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Introduction

The scientific field of superconductivity has presented both theoretical and experimental
physicists with unexpected findings since its initial discovery. Currently, nanoscale super-
conductivity is a rapidly developing research area, as scientists endeavor to gain insight into
how fluctuations at this scale significantly impact the behavior of superconductors. Super-
conducting nanostripes (SNs) are a critical component in superconducting electronics, with
widespread applications in quantum technology. For example, superconducting nanostripe
single-photon detectors (SNSPDs) have been proposed for use in quantum communication,
as well as in fields such as astronomy and spectroscopy [1, 2, 3, 4]. These developments have
the potential to revolutionize technology and our understanding of the natural world. Super-
conducting nanostripes are particularly suitable for the detection of individual photons due
to their ability to tune the applied biased current in a manner that maximizes their intrinsic
detection efficiency [5]. Using the same detection mechanism, SNSPDs can also serve as a
bolometer, capable of detecting particle collisions [6, 7]. In addition to single-photon detec-
tors, other examples of superconducting electronics include prototype logic devices [8, 9, 10].
Research has shown that the strength of interactions between vortices and strip edges can
be controlled by changing the magnetization orientation in the strips using a small in-plane
magnetic field. As a result of the controlled acceleration or deceleration of superconducting
vortices, strong tunable anisotropy is introduced into the vortex dynamics, which is highly
favorable for the development of logic devices [8]. Reference [10] discusses a study of a super-
conducting H-bar nanostripe, which revealed that a single row of vortices was the optimal
configuration for generating a giant non-local electrical resistance. In this configuration, the
vortices were able to move several microns away from the local current drive without be-
ing altered by the passing current, enabling feasible long-range information transfer by the
vortices.

Another important addition to the family of superconducting electronics is the flux qubit
[11, 12, 13], which is a crucial component in the development of quantum computers. Flux
qubits can be magnetically coupled, creating a system that is analogous to an Ising spin
model [14, 15]. The magnetic coupling of flux qubits is particularly useful because optimiza-
tion problems can often be transformed into a quadratic unconstrained binary optimization
(QUBO) [16, 17]. By allowing the system to relax into the ground state via quantum an-
nealing [18, 19], flux qubits can be utilized to solve a wide range of optimization problems.
Superconducting diodes have garnered significant interest for their ability to transport cur-
rent in a single direction with minimal energy loss, making them highly attractive for numer-
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ous applications. The first instance of a magnetically tunable superconducting diode effect
was demonstrated in an artificial superlattice [20], which further highlights the potential of
superconducting electronics for a wide range of practical applications. The discovery of the
magnetically tunable superconducting diode effect in artificial superlattices has generated
significant interest in the field, leading to recent studies on the intrinsic mechanisms under-
lying this effect [21]. Interestingly, studies have also shown that superconducting vortices in
fluxon pumps and lenses exhibit diode-like behavior when subjected to alternating current
[22, 23]. Specifically, vortices are pumped out of a restricted region of the superconductor,
and when AC is applied, the vortices become jammed, leading to the observed diode-like
behavior.

Narrow superconducting nanostripes have been shown to exhibit an enhancement in
critical parameters. For instance, in an artificial heterostructure consisting of such stripes,
the critical temperature was observed to increase from 23 K to 150 K [24]. Furthermore,
when the dimensions of stripes are reduced from 3D to 2D, an amplification in the critical
current density can occur, as observed for niobium film when the thickness is reduced [25].
The strong confinement forces present at the edges of narrow SNs can significantly impact
the behavior of the condensate, particularly that of the vortex lattice due to its topology [26].
The edge barrier [27] creates a strong vortex confinement [28], resulting in effects such as the
enhancement of critical current density, as observed experimentally for a NbN nanostripe.
Confinement in narrow SNs can also result in significant magnetoresistance oscillations under
specific experimental conditions. For instance, time-averaged voltage/resistance as a function
of the applied magnetic field displays distinct peaks during transitions between static and
dynamic vortex phases [29, 30, 31]. At higher applied fields with multiple rows of vortices
or high currents, continuous motion of vortices leads to a monotonic background, on top of
which resistance oscillations due to entries of additional vortices are superimposed [29, 32].

Observations of commensurate effects between the width of a superconductor and the
number of rows of vortices have revealed a corresponding relationship with the critical cur-
rent as a function of the magnetic field perpendicular to the plane (with a fixed SN width
w), as well as a relationship with the critical current as a function of width (with a fixed
magnetic field H), representing a manifestation of confinement effects [33, 34]. Over the
years, research has explored the criteria that govern the entry of vortices from the edge of a
thin superconductor, with these studies addressing this subject [35, 36, 37, 38, 39]. While it
was initially proposed that the current density at the edge of the superconductor exceeding
the depairing current (JDP ) was the driving mechanism [40], subsequent observations have
shown that the edge current actually surpasses JDP , thereby challenging the previous hy-
pothesis. According to Vodolazov’s research [39], the criteria governing vortex entry into a
superconductor at its edge is a threshold value of the supervelocity (kinematic momentum)
at the edge.

Electromagnetic resonators represent a compelling use case for utilizing superconducting
nanostripes or films, as demonstrated by several studies [41, 42, 43]. Under the influence
of a sufficiently strong transport current, the crossing of vortices through a superconductor-
normal metal system results in a dynamic electromagnetic field around the stripe. The
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highest intensity of the induced magnetic field is concentrated at the edges of the stripe. As
a vortex crosses this field, the interaction between the magnetic fields triggers the emission
of photons [42]. A solitary vortex crossing through the narrow structure results in the
emission of a single photon that necessitates the use of superconducting nanowire single-
photon detectors for detection. On the other hand, when a synchronized row of vortices
passes through the structure, a much stronger signal is produced, which can be detected
experimentally [43].

In the context of narrow SNs, rows of vortices can cross the stripe either asynchronously
or synchronously, as reported in several studies [44, 29, 45]. The nature of the crossing
is dependent on the competing forces such as confinement, vortex-vortex interaction, and
Lorentzian forces, which together dictate the dynamics of the vortex motion. However, de-
spite the extensive research in this area, the criteria governing synchronous crossings remain
poorly understood. To gain a comprehensive understanding of the behavior of vortices in
superconducting nanowires with small widths, it is important to investigate the favorable
geometry of vortex configurations under static conditions (i.e., in the absence of an applied
current) and their relationship to the dynamic case (i.e., when an applied current is present).
Understanding how a vortex lattice is affected by the interaction with the edge confining force
and other dynamic forces is crucial when considering SNs for applications mentioned above,
especially EM radiation emitters. Investigating the dynamic dissipative states under strong
confinement in the 1D-2D crossover regime can provide insights into the behavior of vortices
as they cross superconducting nanostripes under various conditions, such as the width of
the stripe, the magnetic field, and the intensity of the applied current. This information
is critical to both the fast information transfer and the frequency of emitted radiation by
moving vortices. Such studies can reveal how vortices move across the stripe under different
conditions and provide additional information on the possible vortex velocity under con-
finement [46, 47]. Therefore, it is crucial to scrutinize how confinement in superconducting
nanostripes affects the vortex configurations and dynamics.

In Chapter I, a chronological overview of superconductivity will be presented, including
summaries of the theoretical descriptions for superconductivity, such as the London model,
Ginzburg-Landau theory, and BCS theory. The chapter will also cover different types of
superconducting materials and provide an overview of their applications in electronics and
other fields.

In Chapter II, the generalized time-dependent Ginzburg-Landau (gTDGL) framework
will be described, including its uses and validity in nanoscale superconductors. This theory
serves as the basis for the results obtained in this thesis and remains an essential tool for
the study of superconductors today.

In Chapter III, the confinement of vortices in thin, narrow superconducting nanostripes
under static equilibrium conditions will be discussed, using the static case of the generalized
time-dependent Ginzburg-Landau equations. The chapter will cover the basics of vortices,
including an overview of the criteria for vortex entry, with a focus on the supervelocity.
The organization of vortex rows will also be examined, and a vortex row phase diagram as
a function of the applied magnetic field, H, for a given width w of the nanostripe will be
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presented. The critical supervelocity at the edge of the stripe associated with vortex entry
will be investigated and shown to be larger for narrower stripes, which corresponds to values
found in [39] for wider superconducting nanostripes. The magnetic field dependence of the
average number of present vortices will also be analyzed to reveal strong confinement effects.
Finally, the reconfiguration from the vortex rows to the vortex lattice with increasing width
will be discussed, offering a criterion to define the quasi 1D-to-2D transition, where the
nanostripe effectively becomes a nanofilm.

Chapter IV delves into the effects of confinement in the dynamic state. Simulations of
voltage-current (V-J) characteristics in SNs demonstrate transitions among different resistive
regimes, including Meissner, flux-flow, flux-flow instability, and normal regimes. However,
such V-J curves exhibiting similar features to simulations have only been experimentally
measured for wider structures, as reported in [48, 49]. The commensurate behavior of the
critical current with changes in the magnetic field is also explored. It is shown that the
local minima values in Jc1(H) (the onset of dissipation) are related to the row transitions
displayed in the vortex-row phase diagram. Additionally, the amplification of critical current
values through the pinning of vortices is discussed. For stripes with an average vortex area
of less than 80ξ2 (ξ being the coherence length), vortices cross the SN periodically and
continuously under the flux-flow regime, causing modulations of the voltage drop that can
be detected experimentally. This process results in the emission of electromagnetic radiation
[42], and the power spectra of this radiation can be obtained by performing a fast Fourier
transformation of the voltage drop as a function of time [50]. The average vortex velocity
obtained from these measurements can be used to discuss the washboard frequencies [43, 42],
which can reach up to tens of kilometers per second for thin niobium SNs [49]. Assuming
a sufficient vortex density, the transitions of vortex row crossings can vary between quasi-
synchronous, synchronous, and asynchronous regimes, which is determined by the interplay
of forces acting on the vortices. Synchronised crossings are particularly desirable for small-
band electromagnetic emitters in the GHz or THz range. For typical thin niobium SNs [25],
modulation frequencies range in the microwave regime, between 1-100GHz. The chapter also
covers the dynamics of vortex crossings in viscous condensates, where the rearrangement of
the vortex lattice occurs in the presence of defects and high viscosity. At low viscosity, vortex
channels can facilitate synchronised vortex crossings, but in the presence of defects that lead
to highly viscous condensates, strong distortions can occur in the vortex channels.

Chapter V focuses on the response of superconductors to thermal fluctuations. It includes
a brief discussion on how the dynamic behavior can be affected by changes in the material’s
thermal properties. The chapter then demonstrates how heating can drive the superconduc-
tor into the normal state through the creation of a hot belt. Hot superconducting bands
can be useful for controlling synchronous vortex crossings, but it is important for the bands
to remain narrow in relation to characteristic lengths, such as the coherence length. The
mechanism of photon detection in single photon detectors is discussed, including simulations
performed on realistic detectors coupled to a shunt resistor. The response of a detector is
then examined in terms of delay time, timing jitter, and current crowding caused by the me-
andering geometry of the typical detector. The intrinsic detection efficiency is summarized
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as the probability of a detection event on the main component, the superconducting trans-
port current-carrying meandering nanostripe. Finally, the thesis concludes with a summary
of the main points.
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Chapter 1

Phenomenology and Theoretical
Approach to Low Dimensional
Superconductivity

1.1 Chronological overview of superconductivity

In 1908, Heike Kamerlingh Onnes ushered in a new era of low temperature physics through
the liquefaction of Helium, ultimately leading to the discovery of superconductivity [51].
Three years later, in 1911, Onnes spearheaded a small group of physicists at Leiden Physics
Laboratory to observe the phenomenon of superconductivity for the first time [52]. Among
these researchers, Gilles Holst and Gerrit Jan Flim, both protégés of Onnes, endeavored to
investigate the electrical properties of pure mercury at sub-zero temperatures of 4.2K. As
the temperature of the sample was gradually reduced to 4.2K, a dramatic decline in elec-
trical resistance was observed (see figure 1.1). In response to this finding, the researchers
meticulously varied the temperature and observed that the behavior persisted, providing
unequivocal confirmation of their discovery. Notably, upon cooling the sample to a temper-
ature of 3K, Holst recorded a resistivity decrease by a factor of 107 compared to the room
temperature value. These experiments ultimately led to the postulation that a material un-
dergoes a sudden change in state below a critical temperature Tc, where electrical resistance
vanishes and electric current flows without any dissipation of energy via Joule heating. This
profound behavior was identified as the first signature of superconductivity.

The second hallmark of superconductivity was identified twenty-two years later, in 1933,
by Walther Meissner and Robert Ochsenfeld at Berlin [53]. They conducted an experiment to
evaluate the magnetic field amidst two cylindrical pieces of single-crystal tin. Upon cooling
the tin below Tc into a superconducting state and applying a small magnetic field, they dis-
covered that the magnetic field between the two pieces increased. This magnetic field, known
as the Meissner-Ochsenfeld effect (as illustrated in figure 1.2(a)), was expelled from the bulk
of the superconductor. This expulsion arises from the generation of currents within the su-
perconductor, which subsequently generate a magnetic field that is equal in magnitude and
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Figure 1.1: Resistivity as a function of temperature for mercury was obtained by K. Onnes
when he discovered superconductivity for the first time in 1911 [52].

opposite in direction to the external magnetic field, effectively nullifying the magnetic fields
within the bulk of the superconductor. It was observed that the state of perfect diamagnetism
persisted until a specific threshold value of the applied magnetic field was reached, beyond
which magnetic flux could penetrate the material, depleting its superconducting state. This
observation led to the consideration of superconductivity as a second-order phase transition,
prompting a thermodynamic approach to explain this phenomenon [54].

In 1935, the London brothers, Fritz and Heinz, formulated a phenomenological theory
of superconductivity that explained the Meissner effect exhibited by the superconducting
state [55]. Furthermore, the theory predicted that magnetic flux in superconductors would
be quantized with a value of Φ = h

e
. This prediction was later confirmed in 1961, albeit with

a correction Φ0 = h
2e

, signifying that the charge of a superconductor was twice that of an
electron [56].

In the year 1950, a significant advancement in the realm of superconductivity theory
was made with the development of the phenomenological theory by Vitaly Ginzburg and
Lev Landau. This groundbreaking theory characterizes superconductivity as a second-order
phase transition, where the order parameter Ψ plays a pivotal role [57]. The Ginzburg-
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Figure 1.2: Superconducting behaviour for magnetic flux B as a function of absolute tem-
perature T. Critical magnetic flux densities BC1 and BC2 and critical temperature Tc are
indicated on the axes. In region-a, the lower section of the graph, Type-I and Type-II super-
conductors both exhibit the Meissner effect. Region-b shows type-II superconductivity or the
mixed state, where magnetic flux penetrates the superconductor, leading to the nucleation
of vortices. At strong magnetic fields greater than BC2 superconductivity is destroyed and
the material becomes normal, indicated by region-c.

Landau theory is applicable for temperatures that are in close proximity to the critical
temperature Tc, which conforms with Landau’s theory of phase transitions. This theory
elucidates the superconducting state around Tc through a complex order parameter, which
serves as a solution to the Ginzburg-Landau equations. These equations bear semblance to
the quantum mechanical Schrödinger equation, but they are thermodynamic in nature.

Alexei Abrikosov significantly advanced the field of superconductivity theory by propos-
ing the existence of a new category of superconductors known as type-II. Unlike type-I super-
conductors that exhibit a positive energy related to the normal-superconducting boundary
in the presence of a magnetic field, type-II superconductors display a negative energy. Con-
sequently, type-II superconductors exhibit penetration of the magnetic field, leading to the
formation of normal state domains, as portrayed in figure 1.2(b).

Richard Feynman’s investigation of vortices in superfluids [58] inspired Alexei Abrikosov
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Figure 1.3: Negatively charged electrons (red) forming Cooper pairs via the weak attraction
provided by the positively charged distorted-phonon lattice (blue).

to discover, in 1955, that magnetic flux penetration transpires in quantized flux lines, result-
ing in vortices that arrange themselves in a triangular lattice [59]. This seminal discovery in
the field of superconductivity led to Abrikosov being awarded the Nobel Prize in Physics in
2003. In 1950, Herbert Frölich predicted, via theoretical means, that the critical temperature
Tc decreases as the proportion of more massive isotopes is increased. This phenomenon is
commonly referred to as the ”isotope effect” [60] and was experimentally verified by C.A.
Reynolds in the same year [61]. The outcomes provided convincing evidence that supercon-
ductivity involves an electron-phonon interaction.

The next significant advancement in the theory of superconductivity was made by John
Bardeen, Leon Cooper, and Robert Schrieffer with the development of the BCS theory in 1957
[62]. The trio was later awarded the Nobel Prize in Physics in 1972 for their groundbreaking
quantum mechanical explanation of superconductivity. The BCS theory posits a Fermi
electron sea that is coupled to a lattice of phonons via a feeble attraction (see figure 1.3),
which results in the formation of Cooper pairs, the superconducting charge carriers. In 1956,
L. Cooper showed that Fermi electrons become unstable when subjected to a weak attractive
force, which leads to the formation of pairs of two electrons [63]. The BCS theory utilizes
quantum mechanics to describe superconductivity, where Cooper pairs (effectual Bosons)
occupy the ground state and are separated by an energy gap in the energy spectrum from
low energy excited states.

In 1959, Lev Gor’kov, a protégé of Landau, demonstrated that the BCS theory reduces
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to the Ginzburg-Landau formalism at temperatures close to Tc, establishing a link between
the phenomenological and microscopic approaches [64]. In 1962, Brian Josephson discov-
ered the phenomenon of Cooper pair quantum tunnelling, where Cooper pairs tunnel across
the barrier between two superconducting materials, which became known as the ”Joseph-
son effect” [65]. For his contribution to tunnelling phenomena in superconductors, he was
awarded the Nobel Prize in 1973. Although the highly-regarded BCS theory theoretically
predicted a critical temperature limit of approximately 35K, the discovery of a new type of
superconducting material led to a breakthrough in this area.

In 1986, Karl Müller and Johannes Bednorz reported the fabrication of a lanthanum
barium copper oxide (LaBaCuO) superconductor with a high critical temperature of 30K
[66], marking the discovery of a new class of high-temperature superconductors. The initial
publication was met with scepticism until the results were independently reproduced by a
Japanese group in 1987 [67] and a Chinese group in the same year [68]. This breakthrough
ignited a revolution in the field of high-temperature superconductivity, with a plethora of new
materials exhibiting higher Tc values being discovered at an unprecedented rate. Notably,
a lanthanum compound with a Tc close to 40K was discovered under normal conditions in
1987 [69], and 52K under high pressure [70]. Soon after, an yttrium-barium superconducting
compound was discovered with a Tc of 93K, followed by the discovery of BiSrCaCuO with
a remarkable Tc of 110K [71]. Further details on the various superconducting materials will
be covered in the subsequent section.

1.2 Theoretical descriptions of superconductivity

In this section, we will delve into the phenomenological theories that have been developed
to explain some of the observed features of superconductivity. The first theory was put
forth by Fritz and Heinz London in 1935, known as the London theory of superconductivity.
The London equations provide a relationship between the superconducting current and the
electromagnetic fields acting in the system. While Ohm’s law is the most basic relation in
typical conductors, the London equations serve as the superconducting analog. This theory
explains the Meissner effect and the relation between supercurrent density J and voltage U ,
which are not considered in the theory of normal metals/conductors.

Next, we will introduce the phenomenological Ginzburg-Landau (GL) theory, which is
fundamental to the work performed in this thesis. In 1950, Vitaly Ginzburg and Lev Landau
presented their theory of superconductivity, taking a non-local mean-field approach. The GL
theory considers the electronic phase transition from normal to superconducting as a second-
order phase transition, where a complex function Ψ represents the order parameter.

1.2.1 London model

In the London model, we begin with the consideration of the electric field E and magnetic
field B to explain the superconducting currents without any dissipation, such that δB

δt
= 0,
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and the expulsion of magnetic field from the interior of the superconductor, such that B = 0.
These conditions are represented by the following equations:

E =
δ

δt

(
m∗

cnse∗2
Js

)
, (1.1)

B = −∇×
(

4πm∗

nse∗2
Js

)
, (1.2)

where m∗, e∗, and ns are the effective electron mass, effective charge and density of Cooper
pairs respectively.

Equation 1.1 describes the characteristic feature of perfect conductivity in superconduc-
tors, showing that any electric field applied to the material will accelerate the supercon-
ducting electrons, which differs from Ohm’s law in normal conductors, where the electron
velocity is constant. This equation describes perfect superconductivity in the presence of
any stationary field. However, to account for the Meissner effect, which is the expulsion
of the magnetic field from the interior of the superconductor, we need to impose a restric-
tion on the magnetic field such that B = 0. This condition is accounted for by the second
London equation, as given by equation 1.2. Starting from the principles of Ampere’s law
(∇×B = µ0J) and flux conservation (∇ ·B = 0 ), we can combine them with equation 1.2
of the London model to derive a differential equation that describes the penetration of the
magnetic field into the superconductor. The resulting equation is given as

∇2B =
B

λ2
, (1.3)

where λ is known as the London penetration depth. This equation shows that the magnetic
field decays exponentially from the surface towards the interior of the material over a length
scale given by the penetration depth. The London penetration depth itself is determined
by the effective electron mass, the density of Cooper pairs, and the effective charge and is
expressed as

λ =

√
m∗

µ0nse∗2
. (1.4)

The Meissner effect is primarily governed by the combination of equations 1.3 and 1.4. To
express equations 1.1 and 1.2 more concisely, we can use the vector potential A, as suggested
by Fritz London:

Js = −cnse
∗2

4πm∗
A. (1.5)

However, this expression is not gauge invariant and must be accompanied by the London
gauge condition ∇ ·A = 0. This theory was the first attempt at describing the newly dis-
covered phenomenon, although it lacked microscopic description. Nonetheless, it accurately
describes the behavior of dirty superconductors with a short mean free path l. Moreover,
this theory predicted the quantization of magnetic flux inside the superconductor, which was
crucial in later understanding the existence of point-like objects in the form of quantized flux
lines in type-II superconducting materials.
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1.2.2 Ginzburg-Landau

The Ginzburg-Landau theory employs a powerful tool in the form of a complex-valued quasi-
classical wave function Ψ to act as the order parameter, which describes the phase transition
from the normal state (Ψ = 0) to the superconducting state (Ψ 6= 0) when there is no external
magnetic field H [57]. The density of superconducting electrons is related to the magnitude
of the complex order parameter by |Ψ(r)|2 = ns/2. Ginzburg and Landau constructed a
free energy functional based on the theory of second-order phase transitions developed by
Landau and Lifshitz, expressed in terms of the complex order parameter Ψ. One consequence
of employing a theory of phase transitions, such as the Ginzburg-Landau theory, is that its
validity is limited to the vicinity of the phase transition point, which is commonly defined
as the critical temperature Tc. When an external magnetic field H is applied, the Gibbs
free energy density functional proposed by Ginzburg and Landau takes the following form
[72, 73]:

Gs = Gn + α|Ψ|2 +
β

2
|Ψ|4 +

1

2m∗

∣∣∣∣(−i~∇− 2e∗

c
A)Ψ

∣∣∣∣2 − (h + H)2

8π
, (1.6)

where Gs and GN represent the free energy densities of the superconducting and normal
states, respectively. The effective mass of Cooper pairs is denoted by m∗ = 2m, and h
represents the local magnetic field. The first two terms of the expression account for the
energy cost of a nonzero order parameter and its density, respectively, while the third term
represents the self-interaction of the order parameter. The fourth term is the kinetic energy
of the Cooper pairs, while the final term represents the energy cost of the magnetic field that
interacts with the superconducting material. The material parameters α and β are closely
related to the critical temperature Tc. Specifically, α is proportional to T−Tc and approaches
zero as T approaches Tc, while β has a constant value β0 that is always positive. Below Tc,
α becomes negative. When we minimize the free energy density functional in Equation 1.6
with respect to the order parameter Ψ and the vector potential A, we obtain a system of
coupled nonlinear differential equations [73]:

αΨ + β|Ψ|2Ψ +
1

2m∗

(
−i~∇− 2e∗

c
A

)2

Ψ = 0, (1.7)

J =
ihe∗

m∗
(Ψ∗∇Ψ−Ψ∇Ψ∗)− 4e∗2

m∗c
|Ψ|2A, (1.8)

where the current density J can be expressed as

J =
c

4π
∇×∇×A. (1.9)

Using the aforementioned equations, one can calculate the spatial distribution of the or-
der parameter and current densities. Notably, Equation 1.7 describing the order parameter
distribution has a similar form to the Schrödinger equation for a particle with mass 2m,
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charge 2e, energy −α, and wavefunction Ψ(r) in a potential β|Ψ|2. The temperature depen-
dence of α and β is derived from the theory of second-order phase transitions. It is proposed
that the parameters α and β have the following temperature dependencies [74]:

α(T ) = −α0
T 2
c − T 2

T 2
c + T 2

, (1.10)

β(T ) = β0
T 4
c

(T 2
c + T 2)2

. (1.11)

As the temperature approaches the critical temperature (T −→ Tc), equations 1.10 and 1.11
assume the form α(T ) ' −α0(1 − T

Tc
) and β(T ) ∝ β0, respectively. These functions were

obtained by Ginzburg and Landau through an expansion of the free energy functional.
As discussed in a subsequent section, the Ginzburg-Landau equations can be derived

using a variational method. These equations serve as the foundation for constructing a time-
dependent Ginzburg-Landau theory, which is the primary tool used for obtaining results from
numerical simulations of superconducting nanostripe structures. This theory is exceptionally
versatile, as it is rooted in second-order phase transitions and can be adapted to a wide range
of physical systems. One such system is magnetism, where the magnetic susceptibility, which
exhibits a discontinuous change, is the second-order derivative of the free energy with respect
to the magnetic field.

1.2.3 Microscopic BCS theory

In 1957, Bardeen, Cooper and Schrieffer proposed the BCS theory, which is a successful
quantum mechanical description of superconductivity [62]. This theory employs second or-
der quantization using mean field theory to solve a many-body problem by considering the
coupling between electrons and the ionic lattice, which results in the formation of Cooper
pairs [63]. The BCS equations yield the ground-state properties of the superconducting
condensate, and predict the existence of a superconducting energy gap that separates the
superconducting ground state from the excited normal states. Remarkably, the energy gap
and critical temperature are related by the universal expression ∆(T = 0) = 1.764 kBTc,
where kB is the Boltzmann constant. The BCS theory aimed to elucidate how normal elec-
trons with energies just above the Fermi energy can form pairs in the presence of a weak
attractive potential. When negatively charged electrons pass over the positively charged
ionic lattice, the lattice is momentarily distorted, leading to a concentration of positive
charge that acts as an attractive potential on the electrons, causing them to form Cooper
pairs. These pairs are effective Bosons and have the property that an ”infinite” number of
them can occupy the same energy state. This leads to a condensation of the Cooper pairs to
the ground state, which is energetically favorable. For the formation of electron pairs, the
physical criteria require that the pair’s energy be above the Fermi energy EF , their momen-
tum must be equal and opposite, and their spins must be opposite. When these criteria are
met, and there is an attractive potential, the sea of electrons will correlate, and Cooper pairs
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will form, leading to superconductivity. The interaction of electrons with the ionic lattice is
fundamental to conventional superconductivity, where the attractive interaction occurs be-
tween electrons and phonons in the lattice. When two electrons satisfy the pairing criteria,
their velocities exceed the lattice vibrations. As they move through the lattice, they cause
a temporary polarization where positive charge accumulates. The polarization relaxation
times are much longer than the time it takes for another electron to be caught in the wake
of the first one, forming a Cooper pair. The pair’s spatial correlation extends over the mi-
croscopic coherence length ξ0. Using this explanation for the formation of a Cooper pair, a
many-body system of electrons was considered, applying the mean-field approximation for a
homogeneous superconductor. Bardeen, Cooper, and Schrieffer demonstrated how fermionic
electrons condense into a bosonic state with zero total spin, stabilized by the emergence of a
superconducting energy gap. The presence of such a gap eliminates scattering between super-
conducting electrons and the metallic lattice, resulting in dissipationless transport currents
(super-currents).

In the pursuit of understanding superconductivity, Lev Gor’kov demonstrated the equiv-
alence of the Ginzburg-Landau order parameter to the quantum mechanical single wave
function Ψ [64]. Gor’kov utilized the mapping of BCS microscopic theory to the Ginzburg-
Landau theory and derived an analogous equation. In the London temperature range near
Tc, the vector potential A(r) and superconducting energy gap ∆(r) vary slowly over dis-
tances larger than the coherence length Λ, and thus the equations can be linearised. The
Ginzburg-Landau equations are obtained by introducing a wave function proportional to
∆(r). Gor’kov’s equations, derived from thermodynamic Green’s functions, show the rela-
tionship between the current density j, the order parameter Ψ(r), and the vector potential
A(r). The equations, as presented in the original paper, are{

1

2m∗
(∇− ie∗A(r))2 +

1

λ

[
Tc − T
Tc

− 2

N
|Ψ(r)|2

]}
Ψ(r) = 0 (1.12)

j(r) = − ie∗

2m∗
(Ψ∗∇Ψ−Ψ∇Ψ∗)− e∗2

m∗c
A |Ψ|2 . (1.13)

Indeed, the relationship between the Ginzburg-Landau and BCS theories is crucial be-
cause the microscopic theory of superconductivity provides the most accurate description of
conventional superconductivity based on the principles of quantum mechanics. As shown by
Gor’kov, in the regime close to the critical temperature, the mapping of BCS microscopic
theory to the Ginzburg-Landau theory is valid, and the GL-equations arise under these con-
ditions. Therefore, the Ginzburg-Landau theory can be considered as a macroscopic theory
that captures the essential features of superconductivity, while the BCS theory provides a
microscopic picture of the underlying physics.

1.3 The two types of superconductors

To deepen our comprehension of the distinctions between various superconductors, we must
scrutinize their response to magnetic fields from external sources. Type-I and type-II su-
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perconductors display contrasting behavior as a result of differences in their surface energies
at the boundary between the superconducting and normal states, which can be evaluated
utilizing the GL parameter κ = λ/ξ [59]. Here, λ refers to the magnetic penetration depth,
and ξ indicates the superconducting coherence length.

When κ is less than 1/
√

2, we classify the superconductor as type-I. In contrast, when κ
exceeds 1/

√
2, we identify the superconductor as type-II. These two categories of supercon-

ductors exhibit distinct magnetic field behaviors due to differences in their surface energies
at the boundary between the superconducting and normal states.

A type-II superconductor possesses a negative surface energy that favors the establish-
ment of superconducting-normal boundaries with flux penetration in the form of vortices
carrying a solitary superconducting flux quantum Φ0 = h/2e = 2.07 · 10−15Tm2. On the
other hand, a type-I superconductor, in the bulk limit, demonstrates the Meissner effect up
to a critical thermodynamic field Hc(T ), expressed as Hc(T ) = Φ0/2

√
2λ(T )ξ(T ). This is a

state of perfect diamagnetism, in which all magnetic fields are expelled from the interior of
the superconducting material up to Hc(T ). If stronger magnetic fields are applied, they will
eliminate superconductivity, and the system will transition to a normal state.

Alternatively, type-II superconductors exhibit perfect diamagnetism up to a first critical
field, Hc1, which is given as Hc1(T ) = [Φ0/4πλ

2(T )] lnκ. As we increase the external mag-
netic field H beyond the lower critical field Hc1 but below the upper critical field Hc2, vortices
start to penetrate the superconductor leading to a mixed state. However, when H reaches
the upper critical field Hc2, the cores of individual vortices overlap, making it impossible to
distinguish them. Mathematically, we express this critical field as Hc2(T ) = Φ0

2πξ(T )2 , where

ξ(T ) represents the superconducting coherence length at temperature T .
At even higher magnetic fields, beyond Hc2 but below the third critical field Hc3, super-

conductivity exists only at the thin edge of the sample of thickness ξ(T ), and the interior of
the sample is in the normal state. For a type-II bulk superconductor with a perpendicular
magnetic field, the third critical field Hc3 is roughly 1.69 times the value of the upper critical
field Hc2 [72].

We can distinguish between different states of a superconductor by its magnetization,
which is given by M = B−H

4π
, where B is the magnetic inductance averaged over the entire

sample. In the Meissner state, where all magnetic flux is expelled, i.e., B = 0, the magne-
tization is M = −H/4π. In the mixed state, where H > Hc1, increasing the magnetic field
results in a smooth decrease of the absolute value of magnetization |M | until it reaches zero
at Hc2.

1.4 Vortices in type-II superconductors

1.4.1 Magnetic flux quantisation

From the second GL equation (equation 1.8), we can derive the quantisation condition for
magnetic flux. This equation is given by

10



J =
e∗~
m∗
|Ψ|2∇θ − 2e∗2

m∗c
|Ψ|2A, (1.14)

where θ is the phase in Ψ = |Ψ|eiθ. Taking the line integral of this equation around a closed
line, we obtain ∮

J · dl =
e∗

m∗
|Ψ|2

∮
(~∇θ − e∗

c
A) · dl. (1.15)

Using Stoke’s theorem and the definition of the vector potential A,
∮

A·dl =
∫

(∇×A)·dS =∫
h · dS = Φ, we obtain the expression

m∗c

2e∗2|Ψ|2

∮
J · dl +

e∗

c
Φ =

∮
~∇θ · dl. (1.16)

Since the complex superconducting order parameter is single-valued, it requires that the
phase must change by integer multiples of 2π in a closed circuit. This leads to the expression

m∗c

2e∗2|Ψ|2

∮
J · dl + Φ = n

hc

e∗
= nΦ0, (1.17)

which states that the sum of the enclosed flux Φ and the line integral of J is quantized.

1.4.2 Isolated and interacting vortices

Isolated vortices

If we apply an external magnetic field H greater than the first critical field Hc1 to a type-II
superconductor, we will observe the penetration of vortices into the sample. These vortices
are individual flux tubes that possess a normal-state core having a radius of ξ within which
the superconducting order parameter reduces to zero. The local magnetic field h(r) is max-
imum at the center of the vortex and decreases over a distance of λ due to the induced
supercurrents that screen the magnetic field. When the spacing between vortices is larger
than λ, they do not overlap or interact, and each vortex can be treated as an isolated en-
tity. In the extreme type-II superconductors, where the parameter κ = λ/ξ � 1, the order
parameter can be considered constant except within the vortex core. As a result, for r > ξ,
the distribution of the order parameters and currents can be calculated using the simplified
London equations. Within the framework of the London equations, to account for the normal
core fluxoid from equation 1.17, the London equation (1.2) takes the form

4πλ2

c
∇× J + h = zΦ0δ(r), (1.18)

where z is a unit vector along the vortex line, and δ(r) is a δ-function in the center of the
vortex core. By combining Maxwell’s equation ∇ × h = 4π/cJ with equation 1.18, we can
obtain the expression

λ2∇2h + h = zΦ0δ(r), (1.19)
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which has an exact solution that describes the local magnetic field as a function of radial
distance from the core:

h(r) =
Φ0

2πλ2
K0(r/λ), (1.20)

where K0 is the zero-order Bessel function. The derivative of equation 1.20 provides the
local current flowing around the vortex core, which can be expressed as

J(r) =
cΦ0

4π2λ2
K1(r/λ), (1.21)

where K1 is the first-order Bessel function. The current diverges with a 1/r dependence and
decreases exponentially at large distances.

The free energy per unit length of a vortex can be calculated by accounting for the
contributions from the field and kinetic energy of the currents. The resulting expression is

ε =

(
Φ0

4πλ

)2

(ln(λ/ξ) + ε0), (1.22)

where ε0 = 0.12 is the small contribution originating from the vortex core. This equation is a
quadratic function of Φ0, and therefore, it is energetically favorable to form single quantized
vortices as opposed to multi-quanta vortices.

Interacting vortices

In the high-kappa limit, we can analyze the interaction between two vortices in the following
manner. Consider two parallel flux lines positioned at r1 and r2, respectively. The total
magnetic field can be expressed as a sum of the magnetic fields from vortex (1) and (2),
h = h1 + h2, and is given by the following differential equation:

λ2∇2h + h = zΦ0 [δ(r− r1) + (r− r2)] , (1.23)

where λ represents the magnetic penetration depth, z is a unit vector perpendicular to the
plane of the vortices, and Φ0 is the magnetic flux quantum. The resulting increase in free
energy per unit length is expressed as:

F12 =
Φ0h1(r2)

4π
=

(
Φ2

0

8π2λ2

)
K0

(
r1 − r2

λ

)
, (1.24)

where K0 is the modified Bessel function of the second kind. The change in energy due to
the interaction between the vortices is given by:

∆F =
Φ0

8π
[h1(r1) + h2(r2) + h1(r2) + h2(r1)] =

Φ0

4π
h1(r1) +

Φ0

4π
h1(r2). (1.25)

The interaction between vortices can be either repulsive or attractive depending on the
polarity of the magnetic spins. If the spins are the same, the interaction is repulsive; if they
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Figure 1.4: Top: Superconducting elemental solids and their corresponding experimental
critical temperature (Tc). Bottom: Periodic table of superconducting binary hydrides (0–300
GPa). Theoretical predictions are indicated in blue and experimental results showing in red
[75].

are opposite, the interaction is attractive. The force per unit length experienced by a single
vortex can be obtained by deriving the interaction energy F12 and is given by:

f = j × Φ0

c
, (1.26)

where j is the current density and c is the speed of light. When the vortices are far apart
compared to λ, the interaction is weak. However, when the vortices are close (compared to
λ), the interaction is significant and can perturb the system.
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1.5 Superconducting material summary

The discussion thus far has centered on superconductivity in bulk samples, which are char-
acterized by macroscopic dimensions. However, it is important to note that superconducting
properties can vary as the dimensions of the sample are reduced, with the most pronounced
effects being observed at the nanoscale. The effective penetration depth or Pearl length,
Λ = λ2/d, depends on the film thickness d, and therefore the effective Ginzburg-Landau
parameter, κeff = Λ/ξ. So a type-I superconducting thin film can undergo a transition to a
type-II superconductor when κeff ≥ 1/

√
2, leading to a significant alteration in its response

to an applied magnetic field.
Despite their excellent conductivity, materials such as copper, gold, and silver are not su-

perconductors. This is due primarily to the deep energetic band structure of these materials,
which lacks an energy gap between the ground state and the first excited states necessary
for the formation of Cooper pairs.

In contrast, the emergence of superconductivity in conventional elemental superconduc-
tors arises from the formation of Cooper pairs due to phonon lattice vibrations, as described
by the BCS theory. These superconductors are characterized by s-wave pairing, with zero
net spin and momentum. Superconductivity can also arise from different mechanisms and
under specific conditions, as noted by Buckel and Kleiner [76].

The discovery of superconductivity has yielded a vast array of materials and compounds,
each with unique properties and characteristics. Figure 1.4 provides a periodic table of ele-
ments and their corresponding critical temperature, along with any applicable high pressure
requirements. Additionally, the figure depicts an elemental table of binary hydride super-
conductors, highlighting the chemical formula and the required number of hydrogen atoms
for each hydride.

Figure 1.5 offers a timeline of the discovery of superconducting materials, beginning with
the discovery of elemental metals such as mercury, lead, and niobium in the early 1900s
[52, 77]. The discovery of superconducting alloys followed in the mid-twentieth century, with
the discovery of heavy fermionic superconductors in the early 1980s [78], high temperature
cuprates in 1987 [66], and superconducting Buckminsterfullerenes in the early 1990s [79].
Carbon allotropes, such as carbon nanotubes, were discovered in the early 2000s and exhib-
ited superconductivity [80]. In 2006, iron-pnictides were discovered, with some displaying
high critical temperatures (Tc) [81]. Notably, binary hydrides under high pressure currently
hold the record for the highest critical temperatures. However, most recently, hydrogen-
sulfide (H2S) achieved a room temperature superconducting Tc = 288K at a pressure of
270GPa, setting a new record for the highest critical temperature to date [82].

While elemental metals were the first materials to exhibit superconductivity, alloys and
compounds now comprise the vast majority of known superconducting materials.

Cuprates

The cuprates, a family of high-temperature superconductors, consist of materials with al-
ternating layers of CuO2 and ions such as lanthanum, barium, yttrium, and strontium
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Figure 1.5: Chronology for the discovery of superconducting materials and the correspond-
ing critical temperatures. The different superconducting materials are indicated by: BCS
superconductors (green circles), cuprates (blue diamonds), iron pnictides (yellow squares),
heavy fermionic (light green star), Buckminsterfullerene (inverted purple triangles), carbon-
allotropes (red triangle), nickel-based (pink star) [83].

[66, 84, 85]. These ionic layers serve as charge reservoirs that dope the copper-oxide planes
with either electrons or holes, leading to superconductivity only in the CuO2 planes, and
not in the ionic layers. As a result, the superconductivity in cuprates is two-dimensional,
with weak coupling between CuO layers. Due to the anisotropy in normal and supercon-
ducting properties, there is much higher conductivity parallel to the CuO2 layer than in the
perpendicular direction.

The mechanism behind the superconductivity in cuprates remains unknown and is an
active area of research. However, several proposals have been put forward to explain this
phenomenon.

Fullerene

Buckminsterfullerenes are fascinating carbon structures that exhibit unique geometric and
physical properties. These compounds consist of 60 carbon atoms arranged in a geodesic
dome-like structure and are part of a family of carbon structures called fullerenes. The first
man-made buckminsterfullerene was synthesized in 1984 by Eric Rohlfing, Donald Cox, and
Andrew Kaldor, and since then, these structures have been the subject of intense research
due to their ability to trap doping atoms and exhibit superconducting behavior at high
temperatures.
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Interestingly, the name ”Fullerenes” was coined after Buckminster Fuller, who filed a
patent for the use of geodesic forms in 1954. However, the first geodesic structures were
created by Walther Bauersfeld shortly after World War I. The crystal structure of buck-
minsterfullerenes allows for the trapping of atoms, which can become fullerides and exhibit
superconducting properties at high temperatures. In 1991, the first superconducting ful-
leride, K3C60, was discovered, ushering in a new era of research into these fascinating carbon
structures.

Iron pnictides

Iron-based superconductors (IBSCs) are a fascinating class of materials that have captured
the attention of researchers since their discovery in 2006 [81]. These compounds consist of
layers of iron bonded to a pnictide, separated by layers of a lanthanide. The similarity in
structure to the cuprate superconductors has led to comparisons between the two, as well as
to the suggestion that the pairing mechanism in IBSCs may also be unconventional.

One of the key features of IBSCs is their high critical temperature, which is the temper-
ature below which they exhibit superconductivity. This property is strongly influenced by
the amount of electron or hole doping present in the material [81, 86]. Another advantage
of IBSCs is their resistance to impurities and grain boundaries, which can cause problems
in other types of superconductors. In addition, they display very high critical magnetic
fields, making them suitable for use in applications that require high magnetic fields, such
as magnetic resonance imaging (MRI) machines [87].

IBSCs have been used in various superconducting applications, with particular success
in the production of superconducting wires. Recent research has shown that the critical cur-
rents achieved in IBSC wires have reached commercial levels, and in fact, they can exceed
these levels in the presence of high magnetic fields [88]. This makes IBSC wires a promis-
ing candidate for use in power transmission, magnetic levitation, and other high-current
applications.

In summary, IBSCs are a rapidly evolving field with many exciting possibilities for su-
perconducting applications. Ongoing research is needed to fully understand the underlying
physics and to further develop these materials for practical use.

Magnesium diboride

Magnesium diboride (MgB2) is an interesting material that was first synthesized and con-
firmed in 1954 [89]. However, it was only in 2001 that a Japanese group discovered that MgB2

exhibits superconductivity [90], and that the superconductivity arises from the BCS mecha-
nism involving electron-phonon interactions. Interestingly, the superconductivity arises due
to the mixing of multiple energy bands, which leads to the opening of two different super-
conducting energy gaps (2 meV and 7.5 meV) on different parts of the Fermi surface making
it a two-band superconductor [91]. Although MgB2 is a type-II superconductor, it exhibits
intermediate behavior between type-I and type-II [92], and has a high critical magnetic field
of 30 T when doped with carbon [93]. Overall, MgB2 is a promising material for various
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superconducting applications, including magnets and wires, due to its relatively high critical
temperature (not as high as cuprates) and magnetic field, and unique properties.

Additional superconducting materials

It is important to note that there are many other superconducting materials beyond those
discussed above, which are also of great interest. For example, metal hydrogen systems have
been shown to exhibit superconductivity with a critical temperature around 10K, and the hy-
drogen can be replaced with the heavier isotope deuterium [94, 95, 96]. Ceasium-based heavy
fermionic superconductors, discovered by Frank Steglich in 1978, exhibit non-conventional
superconductivity [78]. Organic superconductors, first realized in 1979, demonstrate crit-
ical temperatures between 0.5-10K, and the mechanism for condensation is not yet fully
understood [97, 98, 99].

Moreover, superconductivity has also been theorized to exist in astronomical objects
such as neutron stars, with rapid cooling being attributed to possible superconductivity
[100]. Black holes have also been suggested to have a superconducting region, where simple
gravitational theory provides a holographic dual description of a superconductor [101, 102,
103].

In the field of nanoscale applications, state-of-the-art superconducting electronics are
commonly fabricated from materials such as Nb, NbN, NbTiN, TiN, Al, and MoRe. While
other alloys have shown promising results, they require rigorous processing techniques to
produce, such as YBa2Cu3O7−x [104].

Thanks to the diversity of superconducting materials with unique and useful properties,
many applications of superconductivity have been developed or proposed. These applications
will be discussed in the following section.

1.6 Superconducting applications and fabrication

Indeed, the use of superconductivity in magnet-related applications has greatly advanced
technological advancements in several fields. The maglev trains mentioned use supercon-
ducting electromagnets generating their magnetic field through the Meissner effect, where
a superconductor expels magnetic flux from its interior, creating a magnetic field above it,
which levitates the train. By eliminating friction between the train and the tracks, the
maglev trains have achieved unparalleled speeds of 600km h−1, providing an energy-efficient
and high-speed transport option [105].

Superconducting magnets are used in MRI machines to generate a strong, uniform mag-
netic field that interacts with the magnetic moments of atomic nuclei in the human body.
By manipulating this magnetic field using gradient coils and radiofrequency pulses, MRI
machines can produce detailed images of the body’s internal structures with exceptional
clarity and resolution. The use of superconducting magnets in MRI has greatly improved
the quality and speed of medical imaging, allowing for earlier and more accurate diagnosis
of a wide range of conditions.
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Figure 1.6: Scanning electron microscopy of a niobium SNSPD of area 16 µm2. The dark
area is the niobium and the white area is a sapphire substrate [109].

Similarly, in NMR machines, superconducting magnets are used to generate a strong,
stable magnetic field that allows for the precise measurement of the magnetic properties of
molecules and materials. This technique is widely used in chemistry, physics, and materials
science for studying the structure and properties of materials at the atomic scale. The use of
superconducting magnets in NMR has enabled researchers to make breakthrough discoveries
in fields such as drug development, materials science, and protein structure determination.

Overall, the integration of superconducting magnets in medical and scientific instruments
has led to significant advancements in both fields, allowing researchers and medical profes-
sionals to study and diagnose complex systems with greater precision and accuracy, and for
the development of treatments [106, 107, 108]. Superconducting magnets play a crucial role
in the operation of particle accelerators like the Large Hadron Collider (LHC) at CERN, as
well as in magnetic confinement in nuclear fusion reactors such as tokamaks [110]. These
magnets are essential for beam steering and stability, and their superconducting properties
enable them to produce strong and stable magnetic fields. Similarly, rail guns use supercon-
ducting coils to generate strong electromagnetic forces that can propel projectiles at speeds
of up to 3km s−1 [111].

Superconducting wires, both macroscopic and microscopic, are commonly used to trans-
mit electrical energy with minimal power loss [112, 113]. However, even high temperature
superconductors, such as iron pnictides, are limited to utilization at temperatures signifi-
cantly lower than room temperature. The development of a superconducting material that
can operate at or above room temperature would represent a significant breakthrough, as it
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would allow for the transmission of electrical energy through the power grid with minimal
energy lost due to Joule heating. This is an area of ongoing research and development, and
many scientists and engineers are working towards the realization of this goal.

The most sensitive magnetometers to date are superconducting quantum interference
devices (SQUIDs), which were first invented in 1964 [114] shortly after the fabrication of
a Josephson junction [115, 65]. SQUIDs are capable of achieving field resolutions as high
as 10−17T [116], and since their invention, significant progress has been made in reducing
flux noise. This progress has been made possible through the miniaturization of SQUIDs
to micrometer and even nanometer scale, thanks to improvements in thin film fabrication
techniques [117].

Superconductivity has also been instrumental in the development of quantum computa-
tion, with the invention of superconducting qubits. In 2015, a group successfully implemented
a fully controllable 1D array of 9 qubits [118], and in 2019, Google demonstrated for the first
time quantum supremacy (i.e., solving non-classical problems in feasible times) using a chip
with 53 qubits [119]. There are three basic superconducting qubit archetypes: phase qubits,
charge qubits, and flux qubits [120]. Each of these qubits relies on a Josephson junction with
energy EJ but is used for different purposes. For example, flux qubits are used in d-wave
quantum annealers that solve optimization problems based on an Ising Hamiltonian [121].

Superconductivity continues to be a hot topic of research, offering a system that can be
manipulated for exotic applications like gravimeters [122, 123], and constantly evolving in
search of new and improved applications.

Superconducting electronic components must be fabricated on scales comparable to the
coherence length, ξ, and the penetration depth, λ, which presents challenges during fab-
rication. Nano-fabrication methods are required to exploit the advantages of ultra-thin
superconducting structures, such as kinetic inductance, which is important for single photon
detectors, and the isolation of single quantum magnetic flux, which is integral for supercon-
ducting qubits.

Various fabrication methods are used to realize superconducting structures, including
photolithography [124], electron beam lithography [125], and focused ion beam lithography
[126], which often employs direct writing techniques [127, 49, 128]. However, even with state-
of-the-art techniques, the final devices are still subject to surface and edge defects that can
introduce undesired effects and behaviors in the system. Therefore, it is desirable to improve
the aforementioned processes or propose new methods to make such devices commercially
viable, where the desired behavior is reproducible.

In conclusion, nano-fabrication methods are necessary to exploit the advantages of ultra-
thin superconducting structures, but even with state-of-the-art techniques, surface and edge
defects can introduce undesired effects and behaviors in the system. It is therefore desirable
to improve existing processes or propose new methods to make such devices commercially
viable, where the desired behavior is reproducible.
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Figure 1.7: Schematic illustration of a superconducting nanostripe having width w, length L
and thickness d, along the x, y and z directions, respectively, in a homogeneous out-of-plane
applied magnetic field H. The stripe contains an example of a single vortex, with a normal
core of radius ∼ ξ, and distribution of magnetic field around it characterized by Λ = λ2/d.
When an applied current density J is present the vortex will experience Lorentz-type force
FL.

1.7 Superconducting nanostripes

This thesis focuses on characterizing and identifying superconducting phenomena occurring
in thin and narrow superconducting nanostripes. An example of a superconducting nanos-
tripe can be seen in Figure 1.7, with a length L, width w, and thickness d. When a magnetic
field H is applied perpendicular to the stripe and its magnitude is sufficient, magnetic flux
can penetrate the stripe in the form of a vortex with a normal core of radius ξ and a mag-
netic field penetration depth of λ. The minium magnetic field required to penetrate the
nanostripe with a single magnetic flux quanta must be greater than the lower critical field
(H > HC1), and also sufficient enough to overcome the strongly confining edge barriers.
Superconducting nanostripes are fundamental components in many microscopic supercon-
ducting electronics, such as SQUIDs, superconducting kinetic inductance detectors [129],
superconducting nanowire single photon detectors (SNSPDs) [130, 3, 1], bolometers [7], and
electromagnetic emitters in gigahertz and terahertz regimes [42, 43].

Some of these technologies capitalize on the dissipative state, specifically the phenomena
of vortex crossings, such as EM emitters. Other technologies utilize the presence of such
vortices. For example, Hall-bar shaped nanostripes could be used for information technology
purposes, where vortices carry the relevant information [10].

A SNSPD (superconducting nanowire single photon detector) is a device that typically
consists of a long, meandering superconducting nanowire designed to increase the detection
efficiency by covering a larger surface area. An example of a SNSPD is shown in Figure
1.6. The geometry of a SNSPD is similar to that of a nanowire, but with corners where the
current density is different from that in the main body of the nanostripe [131, 132].

At the nanoscale, the fabrication of such small devices requires special techniques [133,
134], such as focused ion beam lithography [135, 126], or the use of self-assembled ”diblock
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co-polymer” templates [136]. These techniques allow for precise control over the dimensions
of the device, which is crucial for achieving the desired properties and performance.

To properly understand the behavior of superconducting nanostripes with small widths, it
is important to consider the impact of defects and inhomogeneities in the material. When the
defects are smaller than the coherence length, the material is in the ”dirty” limit where the in-
elastic relaxation length is smaller than the coherence length. The inelastic scattering length
is defined as Lin =

√
Dτin, where D is the diffusion constant and τin is the relaxation time

of the non-equilibrium quasi particles due to inelastic electron-phonon or electron-electron
interactions. This length determines the scale over which the superconducting condensate
behaves viscously, and is smaller than the coherence length in the ”dirty” limit, where the
material contains small defects that are smaller than the coherence length. The aforemen-
tioned viscosity introduced as a result affects the behavior of vortices crossing the stripe in
the dissipative state compared to a clean material [45]. In addition, defects at the edges or
a reduction in lateral dimensions lead to an increase in current density, causing changes in
the way vortices cross the stripe compared to a uniform geometry [47, 137, 138].

In the presence of an applied magnetic field and current, there are several interactions
to consider, including vortex-vortex, edge barrier, and Lorentz force interactions. These
interactions can lead to different dynamic states that may or may not be desirable for var-
ious applications. For example, the presence of vortices and their crossings is exploited in
some technologies, such as electromagnetic emitters and Hall-bar shaped nanostripes for
information technology purposes where vortices carry the relevant information [10].

To understand the effects of confinement forces on the dynamic state of superconducting
nanostripes with small widths, this thesis will employ numerical simulations. These simula-
tions will provide insight into how the small width of the nanostripe impacts the behavior of
vortices and other dynamic phenomena, which is important for the design and optimization
of superconducting nanostripes for various applications.
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Chapter 2

The Generalised Time-Dependent and
Stationary Ginzburg-Landau
Framework

2.1 The generalised time-dependent Ginzburg-Landau

(gTDGL) framework

This chapter is devoted to the generalized time-dependent Ginzburg-Landau (gTDGL) model
of superconductivity. One of the notable advantages of utilizing this time-dependent model
is its capability to elucidate the dynamic behavior and relaxation processes in dirty-thin
superconductors. The phenomenological gTDGL framework can be derived from the ther-
modynamic Gibbs free energy functional, which will be explicated in this chapter. This
theory serves as the cornerstone of this thesis and has been implemented by the author to
acquire the presented results.

2.1.1 Validity of the gTDGL formalism

The original Ginzburg-Landau model provides a phenomenological description of supercon-
ductivity but lacks the capability to describe dynamic responses to system perturbations
or transition processes. The theory also does not incorporate a description of relaxation
processes. In an attempt to address this limitation, Lev Landau and Markovich Khalatnikov
introduced the concept of a relaxation time for the order parameter, known as the LK theory
[139, 140]. This theory was further refined by Albert Schmid, who extended the LK theory
with a gauge-invariant description, resulting in the time-dependent Ginzburg-Landau model
of superconductivity [141, 142].

It is noteworthy that Schmid’s microscopic validity of the GL and TDGL models applies
only to gapless superconductors [143]. Consequently, a further extension of the model was
necessary to describe superconductors with an energy gap. This was accomplished by Lorenz
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Kramer and Richard Watts-Tobin, who introduced a microscopic parameter to describe the
energy gap, leading to the development of the generalised time-dependent Ginzburg-Landau
(gTDGL) model [144, 145].

The gTDGL model is considered to be one of the most powerful methods for studying
dynamic behavior in superconductivity. The following theory has been utilized in this thesis
to perform studies of superconductivity.

2.1.2 Free energy functional and order parameter relaxation time

The emergence of a superconducting state is a consequence of a thermodynamic phase tran-
sition, which occurs when the temperature of the material falls below a critical temperature,
leading to a transition from the normal state of electrons to a superconducting state. During
a phase transition, the symmetry of the system changes, and the normal state, which is char-
acterized by higher symmetry, changes to a state of lower symmetry in the superconducting
phase.

In the description of the thermodynamic properties of a lower symmetric state, the
Helmholtz free energy F is a suitable choice [146]. The theory of phase transitions is valid in
the vicinity of the transition point, which, for superconductivity, is the critical temperature
Tc. In the proximity of Tc, the free energy can be expressed as a sum of terms that include
the complex order parameter ∆, which describes the symmetry of the system. In the super-
conducting state, the order parameter ∆ is non-zero, while in the normal state, it is equal
to zero.

Superconductivity belongs to the group of second-order phase transitions when there is
no externally applied magnetic field. As a second-order phase transition, the order parameter
must be continuous around the critical temperature and rapidly drop to zero at Tc. In this
case, the second derivative of the free energy with respect to temperature is proportional to
the heat capacity and has a discontinuity at the critical temperature. As is customary with
phase transitions, the free energy is obtained by a Taylor expansion in terms of the order
parameter ∆ and must have a minimum in the function to avoid large diverging values. A
typical Taylor expansion in terms of the order parameter would yield a general form of

F = c0 + c1|∆|+ c2|∆|2 + c3|∆|3 + c4|∆|4 + o(|∆|5), (2.1)

where c0 = F0 is the free energy of the normal state, and the other coefficients (ci, i =
1, 2, 3, ...) are material-specific parameters. When considering second order phase transitions,
the system can be effectively described with an expansion up to the fourth power, and
material-specific coefficients impose restrictions on other coefficients. For example, a non-
zero order parameter that is invariant to all symmetries is not possible, and thus c1 = 0, and
c3 = 0 as we are not considering a first order phase transition. The remaining two coefficients
are c2 = α and c4 = β/2, leading to a function of the form

F = FN + α|∆|2 +
β

2
|∆|4, (2.2)
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which has a similar form to equation 1.6. Here, |∆| is analogous to Ψ, but contains infor-
mation about the superconducting gap, which will be introduced later.

In the presence of an externally applied magnetic field Be, the Gibbs free energy func-
tional characterizes the superconducting state at thermodynamic equilibrium. This func-
tional is given by the following expression:

G
(eq)
S = GN +

∫
V

[
α|∆|2 +

β

2
|∆|4

]
dV +

∫
V

γ| (−i~∇− e∗A) ∆|2dV

+

∫
V

(∇×A−Be)
2

2µ0

dV. (2.3)

Here, GN is the free energy of the normal state, ∆ is the order parameter, and A is
the vector potential. The second term in the expression represents the condensation energy
associated with the spatial variation of the order parameter, while the third term describes
the gauge-invariant kinetic energy. The fourth term quantifies the energy required to screen
the external magnetic field.

The stationary case of the GL equations can be obtained from this free energy functional,
but the time-dependent case requires an additional term G

(relax)
S , which accounts for the

relaxation processes in the superconductor. The total free energy is then given by:

GS = G
(eq)
S +G

(relax)
S . (2.4)

It is generally preferred to introduce the relaxation term into the GL equations rather than
directly into the free energy. While the relaxation term can be quite complex, it is the
variational terms that contain the most significant descriptions.

The variation of the relaxation term with respect to the complex conjugate of the order
parameter ∆∗ is given by:

∂G
(relax)
S |∆∗ =

∫
V

[
τ

(
∂∆

∂τ
+ i

e∗

~
ϕ∆

)]
δ∆∗dV. (2.5)

Similarly, the variation of the relaxation term with respect to the vector potential A is
given by:

∂G
(relax)
S |A =

∫
V

[
σn

(
∂A

∂t
+∇ϕ

)
δA

]
dV. (2.6)

Here, τ represents the relaxation time, ϕ is the electrostatic potential that preserves
gauge invariance under temporal variation (as per Schmid and Schön [141]), and σn is the
normal state conductance.

It is worth noting that equation 2.6 actually contains information about the normal
current density, as integration over volume has been omitted in the variation with respect
to vector potential.
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Generalised time-dependent Ginzburg-Landau equation and the general bound-
ary condition

The time-dependent Ginzburg-Landau (TDGL) formalism is a powerful tool to investigate
the dynamics of superconductors. To account for dirty superconductors with a finite gap, a
generalised version of the theory was derived from microscopic principles [145]. This exten-
sion requires the Gibbs free energy associated with relaxation to contain a complex quantity
for the relaxation time. The expression for the relaxation time in dirty superconductors is
given by

τ̃ =
uτGLN(0)√
1 +

(
2τi
~ |∆|

)2

1 +
( 2τi√

2~)2 ∂|∆|2
∂t

∆
∂∆
∂t

+ i e
∗

~ ϕ∆

 , (2.7)

where τGL is the Ginzburg-Landau relaxation time of the order parameter, N(0) is the density
of states, u = 5.79 is a dimensionless ratio for relaxation times for the magnitude and phase of
the order parameter, τi is the electron-phonon scattering time, and ∆ is the superconducting
order parameter. The expression for the relaxation time contains a dependence on the
magnitude and phase of the order parameter. The presence of electron-phonon scattering
introduces a type of viscosity in the superconducting condensate of Cooper pairs, adding an
extra degree of complexity to the dynamics.

The relation Γ = 2τi
~ ∆ appears in the equation for the relaxation time and accounts for

the presence of the superconducting gap and finite scattering times. This relation can be
used as a control parameter to change the effective viscosity of the condensate.

When deriving the gTDGL equations, the first step is to perform variation with respect
to both ∆ and A. First variation with respect to ∆ is performed on equation 2.4, which has
the form

∂GS|∆∗ =

∫
V

τGLN(0)

[
∂∆
∂t

+ i e
∗

~ ϕ∆ +
(

2τi√
2~

)2
∂|∆|2
∂t

∆

]
u√

1 +
(

2τi
~ |∆|

)2

 δ∆∗dV
+ ∂G

(eq)
S |∆∗ = 0, (2.8)

where the the equilibrium term of the free energy is expressed as

∂GS|(eq)∆∗ =

∫
V

{
α∆δ∆∗ + β|∆|2∆δ∆∗

}
dV

+

∫
V

{γ [(−i~∇− e∗A) ∆] [(i~∇− e ∗A) δ∆∗]} dV. (2.9)

The above equation can be rearranged algebraically such that

∂GS|(eq)∆∗ =

∫
V

[(
α + β|∆|2

)
∆− γ (~∇− ie∗A)2 ∆

]
δ∆∗dV

+

∫
V

{i~γ∇ [δ∆∗ (−i~∇∆− e∗A∆)]} dV. (2.10)
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Gauss’s theorem (
∫
V
∇ ·MdV =

∮
n ·MdS) can then be applied to the second term in

equation 2.10, yielding the equation

∂GS|(eq)∆∗ =

∫
V

[(
α + β|∆|2

)
∆− γ (~∇− ie∗A)2 ∆

]
δ∆∗dV

+

∮
S

n · (−i~∇∆− e∗A∆) δ∆∗dS (2.11)

The last term in the above equation relates to the supercurrent flowing out of the supercon-
ducting volume perpendicular to the surface, which is not physically true, in fact∮

S

n · (−i~∇∆− e∗A∆) δ∆∗dS = 0,

and so that term is equal to zero. The gTDGL can then be obtained with substitution of
equation 2.11 into 2.8, expressed as

τGLN(0)
u√(

1 + 2τi
~ |∆|

)2

[
∂∆

∂t
+ i

e∗

~
ϕ∆ +

(
2τi√
2~

)2
∂|∆|2

∂t
∆

]

= −
(
α + β|∆|2

)
∆ + γ (~∇− ie∗A)2 ∆ (2.12)

The generalised boundary condition for equation 2.12 was proposed by De Gennes [72] as

n · (−i~∇− e∗A) ∆|boundary =
i

b
∆|boundary, (2.13)

where the parameter b is the extrapolation length and represents the length at which the
order parameter would decay to zero if the gradient of decay at the superconducting surface
remained constant.

When considering different types of interfaces with superconductors, the behavior of the
order parameter near the interface is an important quantity to consider. For a superconducting-
insulator (SI) boundary, the order parameter drops abruptly to zero, which means that the
extrapolation length b goes to infinity. On the other hand, for a superconducting-normal
(SN) boundary, the proximity effect [147] can result in a small amount of Cooper pairs tun-
neling into the normal metal, thereby suppressing superconductivity close to the boundary.
In this case, b is positive and large-finite.

For a superconducting-superconducting (SS’) boundary, it is common practice to assign
a negative and finite value to b for the superconductor with a lower Tc. Finally, in the case of
a superconducting-ferromagnetic boundary, the order parameter quickly vanishes from the
interface, and the extrapolation length tends to zero (b −→ 0).

2.1.3 Superconducting current, total current and conservation

To obtain the second TDGL equation the same type of variation of the free energy functional
is performed, but now with respect to the vector potential (δA), this reads

∂GS|A = ∂G
(eq)
S |A + ∂G

(relax)
S |A = 0, (2.14)
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where the relaxation term is provided in equation 2.6. By applying δA to equation 2.3 the
following relation is obtained

∂G
(eq)
S |A =

1

µ0

∫
V

[(∇×A−Be) · ∇ × δA] dV

+

∫
V

[γ (e∗δA∆∗) · (i~∇+ e∗A) ∆] dV

−
∫
V

γ [(e∗δA∆) · (i~∇− e∗A) ∆∗] dV. (2.15)

This equation can be modified through substitution using the vector identity ∇ · (M ×
N) = N · ∇ ×M −M · ∇ ×N. Given that N = ∇×A−Be and M = δA and algebraic
rearrangement the equation reads

∂G
(eq)
S |A =

1

µ0

∫
V

{δA · ∇ ×∇×A +∇ · [δA× (∇×A−Be)]} dV

+

∫
V

[γ (e∗δA∆∗) · (i~∇+ e∗A) ∆] dV

−
∫
V

γ [(e∗δA∆) · (i~∇− e∗A) ∆∗] dV. (2.16)

Here, Gauss’s theorem can be used once again, where∮
S

[δA× (∇×A−Be)] · dS =

∫
V

{∇ · [δA× (∇×A−Be)]} dV,

with the condition that this only has physical relevance for the surface S bounding the
superconductor. However, at the boundary ∇×A = Be, so this term is equal to zero. Now
by combining both relaxation and stationary terms the following equation is obtained

∂GS|A =
1

µ0

∫
V

(∇×∇×A) · δAdV

+

∫
V

(
σn∇ϕ+ σn

∂A

∂t

)
· δAdV

−
∫
V

[
2e∗~γ

(
∆∗∇∆−∆∇∆∗

2i
− e∗

~
|∆|2A

)]
· δAdV = 0. (2.17)

This relation suggests that for a given δA the sum of the integrals must be zero for it to
hold true. Therefore, the following relation can be proposed

1

µ0

(∇×∇×A) = −σn
(
∇ϕ+

∂A

∂t

)
+ 2e∗~γ

(
F {∆∗∇∆} − e∗

~
|∆|2A

)
, (2.18)
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where each term corresponds to a value of current density. Recalling Ampere’s law, the left
hand side term is the total current density J and can be expressed as

J =
1

µ0

(∇×∇×A) . (2.19)

The two terms on the right hand side are the normal current density Jn and the supercurrent
density Js, which are expressed respectively as

Jn = −σn
(
∇ϕ+

∂A

∂t

)
(2.20)

and

Js = 2e∗~γ|∆|2
(
∇θ − e∗

~
A

)
, (2.21)

where the relation ∆ = |∆|eiθ has been used.
Introduction of the relaxation terms has revealed a third independent variable (with ∆

and A), the electrostatic potential ϕ. To account for this the conservation of current must
be included, which reads

∇ · J = ∇ · (Js + Jn) =
∂ρ

∂t
. (2.22)

When the superconductor is close to critical temperature any time-variation of charge
accumulation (ρ ∝ e∗

~ ϕ−
∂θ
∂t

) can be ignored such that ∂θ
∂t
−→ 0. This leads to the important

relation between normal and super current density of

−∇ · Jn = ∇ · Js, (2.23)

which has the physical meaning that normal current injected into the superconductor trans-
forms into superconducting current.

At this point a set of gTDGL equations have been obtained which are able to describe the
superconducting dynamics when the system is exposed to either an external magnetic field
and/or and electric field. The three equations are equations 2.12, 2.18 and 2.23, accounting
for the independent variables (∆,A, ϕ), which are invariant under a gauge transformation.
Such that, ∆ −→ ∆eiΩ, A −→ A + e∗

~ ∇Ω, and ϕ −→ ϕ − ~
e∗
∂Ω
∂t

when Ω(r.t) is a function
that varies slowly temporally with respect to the Ginzburg-Landau time τGL.

Stationary GL equations

The stationary GL formalism was briefly mentioned previously, and here we explain how
it reduces to the stationary case. When an external direct current (DC) is applied to a
superconductor in an equilibrium state, if the magnitude of the current is less than a critical
current that could cause persistent oscillations in the superconductor, then after some time
a new equilibrium state would be achieved. As long as external excitations from magnetic
fields and applied current are small enough to avoid a transition to the normal state or
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oscillatory vortex motion, the state would reach a new stationary state, permitting the use
of the stationary GL equations. In the stationary case, time derivatives and electrostatic
potential are neglected, and the pair of GL equations read:

γ (~∇− ie∗A)2 ∆ = α∆ + β|∆|2∆, (2.24)

1

µ0

(∇×∇×A) = 2e∗~γ|∆|2
(
∇θ − e∗

~
A

)
. (2.25)

These equations still require the boundary condition given in equation 2.13. The station-
ary equations provide important results regarding different superconducting states, such as
ground and excited states. However, for a dynamic case, the TDGL equations are required.
When using the GL equations to study superconductors numerically, the stationary approach
is less computationally demanding compared to the TDGL case. As a result, larger systems
can be investigated more easily when considering stationary phenomena. It is worth men-
tioning that the stationary GL framework has been successfully used to study the qualitative
behavior of the first critical current JC1 by using a ”computational trick” [148].

The microscopic origin of characteristic quantities

Considering the GL-theory was established from a phenomenological aspect, it was important
to the theory that microscopic explanations of the characteristic quantities were provided. As
mentioned, the generalised-TDGL equations for ”dirty” superconductors were provided by
Watts-Tobin and Kramer [144], which is one of the most complete frameworks for studying
the behaviour of superconductors. The proposed gTDGL are given as

N(0)π~
8kBTu

u√
1 +

(
2τi|∆|

~

)2

[
∂∆

∂t
+ i

e∗

~
ϕ∆ +

(
2τi√
2~

)2
∂|∆|2

∂t
∆

]

=
N(0)π~D

8kBT

(
∇− ie

∗

~
A

)2

∆ +

(
N(0)f(T )− g(T )

N(0)π2

16uk2
BT

2
|∆|2

)
∆, (2.26)

1

µ0

∇×∇×A = σn

[
π

2kBTe∗
|∆|2

(
∇θ − e∗

~
A

)
− ∂A

∂t
−∇ϕ

]
, (2.27)

−∇ · Jn = ∇ ·
[
σn

(
∂A

∂t
+∇ϕ

)]
= ∇ · Js = ∇ ·

[
σnπ

2kBTe∗
|∆|2

(
∇θ − e∗

~
A

)]
, (2.28)

where f(T ) and g(T ) are the temperature dependence kernels, and D is the diffusion pa-
rameter. A microscopic description of the normal state conductivity reads

σn =
e∗

2
DN(0)

2
. (2.29)
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The GL theory is derived respecting the theory of second order phase transitions, in the above
set of equations the temperature T can be substituted for Tc, expect for the temperature
kernels which preserve the generic thermal dependence. Within the gTDGL model the most
accurate temperature dependence is given by the following functions [74]

f(T ) =
T 2
c − T 2

T 2
c + T 2

,

and

g(T ) =
T 4
c

(T 2
c + T 2)2

.

The microscopic expressions for the set of phenomenological material specific parameters
present in the GL equations are given by

α = −N(0)f(T ) = −α(0)f(T ), (2.30)

β = g(T )
N(0)π2

16uk2
BT

2
c

= β(0)g(T ), (2.31)

γ =
N(0)πD

8kBTc~
, (2.32)

τGL =
π~

8kBTc(1− T/Tc)u
=

τGL(0)

(1− T/Tc)
. (2.33)

With the equations for α, β and γ it’s now possible to define the important characteristic
length scales of the coherence length ξ and the penetration depth λ. The order parameter

varies over length scales comparable to the coherence length, which is defined as ξ =
√
−γ~2

α
.

It can be seen that ξ is temperature dependent (present in α), and is affected by impurities
in the material which changes the value of the diffusion parameter D (present in γ). There
are two limits in which D is expressed differently [149]. Firstly, in the dirty limit D = vF `
(vF is the Fermi velocity, and ` the elastic scattering mean free path), which can be assumed
when Cooper pairs interact with impurities that are on length scales smaller than the BCS
coherence length ξ0 > `. In the clean limit, when impurities are much larger than ξ0,

D =
π~v2

F

12ukBTc
, so the effective coherence length can take the forms

ξ(T ) =


√

~πvF l
8kBTcf(T )

= 0.855
√

ξ0l
f(T )

, dirty√
~2π2v2

F

96uk2
BT

2
c f(T )

= 0.74 ξ0√
f(T )

, clean
=

ξ(0)√
f(T )

. (2.34)

The penetration depth λ associated with the spatial variation of the magnetic field inside

the superconductor can be expressed as λ =
√
− β

2µ0e∗
2αγ

, according to GL theory. The

30



penetration depth depends on α, β, and γ, so is both temperature and impurity dependent,
taking the forms

λ(T ) =


√

π~g(T )

4ukBTcµ0e∗
2N(0)vF lf(T )

= λ(0)√
2

√
ξ0g(T )

1.33lf(T )
, dirty√

3g(T )

µ0e∗
2N(0)v2

F f(T )
= λ(0)√

2

√
g(T )
f(T )

, clean
. (2.35)

It’s important to mention the connection between ∆ and Ψ. As initially proposed in the work
of Ginzburg and Landau, the order parameter was represented with Ψ, and was intuitively
believed to represent some kind of wave function, which was confirmed by Gor’kov in his
microscopic derivation of the GL theory considering T −→ Tc [64]. The superconducting
energy gap is related to the order parameter with the following expression

Ψ = ∆
√

2m∗γ. (2.36)

The complete set of equations describing the gTDGL model can be written in terms of Ψ as

τGLN(0)
u√

1 + (Γ|Ψ|)2

[
∂Ψ

∂t
+ i

e∗

~
ϕΨ +

(
Γ√
2

)2
∂|Ψ|2

∂t
Ψ

]

= −(a+ b|Ψ|2)Ψ +
~2

2m∗
(∇− ie∗A)2Ψ, (2.37)

1

µ0

∇×∇×A =
e∗~
m∗
|Ψ|2

(
∇θ − e∗

~
A

)
− σn

(
∂A

∂t
+∇ϕ

)
, (2.38)

∇ ·
[
σn

(
∂A

∂t
+∇ϕ

)]
= ∇ ·

[
e∗~
m∗
|Ψ|2

(
∇θ − e∗

~
A

)]
, (2.39)

where the material dependent parameters are a = α
2m∗γ

, b = β

4m∗2γ2
, and Γ = 2τi

~
√

2m∗γ
. The

equations are a comprehensive description of the behaviour of superconductors, but can still
be modified further as will be shown later.

Coupling of thermal balance equation into the gTDGL model

As we delve deeper into the study of superconductors, it becomes increasingly important to
consider the effects of heating mechanisms on their behavior. The thermal balance equa-
tion can be coupled to the generalized time-dependent Ginzburg-Landau (gTDGL) model
to account for such effects. It should be noted that the thermally dependent material pa-
rameters α and β, as well as the characteristic lengths ξ and λ, are already present in the
gTDGL equations. This means that thermal fluctuations can have a significant impact on
the behavior of the superconductor, potentially even driving it into the normal state.

One example of the effects of heating on superconductors can be seen in the dissipative
state, where vortices can cross the stripe and Joule heating occurs, causing local temperatures
to increase. If thermal quenching is not sufficient, the temperature of the superconductor
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can rise above Tc, leading to a transition to the normal state. Another example is the
superconducting single photon detector, where incoming photons are absorbed and produce
hot spots. Understanding the behavior of this device, which relies on a thermal process,
requires inclusion of the heat balance equation in the gTDGL equations.

To account for the thermal effects on the superconductor, we can couple the thermal
balance equation to the gTDGL equations. In the dynamic state, we are interested in
the local spatial and temporal changes in temperature, which can be calculated assuming
T = T (r, t). The general form of the thermal balance equation allows us to account for the
effects of heating on the superconductor’s behavior.

The general form of the thermal balance equation is [150]

C
∂T

∂t
= k∇2T − h

d
(T − T0) + Pth(r, t), (2.40)

where C is the heat capacity, h is the heat transfer coefficient, k is the heat conductivity,
d is the thickness of the material, and T0 is the bath temperature. The term Pth(r, t)
corresponds to an external thermal potential that contains information about the heating
process from sources such as single photon impacts, laser irradiation and other possible local
heating mechanisms. The simplest form corresponds to Joule heating in the superconductor
where of Pth(r, t) = J2

n/σn. Even though the thermal balance equation is not native to the
gTDGL theory, the equations can still be coupled via the thermal potential considering the
Joule heating from the normal current density Jn. This results with an extended version
of the gTDGL model that now includes the effects of heating, corresponding to the set of
equations 2.26, 2.27, 2.28 and 2.40. These equations can realistically predict the behaviour
of superconductors under an applied magnetic field and applied current, whilst considering
the consequences of heating within the system. Due to the thermal balance equation not
originating directly from the gTDGL theory, the thermal coefficients C, k, and h do not
have a microscopic description, and must be found another way. The heat capacity can be
estimated from the condensation energy density of the superconductor [151], expressed as

C = −T ∂2

∂T 2

[
α(T )|∆|2 +

β(T )

2
|∆|4

]
. (2.41)

When considering a wide range of temperatures, α ∝ [1 − (T/Tc)
2][1 + (T/Tc)

2]−1 and

β ∝ [1 + (T/Tc)
2]−2, and the heat capacity can be expressed as C = Cn + 2α(0)2

β(0)T 4
c
T (3T 2−T 2

c ).

Around Tc, the heat conductivity can be expressed using the Wiedemann-Franz law [152]

k = σnTc
4π2k2

B

3e∗2
, (2.42)

however, a more complex description may be needed considering the system. The thermal
balance equation contains a few important characteristic quantities. Firstly, the thermal

healing length Λh =
√

kd
h

, which represents the scale of how temperature varies in the

sample. The heat is removed from the system over a time scale v Cd
h

, if heating mechanisms
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occur over a shorter time scale the system can be driven into the normal state. The diffusion
of heat is represented by the ratio k

C
. In reality superconductors are coupled to other systems

like substrates, the heating coefficients k and C can be modified to account for this. The
effective heat capacity becomes Ceff = C + dsCs/d and the effective heat conductivity
keff = k+dsks/d, where the subscript s is used for the substrate.

Dimensionless extended-gTDGL equations

In general the extended gTDGL model is solved numerically, so the approach of solving
the equations must consider the range of order of magnitude between different quantities
such as length scales, characteristic times, and current densities (10−15− 1020). To solve the
problem of numerical rounding errors during mathematical operations the quantities in the
equations are modified to a dimensionless form. The dimensionless form of the extended
gTDGL equations are as expressed as

u√
1 + Γ̃2|χ|2

[
∂χ

∂t̃
+ iṼ χ+

Γ̃2

2

∂|χ|2

∂t̃
χ

]
= (∇̃ − iQ)2χ+ (f − g|χ|2)χ, (2.43)

κ∇̃ × ∇̃ ×Q = |χ|2
(
∇̃θ −Q

)
− ∂Q

∂t̃
− ∇̃Ṽ , (2.44)
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)
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, (2.45)

c̃
∂T̃

∂t̃
= k̃∇̃2T̃ − h̃

(
T̃ − T̃0

)
+

(
∂Q

∂t̃
− ∇̃Ṽ

)2

. (2.46)

The dimensionless quantities present in the equation have all been scaled to characteristic
quantities of the system. The dimensionless order parameter χ is expressed in units of the
bulk GL energy gap at zero temperature ∆GL(0) = 4

√
ukBTc
π

, such that χ = Ψ/∆GL(0). Units

of distance are re-scaled by the coherence length at zero temperature ξ(0) =
√

π~D
8kBTc

, such

that r̃ = r/ξ(0) and ∇̃ = ξ(0)∇. Units of temperature are re-scaled by Tc, with dimension-

less quantity T̃ = T/Tc. The temperature dependence kernels f and g are by definition are
dimensionless. The Ginzburg-Landau relaxation time at zero temperature is τGL(0) = π~

8kBTc
,

which is used to re-scale units of time to give t̃ = t/τGL(0), and derivatives in time become
∂
∂t̃

= ∂
∂t/τGL(0)

. The dimensionless magnetic field, B̃ = B/BC2(0) is re-scaled by the upper

critical field at zero temperature commonly expressed as BC2(0) = φ0

2πξ(0)2 , and the dimen-

sionless vector potential is given as Q = A/BC2(0)ξ(0). The dimensionless electrostatic

potential Ṽ is expressed in units of φGL(0) = ~
e∗τGL(0)

, which reads Ṽ = V/φGL(0). The

Ginzburg-Landau current density at zero temperature is expressed as JGL(0) = σnφ(0)
ξ(0)

, which
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re-scales the current as J̃ = J/JGL(0). The parameter Γ is re-scaled such that the dimen-

sionless quantity is Γ̃ = Γ(2τi∆GL(0)
~ )−1. The dimensionless expression for the heat coefficients

are: c̃ = CTcσn/τGL(0)J2
GL(0), h̃ = hTcσn/J

2
GL(0)d, and k̃ = kTcσn/J

2
GL(0)ξ2(0).

Validity of the extended gTDGL equations and the high-κ regime

The gTDGL equations were initially derived by Watts-Tobin and Kramer in the dirty limit
using the local equilibrium approximation (LEA). This resulted in a set of validity criteria
that must be met for the equations to be accurate. Specifically, the co-dependent variables
∆, A, and ϕ must vary slowly with respect to the inelastic scattering times τi, and they
must also vary over length scales larger than the inelastic diffusion length, Li =

√
Dτi. In

the context of gTDGL theory, these criteria can be expressed in terms of the characteristic
parameters for time length, namely τGL and ξ, resulting in the validity criteria τGL � τi and
ξ � Li.

The Ginzburg-Landau parameter κ = λ
ξ

is a measure of how magnetic fields penetrate

a superconductor, where type-II superconductivity (κ > 1/
√

2) results in a mixed state
of normal and superconducting regions. In the case of a thin film of any superconducting
material, where the thickness is smaller than the coherence length and penetration depth
(d < ξ, λ), the distribution of current is uniform through its depth, which affects the response
to the magnetic field. To account for this, an effective GL parameter, κ∗ = κλ/d, is proposed
[153].

It is worth noting that in the 2D regime where the dimension of the superconductor is
reduced and the high-κ regime is reached, any superconducting material effectively behaves
as a type-II superconductor. In this regime, the external magnetic field penetrates the
superconductor uniformly, and the response from the applied field is negligible, resulting in
the omission of equation 2.27 from the proposed gTDGL equations.

The extended gTDGL model is a valuable tool for accurately describing the behavior of
superconductors under the influence of both an external magnetic field and transport current.
However, a significant challenge arises when considering the impact of the transport current,
which naturally induces an electric field that is a function of both the electrostatic scalar
potential and the magnetic vector potential. Unfortunately, the extended gTDGL model
does not provide an explicit description of the electric field, making it difficult to determine
how the transport current affects the vector potential and electrostatics. One potential
solution to this problem is to assume specific gauges and implement them into the set of
equations, as proposed in Fleckinger et al. (1995). For example, when the zero electrostatic
potential gauge is used and ϕ = 0, equation 2.45 can be ignored.

In the high-κ regime, where the magnetic field has a uniform distribution over the super-
conductor, one can adopt the Coulomb gauge where ∇ ·A = 0. In this case, for a magnetic
field applied perpendicular to the superconductor, the vector potential can be defined using
either the symmetric gauge A = (−yBz/2, xBz/2, 0) or the Landau gauge A = (yBz, 0, 0),
both of which satisfy the Coulomb gauge. When using the Coulomb gauge, equation 2.44
can be omitted from calculations.
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To numerically solve the set of equations, discretisation methods are typically used, which
involve dividing the system into a finite number of discrete points and approximating the
equations at these points. The numerical grid and methods used can significantly impact
the accuracy of the results obtained. Further details on numerical approaches can be found
in the Appendix.

Inhomogeneity in the extended gTDGL model

The extended gTDGL equations have been expressed in dimensionless units, in such a way
that the material properties and universal constants form the dimensionless variables. At
the microscopic level, at which the studies are concerned, inhomogeneities on the scale of ξ
can strongly affect the behaviour of the superconductor, so it is important that these can be
included in numerical simulations. Within the set of equations pertaining to the extended
gTDGL equations (equations 2.26, 2.27, 2.28, 2.40), the following material properties ap-
pear: Tc, τi, N(0), σn, D, c, k, and h. When considering inhomogeneities these parameters
can be spatially dependent, and possibly even vary with time and with temperature. To
accommodate such dependency material parameters could be expressed as

Tc(r, t) = T (0)
c pTc(r, t),

N(0)(r, t) = N(0)(0)pN(0)(r, t),

τi(r, t) = τ
(0)
i pτi(r, t),

D(r, t) = D(0)pD(r, t),

σn(r, t) = σ(0)
n pσn(r, t),

c[T (r, t)] = c(0)pc(r, t),

k[T (r, t)] = k(0)pk(r, t),

h[T (r, t)] = h(0)ph(r, t),

where T
(0)
c , N(0)(0), τ

(0)
i , D(0), σ

(0)
n , c(0), k(0), and h(0) are the reference values for each vari-

able. Whilst the variables pTc(r, t), pN(0)(r, t), pτi(r, t), pD(r, t), pσn(r, t), pσn(r, t), pc(r, t),
pk(r, t), and ph(r, t) are the functions describing the spatial and time dependencies.
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Chapter 3

Consequences of Confined Vortex
Configurations in Superconducting
Nanostripes

When a magnetic field is applied to a bulk type-II superconductor, the superconductor ini-
tially shields the field by inducing circulating Meissner currents at its edges. However, at the
lower critical field Hc1, the magnetic field becomes strong enough to penetrate the material
in discrete units of magnetic flux quanta Φ0. This leads to the formation of vortices, which
have a radius on the order of the coherence length ξ and exhibit a winding in phase θ of the
order parameter. At the center of the vortex, there is a singularity where the order param-
eter tends to zero (∆(r = 0) −→ 0). The Meissner effect continues to shield the quantized
flux by inducing an opposing magnetic field, which creates energetic barriers referred to as
Bean-Livingston edge barriers [154, 155]. These barriers create a potential that prevents
vortices from entering as the applied magnetic field H is increased and from exiting as H is
decreased [156]. In superconducting nanostripes with narrow geometries, where the widths
are on the order of ξ, the edge barrier has a significant impact on the system in terms of
vortex interactions and the magnetic field required for the initial penetration of vortices into
the nanostripe. In this thesis, when referring to Hc1 in superconducting nanostripes, we are
specifically addressing the minimum magnetic field at which a single flux quantum can pene-
trate the nanostripe. It should be noted that this differs from the behavior observed in bulk
samples, which will be demonstrated in our work. In this chapter our novel results relate
to the vortex row phase diagram (fig.3.5), the vortex density as a function of H (fig.3.7),
and the reconfiguration of vortex rows (fig.3.8). The remainder of the results in this chapter
cover well known existing theory

In this chapter, we have conducted numerical simulations on a type of superconducting
nanostripes (SN) in the high-κ, as illustrated in figure 1.7. These SN dimensions are charac-
terized by a n infinite lengths L simulates using periodic boundary conditions, widths (w),
and thicknesses (d) that greatly surpass the coherence length (ξ) and the magnetic field pen-
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etration depth (λ) of the superconducting state. When the magnetic field (H) is sufficiently
strong, vortices emerge within the sample, featuring a normal core with a radius of ξ and a
magnetic field penetration extent of approximately λ. In the particular thin samples we are
studying, the effective penetration depth Λ = λ2/d significantly exceeds the dimensions of
the SN, causing the magnetic response of the superconductor to be negligibly small compared
to the applied magnetic field. In the SGL approach we self-consistently solve the coupled
equations

(−i∇−A)2 ∆ = ∆
(
1− |∆|2

)
, (3.1)

~J = −κ2∇2A =
1

2i
(∆∗∇∆−∆∇∆∗)− |∆|2 A (3.2)

where ∆ is the superconducting order parameter, A is the vector potential, and κ = Λ/ξ is
the effective Ginzburg-Landau parameter. We work with dimensionless units, where length is
given in units of the temperature-dependent coherence length ξ(T ) = ξ, the vector potential

A in units of c~/2eξ, magnetic field ~H in units of the bulk upper critical field Hc2 = c~/2eξ2,
current in units of the GL current JGL = cΦ0/(8π

2λ2ξ), and the order parameter ∆ is
normalized to its value in absence of applied field or sourced current (∆0). We impose the
Neumann boundary condition at the superconductor-insulator boundary at the lateral edges
of the SN

~n · (−i∇−A) ∆|boundary = 0. (3.3)

Along the length of the SN (x-axis) we enforce periodic boundary conditions for A and ∆,
of the form [157]

A(x0 + Lx) = A(x) +∇χf (x) (3.4)

∆(x0 + Lx) = ∆(x) exp

[
i
2e

~c
χf (x)

]
, (3.5)

where ∇χf respects the gauge used for the magnetic field. To introduce perturbations that
induce vortex penetration at the edges of the stripe, a random force term f̃(r, t) is introduced
to equation (3.1), as suggested in [37, 158]. Equations (3.1) and (3.2) are solved numerically
on a discretized Cartesian grid according to Ref. [158], using the finite-difference method
and the link-variable approach [37], iteratively until convergence within a prespecified error
is achieved. Then the supercurrent is calculated from the value of the order parameter and
the vector potential (nearly entirely provided by the external magnetic field). The unit
cell length is L = 32ξ, which is sufficient to capture the physics of interest in this work.
Preliminary simulations were performed with different unit cell lengths, these revealed with
unit cell lengths > 30ξ the results were consistent.

3.1 Vortex basics

Figure 3.1 shows an example of a vortex of an excited superconducting state in a finite-length
nanostripe of width w = 6ξ when the applied magnetic field is equal to Hc1, which is the
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Figure 3.1: Spatial distributions of the superconducting order parameter, |∆|2, and the
magnitude of the supercurrent density, |J |, of a vortex in a long stripe of width w = 6ξ, at
an applied magnetic field of H = Hc1 = 0.39Hc2. Panel-a shows |∆|2 in units of |∆GL|2, and
panel-b is a 2D-plot of panel-a. Panel-c shows |J | in units of JDP , and panel-d is a 2D-plot
of panel-c.

field at which the nanostripe transitions from the exclusive Meissner state to the mixed state
with flux penetration by continuously increasing the magnetic field. As the magnetic field is
increased from zero, there is a Meissner response at the edges of the nanostripe to shield the
superconductor from the external field. When magnetic flux penetrates the material, the
superconducting state continues to shield the magnetic field, both at the edges and vortices.

The Meissner field is a result of the supercurrent induced to shield itself from the ap-
plied magnetic field. Figure 3.2 shows the current density induced across the width of the
nanostripe at the location of vortex penetration, at increasing applied magnetic fields, for
nanostripes of widths w = 6ξ, w = 12ξ, and w = 18ξ. The maximum magnitude of the
supercurrent density at the edge (Jedge) increases with the applied magnetic field (flowing
in opposite directions on opposing sides) until a local maximum is reached at H ' 0.25Hc2.
Then, it starts decreasing towards a minimum at H = 0.38Hc2, which is still in the fully
Meissner state. At H = 0.39Hc2, the stripe transitions to the mixed state, and there is
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a jump in the magnitude of Jedge due to the redistribution of current to shield the flux
penetration in the sample center.

Similar behavior is observed in stripes of widths w = 12ξ and w = 18ξ, but the effect
is less pronounced for wider stripes, and the maximum value of Jedge for a given field tends
towards 1.0JDP . The smaller the width of the stripe, the higher the applied magnetic
field required to transition to the mixed state with vortex penetration. As the magnetic
field increases, energy is introduced into the superconductor, which excites electrons and
suppresses the superconducting state.

When a superconductor is exposed to an external magnetic field, it responds by generating
a Meissner field that shields the superconducting state. The strength of this Meissner field
depends on the density of Cooper pairs, which decreases as the magnetic field increases. As
a result, the supercurrent density at the edge of the superconductor exhibits local maxima
and minima with increasing width due to the larger applied fields required to penetrate the
stripe initially.

In figure 3.2, the edge current density (Jedge) normalized by the depairing current (JDP
- current density required to destroy Cooper pairs and thus superconductivity) for different
strengths of the magnetic field. However, we observe that JDP is exceeded over some distance
from the edge for narrower stripes (6 and 12ξ) known to exhibit strong confining currents that
surpass JDP [44, 39, 34]. Hence, the vortex nucleation conditions do not depend on exceeding
the Ginzburg-Landau depairing current density JDP as it can be exceeded in narrow stripes.

3.2 Vortex entry criteria

In the context of superconducting nanostripes, the onset of additional vortex entry is gov-
erned by the supervelocity, Π = |(∇θ−A)|, where θ is the phase of the superconducting or-
der parameter and A is the vector potential associated with the magnetic field [38, 39, 159].
When the supervelocity at the edge of the nanostripe exceeds a critical value, a chain of
vortices nucleates at the edge [39]. The spacing between these vortices, l, is inversely pro-
portional to the difference between the supervelocity at the edge and the critical value,
∆Π = |Πedge − Πcr|. The time for their entrance decreases with increasing ∆Π [39]. As
vortices enter the nanostripe, they reduce the supervelocity at the edge until it once again
reaches the critical value for the nucleation of a new vortex. This process results in serra-
tions in the supervelocity profile, as shown in Figure 3.3-a. These serrations are associated
with the entrance of quantized magnetic flux [39], and become more pronounced in narrower
nanostripes.

In figure 3.3-a, we observe the supervelocity at the edge of the nanostripes (normalized
by Π0 = JGL/|∆0|2) as a function of the applied magnetic field for different widths of the
stripes. The simulations were performed by sweeping the magnetic field and continuing the
simulation from the last superconducting state, which is not necessarily the ground state.
By increasing the magnetic field in this way, we can find values of Π that correspond to the
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Figure 3.2: Edge Meissner current density across the width of different stripes with widths
w = 6, 12, and 18ξ at increasing magnetic fields up to Hc1.

field of first vortex entry Hc1 (not equal to Hc1, indicated by vertical lines) and subsequent
vortex entrances.

The first maximum in the supervelocity, Πedge(Hc1), changes significantly with the width
of the nanostripe and is more pronounced at smaller widths. However, towards Hc2, the
value of Πedge converges to ' 0.90Π0 for all widths, which is close to the value found when
κ� 1 ([39] - figure 5).

In the work of [39], a combination of numerical and analytical studies were conducted
to understand the criteria at which vortices enter the superconductor. They found that the
controlling parameter was actually the supervelocity, rather than the current density at the
edge. Solving the set of stationary GL equations for a thin nanostripe of width 25ξ with
κ = 2, they observed a critical velocity for vortex entry of Πcritical ' 1Π0. By direct solution
of the GL equations, they found the value to be 0.97Π0. Through an analytical approach,
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Figure 3.3: Panel a: Supervelocity at edge of stripe as a function of applied magnetic field
for different widths of nanostripes (see legend). The first maximum in Πedge corresponds to
the critical value related to the field just before vortices first penetrate the stripe, i.e. Hc1.
Panel b: Current density at the edge of the stripe as a function of the applied magnetic
field for different widths. Horizontal lines correspond to the depairing current density JDP =
0.385J0 (red dash-dot), and the maximum value occurring at H ' 0.5Hc2 with a value of
Jedge ' 1.32JDP (blue dash).Vertical dotted lines indicate Hc1 for the different widths (0.39,
0.22, 0.15, 0.09, 0.04Hc2). The magnetic field is continuously increased in increments of 0.01
Hc2.

they found a value of Πcritical ' 0.78Π0 at the entrance field of the first vortices. Using the
same methods of calculation for κ = 5, they found more consistency in the values (0.80, 0.85,
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0.75Π0).
The figure shown in 3.3-b presents the variation of the current density Jedge at the edge

of the stripe with the applied magnetic field. The vertical lines in the figure indicate the
critical field Hc1 for each stripe width. Interestingly, the current density Jedge is observed to
exceed the depairing current JDP even before the vortices enter the nanostripe from the edge,
reaching a maximum value before decreasing to a local minimum associated with Hc1, after
which vortex penetration occurs. The first maximum of the edge current density decreases
with increasing stripe width, while the first local minimum increases for wider stripes. In
both cases, the values tend towards the depairing current JDP . When the magnetic field is
increased beyond Hc1, the value of Jedge increases for each stripe width, reaching a maximum
value of Jedge ' 1.32JDP at a magnetic field of 0.5Hc2. After this, Jedge decreases and reaches
JDP at Hc2 for each stripe width. The results indicate that for wide nanostripes with widths
greater than 36ξ, vortex penetration occurs when the edge current density is approximately
equal to the depairing current, Jedge ' JDP . Narrow nanostripes, on the other hand, exhibit
a slight deviation towards lower values, but the deviation is no more than about 10 − 15%
for stripe widths w . 6ξ.

Figure 3.4 shows the supervelocity and supercurrent density at the edge of SNs, as a
function of applied magnetic field, for different widths (w = 6, 12, and 18ξ), where here
the superconducting states are ground states. As the states are ground states, it does not
correspond to the critical criteria of stripes penetrating from the edge, but rather the values
of Πedge(H) and Jedge(H) for the state with lowest energy at a given magnetic field. The
serrations observed in all curves, as previously mentioned are associated to the penetration
of one or more vortices, and it is clear from the number of serrations that more vortices
penetrate the wider stripes. For reference, in each plot for different width, a horizontal
red-dotted line shows the value for the depairing current, JDP .

Figure 3.4 reveals some interesting features, firstly Πedge at Hc1 is less than Πedge at Hc1,
which is to be expected as the mixed state can have lower free energy than the Meissner
state [160]. Comparing Πedge(H) for widths w = 12 and 18ξ it can be seen that the gradient
of Πedge is steep for up to the transition of the second row (n = 2), after which the general
gradient is small and converges around Πedge ' 0.72Π0 for stronger larger fields. A similar
convergence was seen in figure 3.3, but here the stationary GL equations were used which
neglects the contribution of the electric potential, and we are considering the ground state.
Nevertheless, convergence of Πedge for strong magnetic fields seems to occur for all widths
considered.

It can be seen from figure 3.4 how Π changes with H for the superconducting ground
states (at H). The plots show how Πedge sharply increases for small values of H, and
gradually increases as H is increased. The figure shows values up to H = Hc2, after which
Πedge rapidly decreases to zero, as does Jedge. On each plot are shown vertical reference lines
for the transition fields of rows of vortices, where different behaviour of Πedge is observed.
Considering w = 6ξ, after the first vortex/row enters (n=1), Πedge continues to increase in
general, with the typical peaks in Πedge associated to vortex entry increasing with H up to
Π ' 1Π0 at H = 0.64Hc2, after which the maxima saturate at Πedge ' 0.84Π0 for higher H.
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Figure 3.4: Ground state supervelocity and current density at the nanostripe’s edge versus
the applied magnetic field in the ground state for widths w = 6, 12, and 18ξ. The horizontal
red dotted-line is a reference for the depairing current density, JDP , and the grey vertical
dashed-lines indicate the transitions to a state with an additional vortex row (n→ n+ 1).

For w = 12ξ, between the transition of n=1 and n=2 rows, there continues the initial steep
general increase of Πedge, peaking at Πedge ' 0.70Π0, at which the peaks in Πedge saturate
at ' 0.72Π0. There is no clear behaviour linked directly to the transition of new vortex
rows. However, when w = 18ξ, the same general steep increase of Πedge is observed, up
to the transition of n =2 (H ' 0.12Hc2), at which point Πedge tends to increase with H,
saturating around Πedge ' 0.72Π0. The saturation observed evidences a maximum value of
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the supervelocity for ground states, where Πedge ' 0.72Π0. Simulations suggest that Πmax
edge

increases for very narrow stripes (w . 6ξ) emphasising confinement, and weakly depends on
H as previously observed [39]. Additionally, the values of the peaks in Πedge associated to
the nucleation of vortices increases rapidly with H at low H, then tends to saturate to a
maximum value at large H.

3.3 Organisation of vortex rows

Due to vortex interactions with other vortices, and material boundaries, it is intuitive to
assume there will be an arrangement of the vortex lattice to minimise the free energy in
the system. Abrikosov famously predicted the existence of vortices and showed that in
type-II superconductors, vortices would arrange in a square lattice, with lattice parameter

a� =
√

Φ0

B
[59]. However, it was experimentally proven that vortices arrange in a triangular

lattice [161], and correction to the original derivation of Abrikosov showed the lattice pa-

rameter is a4 = 1.075
√

Φ0

B
. This type of triangular lattice occurs in superconductors where

the dimensions are large enough that boundary effects can be ignored. Reducing the dimen-
sionality of a superconductor can significantly change its behaviour, for example reducing it
from 3D to 2D cross-over, effects such as a maximum in the critical current density can be
observed [25]. Reducing the lateral dimensions affects the vortex pinning regime of narrow
2D superconductors, such that edge pinning effects dominate over bulk pinning [34, 156],
emphasised in narrower stripes. Such pinning potentials produced by edge Meissner currents
affects the static configurations of vortices [44], as seen in figure 3.5. A consequence of con-
finement forces and vortex interactions is the arrangement of vortices and organisation into
a numbers of rows of vortices, depending on the width and applied magnetic field.

In figure 3.5 we present our novel result of a vortex row phase diagram produced using
the SGL approach, showing the conditions for the formation of a number of vortex rows, n,
as a function of H and w of the SN [44]. Each dashed curve in the diagram shown in figure
3.5, plotting the width of the SN versus H, represents the appearance of the nth vortex row
(n = 1 − 5) in the ground state of the system as magnetic field is increased. Examples of
corresponding vortex configurations for a SN of w = 12ξ for different H intensity are shown
in figure 3.6, corresponding to the pinpointed dots (labelled a-h) in figure 3.5. To identify the
threshold H for the transition to the vortex row configuration with a higher n, the ground
states were first obtained for each SN at different H; then the spatial distribution of the
superconducting order parameter |∆|2 has been plotted (similar to figure 3.6) and carefully
analysed, focusing on the geometrical interpretation of the vortex configuration. In the SGL
approach adopted in these simulations, the SN was considered periodic along its length, with
a unit cell of L = 32ξ. Several checks, carried out by extending the unit cell length till 80ξ,
have confirmed all following results.

In a SN, the early theoretical works [165, 162] have shown that the magnetic field at which
the surface barrier is suppressed and a single vortex can be stable in the SN is H/Hc2 =
π2ξ2/2w2. The subsequent experimental observations of vortex penetration fields by Stan
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Figure 3.5: Equilibrium vortex-row phase diagram, plotting the SN width (in units of ξ) as
a function of the applied magnetic field intensity (in units of Hc2), for different numbers of
formed vortex rows (n). Simulations have been done using the SGL approach with periodic
boundary conditions along the length, with unit cell length of L = 32ξ. The dashed lines
denote the threshold for the formation of an additional vortex row (here shown up to n = 5).
The coloured regions represent the approximated regions for n > 1, delimited by solid
lines given by expression Hrow/Hc2 = πn2ξ2

√
3w2 . Circles, labeled a − h, relate to the vortex

configurations shown in figure 3.6. Black dotted line corresponds to the analytical expression
H/Hc2 = K π2ξ2

2w2 [162], with K = 1.7 [163].

et al. [163] have shown a very good agreement with latter expression, up to a multiplying
constant K. Our numerical data (black dots in figure 3.5) reconfirm that finding, as vortex
penetration fields were found to nearly ideally match the same functional dependence on w,
with a multiplying constant K = 1.7.

The approximate criteria for further reconfiguration of the vortex states and appearance
of additional vortex rows can be obtained in the following way, considering a Abrikosov
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Figure 3.6: Calculated vortex configurations plotted as Cooper-pair density for the ground
state of a SN of width w = 12ξ, in a periodic cell of L = 64ξ, at different applied H/Hc2

values: (a) 0.08; (b) 0.20; (c) 0.42; (d) 0.43; (e) 0.45; (f) 0.77; (g) 0.80; (h) 0.87 (cf. figure
3.5). Panels (b), (d) and (g) depict the vortex states at the nucleation of a second, third and
fourth row, respectively. Panels (c), (e) and (h) show the most lattice-like packing conditions
for two, three and four vortex rows, respectively. White lines, connecting the cores of three
neighbouring vortices, illustrate the deformation of the Abrikosov lattice [164] in the SN.
Color bar denotes the values of the Cooper-pair density shown in the panels. Each depicted
configuration is indicated in figure 3.5 with an open dot and is labelled accordingly.

triangular lattice, with the lattice parameter a = 1.075
√
φ0/H. The vortices are arranged in

a body-centered hexagonal lattice, and so the Wigner-Seitz unit cell is hexagonal with a unit
area per flux quantum of A =

√
3

2
a2. For a narrow SN, to accommodate n rows of vortices,

the spacing, wv, among vortex rows must obey the inequality wv ≤ w/n. Using the previous

expression for the Abrikosov vortex density, we substitute A =
√

3
2
w2
v =

√
3w2

2n2 to obtain the
zeroth order approximation for the threshold magnetic field required for the formation of
new rows, yielding Hrow/Hc2 = πn2ξ2

√
3w2 . Those approximate threshold H values are shown

in figure 3.5 by the solid lines delimiting different coloured regions, indicating transitions
among states with different number of vortex rows. In general, the behavior of threshold
H found using SGL simulations agrees well with the formula prediction. The values were
however mostly higher than the approximate ones, which is attributed to the role played by
the edge barriers for vortex entry and exit (varying, depending on w and H). In addition, the
rearrangement of the vortex lattice with every vortex penetration is not taken into account in
latter basic analytical formula. Note that such effects of the vortex-vortex interactions and
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interactions with the edge Meissner currents (causing the confinement force), dominate the
formation of the vortex configurations in narrow SNs and present the main point of interest
in this work.

For a SN of w = 12ξ, figure 3.6 shows different vortex-row configurations, as formed in
the ground state at different H values (marked by open dots in figure 3.5). After formation
and growing of the first vortex row population (figure 3.6-a), increasing H, vortices rearrange
into a closely packed “zig-zag” state (figure 3.6-b). This close packing is emphasised by a
white triangle progressively deviating from the equilateral shape expected in the Abrikosov
vortex lattice, with rise of H. Obviously, in this state the Meissner currents will exert a
strong repulsive and confining force on the vortices from the SN edges (i.e. strong Bean-
Livingston edge barrier [27]), resulting in a vortex spacing far smaller than the above rough
analytical estimates (leading to the solid lines in figure 3.5).

Starting from the one row configuration (figure 3.6-a), raising H and n further, strength-
ens the relevance of the vortex-vortex interaction forces on the resulting vortex configuration,
which will increase separation between the two rows (figure 3.6-c). At this point, it’s observed
that additional vortices in the SN cannot uniformly balance the aforementioned competing
force in the entire SN, leading to a local rearrangement of the vortex lattice to three rows
(figure 3.6-d). Only with further increasing field and having enough vortices in the SN the
full three-row state is formed (figure 3.6-e; notice a nearly ideal triangular lattice formed).
For the considered width of the SN, the state with 3 vortex rows persists to a much larger
field due to quantum confinement, such that vortices very strongly overlap in a closely packed
structure (figure 3.6-f). Nevertheless, in the vicinity of the bulk upper critical field a fourth
row forms, first locally (figure 3.6-g) and eventually in the entire SN (figure 3.6-h), before
superconductivity is destroyed. No further rows of vortices can form at higher field and the
existing vortex rows increasingly overlap until the normal state is established.

The narrow stripe of w = 12ξ showed deviations from the theoretical vortex-row transi-
tion fields Hrow when ignoring edge confinement effects, originating from the Meissner edge
barrier. Significant deviations of these fields for different width of stripes (figure 3.5) evi-
dence significant effects caused by strong interactions between vortices and the edge Meissner
barrier. It is interesting to notice how the unit cell of 3-vortices highlighted by the white
triangle changes it’s shape as the vortex density increases. When two rows form initially the
edge barrier dominates and deforms the predicted equilateral triangle lattice from the stripe’s
edge, leading to an isosceles triangle. As the density of vortices increases in two rows the
regular triangle is now deformed from the sides, which is due to an increases in vortex den-
sity and the vortex-vortex interactions. When the third row locally forms the isosceles-like
triangle lattice relaxes back to a more equilateral triangle (figure 3.6-d). Slightly increasing
the field, realising the new fully formed 3 rows, the triangular unit cell demonstrates an
equilateral form (panel-e). Again, increasing the vortex density further leads to deformation
of the equilateral triangular form to an isosceles, seen in panel-f. The transitions between
rows of vortices and the arrangement in the lattice are strongly affected by competition of
the two forces, vortex-vortex and edge current interactions. In fact as the magnetic field
is increased the edge Meissner current also increases in order to shield the superconductor.
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Figure 3.7: Area of the Wigner-Seitz unit cell containing a single vortex, as a function of
the applied magnetic field, for SN of width w = 6− 30ξ, and w = 40− 80ξ in the inset for
small H values. The analytical expression for the Abrikosov vortex lattice (AVL) area, A

ξ2

= 2πHc2
H

, is plotted as a black line. Open dots in each curve indicate the H intensity for
formation of the third vortex row, above which the curves progressively approach the AVL
expression, upon increasing the w.

However, in type-II superconductors penetration of vortices decreases the strength of the
Meissner field at the edge as vortices enter, as was discussed in relation to supervelocity in
a previous section. As H is increased, the Meissner field is increased further, until the field
is strong enough to penetrate with more vortices. Therefore, there are not only competing
forces, but the forces are also affected by the penetration of additional magnetic flux lines.
The described process is more significant for stripes with smaller widths which also manifests
itself in the vortex density discussed next.
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Figure 3.8: Spatial distribution of the superconducting order parameter for a SN of w =
20ξ, at increasing values of magnetic field, shown in each panel in units of Hc2. An example
of the transition from a single row to a second row, followed by reconfiguration back to a
single row due to strong confining effects as a result of the edge Meissner current.

3.4 Confinement and vortex density reduction

As the magnetic field is increased, vortices penetrate the stripes of different width, and
vortex rows are formed, one can expect a gradual evolution from the quasi-1D row pattern
into a 2D vortex lattice. To evaluate such transition the average area occupied by a single
vortex in all the states can be found. The number of vortices present are counted, and
divide by the stripe’s area (w × L) to obtain a value for the average area occupied by a
single vortex, another novel result we present [44]. This is plotted in figure 3.7 as a function
of applied magnetic field, in comparison to the expected behavior of the Abrikosov vortex
lattice. The strongest confinement in narrowest nanostripes [33, 27] dominates the vortex-
vortex interaction, leading to compression of vortices into fewer vortex rows and consequently
larger average area per vortex in the stripes. This can be clearly seen in figure 3.7 for widths
w ≤ 8ξ. As the width of the stripe is made larger, the confining force from the edge
current (at a given magnetic field) becomes less dominant with respect to the vortex-vortex
interaction, resulting into progressively closer agreement with the expected behaviour of a
triangular vortex lattice [164], a tendency clearly visible upon formation of the third vortex
row (indicated by open dots in figure 3.7).

It must be emphasised that the transitions between rows of vortices and the final arrange-
ment of vortices in the lattice are strongly affected by competition of the two forces, both
dependent on applied magnetic field. As the magnetic field is increased the edge Meissner
current also increases, up to the penetration of new vortices, while every new vortex changes
the landscape of the vortex-vortex interactions in the stripe. As exemplified in our unique
result shown in figure 3.8 for the case of w = 20ξ, this nontrivial balance of competing forces
can lead to a re-entrant behavior in terms of the number of vortex rows formed [44]. Namely,
in such cases, the zig-zag instability of the vortex row upon certain vortex density is reached
can be ”cured” by the increasing Meissner currents and lateral confinement growing with
increasing magnetic field, before the additional penetrating vortices tip the scale in favor of
vortex interactions and definite reconfiguration into a state with an additional vortex row.
This re-entrant behavior has been observed for nearly all considered stripe widths in the
range w = 20 − 60ξ. In such cases the first onset of the zig-zag instability identifies the
n → n + 1 transition in figure 3.5. It can also be claimed that this range of widths where
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such strong edge effects are detected marks the crossover from the quasi-1D to a 2D film-like
behavior [44].
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Chapter 4

Consequences of Synchronous Vortex
Row Crossings in Current Carrying
Nanostripes

When a transport current is applied across a thin and narrow superconducting film or stripe
(d << λ, ξ) in the absence of an external magnetic field, the current is distributed uniformly
across the stripe [156, 166]. The induced magnetic field scales with 1/κ2, as a result in
extreme type-II superconducting narrow wires, this field is negligible. However, work on
this induced field affects the critical current in the absence of magnetic field, was shown to
scale with Hc1/λ [167, 168]. When H > Hc1, and vortices penetrates a SN, a small applied
transport current will shift the vortices across the stripe from the Lorentz force experienced
by the perpendicular penetrating magnetic flux (J × B), and continue to be trapped by
the edge pinning barrier [169] . At a critical current density, Jc1, the vortices have enough
energy to cross the edges barriers [34]. Once Jc1 is exceeded vortices continuously cross the
stripe, and under certain conditions cross with a periodic fashion, creating detectable pulses
in the voltage drop across the stripe [44] (see figure 4.3). In chapter we present a variety of
results, some cover existing and well known concepts such as different resistive states of SNs
and their characteristic V-J curve. The main focus here is the phenomena of synchronous
vortex crossings and mainly the transition from asynchronous vortex crossings, which are
novel results presented in this thesis and reported in [44].

Throughout this chapter the generalised time-dependent Ginzburg-Landau formalism
(gTDGL) [170, 144] is used to study the dynamical properties of the superconducting con-
densate of a nanostripe in the high-κ limit (with order parameter ∆(r, t)), in the presence of
an external magnetic field H (with vector potential A) and sourced current density J, given
by

τGLN(0)
u√

1− (Γ|∆|)2

[
δ∆

δt
+ i e

∗

~ ϕ∆ +

(
Γ√
2

)2
δ|∆|2

δt
∆

]

= −
(
a+ b|∆|2

)
∆ +

~2

2m∗
(∇− ie∗A)∗∆,

(4.1)
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∇2ϕ = ∇ [Im {∆∗ (∇− iA) ∆}] , (4.2)

where a = α
2m∗γ

, b = β
4m∗2γ2 , and Γ = 2τi

~
√

2m∗γ
. The Ginzburg-Landau order parameter

relaxation time is τGL; N(0) is the density of states at the Fermi level; the parameter u = 5.79
in conventional superconductors; e∗ is the effective charge; ϕ is the electrostatic potential; τi
is the electron-phonon inelastic scattering time and α, β, γ are material parameters. Equation
4.1 is solved coupled with the equation for the electrostatic potential (eq.4.2), adopting a
gauge ∇ · A = 0, using Neumann boundary conditions at all sample edges, except for
the leads where sourced current is injected, where ∆ = 0 and ∇ϕ = ±J . This theory is
derived for dirty gapless superconductors, where Cooper-pair breaking occurs due to strong
inelastic electron-phonon scattering, and the physical quantities ∆ and A must relax over
a time-scale much longer than τi. The distance over which an electric field can penetrate
into the superconductor, and the length over which relaxation processes occur is given by
the characteristic inelastic diffusion length Li =

√
Dτi, where D is the diffusion parameter

proportional to the electronic mean-free path. In cases where Li << ξ, our simulations
require very fine grid spacing (reflecting in consequently smaller time step in the used implicit
Crank–Nicolson method) to yield physically correct results. In general, superconducting
materials at T close to the superconducting-to-normal transition temperature, Tc, satisfy
the conditions for slow temporal and spatial variations ideally required for the applicability
of the GL formalism. In the TDGL formalism, distances are given in units of ξ(T ) = ξ;
time in units of τGL = π~

8kBTc(1−T/Tc)u
; temperature is in units of Tc; the order parameter

∆ in units of ∆(0) = 4kBTcu
1/2(1 − T/Tc)

1/2/π; ϕ in units of ϕGL = ~/e∗τGL; vector
potential A is scaled to A0 = Hc2ξ and current density to J0 = σnϕ0/ξ. The simulations
are performed irrespective of the temperature T/Tc, all physical quantities are scaled and
normalised by reference quantities at a given temperature. Note that, even though the GL
approach is formally valid close to Tc, experiments have shown the possibility to extend
the GL predictions to a finite T range below Tc, see, e.g., ref. [25] and references therein.
Moreover, in the simulations the heat generated by the Joule effect is lost on a time scale
shorter than the inelastic scattering time, assuming that the heat transfer coefficient is large
enough to allow a fast dissipation. The approach adopted is equivalent to include a solution
of the thermal balance equation [46]. Our findings are valid at any temperature providing
the coherence length is known at a given temperature.

4.1 Vortices in current-carrying narrow superconduct-

ing nanostripes

The TDGL approach allows to also simulate the voltage-current density (V-J) characteristics
of SNs, presented in figure 4.1 for stripes with w = 6, 9, 12, 18ξ, under an applied magnetic
field H = 0.25Hc2. Analysis of the V-J characteristics reveals a number of features related to
different resistive regimes in each curve. At low J values, stationary vortices are shifted to a
new position across the SN due to the Lorentz force produced by the sourced current, so the
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Figure 4.1: Normalised voltage drop as a function of the normalised current density, for SNs
of width w = 6, 9, 12, and 18ξ, at magnetic field H = 0.25Hc2. The black and red dots
(for w = 6 and 12ξ respectively) mark the values of current density at which analysis of the
modulation frequency spectra is presented in figures 4.4 and 4.6. Inset: Snapshots of the
Cooper-pair density for SN of w = 12ξ, numbered 1-10 from left to right, are indicated by
open red squares.

resulting voltage drop and resistance remain zero. An example of such can be seen in figure
4.1 (for w = 12ξ) from the states labelled 1 and 2. When Jc1 is reached, vortices cross the
SN and their perpetuous motion leads to a finite resistivity value. Snapshots of this flux-flow
regime can be seen from the states labelled 3 and 4 in figure 4.1. With further increasing J
and in presence of vortex-vortex interaction forces, a SN in the dissipative state exhibits flux-
flow instability, where vortex cores interact during dynamics and ordered lattice structure
is lost during motion (state labelled 5 in figure 4.1). At even higher J , vortices align during
motion, in a slip-streamed geometry (vortices tailgate, i.e. subsequent vortices crossing the
SN, move in the wake of the previous vortex [45, 47]), before a Langer-Ambegaokar phase slip
[171] occurs across the SN. The normal area covered by the phase slip grows laterally with
further increasing J , and additional steps in the V-J curve appear with every slip-stream
being merged with the growing phase-slip, as seen in the states labelled 6-10 in figure 4.1.
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Figure 4.2: First critical current density normalised to JDP = 0.385JGL as a function of the
applied magnetic field normalised to Hc2, for a SN of width w = 12ξ, obtained using the
TDGL approach. Vertical red lines mark the transition to 1, 2 and 3 vortex-row states, at
a magnetic field of H/Hc2 = 0.09, 0.23, 0.42, respectively. Insets illustrate the vortex row
configurations at selected magnetic fields (marked by open dots) for sourced current density
just below the critical one.

When J reaches roughly 0.65JDP , the SN transitions to a fully normal state, with linear
ohmic behavior.

Similar V-J curves have been observed both numerically [159] and experimentally for
Nb-C microstrips, fabricated using focused-ion-beam-induced deposition [49]. In real mate-
rials, the presence of disorder and defects changes the behavior described in this work. For
example, edge defects are a favorable point for vortex entry as current crowding occurs in the
local defect region leading to favored positions for vortex penetration. In addition, disorder
on length scales larger than ξ may create bulk pinning regions [33]. On the other hand,
small disordered regions (smaller than ξ) leads to increased inelastic scattering times, result-
ing in finite values of Γ. Hence, a viscous condensate will be formed, changing the dynamic
behavior of vortices and introducing additional resistive states such as “vortex channels”.
The appearance of such resistive states can be advantageous for EM emitters, providing
synchronization of vortex rows which is discussed next in the case of negligible disorder and
defects.
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4.2 Critical current, pinning, and defects

Transport currents in thin and narrow superconducting nanostripes manifest from a complex
interplay of surface and bulk pinning. Very narrow stripes exhibit strong pinning forces,
determined almost predominantly from the surface barrier [137, 34, 32, 172, 173], whilst
wider stripes experience bulk pinning forces [169, 174, 175, 176] due to vortices being trapped
”deep” (d � ξ) inside the superconducting geometry. In the intermediate regime, the two
types of pinning interact, which affects the behaviour of Jc with respect to the number of
rows resulting from an external magnetic field. The critical current exhibits non-monotonic
behaviour of Jc during the transition to higher rows of vortices as H is increased [34, 33]
(see figure 4.2). The increase of Jc(H) during the appearance of a disperse vortex row
(spacing a� ξ) was predicted by Schmidt [177], shown numerically with TDGL simulations
[34, 33, 44], and observed experimentally [178]. Vodolazov provided an explanation [34] to
this behaviour by showing at H > Hc1, Jc increases and the resistance R(H) decreases,
until the intervortex distance becomes smaller than w. The increase followed by decrease of
Jc(H) at higher fields can be explained by the same mechanism, but during the transition to
a new row of vortices the transverse intervortex distance increases. This can be seen with the
example of a stripe width w = 12ξ (see figures 4.2,3.6). It was shown [33] how an optimised
distribution of defects can enhance critical current in typical mesoscopic superconducting
stripes. The interplay of edge and bulk pinning forces also affect vortices in the static case,
where the configuration of the vortex lattice organises into n-rows depending on w and n
[44]. Additionally, it was observed a transition from n = 1 → 2 → 1 → 2 rows of vortices
[44] (see figure 3.8), for width w ' 20-60ξ, as a result of the competition between edge and
bulk pinning.

Flux pinning [179] involves the trapping of a vortex as a result of the energetically costly
normal core preferring positions where superconductivity is already suppressed. Stronger
pinning means a higher critical current can be applied, at a given magnetic field, before
vortices start moving and cause energy dissipation. Carefully engineered artificial pinning
landscapes, such as artificial magnetic structures [180] and antidots [181], provide strong
confining forces, amplifying Jc. Even the inclusion of a magnetic strip on top of a super-
conducting strip, magnetized in a specified direction enhances Jc1 [182]. The work of ref.
[181] discusses the critical current as a function of the magnetic field for a superconducting
film containing an array of antidots (holes/insulator). The magnetic field is given in units of
H1, which is the minimum field value at which each hole contains 1 vortex, occurring when
the pinning landscape is commensurate with the vortex lattice, producing an increase in Jc.
In fact, there is an amplification of Jc at each integer multiple of H1, where sub-lattices of
vortices at pinned at interstitial positions, and detected experimentally [183].

Defects at the nanoscale are common, as fabrication processes often realise specimens with
edge defects in the form of protrusions/indentations [49, 184], non-uniform edges [185, 186],
surface defects [33], inclusions and grain boundaries [187, 188]. In general defects are detri-
mental to typical functionality of superconducting nanostripes, inducing flux flow instability
such as vortex jets [185], but in some cases can enhance critical current [33]. Therefore, when
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considering narrow superconducting stripes for their enhanced critical current, it is impor-
tant to consider the unavoidable defects, and their impact on the desired superconducting
properties.

4.3 Vortex-lattice crossings

In the dynamic phase when vortices cross a narrow superconducting nanostripe a distur-
bance occurs in the electric and magnetic field, as a result electromagnetic radiation radiates
into free space, with harmonics of the washboard frequency, ν0 = v/a (v is velocity and a
is the lattice spacing in the direction of motion) [42], up to the superconducting gap energy
(∆/~). The washboard frequency was first observed in IV characteristics of a superconduct-
ing aluminium film [189], and with similar observations made in high Tc-superconductors
[190, 191]. It was shown how the frequency distribution of the radiated intensity exhibits
a maximum at microwave frequencies around ν ' v/λ, and how coherent motion of a lat-
tice leads to constructive interference and strengthening the radiated power per vortex by a
large factor [192]. Interestingly when a nanoscale meandering stripe is exposed to an external
magnetic field and a sufficient applied transport current (H > Hc1, J > Jc1), vortices cross
the consecutive stripes (as part of the meandering structure), emitting EM radiation with
frequencies of 100’s MHz [193]. In similar work, lattice of vortices crossing a superlattice of
Mo/Si emitted detectable radiation with frequency up to 50GHz [43]. In the above studies
it is readily noted that synchronised vortex crossing amplify the emitted radiation. The
following section includes an investigation into how vortices cross narrow nanostripes, where
transitions between quasi-synchronous, synchronous and asynchronous regimes occur.

4.3.1 Synchronous vortex-row crossings

In a thin and narrow superconducting geometry the vortices that cross must compete with
strong effects at the edge of the stripe, influencing the behaviour of their crossing, as has
been evidenced in this thesis. Figure 4.3 shows V (τ) across the stripe with w = 6ξ, at
H = 0.25Hc2, for different J , along with the spatial distribution of the superconducting
order parameter, using the TDGL approach [44]. Each panel shows modulation in V (τ) as
a result of vortex crossings, with their corresponding spectra of frequencies shown in figure
4.4, obtained via FFT of V (τ). As vortices cross the stripe, modulations in the voltage drop
across the stripe occur. The specific modulations depend heavily on the synchronisation of
vortex crossings, which affects the spectrum of frequencies present in such modulations. In
figures 4.3-4.6 we show the voltage as a function of time, V (τ), at different sourced currents,
and their corresponding spectra of frequencies (obtained by FFT of V (τ)) for stripes of width
6ξ and 12ξ, both with an applied magnetic field of 0.25Hc2. The TDGL approach has been
used to find the ground states for each stripe at H = 0.25Hc2, then the current is swept from
0 up to J ' JDP in steps of dJ = 0.026JDP . At each current step the simulation has been left
to run for a long enough time that a dynamic equilibrium has been reached (τ = 5×103τGL),
at which point the acquisition of data is recorded. The voltage drop as a function of time,
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Figure 4.3: Normalised voltage drop as a function of time (normalised to τGL), for a SN of
w = 6ξ under a magnetic field of H = 0.25Hc2 sourced with different current densities of:
(A) 0.348JDP , (B) 0.366JDP , (C) 0.387JDP , (D) 0.406JDP , (E) 0.444JDP , and (F) 0.655JDP .
Each panel contains an illustrative snapshot of the spatial distribution of the Cooper-pair
density during the dynamics. Red vertical segment in (A) shows the periodicity of the
spectrum.

along with the spatial distribution of the superconducting order parameter at each time step
are used to produce figures 4.3 and 4.5. In the dissipatitive state, as vortices move across
the stripe there is an increase in the voltage across the stripe, with maxima corresponding
to the exit of a vortex (where supercurrent density is highest). This leads to the modulation
of V (τ), seen in figures 4.3 and 4.5. Firstly we consider the stripe of width w = 6ξ, figure
4.3-panel A shows V (τ) for the sourced current density of J = 0.348JDP , which is the lowest
current value that will cause vortices to cross the stripe.

The plot shows several features due to asynchronous vortex crossings, but a repeating
sequence with a period of 486 τGL. Even though the vortices are not crossing in synchronised
rows, there is some quasi-synchronised behaviour manifesting in the repetition of vortex
crossing. As J is increased from 0.384JDP to 0.406JDP (panels A-D) the modulations in
the voltage evolves, and the number of modulations caused by quasi-synchronous crossings
reduces. At J = 0.444JDP (Panel E) there is only one mode that repeats periodically, which
continues up to J = 0.655JDP (panel F), where there is only one significant single peak in
the spectra. This is due to the strong Lorentz force at high current density which dominates
the vortex-vortex and edge barrier interactions. However, the vortex-vortex and edge barrier
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interactions play a role in maintaining the vortex lattice structure.
The relative spectra of frequencies for the V (τ) plots can be seen in figure 4.4 in panels

A-F. The repetition of vortex crossings with their particular configurations leads to peaks
at specific frequencies. As the current density is increased the spectra show the evolution
to a single repeating peak in the voltage. This can be seen by observing that the primary
frequency component in each spectra becomes increasingly dominant. When J = 0.348JDP
where the repeating quasi-synchronous crossing have a period of τ = 486τGL, the associated
frequency is ν = 0.0021τ−1

GL. This mode has the greatest contribution, whilst higher modes
are associated to the period between individual modulations and higher order harmonics.
The spectra is indicative of the strongly quasi-synchronous (overall repetition with multiple
different modulations) dynamics of the vortex crossing. As J increases the number of different
modulations decreases and the crossings become more synchronised, which is seen in V (τ)
and emphasised by the different spectra. At J = 0.444JDP (Panel E) there is one mode
with large contribution that repeats periodically, and continues up to J = 0.655JDP with a
fundamental mode with frequency ν ' 0.03τ−1

GL (panel F).
To provide some idea of realistic values, consider Niobium thin films studied by Pinto

et al., assuming they are still valid for SN of Nb. For a Nb film of thickness d = 20 nm
the coherence length at zero temperature is ξ(0) ' 8.0nm [25], with Ginzburg-Landau time
of τGL(0) ' 65 fs. Considering modulations ranging between ν = 0.0021 − 0.03τ−1

GL, for our
niobium example this equates to ν = 1−50GHz, which can be detected by conventional spec-
trum analysers. Such modulations have been observed experimentally in Mo/Si superlattices
in the work of Dobrovolskiy [43, 193]. By fine tuning the geometry, faster vortex crossings
could be envisaged and used as a terahertz radiation source, for a variety of applications
[194], including clinical [195] and terahertz time-domain spectroscopy [196].

Similar behaviour can be seen from the stripe with w = 12ξ under the same magnetic
field of H = 0.25Hc2. Figure 4.5 shows the voltage drop across the stripe as a function of
time. Panel A shows V (t) at J = 0.231JDP , when vortices start crossing the stripe causing
dissipation. The vortices start crossing in a quasi-synchronous fashion at first (panel A), as
was the case with the narrower stripe. However, the complete repeating sequence of vortex
crossing occurs over a time τ ' 1500τGL, which is represented by the small contribution in
it’s relative spectrum (figure 4.6 panel A) of ν ' 0.0007τ−1

GL. Whilst the largest contribution
in the spectra corresponds to multiple vortex crossings repeating every τ ' 330τGL with fre-
quency ν = 0.003τ−1

GL. When the current density increases from J = 0.231JDP to 0.327JDP
(panels A-D) vortex crossings evolve and become synchronised in the same fashion (similar
to w = 6ξ). Where at J = 0.327JDP the fundamental mode has a frequency of ν = 0.006τ−1

GL,
which for the example of a thin niobium stripe is ν ' 9GHz. However, when increasing the
current density towards J = 0.387JDP (panel E) the onset of flux-flow instability occurs,
becoming increasingly chaotic as current density is increased to J = 0.504JDP (panel F).
At J > 0.504JDP a phase slip occurs and grows as current density is increases (figure 4.1,
states labelled 6-10). Upon the transition to flux-flow instability the vortex crossing become
asynchronous, which can be seen in V (τ) and is emphasised in the corresponding spectra
where ”small” line width contributions are absent, and instead there are noisy spectra. At
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Figure 4.4: Spectra of modulation frequencies ν (normalised to τ−1
GL) of the temporal voltage

signals shown in figure 4.3.

J = 0.387JDP there remains some coherency in the crossings, which leads to a broad peak
in the spectrum (figure 4.6 panel E) around ν ' 0.007τ−1

GL. However, when J is increased
further the crossing as completely asynchronous due to strong flux-flow instabilities, and this
lead to a spectrum indicative of amplitude noise [44].

The spectra of frequency modulations shown in figure 4.6 for this stripe shows similar
behaviour to that of the narrower stripe with w = 6ξ. At low current densities, when
crossings are quasi-synchronous, we see larger contributions with many additional smaller
peaks. As J increases and synchronicity improves and the smaller contributions associated to
the quasi-synchronous behaviour disappear, whilst the frequency component with the largest
contribution increases. We have seen similarities in both stripes as the current density is
increased. In particular, both stripes begin the dissipatitive state with vortices that cross
in a quasi-synchronous fashion as a result of vortex-vortex and edge barrier interactions
dominating over the Lorentz force. Increasing the current density leads to strengthening
of the Lorentz force, which gradually overpowers the prior mentioned vortex interactions,
leading to the onset of synchronous crossings, in the form of complete vortex rows moving
in unison. However, at larger J the smaller stripe continues to demonstrate synchronised
crossings, whilst the wider stripe transitions to an asynchronous crossing [44].

The stripe with w = 6ξ at H = 0.25Hc2 (see figure 3.5) demonstrates a single row of
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Figure 4.5: Normalised voltage drop as a function of time (normalised to τGL), for a SN of
w = 12ξ under a magnetic field of H = 0.25Hc2 sourced with different current densities:
(A) 0.231JDP , (B) 0.252JDP , (C) 0.270JDP , (D) 0.327JDP , (E) 0.387JDP , and (F) 0.504JDP .
Each panel contains an illustrative snapshot of the spatial distribution of the Cooper-pair
density during the dynamics.

vortices in the static case, and a strong deviation from the theoretical limit of vortex density
with area per vortex of A ' 60ξ2 (see figure 3.7), due to the confinement forces (from the
edge) dominating the vortex interactions. Whilst a SN with w = 12ξ has a higher vortex
density with area per vortex A ' 40ξ2(see figure 3.7, leading to stronger vortex-vortex
interactions, and under an additional Lorentz force begins flux-flow instability.

The speed of vortice can be obtained numerically by identifying a local minima and
tracking their displacement at each time iteration. Results of the current density dependence
of the vortex speed (see figure 4.7), evidence a linear dependence on J for low values. When
J is increased towards values that will drive it into the normal state, the linear dependence
is lost and there is a rapid increase in v [159, 197, 44]. This can be due to the quasiparticle
spectrum changing from a superconducting to normal current when a vortex travels across the
sample. At greater vortex velocity, quasiparticles switch more rapidly, increasing the rate
that superconducting current is converted to normal current, increasing the annihilation
rate of the superconducting order parameter. Give the range of velocities in figure 4.7,
v = 0.010− 0.085ξτ−1

GL, for the example of thin niobium SN this equates to v ' 1− 10kms−1.
When the vortices are crossing synchronously the relation for the washboard frequency

can be applied. With velocity and frequency of vortex crossing, the value for the lattice
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Figure 4.6: Spectra of modulation frequencies ν (normalised to τ−1
GL) of the temporal voltage

signals shown in figure 4.5.

spacing a can be obtained. Increasing the sourced current from J = 0.366 to 0.655JDP , the
values of the lattice spacing decreases from 6.2ξ to 2.8ξ. Two process are occurring, the
energy barrier is lower and therefore vortex nucleation rate is higher, and the Lorentz force
is stronger, the combination of the two act to reduce the size of the lattice parameter. A
combination of increasing Lorentz force with the edge confining forces act on the vortex lattice
causing a reduction of a, and increasing the dynamic vortex density. However, in the wider
stripe (w = 12ξ) the same behaviour is not observed, in this case the value of the lattice
parameter stays constant (3.6ξ) as the current is increased in the dissipative state. This
continues until transitioning to asynchronous crossings. Studies of wider stripes has shown
to not reproduce this effect as significantly as narrower stripes [44]. This further emphasises
the strong confining effects that occur in very narrow superconducting nanostripes.

The synchronisation of vortex crossing in a fixed lattice at large applied currents was
observed and discussed in [45], however an exact regime was not identified. To understand
better the regime in which synchronous crossings can occur, a number of simulations were
further performed [44]. Figure 4.8 shows another four examples of the modulations in V (t),
panels a.i-iv correspond to a stripe with w = 12ξ, and H = 0.2Hc2 which realises a single
row of vortices in the static case (figure 3.5). At J = 0.28JDP the stripe starts dissipation
with quasi-synchronous behaviour (a.i). At J ' 0.36JDP the quasi-synchronous crossings
are starting to evolving into a more synchronised behaviour (a.ii). This continues to higher
current densities but never transitions to a completely synchronous regime (a.iii). Then
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Figure 4.7: Panel a - Normalised average vortex velocity in units of ξτ−1
GL versus the nor-

malised current density sourced to SN of width 6ξ and 12ξ under an applied magnetic field
of H = 0.25Hc2. Panel b - Histogram of vortex velocities for different values of J relating to
different vortex crossing regimes.

at J = 0.48JDP flux flow instability occurs (a.iv) and continues until the normal state at
J = 0.66JDP . Figure 4.8 panels b.i-iv show similar behaviour for a stripe of width w = 24ξ
and H = 0.12Hc2 (realising two-rows), it does not transition to synchronised crossings. The
modulations shown in panels b.i-iv show less synchronised behaviour, which is likely related
to the low vortex density unable to force the dynamic vortices into a fixed lattice. However,
increasing the magnetic field for both stripes we observe the emergence of synchronous
crossings once again, seen in panels c.i-iv and d.i-iv. This time the stripes with w = 12
and 24ξ at H = 0.50 and 0.15Hc2 respectively, both realising three rows of vortices. For
w = 12ξ synchronous crossings start at J ' 0.20JDP and continue until the onset of flux-
flow instability at J = 0.28JDP . Similarly for the stripe with w = 24ξ synchronous crossing
occur at J = 0.28JDP and continue to larger current densities of J = 0.42JDP , until the
onset of flux-flow instability. The larger applied magnetic field for these two stripes leads
to a greater vortex density, increasing the interactions forces, which allows for vortices to
cross the stripe in a fixed lattice. These results (figures 4.3, 4.5, 4.8) with other simulations
has revealed a regime related to vortex density where vortices cross the stripe in a fixed
lattice synchronistically. By comparing the average vortex density at the fields for a given
stripe that exhibits synchronous crossings, we see that if the condition A . 80ξ2 is met, then
synchronous crossings occur over a range of J .
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Figure 4.8: Temporal evolution of the normalized voltage drop, at increasing (indicated)
values of the sourced current density for two SNs, of width 12ξ and 24ξ. All plots exhibit
voltage modulations caused by vortex crossing. Panels a.i-iv: w = 12ξ, H = 0.20Hc2 (single
row of vortices). Panels b.i-iv: w = 24ξ, H = 0.12Hc2 (two vortex rows). Panels c.i-iv:
w = 12ξ, H = 0.50Hc2 (three rows). Panels d.i-iv: w = 24ξ, H = 0.15Hc2 (three rows). The
first panel in each row corresponds to the onset of the dissipative state; the second and third
belong to the synchronous/quasi-synchronous regime; the fourth is the onset of the flux-flow
instability regime.

4.3.2 Vortex crossings in viscous condensate

The inelastic electron-phonon scattering time (τi) is related to the energy gap (Γ = 2τi
~ |∆|),

and for a clean homogeneous superconductor with negligible defects, τi has very small
values, so the energy gap is smeared out, leading to a gapless superconductor (∆ → 0)
[141]. In a dirty superconductor, when defects on scales smaller than the coherence length
(ddefect << ξ(T )) are present, an energy gap opens up, which increases τi, therefore increas-
ing Γ. In the TDGL framework [144, 145], the effect of Γ will introduce viscous effects in the
superconducting state, affecting the dynamic behaviour of the condensate. Such a system,
with Γ = 10, when exposed to H >> Hc1 and Jc1 < J < Jc exhibits a rearrangement of the
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vortex lattice due to instabilities [45], where quasi-phase slips lies occurs (Figure 4.9, Panel
B and C). The dynamic vortex reduces quasiparticles in front of its motion and produces an
excess behind the core. This leads to a region with suppressed order parameter behind the
vortex that attracts other vortices resulting in an effective interaction between vortices. The
effect originates from the changing shape of the vortex core from non-equilibrium effects. In
figure 4.9 the V-J characteristics for a stripe with w = 12ξ and external H = 0.5Hc2, for
different values of Γ (0, 10, 100) can be seen, with a zoom in the top-left inset. For the case
of Γ = 0, the typical result is shown for reference. The black solid lines shows the curve
for Γ = 10, with snapshots of the spatial distribution of the order parameter shown in the
lower-right inset (highlighted by black circles on curve). It can be seen that Jc1 ' 0.1JDP
is the same when Γ = 0 and 10, but the dissipative state in which vortices cross the stripe
extends to higher J when Γ = 10. The snapshots show how the vortex crossing transition
from an unstable flux-flow state (A), to the quasi-phase slip (B), which continues to high
values of J (C) where ultra fast vortex crossings occur. These are similar results to those
discussed in the work of Vodolazov [45].

For wider stripes (w & 50ξ) and Γ = 10, the coexistence of fast and slow moving vortex
channels was observed [45]. Considering very dirty narrow stripes, such that Γ = 100 some
peculiar behaviour is observed. In figure 4.9 it can be seen that superconductivity persists
up to and large applied current densities, even greater than JDP , as was suggested in [144]
when Γ > 10. A large value for Γ indicates a large energy gap, which requires higher energy
excitations to excite the quasi particles in order to transition to a normal state.

The labels from 1-10 correspond to snapshots of the spatial distribution of the order
parameter, shown in figure 4.10. The start crossing the stripe in an asynchronous fashion
with no order (panels 1 & 2). Increasing J produces higher vortex velocity which in this case
leads to the formation of quasi-phase slip lines (panel 3). Here there exists simultaneously
fast and slow moving vortices, where the fast moving vortices propagate in the quasi-phase
slip lines. The co-existence of such vortices produces a deformation of the fast moving
channel, which is kinked due to the interactions of the slow moving vortices. Increasing
J further introduces more quasi-phase slip lines, as can be seen by comparing panels 3-8.
As the number of quasi-phase slip lines increases the resistance in the stripe increases also.
The different resistive states causes small steps in the V-J curve as seen in figure 4.9. The
difference in the vortex velocities between the slow and fast moving vortices can be up to
an order of magnitude different, and slow moving vortices seem to be quasi pinned. The
dynamics of the vortices also changes as the current is being increased. For example when
the kinked quasi-phase slip lines develop, fast moving vortices get trapped in the kink, and
over time will leave the fast moving channel and enter the slow moving region. Evidence
of this can be seen in some of the panels, for example panel 4 of figure 4.10 shows vortices
leaving some of the fast moving channels. At J ' 0.468JDP (panel 8) the density of phase
slips results vortices entering the slow moving region only from the kinks of the fast moving
channels, as oppose to from the edge that occurs at lower J . Increasing the viscosity at
large values of Γ results in interesting phenomena, and resistive states that would not exist
in clean gapless superconductors.
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Figure 4.9: Normalised voltage drop as a function of the normalised current density, for a
SN of width w = 12ξ, at H = 0.50Hc2, and different magnitudes of viscosity Γ. The bottom
inset shows the spatial distribution of the superconducting order parameter for the stripe
with Γ = 10, at different values of J : A: 0.207JDP , B: 0.238JDP , C: 0.650JDP , which are
states indicated by back dots on the plot. A zoom of the low J regime, is detailed in the top
inset. Blue dots on the Γ = 100 profile relate to the snap shots A-J shown in figure 4.10.

The FFT of V (τ) for a stripe of w = 12ξ at different J for the case of Γ = 10 (corresponding
to figure 4.9) can be seen in figure 4.11 (panels A-D). Panel A shows the spectrum of frequency
modulations in V (τ) at J ' 0.21JDP , where the stripe is in an asynchronous crossing flux
flow regime, leading to a noisy spectrum with no clear spectral contributions. Increasing the
current density to J ' 0.24JDP causes the rearrangement in vortex lattice to the quasi-phase
slip resistive state as previously mentioned [45]. The FFT of V (τ) in this regime shows large
peaks contributed to the synchronised crossing of vortices, with the addition of some noisy
peaks, which are associated to channel that is not yet a quasi-phase slip line (panel B figure
4.9). The nature of the crossings involves vortices flowing in channels, behind a previous
vortex (energetically favourable), which realises an imperfect lattice, where the time-average
number of vortices in a given channel may differ, leading to additional modulations in V (τ).
The average vortex speed can be obtained from the frequency of the first peak and the width
(νξ = v), and divide by the time-average number of vortices in the channels (5 vortices at
J = 0.24JDP ), realising an average velocity of v ' 0.048ξτ−1

GL. Increasing J further leads
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Figure 4.10: Spatial distribution of the superconducting order parameter for a stripe of width
12ξ, Γ = 100 with an applied magnetic field of 0.5Hc2 at different current densities in units
of JDP : 1: 0.156, 2: 0.182, 3: 0.208, 4: 0.260, 5: 0.312, 6: 0.364, 7: 0.416, 8: 0.468, 9: 0.519,
10: 0.571. Each panel is a snapshot of the dynamic process during the crossings of vortices
in the disipative state under different sourced currents. Black arrows in panel C highlight
the non-linear vortex channel. White arrows in panel D show examples of vortices leaving
the non-linear channel, at a kink in the channel.

to sharper and more pronounced peak in the FFT of V (τ) (panel C) and continues up
to J ' 0.650JDP (panel D). At J ' 0.650JDP the fundamental mode has a frequency of
ν ' 0.16τ−1

GL corresponding to ν ' 2.5THz for the case of a thin niobium stripe. The vortices
reach velocities up to v ' 0.035ξτ−1

GL. Such a device could be used for applications involving
terahertz electromagnetic emissions.

When considering a very viscous condensate as for Γ = 100, the FFT of the modulations
in V (τ) do not show individual small line width contributions. When the vortices start
crossing the stripe at J ' 0.18JDP , they cross in an asynchronous fashion in the flux flow
regime, and as a result have no clear contributions in the spectra (figure 4.11 panel E).
Even when J is increased and fast moving channels in the form of quasi-phase slips appear
multiple broad contributions can be seen in the spectra (panel F). Fast moving vortices have
velocities between 0.02 - 0.05ξτ−1

GL (figure 4.12, which are similar values to the case of clean
superconductor (Γ = 0). Whilst, slow moving vortices have velocities of 0.005ξτ−1

GL, an order
of magnitude slower. Figure 4.12 shows the vortex velocities for different sourced J , at H =
0.4, 0.5, 0.6HC2. The large error bars present result from a broad distribution of vortex ve-
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Figure 4.11: Spectrum of the voltage drop modulation for the SN of w = 12ξ under an applied
magnetic field of H = 0.50 Hc2, with Γ = 10, for sourced current densities of: A: 0.208JDP ,
B: 0.238JDP , C: 0.416JDP , D: 0.649JDP . For Γ = 100 with values of J E: 0.182JDP , F:
0.416JDP .

locities, manifesting from the non-linear channels and their strong interactions with vortices.
Considering a typical niobium stripe, slow moving vortices have velocities around 600ms−1,
whilst fast moving vortices have velocities around 5kms−1, which is an order of magnitude
larger than the ultra-fast vortices observed in [49]. The large broad distribution of vortex
velocities and chaotic dynamic state leads to noisy modulations in V (τ). This suggests that
a very viscous condensate would not realise the behaviour suitable for application purposes.
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Figure 4.12: Average normalised vortex velocity as a function of the normalised sourced
current density for a stripe with Γ = 100, of width 12ξ at applied magnetic fields of 0.4, 0.5
and 0.6HC2.
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Chapter 5

Response to Thermal Fluctuations
Towards Single Photon Detectors

In this section the response of superconducting nanostripes to thermal fluctuations will
be discussed. Firstly, how the behaviour of phenomena discussed in this thesis will be
affected by different thermal properties of materials, i.e. heat capacity, conductance, and
dissipation. This is followed by an investigation of induced hot superconducting bands,
where the bands are heated to temperatures T < Tc, and the lower-T regions confine the
weaker superconducting bands. When a small magnetic field is applied, vortices will flow
only through these heated channels in a synchronised fashion. Finally, a discussion about
single photon detectors, how absorption of a photon can drive a stripe into the normal
state, latching onto it, which can be resolved by coupling to a shunt resistor. Single photon
detectors are sensitive to formation and location of the hotspot, and a discussion of how this
is linked to detection efficiency and delay timing will be presented.

In this chapter we use the same gTDGL approach as in chapter 4. To model the thermal
coupling of our sample to the substrate and the change of the local temperature we use the
heat diffusion equation (eqn. 2.46)

c̃
∂T̃

∂t̃
= k̃∇̃2T̃ − h̃

(
T̃ − T̃0

)
+ (∇̃Ṽ )2. (5.1)

where T̃0 is the dimensionless bath temperature. The variables c̃, k̃ and h̃ are the dimen-
sionless heat capacity, conductivity and transfer coefficient respectively, and we follow an
approach similar to other studies [132, 152].

5.1 Heating induced effects

5.1.1 Variation of heat capacity, conductance and dissipation

In chapter 4, dynamic behaviour of vortices in current-carrying superconducting nanostripes
were considered. The results presented assumed that heat would be removed from the
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system instantly, by considering a large heat transfer coefficient (h → ∞). Heating in
the superconductor occurs mostly from Joule heating, but external heating can occur from
the absorption of photons and other particles like high energy electrons [198]. Therefore it’s
important to take a moment to analyse the J-V characteristic curve, comparing different value
of material thermal parameters. Figure 5.1 shows just that for stripe of width w = 19ξ(0)
with H = 0.025Hc2(0). In the top panel the material heat transfer K is compared, evidencing
a transition to the normal state at lower J when K is reduced. Each curve transitions to the
dissipative state at the same Jc1, but as the vortices start crossing the stripe and heating
it, the heat must be removed sufficiently fast otherwise heating drives the superconductor
into the normal state. Considering this effect for different values of heat conductance, h,
bottom panels in figure 5.1 shows how a smaller heating conductance leads to transitions
to the normal state at lower J . The lower conductance means there is less flow of heat
perpendicular to the isotherms, if the heat can not be transmitted away from the hot regions
at a quick enough rate the superconductor is driven into the normal state. So, small values
of K and h inhibits the superconductors ability to dissipate away heat, requiring smaller J
to drive the superconductor to the normal state.

Variation of the heat capacity between 0.1-1.0C0 showed similar behaviour but less pro-
nounced, for example at C = 0.1C0 the last critical current was Jc2 = 0.56JDP (Tbath), whilst
C = 1.0C0 the critical current Jc2 = 0.58JDP (Tbath). Considering typical values for thin NbN
[46], C = 0.1C0, K = 0.06K0, and h = 2×10−4h0, we can expect a curve similar to that seen
in figure 5.1, bottom panel for with the solid black line. Inspection of the modulations in V (t)
and their respective spectra of frequencies revealed the behaviour relating to synchronised
vortex crossing is only affected by the range of J where synchronised crossings occurs (for
given w and H). When heating effects are considered synchronised vortex crossings will still
favour higher vortex density [44], but will continue up to smaller applied J before heating
processes drive it to the normal state.

5.1.2 Hot vortex crossings

During energy dissipation from the crossing of normal vortex cores heat is produced and must
be transferred to the thermal bath to avoid transition to the normal state, where removal
of heat in the system happens over a time scale Cd

h
. As a result, when heat fluctuations

occur over shorter time scales than heat is removed, the superconductor will realise phase-
slips that drive the entire superconductor into the normal state. So, to avoid this heating
driven transition, it is favourable that C is large and/or h is small. Figure 5.2 shows the
J-V characteristics, and spatial distributions of |∆|2 and T of a SN with w = 19ξ(0), at
Tbath = 0.9TC , with H = 0.025Hc2(0), and material heating parameters C = 0.3C0, K =
0.06K0, and h = 0.0002h0. The recorded critical current, J ' 0.36JDP (Tbath) is to be
expected, corresponding with similar results (see figure 4.1), and snapshots for the spatial
distributions of |∆|2 and T , at different values of J highlighted by green circles can be seen
below the J-V curve. At J = 0.36JDP (Tbath), T (x, y), vortices enter a dissipative state shown
in panel a (figure 5.2), vortices cross the stripe in a quasi-synchronous manner as expected
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Figure 5.1: Normalised voltage drop as a function of normalised applied current density
in units of ϕGL(Tbath) and JDP (Tbath) respectively, for a stripe of width w = 19ξ(0), at
applied magnetic field of H = 0.025Hc2(0). Top:- comparison of heat conductivity. Bottom:-
comparison of heat transfer, with first derivative of V(J).

[44], and evidence of small heating effects can be seen.
This dissipation occurs from the normal vortex core, where the electric field is strongest.

The electric field in the vortex core is mostly due to the gradient of electrostatic potential
which is associated with the rapid changes of order parameter on opposite sides of the
core. A dynamic vortex crossing a narrow stripe produces heat and also carries heat along
with it. As the applied current density increases, the gradient of the electrostatic potential
increases causing further heating (seen in panels b-e). With the increase of J , the evolution
of hot bands can be noticed in the figure, emphasised by the contour lines. At J just below
the critical current, for the transition to the normal state, strong heating effects can be
seen (panel f). Evidence of heating from a previous vortex crossing can be observed when
comparing |∆|2 and T in panel e (also at lower J). A hot band is present in center of
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Figure 5.2: Top:- Normalised voltage drop as a function of normalised applied current density
in units of ϕGL(Tbath) and JDP (Tbath) respectively at temperature Tbath = 0.9Tc, for a stripe
with width w = 19ξ(0), with an applied magnetic field of H = 0.025Hc2(0). The stripe has
heating parameters of: heat capacity C = 0.3C0, heat conductivity K = 0.06K0, and heat
transfer coefficient h = 2 × 10−4h0. The plot shows open-circles that indicate the states
analysed further at current densities in units of JDP (Tbath): (a) 0.35, (b) 0.39, (c) 0.45, (d)
0.48, (e) 0.55, (f) 0.56. The inset shows the modulations in V (t) for the superconducting
state (d) with period τ = 415τGL. Bottom:- snapshots of the spatial distribution of the
superconducting order parameter and the respective temperature for the states a-f.

the SN which is the cause of the transition to the normal state when J ≥ 0.56JDP (Tbath).
Considering diffusion of heat can be described by the ratio k/C, when this ratio is low hot
bands produced by vortex crossing would form at lower J due to the inability to dissipate heat
efficiently. The thermal healing length (Λh =

√
kd/h) should be greater than the distance

separating vortices, laterally and transversely, in order to avoid heating effects driving the
superconductor to the normal state.

It’s worth mentioning that when we consider heating effects with material parameters
representative of thin niobium stripes the vortices transition from quasi-synchronous to syn-
chronous crossings as the current is increased as evidenced by the inset within the top panel
of figure 5.2. This is due to the fact that H = 0.025Hc2(0) realises adequate vortex density
according to figure 3.7, when relevant quantities are scaled by their temperature dependent
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units, where w = 6ξ(Tbath) and H = 0.25Hc2(Tbath). The system is highly sensitive to ther-
mal fluctuations, and a change in temperature locally changes the local values of ξ, JDP ,
and Hc2, which leads to novel behaviour as will be discussed next.

5.2 Superconducting hot-belt vortex crossings

In this section a discussion of the induction of hot regions on a narrow superconducting
stripe will be presented. More specifically, the behaviour observed from inducing bands of
hot superconducting regions (Tbath < T < Tc) will be shown, with comments on possible real-
isation of such a system and its applications. TDGL simulations are performed for induced
hot bands/belts, creating channels where it’s energetically favourable to cross, providing
heated regions remain narrow as possible. Such process leads to coherent vortex crossings
(weak response albeit).

5.2.1 Hot superconducting bands

The effects of vortices crossing the stripe in a dissipative state has shown the generation of
”hot bands” in the spatial distribution of the temperature [199], as shown in the previous
section. Conversely, if it’s possible to artificially heat the stripe creating similar hot bands,
then in the heated domain due to their respective thermal dependencies, ξ(T ) increases,
JDP (T ) decreases, and Hc2(T ) decreases. This would cause the superconducting state to
behave differently between the cooler and heated regions for a given set of physical conditions,
i.e T0, Japp, and Happ. A possible candidate to produce such superconducting hot bands could
be low energy electrons beams/guns [200, 201].

To simulate and analyse the superconducting behaviour in such a system, a stripe of
width w = 19ξ(0) was subject to an applied magnetic field of H = 0.01Hc2(0), a normalised
applied current density of J = 0.0096JDP (0), and a bath temperature of T0 = 0.9Tc. With
these conditions in place the stripe is in a fully superconducting state, without the presence of
vortices. The ground state is found and used as the starting point to perform the simulation
with the introduction of hot bands. In figure 5.3 results are shown for such simulation,
where at a time τ = 1000τGL(0), an external thermal potential creating hot bands are
instantaneously generated with a temperature Tband = 0.99Tc and width Dband = 5ξ(0) for
a total time of τbands = 5000τGL(0). An effective temperature approach [202] was used to
consider the initial heating of the hot-bands to Tband, similar to other work [203]. It’s valid
when the thermalization time is shorter than the inelastic relaxation time due to electron-
phonon interactions τe−ph.

Panels a-d show snapshots of the spatial distribution of temperature, superconducting
order parameter and supercurrent density at different times of the evolution of the super-
conducting state when hot bands are induced. Panel-e shows the voltage drop across the
superconductor versus time, over the same period, where red circles highlight the supercon-
ducting states in panels a-d. The moment the thermal potential is applied (panel a), the
superconductor has had no time to disperse the heat through material. The superconducting
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Figure 5.3: Panels a-d: Snapshots for the spatial distributions of normalised temperature,
normalised Cooper pair density, and normalised supercurrent density, when hot bands of
temperature Tband = 0.99Tc with width Dband = 5ξ(0) are realised for a duration of tband =
5000τGL(0), on a stripe of width w = 19ξ(0), under an applied magnetic field of H =
0.01Hc2(0), with a normalised applied current density of J = 0.0096JDP (0), subject to a
bath temperature of T0 = 0.9Tc. Panel e: Normalised voltage as a function of normalised
time covering the period the hot bands are induced. Panels a-d are taken at times highlighted
with red circles in panel e.

order parameter and super current density is reduced in the domain of the hot bands, but
unaffected in other regions, and is accompanied with an immediate large jump in V (t). Then,
τ ' 200τGL(0) later, vortices nucleate at the stripes edge exclusively in the hot band domain,
and start to move across the stripe in synchronised rows along their respective hot band.
This increases V further, at τ ' 1250τGL(0) the vortices leave the stripe at the opposite edge.
At this time the superconductor is still heating, and has not reached a dynamic equilibrium.
Vortices continue to cross the stripe periodically in rows, whilst the stripe progresses to
a thermal equilibrium. After τ ' 4000τGL(0), the stripe reaches a thermal and dynamic
equilibrium, with vortices continuing to cross periodically in synchronised rows, evidenced
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by the oscillations in V (τ). An example of such a state is shown in panel-b, the unheated
domains have increased in T due to the dispersion of heat from the hot bands, which should
extend over lengths scales of the thermal healing length. The distribution of |∆|2 shows
how the hot bands have destroyed superconductivity by the small (non-zero) value in those
domains, whilst the outer domains clearly show a more superconducting state. Vortices are
present and can be seen in the distribution of |∆|2 when plotted in logarithmic scale, and
is evident in V (τ) by the presence of the oscillations. The coherence length is dependent
on temperature, so as the temperature differs between the hot bands and outer domains,
ξ will be different, being larger at higher temperature. At temperature Tband = 0.99Tc,
ξ(Tband) ' 1.8ξ(T0), so the normal vortex core is nearly two times larger than it would be
at bath temperature. In the hot band domain, both Hc2(Tband) and JDP (Tband) are lower
compared to their respective values at T0. With the described configuration of physical pa-
rameters (T0, Japp, and Happ), this led to the condition that in the hot band domain, Happ >
Hc1(Tband) and Japp > Jc1(Tband), allowing for the nucleation and crossing of vortices. Even
though the Happ ' Hc2(Tband) and Japp ' 10.0JDP (Tband), the outer domains with a stronger
superconducting state confines the weaker domain by shielding the magnetic flux quanta,
forming a vortex. After a duration of τband the thermal potential is instantaneously switched
off, figure 5.3 panel-c shows the distributions at a time 100τGL(0) later, the superconductor
has started to cool and the superconducting state in those domains begins to restore. After
the snap shot (panel-c) is taken the stripe exhibits an additional 3 more periods of vortex
crossings, which can be seen in the two small and one large peak in V (τ), occurring because
the slightly raised temperature in those regions still lead a reduction of the edge barrier,
sufficient enough for vortex entry and crossing. Panel-d shows the distributions a short time
after the final vortex left the stripe, the temperature has now lowered close to T0 and the
superconductor is recovering to a fully superconducting state.

The behaviour of vortex crossings in hot bands of different widths is important to under-
stand as significant differences occur both qualitatively and quantitatively when the width of
the hot band domain is varied. Figure 5.4 shows the temporal variation for |∆|2 and J , and
V (τ) whilst hot bands are being induced for different widths of the hot bands Dband = 2.5, 5
and 15ξ(0). In each case the expected behaviour is observed, i.e. when the external potential
is introduced vortices will start to cross the stripe repeatedly in synchronised rows. However,
quantitative differences occur when comparing the different values of Dband. For example,
the amplitude and period of oscillations in |∆(τ)| vary (figure 5.4, panel a). When the width
of the induced hot band is small the amplitude is large and period longer compared to the
wider hot bands. For example, the period of oscillation for Dband = 2.5ξ(0) is τp = 123τGL(0),
and 100τGL(0) when Dband = 5ξ(0). The presence of a larger amplitude of the order param-
eter infers a higher free density, and as a result leads to a stronger superconducting current
density in response to shielding any external magnetic field. The current density varies as
the vortices cross the stripe (panel b), effecting the voltage drop across the stripe, V (t)
(panel c). where the inset highlights the periods and amplitudes of oscillations. When the
width of the hot bands is to large the oscillations are small with a higher frequency. The
cooler outer regions help to confine magnetic flux quanta as it crosses the stripe in the form
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Figure 5.4: Plots are for a stripe of width w = 19ξ(0), under an applied magnetic field of
H = 0.01Hc2(0), with a normalised applied current density of J = 0.0096JDP (0), subject to a
bath temperature of T0 = 0.9Tc. The hot bands induced last for a duration of τ = 5000τGL(0),
and are at temperature Tband = 0.99Tc. The data is recorded at the position located at the
center of an induced hot band (black dot in snapshot), for hot bands of width Dband = 2.5, 5
and 15ξ(0). Panel a: Normalised Cooper pair density versus normalised time. Panel b:
Normalised supercurrent density versus normalised time. Inset shows the spatial distribution
of the superconducting order parameter (2.5 and 5ξ(0)), taken at a time τ ' 4300τGL(0)
indicated by the black arrow. Panel c: Normalised voltage drop versus normalised time. Inset
is a zoom to show the oscillations in the voltage, with period and amplitude of oscillations
indicated.

of vortices. So as the bands are made wider the confining effect is reduced and oscillations
become smaller as a result. For an EM emitter, the oscillations observed when the hot band
has a small width may be more favourable. If it’s possible that an external heating source
can be implemented, which produces hot bands similar to those described, with a small H
and J , oscillations should be observed, which may be favourable for the generation of EM
waves in the MHz-GHz regime.
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5.3 Photon detection via a current-carrying supercon-

ducting nanostripe

5.3.1 Current-carrying SNSPD

Superconducting nanostripes can be used as the main element of a superconducting nanowire
single photon detector (SNSPD), which are commonly fabricated using NbN and TaN [204,
205, 206, 207, 208]. Typical SNSPDs can detect X-ray [208], UV [209], optical [210] and
infrared photons [211], and have an efficiency of detection related to the photon’s wavelength
and the width of the nanostripe. The SNSPD is a specific type of bolometer, and the current-
carrying superconducting thin film can be used for a superconducting nano-bolometer [6],
including single electron detectors [198] with a mechanism analogous to the photon detector.
Various experimental [3, 209, 212, 213, 214, 215, 216] and theoretical [130, 217, 218, 219]
work attempted to explain the mechanism behind the detection of an absorbed photon.
It was strongly argued that it is a vortex assisted mechanism [220, 203, 5], which creates
normal hot-bands [220] and phase slips [221], causing the SNSPD to transition to the normal
state, producing a detectable voltage signal. To study the response of a SNSPD the gTDGL
framework in this thesis can be used, and is the same approach as other similar studies
[132]. An effective temperature approach [202] is taken, assuming that a single absorbed
photon creates a hotspot of radius R. The local temperature increase (∆T ), as a result of
absorption, is instantaneously applied (ignoring heating) and follows the relation

2π~c/λ = ∆TπR2
initialCvd, (5.2)

where λ is the wavelength of photon, Rinitial is the initial radius of the hotspot (expands
and dissipates over time), Cv is the heat capacity of quasiparticles (for simplicity is taken
as heat capacity of metal in the normal state, when T < Tc), and d is the thickness of the
superconducting material. The effects of such a hotspot in a current-carrying nanostripe were
studied using the described theory [203], although in this work the heat diffusion equation
is solved (more generalised version of the heat equation).

Niobium nitride is a typical material used to create SNSPDs with characteristic super-
conducting quantities: Tc = 16K, ξ(0) = 4.2nm, λ(0) = 390nm [212, 132], and Γ = 3 which
is similar to [132]. The material thermal parameters are:- Cv = 0.05C0 ('0.2mJ/cm3K),
K = 0.05K0 ('1.2mW/cm3K), h = 0.002h0 ('50W/cm2K) [132, 152], with normal elec-
trical conductivity σn = 16×106S/m [222]. The example nanostripe has a width of w =
160nm, in a thermal bath of T = 0.9Tc, then ξ(0) = 4.2nm (w ' 12ξ(T )). The length of
the meandering stripe considered is L = 100µm, and a thickness d = 5nm assuming that d
� ξ, λ. The length given is used to consider the kinetic inductance (discussed next), but to
simulate the smaller region of concern, a similar approach to [203] is used, where the outer
regions of ”no concern” are simulated with a much higher Tc, using a ”numerical trick”
keeping the temperature unchanged (T = 0.9Tc) in that region.

Figure 5.5 shows the temporal variation of the superconducting order parameter (panel a)
and the local temperature (panel b), located at the center of a hotspot created by a photon,
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Figure 5.5: Time dependence of the magnitude of the order parameter (a) and temperature
(b) in the center of the induced hotspot, for two values of the applied current density,
J = 0.58JDP (Tbath) and J = 0.74JDP (Tbath), for two widths w = 38, 57ξ(0), with bath
temperature a thermal bath of temperature Tbath = 0.9Tc, in zero magnetic field. The
absorption of a photon induces a local instantaneous increase in temperature to Tspot = 2.2
Tc (∆T = 1.3 Tc).

for different applied biased currents of 0.58 and 0.74JDP (Tbath), and different widths of
w = 38 and 57ξ(0). A photon absorbed by the current-carrying superconducting stripe forms
a hotspot of radius R = 9.5ξ(0) and increases the temperature to T = 2.2Tc (∆T = 1.3Tc),
equivalent to a wavelength of 30µm (long wave IR). At the hotspot location superconductivity
is destroyed, so the supercurrent flows around this region, and the current density increases
which leads to current crowding [131]. If the biased current is too high then the current
density around hotspot can exceed JDP , causing the creation of a vortex-antivortex pair
which travel to opposite side of the nanostripe. Evidence of this effect can be observed in
figure 5.5-a at J = 0.74JDP (Tbath) for w = 57ξ(0), where at τ ' 400τGL(0) there is a large
maximum in |∆|2 that corresponds to the separation of the vortex-antivortex (V-aV) pair.
This repeats two more times, whilst the order parameter decreases in magnitude, creating
a hot normal belt which starts the heating of this domain. Evidence of this can be seen in
figure 5.5-b at around τ ' 520τGL(0), as is reported in [203]. The same occurs for a narrower
stripe, but the creation of the first vortex-antivortex pair destroys superconductivity and
start heating at earlier times. This normal domain needs a mechanism to help it cool, as
it would ”latch” onto the normal state otherwise [219], and continue to heat via traditional
Joule heating. A comprehensive study on this system showed similar behaviour for a range of
nanostripe widths ([203], figures 3,4,5). If the biased current density is below some threshold
Jmindet the current crowing effect will not cause the creation of a V-aV pair which assists the
formation of a normal belt leading to a detectable voltage signal. Figure 5.5 shows how with
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Figure 5.6: The electrical scheme representing the superconducting detector. The super-
conductor is modelled by kinetic inductance Lk and resistance Rs which appeared due to
absorbing the photon. The shunt has resistance Rshunt.

J = 0.58JDP (Tbath) the superconducting state begins to recover almost immediately after the
creation of the hotspot. The minimum current density required to form a hot normal band
(assisted with v-aV creation), Jmindet , decreases with increasing photon energy, and increases
with increasing width of SNSPD [203].

5.3.2 Inclusion of shunt resistor

To simulate a real experiment avoiding the issue of the superconductor latching onto the
normal state, the electrical scheme shown in figure 5.6 is used, modelled by the equation
[223]

LK
dJs
dt

= (J − Js)Rshunt − Vs, (5.3)

where Js is the current density applied across the superconductor, J is the total current
density, Rshunt is the shunt resistor with a typical value of 50Ω, and Vs is the voltage drop
across the superconductor; following the numerical approach used by [203, 5]. The gTDGL
framework relies on dimensionless units for a solution, so inductance can be given in units
of

LKGL =
Φ0e

∗π

8kBu

1

σnξ(0)Tc
, (5.4)

which is ' 3pH for NbN. The resistance is given in units of

RGL =
1

σnξ(0)
, (5.5)

which is ' 14.9Ω for NbN. The kinetic inductance of the stripe is given by [223]

LK = µ0λ
2
LL(wd)−1, (5.6)
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where the length L considers the entire length of the meandering wire. Equation 5.2 is
coupled to the gTDGL equations via Js, and is solved using the Euler method [224]. Figure
5.7 shows the temporal variation of the voltage drop (panels a,d), and the current density
(panels b,e) for both the SNSPD and shunt resistor. It also shows the superconducting
order parameter with local temperature at the center of the hotspot (panels c,f), for two
different hotspot temperatures of 2.2K (left) and 4.5K (right) with two values of bias current
(0.58 and 0.74JDP (Tbath)) and width (w = 38, 57ξ(0)). The first difference noticed from
introducing a shunt resistor is the recovery of the superconducting state with applied bias
current J = 0.74JDP (Tbath) for the hotspot with T = 2.2Tc (panel a-c, blue lines). The
hotspot causes a resistive state in the SNSPD (panel a, blue solid line), and as a result part
of the current is redirected to the shunt resistor (panel b, blue dashed line) which reduces the
affect of Joule heating, allowing for the superconductor to cool (panel-c, blue dotted line)
and return to a superconducting state (panel-c, solid blue line). As the superconducting
stripe cools 6 pairs of a vortex-antivortex are created, evidenced by the oscillations in V (τ)
and |∆|2(t) (figure 5.7 insets of panel a and c respectively), which is similar to voltage
pulse observed in [203] (figures 7 and 8). Figure 5.7 e-f shows similar results but for a
photon of wavelength ' 5µm, producing a hotspot of temperature with ∆T = 3.6Tc. The
higher energetic photon results with a larger voltage pulse, and the formation of vortex-
antivortex pairs at the lower biased current J = 0.58JDP (Tbath). In the wider stripe for
w = 57ξ(0), the voltage drop across the stripe reaches its maximum (with lower amplitude)
after a longer time, due to vortex-antivortex pair producing a normal hot-band that covers
a larger area than the narrower case, requiring a longer time to transition to a normal state.
The simulations are over simplified, they do not consider the loss of photon energy in the first
stage of heating, neglect temperature dependence of heat capacity, simplifies energy transfer
to photons (here neglected), and did not consider direct excitation from the incoming photon
[203]. Although the approach adopted such simplifications the theory qualitatively captures
the main physics of the processes occurring during the detection on a single photon.

5.3.3 Delay time and timing jitter

SNSPDs exhibit finite delay time τd in the appearance of a voltage pulse after absorption
of a photon. There is a variation associated with τd called ”timing jitter”, which originates
from experimental factors like the electronics and the read-out system. The timing jitter is
also influenced by the dynamics of |∆|2 and the position of where the photon is absorbed,
generating a hotspot [225, 226, 5, 227]. Figure 5.8 shows the position (a) and current (a)
dependence of τd when a photon. The figures show a number of interesting points, firstly,
how τd decreases with increasing the applied current. Secondly, the jitter brought about by
position of the hotspot is reduced as the current is increased, this is seen by the flattening of
the profiles at higher I. Lastly, the greater the energy transferred by the photon causes both
lower τd and jitter with respect to lower energies [225]. The same authors show theoretically
it’s possible that a given energy deposited at the centre of the stripe will not cause formation
of vortices and appearance of the normal domain, but will do so if the energy is deposited
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Figure 5.7: Stripe of width w = 38, 57ξ(0), with hot-spot causing a local instantaneous
increase in temperature to Tspot = 2.2Tc (panels a-c), and Tspot = 4.5Tc (panels d-f), with
profiles for applied current densities of J = 0.58 and 0.74JDP (0). Panel a,d - normalised
voltage across the stripe as a function of normalised time. Solid line corresponds to the
voltage drop across the superconductor, Vs, and the dotted lined corresponds to the potential
difference across the shunt resistor, (I− Is)Rshunt. Inset shows zoom of the same profile over
the first ∼ 1000τGL(0). Panel b,e - normalised current density as a function of normalised
time for the current density in the superconductor (solid) and the shunt (dotted). Panel c,f -
time dependence of the magnitude of the order parameter (solid) and temperature (dotted)
in the center of the hotspot, where the inset shows a zoom of the same profiles over the first
∼ 800τGL(0).
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Figure 5.8: Dependencies of the delay time for a stripe of width w = 20ξ, at bath temperature
T = 0.5Tc. Panel a- Position-dependent τd at different currents and deposited energies
(E = 1eV −→ Tspot = 2Tc and E = 2eV −→ Tspot = 2.4Tc). Panel b - Dependence of τd on
current for three positions of the initial hotspot y = 2, 5, 10ξ and two deposited energies 1
and 2eV. Taken from ref [225] figure 3.

away from the centre. The authors [225] claim their numerical results can be compared
semi-quantitatively with experiments on dependence of timing jitter on the current and
energy of the photon [228, 229]. The discrepancies originate from the treatment of the
thermalization of electrons in the system. The model assumed complete thermalization, but
it is only partially fulfilled due to relatively large inelastic electron-electron relaxation time
for electrons with energy close to the energy gap and above the Fermi level, resulting with
the electron distribution function deviating from Fermi-Dirac distribution. Ref [230] used
two models in their study, quasi-equilibrium and non-thermal model, τd was shown to differ
slightly, but was qualitatively similar.

5.3.4 Consequences of meandering geometry

The typical geometry of SNSPDs consisting of meandering nanostripes, with bends at 90
degrees (1.6) has consequences on it’s dynamic behaviour after the absorption of a photon.
Theoretical studies [132] have shown when a current is applied, the supercurrent density
distribution is inhomogeneous, decaying rapidly from the inner corner to the outer [131]. The
superconductor will remain in a zero-resistive state until a threshold voltage is reached, at
which point vortices nucleate at the inside corner of the 90 degree bend and proceed to cross
the stripe periodically [132]. The vortex nucleation rate at the inner corner increases with
increasing of the applied current, until there is an increase in resistance at another threshold
current, where a channel of kinematic vortices appears. Similarly to studies on narrow stripes,
the value of the first threshold current significantly decreases with increasing width, whilst
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the second threshold current value decreases but only slightly [132]. When a photon strikes
the central part of the stripe at low current densities the superconducting state remains
stable against the photon action (similarly shown in figure 5.7 panel a, J = 0.58JDP (Tbath)).
At higher applied current densities an unbinding of a vortex-antivortex pair occurs (seen
in figure 5.7 panel a, J = 0.74JDP (Tbath)), an increases in rate with increasing current,
until fast moving vortices create a normal belt that is detectable (electronically) [132]. The
study [132] theoretically confirmed vortex-assisted photon counting mechanism [199, 203] at
current densities just below Jc, where individual photons are detected thanks to the periodic
motion of the vortex-antivortex pair [197]. The same study [132] theoretically demonstrates
that a photon strikes the corner of the 90 degree bend, and a vortex is created at much
lower applied currents than the critical one. The intensity/duration of the voltage signal
as a result of the vortex motion if much smaller/longer than when comparing the signal for
the unbinding of a vortex-antivortex. Instabilities occur after photon absorption due to the
nucleation and dissociation of multiple-quantised vortices, where current density is greatest.
No transition to a phase-slip state is observed, whilst the resistive state is characterised by
a weakly dissipative vortex crossing [199]. In summary a photon strike at the corner of
SNSPD at a 90 degree bend is less likely to be detected electronically than a strike in the
main body[132].

5.3.5 Intrinsic detection efficiency

One of the main characteristics of a SNSPD is the intrinsic detection efficiency (IDE) which
is the probability to detect a photon when it is absorbed by the main element of the SNSPD
(superconducting current-carrying meandering nanostripe [216]). The IDE must be distin-
guished from the system detection efficiency which is the overall probability for the entire
detector. A review [204] of proposed mechanisms for photon detection in SNSPDs suggested
that the experimental cut-off in the detection efficiency is determined by the lack of the
current-carrying ability of the superconducting condensate. Additionally, stating that the
IDE depends on the applied currents proximity to the depairing current. Using a TDGL
approach to consider a hotspot induced by a photon, (which takes into account the current
crowding effect [131] and suppression of the superconductivity by the current [203]), the
dependence of the IDE on applied current and field was studied [5]. They showed how the
minimal current, at which the resistive state appears in a superconducting stripe, depended
on the position along the width where the photon created a hotspot. For example, this
current was minimal at the edges, with a minimum at a distance δw = R (δw is the distance
from the edge of stripe and R is the radius of hotspot), and decreased with radius of the
hotspot (for fixed width of stripe, see figure 4 in [5]). If the applied current was below the
detecting current for every position along the width of the stripe (Idet(y)), then IDE = 0.
If the applied current exceed Idet(y) along the width then IDE = 1, and IDE < 1 in some
intermediate regime. This was in the absence of fluctuations, which in reality may cause the
entry of a vortex that assist in the detection of the photon even when I < Idetmin [5]. The
effect of introducing a magnetic field was also studied, the Meissner effect causes the total
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supercurrent to be more on one side and less on the other. As a result, Idet is lower on the
side where total super current is greatest, and vice versa. In order for a vortex to enter,
the fluctuation must overcome the existing edge barrier barrier ∆F . The barrier ∆F can be
numerically calculated using a method [156], and the IDE calculated using the Arrhenius law
IDE = βe−∆F/kBT (T is the temperature associated to the fluctuation) [5]. A smooth change
of IDE(I) was observed between IDE = 0.05 - 1.0 associated with current induced vortex
crossings (current crowding effect destroying order parameter), and a fast decay at IDE <
0.05 associated to fluctuation assisted vortex entry, which is more of a probabilistic event
associated with the Arrhenius law. The IDE, and thus the efficiency for a superconductor
to detect the photon strongly depends on the applied current, and the wavelength of the
photon [5], whilst relying on a vortex assisted mechanism [203, 220] for weak excitations.
The qualitative behaviour of the IDE is assumed to be similar for narrow SNs, but reduce
in standard deviation across the width of wider stripes.
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Conclusion

The confinement of superconducting nanostripes to two dimensions results in a rich tapestry
of complex phenomena. The primary objective of this thesis was to explore the ramifica-
tions of strong vortex confinement in narrow and thin superconducting nanostripes on their
static and dynamic behavior. This was accomplished by utilizing a generalized version of
the time-dependent Ginzburg-Landau formalism and numerically solving the equations self-
consistently on a finite grid. Our research uncovered a diverse range of phenomena linked
to confinement forces acting on superconducting vortices in both static and dynamic equi-
librium, as supported by strong empirical evidence.

The objects of interest in our study were narrow nanostripes characterized by lateral
dimensions comparable to the superconducting coherence length, resulting in a low or quasi-
two dimensional regime that differed from the bulk case due to edge-induced interactions.
The penetration of magnetic flux in the form of superconducting vortices in these nanostripes
required external magnetic fields of higher strength than the bulk first critical field, Hc1. As
the flux density increased, the superconducting vortices organized themselves into a lattice
reminiscent of the Abrikosov configuration, albeit with significant deviations due to the
pronounced confining edge forces that we demonstrated.

Our research has clearly demonstrated that at sufficiently high magnetic fields, super-
conducting vortices within the nanostripes arrange themselves into vortex rows, with their
number increasing as the magnetic field strength is raised and the vortex density increases.
However, it is essential to note that this phenomenon occurs only if the width of the nanos-
tripe is sufficiently large to accommodate a new row of vortices. This was explicitly revealed
in our vortex row phase diagram, which showed the transition to new vortex rows as a
function of the nanostripe width and magnetic field strength. Our investigation also dis-
closed significant discrepancies from theoretical predictions that disregarded the effects of
the edges. Specifically, the strong edge Meissner fields constrained and reduced the vortex
density, thereby causing deviations from the expected transitions.

The confinement at the edges of the nanostripes intensified with an increase in the applied
magnetic field, leading to evidence of non-monotonic behavior. Specifically, we observed the
reconfiguration of two vortex rows back to a single row due to the interplay between the
interaction of the vortices and the confinement forces at the edge, which changed as the
magnetic field strength (H) was increased. This phenomenon resulted from a dimensional
crossover regime between approximately 20 − 80 coherence lengths (ξ). Additionally, the
critical current exhibited a dependence on the applied magnetic field, exhibiting local minima
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and maxima. Pinning forces originating from commensurate effects between the width of
the nanostripe and the number of vortex rows were responsible for this behavior.

We discovered that a sufficiently high vortex density (' 80ξ) enables vortices to cross a
superconducting nanostripe in a synchronized manner. This phenomenon arises due to the
interplay of vortex-vortex interactions, pinning forces from the edge Meissner field, and the
Lorentz force. These synchronized vortex crossings produce oscillations in the electromag-
netic field of the superconducting nanostripe, resulting in the emission of a photon whose
energy is proportional to the oscillation frequency. This property is highly advantageous for
nanoscale gigahertz-terahertz electromagnetic emitters. To simulate the effects of dirty su-
perconductors, we introduced viscosity through the variable Γ0, effectively opening an energy
gap. Such effects give rise to a range of vortex dynamics, including the formation of multiple
quasi-phase slip lines and quasi-synchronous vortex crossings, which are also beneficial for
nanoscale electromagnetic emitters.

The dissipative state in a superconductor is characterized by Joule heating, which is a
problematic behavior that can drive the material into the normal state when heat cannot be
removed from the system at a sufficient rate. We demonstrated that this results in a reduction
of the range of applied current at which the material remains in the superconducting state,
ultimately lowering the upper critical current. Moreover, concerning the synchronization of
vortex crossings, we found that for typical values of heating parameters (heat capacity C,
transfer coefficient h , conductivity k), the criteria remain the same. However, as the applied
current increases beyond a certain threshold, the material is driven into the normal state
due to Joule heating.

The temperature dependence of physical quantities, such as the coherence length and
Ginzburg-Landau current density, results in local variations of these properties within the
material. Therefore, changes in temperature affect the behavior of the superconducting
condensate locally. In our investigation, we examined the behavior of a system in which
hot bands are induced laterally across a nanostripe by an external process, such as the
diffraction of electromagnetic radiation. These hot bands are separated by the ambient state
of the superconductor. We demonstrated that at sufficiently high values of applied current
density and external magnetic field, the hot bands exhibit synchronised vortex crossings,
which are confined by the superconducting state operating at lower localized temperatures.
We propose that inducing narrow hot bands via illumination of a superconducting nanostripe
is an alternative method for inducing highly synchronised vortex crossings. Our results show
that the intensity modulation of the emitted radiation is amplified for narrower hot bands,
highlighting the significance of confinement in the case of synchronised vortex crossings.
However, we found that when the width of the hot bands exceeds approximately 5 times
the coherence length at the given temperature, the amplitude of modulation decreases to
negligible levels, rendering the device unsuitable for electromagnetic emitter purposes.

The superconducting nanostripe serves multi purposes, such as an emitter of photons
and as a key component of superconducting single photon detectors. Upon absorption of a
photon, a region of the nanostripe experiences a local temperature increase above the critical
temperature. This causes the formation of a vortex-antivortex pair, which subsequently
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crosses the nanostripe and dissipates energy as heat, inducing a normal resistive hot-band
region. This hot-band region results in the production of a detectable voltage pulse. Our
investigations revealed that the characteristics of the voltage pulse depend on the magnitude
of the applied current and the width of the nanostripe, with narrower geometries yielding
larger amplitudes of the voltage pulse.

The operation of detectors is not only influenced by the nanostripe, but also by geomet-
rical aspects such as meandering design, which leads to current crowding at corners. Such
regions become favourable sites for vortex nucleation and crossing, which occurs at lower
sourced currents. The delay time between photon absorption and the voltage pulse is de-
pendent on the sourced current, with higher values favouring lower delay times. Moreover,
the position of photon absorption introduces timing jitter to the process.

Throughout this thesis, we have conducted a comprehensive investigation into the phe-
nomena associated with superconductivity at the nanoscale in narrow and thin supercon-
ducting nanostripe geometries. Our findings may provide valuable insights into analogous
systems with similar physics. One such example is the behavior of vortices in a confined
Bose-Einstein condensate in a ”narrow channel” trap, where the confinement frequencies in
the x and y directions differ [231]. It was observed that transitions to different numbers of
vortex rows occur with an increasing dimensionless parameter β, which represents a coeffi-
cient for a fourth-order term in the free energy functional of the system. Our research adds
to the understanding of these types of systems and their underlying physics.

Our findings and insights have the potential to advance the development of novel applica-
tions, such as nanoscale electromagnetic emitters that generate narrowband frequencies when
vortices synchronously cross the nanostripe. The behaviors and dynamics we have observed
are strongly influenced by system variables, such as the stripe width, applied magnetic field
and current, among others. We expect that any nanoscale superconducting application uti-
lizing the nanostripe geometry with parameters within the range of our studies will exhibit
similar characteristics. One such application is the superconducting single photon detector,
where the nanostripe serves as a crucial component.

In light of our findings on synchronised vortex rows, further exploration of resistive state
transitions with varying viscosity through Γ, J , and H could be pursued to uncover regimes
with highly regular and stable synchronised row crossings at higher frequencies. To fully
account for heating in such a resistive system, it may be necessary to include the heat
balance equation. Additionally, our investigation into hot bands induced below Tc but above
Tbath could benefit from a more comprehensive study encompassing a wider range of applied
fields and current densities. This intriguing concept, as evidenced by our initial results, may
provide an effective mechanism for inducing synchronous vortex crossings and achieving
single frequency modulations, which definitely warrants further investigations.
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Appendix

Numerical approach and discretisation of equations

In order to perform simulations of superconducting behaviour, the extended gTDGL equa-
tions 2.43-2.46 must be solved on a finite grid, where the superconductor is discretised and
the equations solved at each point. The finite-differences method [232] is a natural choice to
solve such sets of differential equations. In order to properly capture the physics and dynam-
ics of the system, it is important that the maximum size of the unit cell is less than 0.3ξ(0)
along all axis. The superconducting systems studied in this work are thin superconductors
that meet the high-κ criteria, so the vector potential and current density are considered
to be uniformly distributed over the surface. This results with the equations having no z-
components, and so the problem is reduced from 3D to 2D, leaving the boundary condition
(equation 2.13) fulfilled at the surfaces along the z-axis.

The set of equations 2.43-2.46 are solved self-consistently through an iterative procedure.
For a fast and stable convergence for the solution of the vector potential, the complex link
variable vector is used

U(r0, r) =
∑
µ=x,y

eµe
−i

∫ µ
µ0
Qµdµ, (7)

where eµ=x,y are the unit vectors in the x and y direction, and r0 =
∑

µ=x,y eµµ0 is a given
reference point. The link variables are primarily introduced to restore gauge invariance, that
gets lost when the partial differential equations are discretised using the finite differences
method [233, 234, 235, 236]. When considering the componenets of the link varialbe vector,
these rules must be followed

∂Uµ
∂µ

= −iQµUµ, (8)

∂2Uµ
∂µ2

= −i∂Qµ

∂µ
Uµ −Q2

µUµ. (9)

The term Js = |χ|2(∇̃θ −Q) can be written as F
{
χ∗(∇̃ − iQ)

}
, which allows for the first

and second derivatives in equations 2.43-2.46 to be expressed as(
∇̃ − iQ

)
χ =

∑
µ=x,y

eµ
1

Uµ

∂

∂µ
(Uµχ), (10)
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(
∇̃ − iQ

)2

χ =
∑
µ=x,y

eµ
1

Uµ

∂2

∂µ2
(Uµχ). (11)

In equation 2.43 the term Γ̃2

2
∂|χ|2
∂t̃

is not suitable for numerical treatment, instead it can be
written in a more convenient term

Γ̃2

2

∂|χ|2

∂t̃
χ =

Γ̃2

1 + Γ̃2|χ|2
Re {χ∗Φ}χ, (12)

where

Φ =

√
1 + Γ̃2|χ|2

u
[(∇̃ − iQ)2χ+ (f − g|χ|2)χ].

The Euler method [224] is used to discretise the time derivatives, and the Gauss-Siedel
method [237] to solve linear equations iteratively on a rectangular system of size Lx × Ly,
by combing the two the following expression is obtained for equation 2.43

χt̃+∆t̃
m,n = ∆t̃

[
1

∆t̃
− iṼm,n −

Γ̃2

1 + Γ̃2|χt̃m,n|2
Re
{
χ∗t̃m,nΦt̃

m,n

}]
χt̃m,n + ∆t̃Φt̃

m,n (13)

where n = 1, 2, .., Nx and m = 1, 2, .., Ny are the indices in the x and y directions respectively

(The total number of grid points are Nµ = Lµ+∆µ

∆µ
), and that

Φt̃
m,n =

√
1 + Γ̃2|χt̃m,n|2

u

Ũ t̃
xm+1,n

χt̃m+1,n − 2χt̃m,n + Ũ t̃
xm−1,n

χt̃m−1,n

∆x2

+

√
1 + Γ̃2|χt̃m,n|2

u

Ũ t̃
xm,n+1

χt̃m,n+1 − 2χt̃m,n + Ũ t̃
xm,n−1

χt̃m,n−1

∆y2

+

√
1 + Γ̃2|χt̃m,n|2

u

(
fm,n − gm,n|χt̃m,n|2

)
χt̃m,n (14)

This equations contain different link variables that are modified for the forward and backward
components in the x and y direction. The forward x and y components read

Ũ t̃
xm+1,n

=
Ũ t̃
xm+1,n

Ũ t̃
xm,n

=
e
−i

∫ x=(m+1)∆x
x0

Qxdx

e
−i

∫ x=m∆x
x0

Qxdx
' e−iQxm+1,n∆x, (15)

Ũ t̃
ym,n+1

=
Ũ t̃
ym,n+1

Ũ t̃
ym,n

=
e
−i

∫ y=(n+1)∆y
y0

Qydy

e
−i

∫ y=n∆x
y0

Qydy
' e−iQym,n+1∆y, (16)

and the backward components are

Ũ t̃
xm−1,n

=
Ũ t̃
xm−1,n

Ũ t̃
xm,n

=
e
−i

∫ x=(m−1)∆x
x0

Qxdx

e
−i

∫ x=m∆x
x0

Qxdx
' eiQxm,n∆x, (17)
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Ũ t̃
ym,n−1

=
Ũ t̃
ym,n−1

Ũ t̃
ym,n

=
e
−i

∫ y=(n−1)∆y
y0

Qydy

e
−i

∫ y=n∆x
y0

Qydy
' eiQym,n∆y. (18)

At the superconducting-insulator boundary (nboundary = 1, Ny and mboundary = 1, Nx) the

following conditions must be met: U t̃
xm±1,n

χt̃xm±1,n
= χt̃m,n|m=mboundary , and U t̃

ym,n±1
χt̃xm,n±1

=

χt̃m,n|n=nboundary . At the superconducting-normal boundary there is no superconducting con-

densate, the order parameter is zero, and so the conditions are: χt̃m,n|n=nboundary = 0 and

χt̃m,n|m=mboundary = 0. When Ṽ = 0, in the zero-electrostatic potential gauge, equation 2.45
is ignored and 2.44 can be separated in these two scalar terms [238]

Ũ t̃+∆t̃
µm,n =

(
1

∆t̃
− i∆t̃F

{
F t̃µm,n

})
Ũ t̃
µm,n . (19)

The functions F t̃µm,n are expressed as

F t̃xm,n = κ2
Ũ ∗̃txm,n+1

Ũ ∗̃tym,nŨ
t̃
xm,nŨ

t̃
ym+1,n

− Ũ ∗̃txm,nŨ
∗̃t
ym,n−1

Ũ t̃
xm,n−1

Ũ t̃
ym+1,n−1

∆y2

+ Ũ t̃
xm,nχ

∗̃t
m,nχ

t̃
m+1,n, (20)

F t̃ym,n = κ2
Ũ ∗̃txm−1,n+1

Ũ ∗̃tym−1,n
Ũ t̃
xm−1,n

Ũ t̃
ym,n − Ũ

∗̃t
xm,n+1

Ũ ∗̃tym,nŨ
t̃
xm,nŨ

t̃
ym+1,n

∆x2

+ Ũ t̃
xm,nχ

∗̃t
m,nχ

t̃
m,n+1 (21)

Equations A.13 is a type of diffusion equations, and requires the Crank-Nielson implicit
method, providing a faster and stable solution [239]. At the edge of the simulated region
(n = nboundary,m = mboundary) the relation between the link variables and the external
magnetic field reads

B̃ext =
1− Ũ∗t̃xm,n+1

Ũ∗t̃xm,nŨ
∗t̃
ym,nŨ

∗t̃
ym+1,n

i∆x∆y
. (22)

In the high-κ limit with Colmoumb gauge, when the magnetic field in the superconductor
is homogeneous, equation 2.44 is omitted and the discretisation of equation 2.45 reads

Ṽm+1,n − 2Ṽm,n + Ṽm−1,n

∆x2
+
Ṽm,n+1 − 2Ṽm,n + Ṽm,n−1

∆y2

=
JSxm+1,n

− JSxm−1,n

2∆x
+
JSym,n+1

− JSym,n−1

2∆y
, (23)

with the supercurrent components expressed as

JSxm,n = F

{
χ∗̃tm,n

χt̃m+1,nU
t̃
m+1,n − χt̃m,n
∆x

}
, (24)
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JSym,n = F

{
χ∗̃tm,n

χt̃m,n+1U
t̃
m,n+1 − χt̃m,n
∆y

}
. (25)

The fast Fourier transform (FFT) algorithm [240] is used to numerically solve equation
A.17, when simulating rectangular geometries. For other arbitrary geometries it is more
suitable to use the successive over-relaxation method [241]. When considering the SI bound-

ary, where no current flows perpendicular to the surface (nSI · ∇̃Ṽ = 0), the discretised

electrostatic potential terms are Ṽm±1,n = Ṽm,n|m=mboundary and Ṽm,n±1 = Ṽm,n|n=nboundary .
A transport current is applied via normal contacts with a SN boundary, the applied cur-
rent transforms in a normal current with component perpendicular to the SN boundary
(nSN · ∇̃Ṽ = Ja), the electrostatic potential terms are Ṽm±1,n = Ṽm,n± J̃a∆x|m=mboundary and

Ṽm,n±1 = Ṽm,n± J̃a∆y|n=nboundary . The collection of Neumann boundary conditions results in
a situation where equation A.17, which is a type of Poisson equation, does not have a unique
solution. To find a unique solution, additional conditions can be imposed, for example the
we can define < Ṽ >= 0, this will not affect the behaviour or physical quantities because
they depend on the potential difference (voltage) U between points. Alternatively, it is more
favourable to apply an external potential difference, such that the boundary conditions be-
come Ṽm,n = Ṽext|m=mboundary and Ṽm,n = Ṽext|n=nboundary . Finally, the discretisation of the
thermal balance equation reads

T̃ t̃+∆t̃
m,n = T̃ t̃m,n −∆t̃

(
T̃ t̃m,n − T̃0

) h̃
c̃

+
∆t̃

c̃
Jt̃

2

nm,n

+ ∆t̃

(
T̃ t̃m+1,n − 2T̃ t̃m,n + T̃ t̃m−1,n

∆x2
+
T̃ t̃m,n+1 − 2T̃ t̃m,n + T̃ t̃m,n−1

∆y2

)
k̃

c̃
, (26)

where this type of differential equation requires the alternating direction implicit method to
find a solution [242]. At the SN boundary, a Dirichlet condition is used to specify that the

metallic contact’s temperature is set above the critical temperature, mainly T̃ ≥ 1. At the
SI boundary a Neumann boundary condition is imposed, such that ∇̃T̃ = 0, signifying an
open flow of heat through the system.
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Milosević, et al. Long-range vortex transfer in superconducting nanowires. Scientific
Reports, 9(1):1–10, 2019.

[11] J Brooke, David Bitko, Rosenbaum, and Gabriel Aeppli. Quantum annealing of a
disordered magnet. Science, 284(5415):779–781, 1999.

[12] MW Johnson, P Bunyk, F Maibaum, E Tolkacheva, AJ Berkley, EM Chapple, R Har-
ris, J Johansson, T Lanting, I Perminov, et al. A scalable control system for a su-
perconducting adiabatic quantum optimization processor. Superconductor Science and
Technology, 23(6):065004, 2010.

[13] Frederick W Strauch, Philip R Johnson, Alex J Dragt, CJ Lobb, JR Anderson, and
FC Wellstood. Quantum logic gates for coupled superconducting phase qubits. Physical
Review Letters, 91(16):167005, 2003.

[14] Tadashi Kadowaki and Hidetoshi Nishimori. Quantum annealing in the transverse
Ising model. Physical Review E, 58(5):5355, 1998.

[15] Giuseppe E Santoro, Roman Martonák, Erio Tosatti, and Roberto Car. Theory of
quantum annealing of an Ising spin glass. Science, 295(5564):2427–2430, 2002.

[16] Davide Pastorello and Enrico Blanzieri. Quantum annealing learning search for solving
QUBO problems. Quantum Information Processing, 18(10):1–17, 2019.

[17] Fred Glover, Gary Kochenberger, and Yu Du. A tutorial on formulating and using
QUBO models. arXiv preprint arXiv:1811.11538, 2018.

[18] Aleta Berk Finnila, MA Gomez, C Sebenik, Catherine Stenson, and Jimmie D Doll.
Quantum annealing: A new method for minimizing multidimensional functions. Chem-
ical Physics Letters, 219(5-6):343–348, 1994.

[19] Arnab Das and Bikas K Chakrabarti. Colloquium: Quantum annealing and analog
quantum computation. Reviews of Modern Physics, 80(3):1061, 2008.

[20] Fuyuki Ando, Yuta Miyasaka, Tian Li, Jun Ishizuka, Tomonori Arakawa, Yoichi Shiota,
Takahiro Moriyama, Youichi Yanase, and Teruo Ono. Observation of superconducting
diode effect. Nature, 584(7821):373–376, 2020.

[21] Akito Daido, Yuhei Ikeda, and Youichi Yanase. Intrinsic Superconducting Diode Effect.
Physical Review Letters, 128(3):037001, 2022.

[22] Charles Reichhardt and CJ Olson Reichhardt. Jamming and diode effects for vortices
in nanostructured superconductors. Physica C: Superconductivity, 470(19):722–725,
2010.

93



[23] JF Wambaugh, C Reichhardt, CJ Olson, F Marchesoni, and Franco Nori. Supercon-
ducting fluxon pumps and lenses. Physical Review Letters, 83(24):5106, 1999.

[24] Andrea Perali, Antonio Bianconi, Alessandra Lanzara, and Naurang L Saini. The gap
amplification at a shape resonance in a superlattice of quantum stripes: A mechanism
for high-Tc. Solid State Communications, 100(3):181–186, 1996.

[25] Nicola Pinto, S Javad Rezvani, Andrea Perali, Luca Flammia, Milorad V Milošević,
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[183] O-A Adami, ŽL Jelić, Cun Xue, Mahmoud Abdel-Hafiez, Benoit Hackens, Victor V
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[202] Francesco Giazotto, Tero T Heikkilä, Arttu Luukanen, Alexander M Savin, and
Jukka P Pekola. Opportunities for mesoscopics in thermometry and refrigeration:
Physics and applications. Reviews of Modern Physics, 78(1):217, 2006.

[203] AN Zotova and D Yu Vodolazov. Photon detection by current-carrying superconduct-
ing film: A time-dependent Ginzburg-Landau approach. Physical Review B, 85(2):
024509, 2012.

[204] R Lusche, A Semenov, K Ilin, M Siegel, Y Korneeva, A Trifonov, A Korneev, G Golts-
man, Denis Vodolazov, and H-W Hübers. Effect of the wire width on the intrinsic
detection efficiency of superconducting-nanowire single-photon detectors. Journal of
Applied Physics, 116(4):043906, 2014.

107



[205] A Korneev, P Kouminov, V Matvienko, G Chulkova, K Smirnov, B Voronov,
GN Gol’tsman, M Currie, W Lo, K Wilsher, et al. Sensitivity and gigahertz counting
performance of NbN superconducting single-photon detectors. Applied Physics Letters,
84(26):5338–5340, 2004.

[206] G Gol’Tsman, O Okunev, G Chulkova, A Lipatov, A Dzardanov, K Smirnov, A Se-
menov, B Voronov, C Williams, and Roman Sobolewski. Fabrication and properties of
an ultrafast NbN hot-electron single-photon detector. IEEE Transactions on applied
superconductivity, 11(1):574–577, 2001.

[207] WeiJun Zhang, LiXing You, Hao Li, Jia Huang, ChaoLin Lv, Lu Zhang, XiaoYu
Liu, JunJie Wu, Zhen Wang, and XiaoMing Xie. NbN superconducting nanowire
single photon detector with efficiency over 90% at 1550 nm wavelength operational at
compact cryocooler temperature. Science China Physics, Mechanics & Astronomy, 60
(12):1–10, 2017.

[208] Can Yang, Mengting Si, Xingyu Zhang, Aobo Yu, Jia Huang, Yiming Pan, Hao Li,
Lingyun Li, Zhen Wang, Shuo Zhang, et al. Large-area TaN superconducting microwire
single photon detectors for X-ray detection. Optics Express, 29(14):21400–21408, 2021.

[209] A Verevkin, J Zhang, Roman Sobolewski, A Lipatov, O Okunev, G Chulkova, A Ko-
rneev, K Smirnov, GN Gol’tsman, and A Semenov. Detection efficiency of large-active-
area NbN single-photon superconducting detectors in the ultraviolet to near-infrared
range. Applied Physics Letters, 80(25):4687–4689, 2002.

[210] Yu P Korneeva, D Yu Vodolazov, AV Semenov, IN Florya, N Simonov, E Baeva,
AA Korneev, GN Goltsman, and TM Klapwijk. Optical single-photon detection in
micrometer-scale NbN bridges. Physical Review Applied, 9(6):064037, 2018.

[211] Peng Hu, Hao Li, Lixing You, Heqing Wang, You Xiao, Jia Huang, Xiaoyan Yang,
Weijun Zhang, Zhen Wang, and Xiaoming Xie. Detecting single infrared photons
toward optimal system detection efficiency. Optics Express, 28(24):36884–36891, 2020.

[212] M Tarkhov, J Claudon, J Ph Poizat, A Korneev, A Divochiy, O Minaeva, V Seleznev,
N Kaurova, B Voronov, AV Semenov, et al. Ultrafast reset time of superconducting
single photon detectors. Applied Physics Letters, 92(24):241112, 2008.

[213] Aleksander Divochiy, Francesco Marsili, David Bitauld, Alessandro Gaggero, Roberto
Leoni, Francesco Mattioli, Alexander Korneev, Vitaliy Seleznev, Nataliya Kaurova,
Olga Minaeva, et al. Superconducting nanowire photon-number-resolving detector at
telecommunication wavelengths. Nature Photonics, 2(5):302–306, 2008.

[214] Andrew J Kerman, Joel KW Yang, Richard J Molnar, Eric A Dauler, and Karl K
Berggren. Electrothermal feedback in superconducting nanowire single-photon detec-
tors. Physical Review B, 79(10):100509, 2009.

108



[215] H Shibata, H Takesue, T Honjo, T Akazaki, and Y Tokura. Single-photon detection
using magnesium diboride superconducting nanowires. Applied Physics Letters, 97(21):
212504, 2010.

[216] Mattias Hofherr, Dagmar Rall, Konstantin Ilin, Michael Siegel, Alexej Semenov, H-W
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