumented section during the monitoring campaign. 119 

The workflow of the monitoring system is illustrated in Figure 2.  120 

 121 

 122 

 123 

 124 
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Figure 2 Workflow of monitoring system 

 

As can be seen in Figure 2, all data were transformed from the time domain to the frequency domain 128 

using the Fourier transform to investigate the power spectrum of FBG signals in decibels (dB). The power 129 

spectrum refers to the distribution of power over the different frequencies that make up the signal. The 130 

shape of the power spectrum of an FBG signal depends on the characteristics of the FBG itself and the 131 

properties of the light that is reflected by the FBG. It is evident that there is a constant power spectrum 132 

between -40 and -50 dB for all frequencies higher than 10 Hz. Generally, a constant power spectrum value 133 

over a wide range of frequencies could indicate uniform background noise. In a noise-free signal, the 134 

power spectrum should exhibit peaks at specific frequencies that correspond to the signal's spectral 135 

content. However, in the presence of noise, the power spectrum can be contaminated by random 136 
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fluctuations that spread over a wide range of frequencies. Therefore, this noise should be removed using 137 

filtering methods to improve the FBG signals. Figure 3 (a) and (b) display the clean and noisy response 138 

signals, respectively, of FBG sensor 9 in response to a passing car (between the first set of dashed lines) 139 

and a 5-axle truck (between the second set of dashed lines). The original signal exhibits discretization 140 

noise that needs to be eliminated using an appropriate denoising method. The resulting clean signal can 141 

then serve as a ground truth for evaluating denoising performance (we will artificially add noise to the 142 

ground truth signals) 143 

 
(a) Clean signal 

 
(b) Nosy signal 

Figure 3 FBG sensor response to passing a car and 5-axle truck 

 144 

2.1. FBG SIGNAL DECOMPOSITIONS 145 

The noisy FBG signal 𝑥(𝑛) was decomposed using DWT and the following selected mother wavelets: 146 

Daubechies, Symlets, Coiflet, and Biorthogonal. Using a high-pass filter (HPF) and a low-pass fitter (LPF) 147 

with impulse responses of 𝑢(𝑛) and 𝑣(𝑛), respectively, the noisy FBG signal 𝑥(𝑛) is decomposed into 148 

detailed (𝑑) coefficients and approximation (𝑎) coefficients. Then, both the approximate and the detailed 149 

coefficients are downsampled by a factor of two to obtain the next level coefficients. The following 150 

equation gives the wavelet filter bank structure required for L-level decomposition [17]: 151 

𝑥(𝑛) =  ∑ 𝑑𝑗(𝑛) + 𝑎𝑗(𝑛)                                                                                                                                                 (1)𝐿
𝑗=1  152 

Here, 𝑑𝑗(𝑛), and 𝑎𝑗(𝑛), (𝑗 = 1, 2, . . . , 𝐿)  are the j-level detailed and approximation coefficients that denote 153 

the reconstructed sub-band signals. During decomposition, the signal-to-noise ratio (SNR) value is used 154 

to determine the ideal number of decomposition levels (DL). 155 
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Figure 4 FBG signal decomposition using DWT 

The noisy FBG signal is decimated into separate frequency bands by gradually filtering with HPF and LPF 156 

throughout the wavelet decomposition process, as shown in Figure 4. Using Nyquist's rule, half of the 157 

samples are eliminated after filtering. The signal is consequently down sampled by a factor of two, 158 

eliminating half of the total samples. The following equations represent one-level decomposition [18] : 159 

�̃�ℎ𝑖𝑔ℎ(𝑘) =  ∑ 𝑥(𝑛) ⊛ 𝑢(2𝑘 − 𝑛)                                                                                                                                 (2)𝑛  160 

�̃�𝑙𝑜𝑤(𝑘) =  ∑ 𝑥(𝑛) ⊛ 𝑣(2𝑘 − 𝑛)𝑛                                                                                                                                   (3) 161 

where �̃�ℎ𝑖𝑔ℎ(𝑘) and �̃�𝑙𝑜𝑤(𝑘) are the outputs of the HPF and LPF, respectively, after a two down sampling 162 

(reducing high-frequency signal components with a digital lowpass filter). The convolution operation is 163 

denoted by the symbol ⊛ in Equations (2) and (3). The outputs of the HPF and LPF are the detailed 164 

coefficients and approximation coefficients, respectively. In this study, the noisy FBG signal was 165 

decomposed into several levels, and the optimal level of decomposition is discussed in further sections. 166 

As an example, a 6-level decomposition of a noisy FBG signal can be observed in Figure 5. Note that a total 167 

of seven coefficients were obtained: one is the approximation coefficient (𝑎6) and six are details 168 

coefficients (𝑑1, 𝑑2, 𝑑3, … , 𝑑6).   169 

 170 

 171 

 172 

 173 

 174 

https://en.wikipedia.org/wiki/Lowpass_filter
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 Figure 5 Six-level decomposition of noisy FBG signal using DWT 

2.2. DETAILED COEFFICIENT THRESHOLDING AND RESCALING 175 

The threshold value chosen for the technique is another important variable that has an impact on the 176 

effectiveness of denoising. If the chosen threshold value is set too high, some critical information in the 177 

signal may be filtered out, and if it is set too low, substantial noise may remain in the signal. The 178 

thresholding process that was used to convert the input FBG signal 𝑥(𝑛) into the estimated denoised FBG 179 

signal �̂�(𝑛) is represented by the following equation: 180 �̂�(𝑛) = 𝑇𝐻𝑅(𝑥(𝑛), 𝜆)                                                                                                                                                         (4) 181 

Here, 𝑇𝐻𝑅 and 𝜆 represent the thresholding function and threshold value, respectively. In wavelet 182 

thresholding, the threshold value is used to modify the wavelet coefficients. The basic idea behind 183 

thresholding is to remove small wavelet coefficients while shrinking large wavelet coefficients. The 184 

obtained coefficients are then utilized for selective DWT inverse reconstruction. When comparing the 185 

two thresholding functions, hard thresholding (HT) is the more straightforward option because of 186 

simplicity, but it might result in discontinuities in the denoised signal. Soft thresholding (ST), on the other 187 

hand, has a smaller estimate error and produces better results. The following equation gives the 188 

definition of the HT function, which is seen in Figure 6(a)[19]: 189 

�̂� = {𝑊           |𝑊| ≥ 𝜆0            |𝑊| < 𝜆                                                                                                                                                       (5) 190 

The ST function is illustrated in Figure 6(b) and determined by the equation below: 191 
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�̂� = {𝑠𝑔𝑛(𝑊) ∙ (|𝑊| − 𝜆)           |𝑊| ≥ 𝜆0                                              |𝑊| < 𝜆                                                                                                                      (6) 192 

where 𝜆 is the threshold value and 𝑊 denotes the wave coefficient.  193 

  

(a) (b) 

Figure 6 Thresholding functions: (a) Hard Thresholding (HT) (b) Soft Thresholding (ST) 

 194 

2.3. THRESHOLDING TECHNIQUES 195 

The thresholding techniques evaluated in this study were rigrsure, sqtwolog, heursure, and minimaxi. 196 

Thresholding selection criteria are composed of mathematical computations that may provide a realistic 197 

noise threshold. 198 

2.3.1. Sqtwolog Criterion 199 

This approach was suggested by Donoho and Johnstone. The threshold values are determined by applying 200 

the universal approach (square root record) expressed by [20,21]: 201 

𝑡ℎ𝑗 =  𝜎𝑗√2 log 𝑁𝑗                                                                                                                                                                (7) 202 

where 𝑁𝑗  is the length of the noisy signal and 𝜎𝑗 is median absolute deviation (MAD), which is defined as: 203 

𝜎𝑗 = 𝑀𝐴𝐷𝑗0.6745                                                                                                                                                                          (8) 204 

where 𝑀𝐴𝐷𝑗 is the median of the absolute value of the j-level detail coefficients. 205 

2.3.2. Rigrsure Criterion 206 

An unbiased risk estimator is provided by the Rigrsure threshold selection rule given by [20,21]: 207 𝑡ℎ𝑗 =  𝜎𝑗√𝑇𝑖                                                                                                                                                                          (9) 208 

where 𝑇𝑖 is the i-th coefficient wavelet square (minimum risk coefficient) selected from the vector 𝑇 =209  [𝑇1, 𝑇2, … , 𝑇𝑁] that contains the wavelet coefficient square values, ranging from small to large, and 𝜎𝑗 is 210 

the noisy signal's standard deviation. 211 

2.3.3. Heursure Criterion 212 

λ 

-λ 

x 

y 

λ 

-λ 

x 

y 
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Combining Sqtwolog and Rigrsure techniques results in the Heursure threshold selection principle. The 213 

Sqtwolog approach provides superior threshold estimate when the SNR is very low, as opposed to the 214 

Rigrsure method [20,21]. 215 

2.3.4. Minimaxi Criterion 216 

Minimaxi selection principle utilizes a fixed threshold to provide a minimax efficiency for the root mean 217 

square error against an ideal method, as follows [20,21]:  218 

𝑡ℎ𝑗 = {𝜎(0.3936 + 0.10829 log2 𝑁)           𝑁 > 320                                                               𝑁 < 32                                                                                                  (10) 219 

Here, 𝜎 = 𝑚𝑒𝑑𝑖𝑎𝑛 ( |𝜔|0.6745) and 𝜔 is vector of wavelet coefficient at unit scale. 220 

2.4. SIGNAL RECONSTRUCTION 221 

The signal is reconstructed using its threshold coefficients, and this process is accomplished by an up-222 

sampling operation. For this purpose, the higher-level detailed coefficients and approximation 223 

coefficients are up-sampled by a factor of 2 and fed through related HPF and LPF, respectively, to 224 

reconstruct the denoised FBG signal. These filters are referred to as reconstruction filters, which are 225 

orthogonal to the analytical filters employed in the decomposition process. The sum of the outputs from 226 

these two filters, as shown in Figure 7, produces approximation coefficients for the reconstruction of the 227 

next phases. Eventually, the Inverse Discrete Wavelet Transform (IDWT) on �̃�(𝑛) FBG signal is then used 228 

to approximate the original FBG signal, as indicated in the following equation: 229 𝑆(𝑛) = 𝐼𝐷𝑊𝑇(�̃�(𝑛))                                                                                                                                                        (11) 230 

 
Figure 7 FBG signal reconstruction using IDWT 

2.5. PERFORMANCE METRICS 231 

The performance of the de-noising algorithms was evaluated in terms of the mean squared error (MSE), 232 

normalized mean squared error (NMSE), root mean squared error (RMSE), normalized root mean 233 

squared error (NRMSE), percentage poot mean square difference (PRD), and signal-to-noise-ratio (SNR). 234 

MSE calculates the deviation between the clean FBG signal and the denoised version of the FBG signal, 235 

and its formula is as follows: 236 
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𝑀𝑆𝐸 =  1𝑁 ∑(𝑥(𝑛) − �̃�(𝑛))2𝑁
𝑛=1                                                                                                                                        (11) 237 

The definition of the NMSE is [22]: 238 

𝑁𝑀𝑆𝐸 = ∑ (𝑥(𝑛) − �̃�(𝑛))2𝑁𝑛=1  ∑ (𝑥(𝑛))2𝑁𝑛=1                                                                                                                                       (12) 239 

In order to make the error independent of the original signal, normalization is essential. The third metric, 240 

RMSE, is expressed in Equation (13) and is used to calculate the sample standard deviation of the 241 

differences between the denoised signal and the clean signal. 242 

𝑅𝑀𝑆𝐸 =  √1𝑁 ∑(𝑥(𝑛) − �̃�(𝑛))2𝑁
𝑛=1                                                                                                                                  (13) 243 

Nevertheless, RMSE is insufficient to indicate the FBG signal quality. To overcome this limitation, the 244 

normalized form of the RMSE, known as the normalized RMSE (RMSE), was calculated: 245 

𝑁𝑅𝑀𝑆𝐸 = √∑ (𝑥(𝑛) − �̃�(𝑛))2𝑁𝑛=1  ∑ (𝑥(𝑛))2𝑁𝑛=1                                                                                                                                 (14) 246 

Moreover, PRD is a distinctive distortion metric that is frequently utilized to assess how well denoising 247 

algorithms work and demonstrates the accuracy of reconstruction by a point-to-point correlation with 248 

the initial results. This metric is characterized by the following equation: 249 

𝑃𝑅𝐷 = √∑ (𝑥(𝑛) − �̃�(𝑛))2𝑁𝑛=1  ∑ (𝑥(𝑛))2𝑁𝑛=1   × 100                                                                                                                        (15) 250 

The most critical parameter for determining the level of noise in the FBG signal is SNR and is defined by 251 

the following equation: 252 

𝑆𝑁𝑅 = 10 log10 ∑ (𝑥(𝑛) − �̃�(𝑛))2𝑁𝑛=1  ∑ (𝑥(𝑛))2𝑁𝑛=1                                                                                                                          (16) 253 

It is important to note that an efficient denoising method would provide low MSE and PRD values as well 254 

as high SNR values. 255 

3. RESULTS AND DISCUSSION 256 

In this section, the effect of different parameters, such as various mother wavelets, different thresholding 257 

functions, different thresholding selection approaches, and different decomposition levels, is evaluated 258 

and discussed using the performance metrics mentioned in the previous section. 259 
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3.1. EVALUATION OF DIFFERENT MOTHER WAVELETS 260 

A study was conducted in this section to determine which mother wavelet and order provide the best 261 

denoising performance. To compare their performance, MSE, NMSE, RMSE, NRMSE, PRD, and SNR were 262 

computed for each case. In Figure 8, the similarity of selected mother wavelets with the original FBG data 263 

is shown, while the metrics for DWT calculated using Daubechies, Symlets, Biorthogonal, and Coifiets 264 

mother wavelets are shown in Table (1). The thresholding was accomplished using a HT function and the 265 

rigsure thresholding approach. The results in Table (1) show that db9, sym7, bior5.5, and coif2 wavelets 266 

exhibit the highest performance in terms of low MSE, NMSE, RMSE, NRMSE, PRD and high SNR. 267 

    
(a) (b) (c) (d) 

 
(e) 

Figure 8 Shape of : (a) Daubechies (b) Symlets (c) Biorthogonal (d) Coiflets (e) FBG strain signal for 5-

axle truck  

Table (1) Evaluation of denoising performance metrics for four different mother wavelets with multiple orders for 268 

sensor 2. 269 

  MSE NMSE RMSE NRMSE PRD SNR 

Noisy FBG signal 0.0454 0.0661 0.2131 0.2572 25.720 11.794 

Mother wavelet Order       

Daubechies 

wavelet 

db6 0.0126 0.0184 0.1125 0.1357 13.574 17.345 

db7 0.0128 0.0186 0.1131 0.1365 13.653 17.295 

db8 0.0130 0.0190 0.1143 0.1379 13.790 17.208 

db9 0.0124 0.0181 0.1116 0.1346 13.469 17.413 

db10 0.0129 0.0188 0.1136 0.1371 13.713 17.257 

Symlet wavelet 

sym5 0.0127 0.0184 0.1127 0.1359 13.598 17.330 

sym6 0.0129 0.0187 0.1136 0.1371 13.711 17.258 

sym7 0.0126 0.0184 0.1126 0.1350 13.590 17.334 

sym8 0.0127 0.0184 0.1127 0.1359 13.599 17.329 

sym9 0.0128 0.0187 0.1133 0.1368 13.680 17.278 

sym10 0.0129 0.0188 0.1138 0.1373 13.732 17.245 

sym11 0.0127 0.0184 0.1127 0.1359 13.599 17.329 

Biorthogonal 

wavelet 

bior3.3 0.0151 0.0220 0.1229 0.1483 14.835 16.574 

bior3.5 0.0131 0.0191 0.1147 0.1384 13.841 17.176 

bior3.7 0.0131 0.0190 0.1144 0.1381 13.811 17.195 

bior3.9 0.0130 0.0189 0.1142 0.1378 13.780 17.214 

bior4.4 0.0127 0.0186 0.1130 0.1364 13.640 17.303 

bior5.5 0.0127 0.0185 0.1128 0.1362 13.621 17.315 

bior6.8 0.0128 0.0186 0.1131 0.1365 13.654 17.294 

Coiflet wavelet 

coif1 0.0133 0.0194 0.1155 0.1394 13.940 17.114 

coif2 0.0124 0.0181 0.1117 0.1348 13.485 17.402 

coif3 0.0128 0.0186 0.1132 0.1366 13.663 17.288 
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coif4 0.0127 0.0186 0.1130 0.1364 13.642 17.302 

coif5 0.0128 0.0186 0.1131 0.1365 13.653 17.295 

 270 

3.2. EVALUATION OF DIFFERENT THRESHOLDING FUNCTIONS 271 

This study seeks to comprehend the influence of different thresholding functions and thresholding 272 

approaches on the denoising process. Figure 9 shows a raw noisy FBG signal and its denoised version 273 

using HT and ST approaches.  274 

 
(a) 

 
(b) 

 
(c) 

Figure 9 FBG signals for sensor 2: (a) Raw noisy signal (b) Denoised signal using ST (c) Denoised signal using HT 

Figure 9 demonstrates that HT performed denoising better than ST, because ST remove the data by 275 

decreasing the amplitude. Next, the noisy FBG signals were decomposed using the db9, sym7, bior5.5, 276 

and coif2 mother wavelets from the previous evaluation. Then, the HT function was employed to ensure 277 

the conclusions. Finally, the effect of the thresholding approach, including sqtwolog, rigrsure, heursure, 278 

and minimaxi, was assessed. The metrics calculated for the HT function and various thresholding 279 

approaches are listed in Table (2).  280 

Table (2) Performance metrics for different thresholding approaches using four mother wavelets with a HT function 281 

for sensor 2. 282 
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Mother 

wavelet 

and order 

Threshold 

selection 

approach 

MSE NMSE RMSE NRMSE PRD SNR 

Db9 

sqtwolog 0.019 0.028 0.139 0.168 16.852 15.466 

rigrsure 0.013 0.018 0.114 0.137 13.777 17.216 

heursure 0.014 0.021 0.121 0.146 14.605 16.709 

minimax 0.033 0.048 0.183 0.221 22.114 13.106 

Sym7 

sqtwolog 0.019 0.027 0.137 0.166 16.642 15.575 

rigrsure 0.012 0.018 0.113 0.136 13.667 17.286 

heursure 0.014 0.020 0.119 0.143 14.391 16.837 

minimax 0.016 0.023 0.127 0.153 15.370 16.266 

Bior5.5 

sqtwolog 0.023 0.033 0.152 0.183 18.389 14.708 

rigrsure 0.013 0.018 0.114 0.137 13.764 17.224 

heursure 0.016 0.023 0.127 0.153 15.364 16.269 

minimax 0.016 0.024 0.129 0.156 15.632 16.119 

coif2 

sqtwolog 0.019 0.028 0.138 0.167 16.739 15.525 

rigrsure 0.012 0.018 0.112 0.135 13.593 17.333 

heursure 0.015 0.022 0.123 0.148 14.868 16.554 

minimax 0.016 0.023 0.127 0.154 15.404 16.247 

From Table (2), it can be seen that the rigrsure threshold-based selection process provided the highest 283 

denoising performance in terms of low MSE, NMSE, RMSE, NRMSE, PRD and high SNR. 284 

3.3. EVALUATION OF DIFFERENT DECOMPOSITION LEVELS 285 

During the denoising process, the noisy FBG signals are decomposed using wavelet functions. The signal 286 

may still retain some noise if the DL is low whereas some vital signal information may be lost when the 287 

level is high. The number of decomposition levels and the appointed thresholding technique have a 288 

substantial effect on the SNR value. A study was carried out to find an optimal number of DLs for the 289 

wavelet functions and orders selected in the first evaluation. The rigrsure threshold selection approach 290 

was employed along with HT function. Figure 10 displays the SNR values calculated for various DLs 291 

ranging from level 1 to level 12. It is clear that the SNR value improved as the level of decomposition 292 

increased up to level 8; after that, SNR values remained relatively constant. Considering that a higher 293 

level of decomposition increases the calculation time, the optimal level of decomposition for denoising 294 

FBG signals was determined to be DL 8. 295 
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Figure 10 SNR values for various levels of decompositions (level 1-level 12): HT for sensor 2 

Denoising is mainly employed to enhance the SNR of signals and filter out noise components so that 296 

precision is improved. The SNR value is high when the settings indicated in Table (3) are used for FBG 297 

signal denoising, according to the previous evaluation. 298 

Table (3) Selected optimal denoising parameters 299 

Mother Wavelet 
Level of 

decomposition 

Thresholding 

Function 

Thresholding selection 

Approach 

Db9 or sym7 or bior 5.5 or 

coif2 
8 Hard thresholding  Rigrsure 

Using the aforementioned parameters, a raw noisy FBG signal (130 s) was denoised and displayed in time 300 

domain as depicted in Figure 11 (a) and (b). Then, for better visualization, noisy and denoised signals 301 

were transferred from time domain to frequency domain and time-frequency domain as can be observed 302 

in Figure 11 (c)-(f). It is obvious that the FBG signal strongly improved and cleaned after the denoising 303 

process. 304 
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Figure 11 Process of denoising the FBG signal: (a) Raw noisy signal in time domain (b) Denoised signal in time domain (c) Raw noisy 

signal infrequency domain (d) Denoised signal in time frequency domain (e) Raw noisy signal in time-frequency domain (f) Denoised 

signal in time-frequency domain 

3.4. COMPARISON STUDY  305 

There are several methods for filtering and denoising in signal processing, each with its own strengths 306 

and weaknesses. For example, a low-pass filter is a type of filter that allows low-frequency components 307 

of a signal to pass through while attenuating high-frequency components. This filter is commonly used to 308 

remove high-frequency noise from a signal. A median filter is a nonlinear digital filter that is commonly 309 

employed for removing noise from a signal. It operates by replacing each data point in a signal with the 310 

median value of neighboring data points. A moving average filter is a linear filter that averages a certain 311 

number of neighboring samples in a signal. This filter is effective at smoothing out a signal and removing 312 

high-frequency noise.  313 

In this section, these filters were compared for denoising the FBG sensor signal. The results in time and 314 

frequency domain are plotted in Figure 12. As it can be seen in Figure 12b, after denoising the signal using 315 

a low-pass filter, the power spectrum of the noise decreased dramatically in all ranges of frequency, but 316 
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the amount of noise that remained in the signal was considerable. Also, the amplitude of the data was 317 

reduced after denoising. By applying the median filter, there wass no remarkable change in either time 318 

domain or frequency domain. By utilizing a moving average filter, the power spectrum decreased in all 319 

ranges of frequency and especially at 40 and 80 Hz. This means that the power of noise decreased 320 

significantly, and the time domain shows that data amplitudes remained relatively unchanged. Finally, 321 

after denoising using the approach proposed in this study, the power spectrum of the signal decreased 322 

noticeably in all frequencies, especially at 50 Hz and 100 Hz. The time domain of the signal demonstrates 323 

that noise is removed from the signal without losing the amplitude of the data. The result of the evaluation 324 

of different filters listed in Table (4) and the results of performance evaluation validate the effectiveness 325 

of the proposed denoising approach based on DWT with optimum mother wavelet, level of 326 

decomposition, thresholding function, and thresholding selection approaches. 327 

 

 
(f) 

Figure 12 FBG signals in time and frequency domain: (a) Raw noisy signal (b) Denoised signal using low-pass  filter (c) Denoised signal 

using median filter (d) Denoised signal using moving average filter (e) Denoised signal using wavelet filter (f) FBG signals in frequency 

domain. 

Table (4) Evaluation of the performance of different filter for denoising FBG signal 328 

Filtering Method MSE NMSE RMSE NRMSE PRD SNR 

Low-Pass Filter 0.016 0.024 0.128 0.155 15.557 16.161 
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Median Filter 0.032 0.048 0.181 0.219 21.908 13.187 

Moving Average Filter 0.017 0.025 0.133 0.160 16.087 15.870 

Wavelet Denoising  0.012 0.018 0.112 0.135 13.593 17.333 

4. CONCLUSIONS 329 

The discretized wavelet transform (DWT) method was employed in this study to remove noise from FBG 330 

signals collected from pavement section and the following conclusions were drawn: 331 

• Db9, sym7, bior 5.5, and coif2 were the mother wavelengths that exhibited the best performance. 332 

• The hard thresholding function retained the amplitude of the FBG signal, but the soft thresholding 333 

function decreased the amplitudes dramatically and, for this reason, it is not a reasonable choice 334 

for denoising. 335 

• The rigrsure thresholding approach provided the best results in terms of SNR, MSE, NMSE, RMSE, 336 

NRMSE, and PRD. Therefore, it can be the best approach for denoising FBG signals. 337 

• The optimal level of decomposition was 8. Beyond this level, there was no further improvement 338 

in SNR.  339 

Based on the findings from this study, it can be concluded that the presence of noise can significantly 340 

affect measurement precision, which emphasizes the importance of denoising techniques. Overall, this 341 

study provides valuable insights into the use of FBG sensors in SHM and highlights the importance of 342 

denoising techniques in ensuring accurate and reliable measurements. 343 
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