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Summary

The use of sub-sampled exponential analysis in antenna applications is appealing for
multiple reasons. The computational time of simulations using sparse as opposed to dense
sampling is significantly lower, and in the case of spatial sampling, sparse samples lead
to an increased resolution. In this dissertation, we investigate the use of a sub-sampled
exponential analysis method called VEXPA in three different antenna applications.

The first application is the use of one-bit data in the sparse direction-of-estimation
(DOA) estimation problem. Sparse arrays are desirable for the fact that they have less
mutual coupling and an increased resolution compared to a dense array with the same
number of antenna elements. The quantisation step of converting the incoming analogue
signals to their digital equivalents introduces another layer of complexity to the traditional
problem. In Part 1 of this dissertation, we show how VEXPA can be applied to the one-
bit DOA estimation problem, adding the feature of estimating the number of incoming
signals.

Part 2 discusses the application of antenna position estimation using VEXPA, which
is essentially the inverse of the DOA estimation problem. In sparse irregular arrays, it is
helpful to have the ability to obtain the precise element positions after the installation
phase, since this requires less accuracy when placing the elements. By accurately esti-
mating the antenna positions, the accidental case of an antenna cable connected to the
wrong receiver can also be detected and flagged. The method makes use of harmonically
related signals transmitted from an unmanned aerial vehicle (UAV) at a known position
in the sky.

Finally, the application of the characterisation of frequency ripple in reflector systems
is discussed in Part 3. In small reflector systems, a ripple across frequency appears in
the radiation pattern due to the interference of sub reflector diffracted fields and main
reflector reflected fields. This ripple translates to figures of merit such as the sensitivity,
antenna noise temperature and aperture efficiency and it is therefore important to be
characterised. It is both shown how the electric fields can be sub-sampled and subse-
quently reconstructed, as well as how the frequency components can be identified from a
densely-sampled antenna noise temperature function.
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Opsomming

Die gebruik van yl-gemonsterde eksponensiële analise in antennatoepassings is aantreklik
vir verskeie redes. Die berekeningstyd van simulasies wat yl in teenstelling met digte
monsterneming gebruik, is aansienlik laer, en in die geval van ruimtelike monsterneming,
lei yl monsters tot ’n verhoogde resolusie. In hierdie proefskrif ondersoek ons die gebruik
van ’n yl-gemonsterde eksponensiële analise metode genaamd VEXPA in drie verskillende
antenna toepassings.

Die eerste toepassing is die gebruik van een-bis data in die yl rigting-afskatting pro-
bleem. Yl antennaskikkings is voordelig vir die feit dat hulle minder onderlinge koppeling
en ’n verhoogde resolusie het in vergelyking met ’n digte skikking met dieselfde aantal
antenna-elemente. Die kwantiseringstap, wat die inkomende analoogseine omskakel na
hul digitale ekwivalente, stel nog ’n laag van kompleksiteit aan die tradisionele probleem
bekend. In Deel 1 van hierdie proefskrif wys ons hoe VEXPA toegepas kan word op die
een-bis rigting-afskatting probleem, en voeg die vermoë by om die aantal inkomende seine
af te skat.

Deel 2 bespreek die toepassing van antenna posisie afskatting deur gebruik te maak
van VEXPA, wat in wese die omgekeerde van die rigting-afskatting probleem is. In yl
onreëlmatige skikkings is dit nuttig om die vermoë te hê om die presiese elementposisies nà
die installasiefase te verkry, aangesien dit minder akkuraatheid vereis tydens die plasing
van die elemente. Deur die antennaposisies akkuraat af te skat, kan die toevallige geval van
’n antennakabel wat aan die verkeerde ontvanger gekoppel is, ook opgespoor en gemerk
word. Die metode maak gebruik van harmonies-verwante seine wat vanaf ’n onbemande
lugvoertuig op ’n bekende posisie in die lug uitgesaai word.

Laastens word die toepassing van die karakterisering van frekwensie-rimpeling in re-
flektorstelsels in Deel 3 bespreek. In klein reflektorstelsels verskyn ’n rimpeling oor fre-
kwensie in die stralingspatroon, as gevolg van die interferensie van diffraksie velde van
die subreflektor en weerkaatsvelde van die hoofreflektor. Hierdie rimpeling vertaal na
verdienstesyfers soos die sensitiwiteit, antenna ruistemperatuur en stralingsvlak benut-
tingsgraad, en dus is dit belangrik om gekarakteriseer te word. Dit word beide getoon
hoe die elektriese velde yl-gemonster en daarna gerekonstrueer kan word, sowel as hoe die
frekwensiekomponente gëıdentifiseer kan word vanaf ’n dig-gemonsterde antenna ruistem-
peratuurfunksie.
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Samenvatting

Het gebruik van onder-sampled exponentiële analyse in antennetoepassingen is om meer-
dere redenen aantrekkelijk. De rekentijd van simulaties die gebruik maken van ijle in
tegenstelling tot dichte sampling is aanzienlijk lager, en in het geval van ruimtelijke sam-
pling leiden ijle samples tot een hogere resolutie. In dit proefschrift onderzoeken we het
gebruik van een onder-sampled exponentiële analysemethode genaamd VEXPA in drie
verschillende antennetoepassingen.

De eerste toepassing is het gebruik van één-bits gegevens in het ijle schattingspro-
bleem van de richting van de schatting (DOA). Ijle arrays zijn wenselijk omdat ze minder
onderlinge koppeling en een hogere resolutie hebben in vergelijking met een dichte array
met hetzelfde aantal antenne-elementen. De kwantiseringsstap van het omzetten van de
inkomende analoge signalen naar hun digitale equivalenten introduceert nog een extra
complexiteit in het traditionele probleem. In deel 1 van dit proefschrift laten we zien
hoe VEXPA kan worden toegepast op het één-bits DOA-schattingsprobleem, waaraan
het schatten van het aantal inkomende signalen wordt toegevoegd.

Deel 2 bespreekt de toepassing van antennepositieschatting met VEXPA, wat in wezen
de inverse is van het DOA-schattingsprobleem. In ijle onregelmatige arrays is het handig
om de precieze elementposities te kunnen bepalen na de installatiefase, omdat dit minder
nauwkeurigheid vereist dan bij het plaatsen van de elementen. Door de antenneposities
nauwkeurig te schatten, kan ook het geval van een antennekabel die op de verkeerde
ontvanger is aangesloten, worden gedetecteerd en gemarkeerd. De methode maakt gebruik
van harmonisch gerelateerde signalen die worden uitgezonden door een onbemande drone
(UAV) op een bekende positie in de lucht.

Tot slot wordt in deel 3 de toepassing van de karakterisering van frequentierimpeling
in reflectorsystemen besproken. In kleine reflectorsystemen verschijnt een rimpel over
de frequentie in het stralingspatroon door de interferentie van diffractievelden van de
subreflector en gereflecteerde velden van de hoofdreflector. Deze rimpel vertaalt zich in
kengetallen zoals de gevoeligheid, de antenneruistemperatuur en het diafragmarendement
en is daarom belangrijk om gekarakteriseerd te worden. Er wordt zowel getoond hoe
de elektrische velden kunnen worden gesubsampled en vervolgens gereconstrueerd, als
hoe de frequentiecomponenten kunnen worden gëıdentificeerd uit een dicht bemonsterde
antenneruistemperatuurfunctie.
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Introduction

Background and Motivation

Complex exponential signals make ample appearances in the field of antennas. In order
to extract meaningful information from these signals, they are sampled at a specific
sampling rate. Different reasons exist why a larger sampling step is preferred at which
these signals are sampled. Sub-sampled exponential analysis refers to the process of
acquiring information from data that have been sampled at a rate below the Nyquist
sampling limit.

In this dissertation, we investigate different applications in antennas that use and ben-
efit from sub-sampled exponential analysis. Specifically, the problems that are addressed
are direction-of-arrival estimation (with a focus on quantised data), antenna position es-
timation and the characterisation of the ripple in the electric field functions of reflector
antennas.

Radio Astronomy and the Square Kilometre Array

The applications presented in this dissertation all contribute to the field of radio astron-
omy. Radio telescopes are used to detect astronomical phenomena in the radio frequency
range of the electromagnetic spectrum [1]. This can aid us in gaining knowledge on the
early cosmos and the formation of stars and planets, as well as understanding the spread
of hydrogen in the universe, which is the most abundant element.

In order to observe fine detail in the sky, a high angular resolution is required. By
combining a number of antenna elements, referred to as an antenna array, a much larger
aperture (and in turn increased resolution) than that of a single antenna can be achieved.
Having a large number of antennas with a smaller diameter can provide a similar collecting
area as a small number of antennas with a larger diameter. This big-N-small-D strategy
is used in existing radio astronomy projects, such as the Square Kilometre Array (SKA).

The SKA is an international project that aims to build the world’s largest radio
telescope [2]. Its science goals include [3]:

• Studying the cosmic dawn and epoch of reionisation, the time period when stars,
galaxies and black holes first formed and hydrogen’s emissions changed from neu-
tral to ionised. This is done through the observation of neutral hydrogen’s weak
radiation and therefore requires a telescope with a large collecting area.

• Testing Einstein’s general theory of relativity in extreme conditions, such as the
strong field environments around black holes. This is done by measuring changes
to pulsars, the collapsed spinning cores of dead stars.

• Finding a better understanding of dark energy, which is the term given to the
unknown force thought to cause the acceleration of the expansion of the universe.

— 1 —



The name of the SKA project refers to the fact that the total effective collecting area will
be one square kilometre. This number was chosen by considering which collecting area
would be independently required for each of the science goals. Currently, construction on
the the first phase of the project, named SKA-1, is underway. The collecting area of the
first stage will be a fraction of the total envisaged number. The project will consist of
two sub-arrays operating at different frequency bands. Located in Western Australia, the
SKA-Low will cover the frequency range 50 MHz - 350 MHz and comprise of 131,072 log-
periodic antennas. At a higher frequency range of 350 MHz - 15.4 GHz, the 197 parabolic
reflector antennas of the SKA-Mid will be located in the Karoo region in South Africa.
A precursor of the SKA-Mid is the existing MeerKAT telescope with a total of 64 dishes.

Sub-sampled Exponential Analysis

Much of the theory of exponential analysis methods is based on the work done in 1795
by de Prony [4]. Originally it was designed for real-valued functions, but has since then
been adapted for complex functions. When considering the function

f(x) =

n∑

i=1

αi exp (νix), (1)

Prony’s method aims to determine the 2n complex parameters, linear parameters αi and
non-linear parameters νi [5]. The function is sampled at M uniformly spaced points

fm = f(m∆) =

n∑

i=1

αi exp (νim∆), m = 0, 1, ...,M − 1, (2)

where M ≥ 2n. The sampling step is denoted by ∆.
Once the terms exp (νi∆) are computed, the frequency contents =(νi) must be recov-

ered from it. Here, =(·) denotes the imaginary part. Due to the periodicity of complex
exponential signals, a one-to-one mapping between the former and the latter is not guar-
anteed, meaning the solution for =(νi) may not be unique. The possible solutions that
are not true are known as aliases. To avoid this, we need to ensure that the argument
|=(νi)|∆ is small enough that only a single solution exists. Specifically, this requires that

|=(νi)|∆ < π

2π|B|
fs

< π

fs > 2|B|,

(3)

where B is the highest frequency in the signal and fs is the sampling frequency, the inverse
of the sampling rate. The inequality in (3) is known as the Nyquist criterion. According
to this criterion, the sampling frequency has to be larger than twice the frequency of the
signal being sampled. If the signal is a sum of exponential terms, the sampling frequency
has to be larger than twice the largest frequency present in the signal.

In some cases, having to sample at or above the Nyquist rate is not optimal. It signifies
a restriction in terms of the useable samples, and a requirement for a large number of
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samples if a specific range needs to be sampled. In direction-of-arrival (DOA) estimation,
the DOA is a parameter that appears in the phase shift of signals arriving at neighbouring
antenna elements. If the spacing between elements is too large (referred to as the spatial
Nyquist limit), multiple solutions for the DOA exist for a certain phase shift. On the
other hand, larger inter-element spacings are often preferred due to an increased angular
resolution. For this reason, methods that allow sampling below the Nyquist rate are
highly attractive.

Validated EXPonential Analysis (VEXPA)

Validated Exponential Analysis (VEXPA) was first introduced in [6] as a valuable add-
on to existing exponential analysis methods. Its main appeal is that it makes use of a
co-prime sampling configuration in order to recover from aliasing [7], meaning that sub-
Nyquist sampled data can be used. Other features include the automatic estimation of the
number of exponential terms, validation of the output, and robustness against outliers.
VEXPA is the method that is used throughout this dissertation, where each application
introduces some adjustments suited for its specific needs. In this section, an overview of
the basic method is given. For simplicity, the one-dimensional case is described, although
the method can easily be extended to two or more dimensions.

Scale-and-shift coprime sampling configuration

At the heart of it, the goal of VEXPA is to solve, as Prony did, for the coefficients and
exponents of the function

f(x) =

n∑

i=1

αi exp (νix), (4)

while using sub-sampled data. Here, αi and νi are complex values. In some cases, one is
only interested in the exponents νi, in some cases one wants both the exponents and the
coefficients αi, and in some cases one wants to go further and use these exponents and
coefficients to reconstruct a signal that was sparsely sampled.

For any of these cases, first consider a densely sampled signal with a sample rate ∆:

fm = f(m∆) =
n∑

i=1

αi exp (νim∆), m = 0, 1, ...,M − 1. (5)

Because it is densely sampled, the exponents νi can unambiguously be recovered from
exp (νi∆), due to the fact that |νi∆| < π. It is important to note again that the samples
are regularly spaced, as this is a requirement of Prony’s method.

Now, introduce a scale parameter σ that will allow sampling at a sub-Nyquist rate.
The new sampling rate (σ∆) is then equal to a scaled version of the original rate ∆:

fmσ = f(mσ∆) =

n∑

i=1

αi exp (νimσ∆), m = 0, 1, ...,Mσ − 1. (6)

It should be noted that the new sampling rate may no longer adhere to the Nyquist
criterion. From here on, we refer to the dense sampling rate ∆ as the virtual sampling
rate, and the samples in (6) as the scaled subset of samples.
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Another parameter is introduced: ρ, known as the shift parameter. For reasons that
will be clarified at a later stage, the scale and shift parameters σ and ρ should be co-prime,
meaning that their greatest common divisor (GCD) should be 1. The shifted subset of
samples is sampled at points shifted with a value ρ∆ from the scaled samples:

fmσ+ρ = f ((mσ + ρ) ∆) =

n∑

i=1

αi exp (νi (mσ + ρ) ∆), m = 0, 1, ...,Mρ − 1. (7)

The number of samples in the scaled subset and shifted subset are denoted by Mσ and
Mρ, respectively, and it is required that Mσ ≥ 2n and Mρ ≥ n.

Next, the base terms are introduced:

Ψi = exp(νi∆), i = 1, ..., n. (8)

The equations (6) and (7) can then be rewritten as

fmσ =

n∑

i=1

αi exp (νimσ∆) =

n∑

i=1

αi(Ψ
σ
i )m, m = 0, 1, ...,Mσ − 1 (9)

and

fmσ+ρ =

n∑

i=1

αi exp (νi (mσ + ρ) ∆) =

n∑

i=1

(αiΨ
ρ
i )(Ψ

σ
i )m, m = 0, 1, ...,Mρ − 1. (10)

An example of the scale-and-shift sampling configuration can be seen in Fig. 1. Here, the
virtual dense samples are indicated by the black dots, the scaled samples are indicated
by the red crosses and the shifted samples are indicated by the blue circles.

Figure 1: An example of the scale-and-shift sampling configuration. The black dots,
red crosses and blue circles signify the virtual dense samples, scaled samples and shifted
samples, respectively.

We refer to Ψσ
i and Ψρ

i as the scaled and shifted base terms, respectively. Because of
the sub-Nyquist sampled data, there are multiple aliased Ψi that can be recovered from
Ψσ
i and Ψρ

i . To find the true ones, a de-aliasing method is needed, which is discussed
later in this section. First, solutions for the aliased base terms Ψσ

i and Ψρ
i are found.

Computing the aliased base terms

The first step of VEXPA is to determine the scaled base terms Ψσ
i . To do this, an

underlying Prony-based exponential analysis method is used. Popular choices include
the Matrix-Pencil method [8], Estimation of Signal Parameters via Rotational Invariance
Techniques (ESPRIT) [9], MUltiple SIgnal Classification (MUSIC) [10], Root-MUSIC [11]
and the Eigenvector method [12]. The choice of method depends on the application. With
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the exception of the Eigenvector method, the chosen method uses only the scaled subset
of samples fmσ for m = 0, 1, ...,Mσ − 1, as the shifted samples will only be used at a
later stage. If using the Eigenvector method, it solves for both the scaled base terms Ψσ

i

and shifted base terms Ψρ
i and therefore uses all the samples.

Computing the coefficients

In order to compute the coefficients of the exponential terms, we first write the equations
in (9) as a Vandermonde structured linear system




1 1 . . . 1
Ψσ

1 Ψσ
2 . . . Ψσ

N
...

...
. . .

...

Ψ
σ(Mσ−1)
1 Ψ

σ(Mσ−1)
2 . . . Ψ

σ(Mσ−1)
N







α1

α2

...
αN


 =




f0
f1σ

...
f(Mσ−1)σ


 , (11)

which can also be expressed as the compact version VNα = F . Here, N is an overes-
timation of the number of terms n, i.e., n < N ≤ Mσ/2. If there is no noise present
in this system, n of the N equations are linearly independent, meaning that any n of the
possible equations can be solved to find the αi. However, in most scenarios, especially
when working with practical data, we have samples that are perturbed by noise [13]. This
means there is no exact solution to the system, and a least-squares approach is followed
instead.

Computing the shifted base terms

Now that solutions are found for both Ψσ
i and αi, the next step is to find the shifted base

terms Ψρ
i . Let us recall the shifted set of samples:

fmσ+ρ =

n∑

i=1

αi exp (νi (mσ + ρ) ∆) =

n∑

i=1

(αiΨ
ρ
i )(Ψ

σ
i )m, m = 0, 1, ...,Mρ − 1. (12)

As with the scaled set of samples in (11), a structured Vandermonde linear system is set
up:




1 1 . . . 1
Ψσ

1 Ψσ
2 . . . Ψσ

N
...

...
. . .

...

Ψ
σ(Mρ−1)
1 Ψ

σ(Mρ−1)
2 . . . Ψ

σ(Mρ−1)
N







α1Ψρ
1

α2Ψρ
2

...
αNΨρ

N


 =




fρ
fσ+ρ

...
f(Mρ−1)σ+ρ


 . (13)

Seeing as Mρ ≥ N , the linear set of equations in (13) is solved to find the solutions to
αiΨ

ρ
i . From here, the shifted base terms are calculated as

Ψρ
i =

αiΨ
ρ
i

αi
, (14)

since the αi are already known.
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Estimating the number of terms

VEXPA typically makes use of cluster analysis to estimate the number of terms as follows.
Let us denote the number of snapshots as Nt. The underlying method is then solved a
total of Nt times, with each execution using data of a different snapshot. Each snapshot
delivers N results for Ψσ

i for i = 1, ..., N , where N is an overestimation of n. In turn,
the same number of results are returned for Ψρ

i .
Because of the random noise, only the n true solutions will cluster around the same

position for each snapshot, whereas the N − n noisy or spurious base terms will be
dispersed randomly [7]. The number of terms will therefore be equal to the number of
clusters formed by the solutions of Ψσ

i and Ψρ
i . An example is shown in Fig. 2, where the

number of detected clusters is four, from which it follows that n = 4.
A well-known cluster analysis algorithm that is often used by VEXPA is Density-Based

Spatial Clustering of Applications with Noise (DBSCAN) [14].

Figure 2: The clustering results using DBSCAN to illustrate the estimation of the number
of terms. The total set of solutions for Ψσ

i are shown by the grey markers, with the ones
forming clusters shown by the different coloured markers. In this case, the number of
clusters is four, and therefore n is also estimated as n = 4.

Recovering the de-aliased base terms

At this stage of the method, the parameter n and the solutions to Ψσ
i and Ψρ

i for i = 1, ..., n
have been found. Because of the sparseness of the data, multiple solutions for Ψi exist.
The possible solutions can be found by taking the roots of Ψσ

i :

Ψi = (Ψσ
i )

1
σ

= exp
(
νi∆σ

) 1
σ

=

{
exp

(
νi∆ +

2πj

σ
`

)
: ` = 0, . . . , σ − 1

}
.

(15)
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In a similar fashion, one can find the possible base terms from Ψρ
i :

Ψi = (Ψρ
i )

1
ρ

= exp
(
νi∆ρ

) 1
ρ

=

{
exp

(
νi∆ +

2πj

ρ
k

)
: k = 0, . . . , ρ− 1

}
.

(16)

There are therefore two sets of solutions for each Ψi of respective sizes of σ and ρ. Here, the
importance of choosing σ and ρ as coprime becomes clear. Due to this coprimeness, there
will be only one result for Ψi that appears in both sets. The true solution can therefore be
obtained by finding the intersection of the two sets. This is visually explained in Fig. 3.
For this example, νi∆ = 1.5πj, Ψi = exp(νi∆) = −1j, σ = 5 and ρ = 3. Note

that we denote imaginary numbers by the symbol j. The 5 solutions from (Ψσ
i )

1
σ and 3

solutions from (Ψρ
i )

1
ρ are indicated by the blue circles and red crosses, respectively. The

true solution is found at the location where the circle and cross coincide.

Figure 3: The two sets of solutions for (Ψσ
i )

1
σ (blue circles) and (Ψρ

i )
1
ρ (red crosses). For

this example, σ = 5 and ρ = 3, explaining the 5 circles and 3 crosses. The true solution
for Ψi will be at [0− j], where the circle and cross coincide.

Now, all the parameters have been found. From here, the important information can
be extracted from the de-aliased base terms, or the signal can be reconstructed. Next, we
describe the relevant applications of VEXPA.

Direction-of-Arrival Estimation

Direction-of-arrival (DOA) estimation refers to the method of estimating the angle at
which electromagnetic waves are impinging on an antenna array [15]. Some of the ap-
plications for DOA estimation include radio frequency interference (RFI) identification,
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radar, sonar and seismology [16]. To approach the DOA estimation problem, most meth-
ods make the following assumptions [16]:

• Isotropic and linear transmission medium: By assuming that the incoming signal
travels through a medium that is both isotropic and linear, it is construed that
the propagation properties of the signal are not dependent on the angle of arrival,
and that multiple incoming signals can be superimposed linearly to compute the
received signal at a specific element.

• Source in far-field of array : The far-field of a receiving antenna array is defined
as the region that is at a distance big enough that an incoming signal will have
a planar, rather than a curved, wavefront. Specifically, this distance is defined as
r > 2D2/λ, with D the dimension of the array and λ the wavelength. By assuming
all sources are in the far-field, the incoming signals are all parallel to one another.

• Narrowband signals: It is assumed that the frequency contents of the incoming
signals are narrowly distributed around the centre frequency fc. This implies that
during the time taken for the signal to traverse the full array, there is no variation
in the signal frequency.

• Additive White Gaussian Noise (AWGN) channel : It is assumed that the noise of
the signals is additive complex white Gaussian noise with zero mean. The noise is
uncorrelated among the different receiving antennas.

Consider n signals, denoted by si(t) for i = 1, ..., n arriving at a uniform linear array
(ULA) with M antenna elements. Due to the narrow-band assumption, each signal has
a slowly varying amplitude and phase [17]. The received sample at antenna m is then

fm(t) =

n∑

i=1

si(t) exp (−jωmτi), m = 0, 1, ...,M − 1, (17)

where ω is the frequency in radians, and τi are the respective time delays caused by the
inter-element spacing. The latter is given by

τi =
d cosφi

c
, (18)

where d is the inter-element spacing, φi is the ith angle of arrival, and c is the speed of
light. The goal of DOA estimation methods is to find the φi for i = 1, ..., n.

Considering the top expression in (3), the Nyquist limit for the DOA estimation
application is

∣∣∣∣
ωd cosφi

c

∣∣∣∣ < π

2πfd| cosφi|
c

< π

2d| cosφi|
λ

< 1

d <
λ

2| cosφi|
.

(19)
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Since the maximum value of | cosφi| is 1, the equation above can simplify to d < λ/2.
This means that arrays with inter-element spacings of larger than half a wavelength,
known as sparse arrays, are unable to identify incoming signals unambiguously. This
ambiguity is seen in the antenna radiation pattern as unwanted large beams, referred to
as grating lobes. Since grating lobes diminish the power in the main beam, they should
be avoided in most applications. Essentially, the grating lobes are aliases of the main
beam.

Sparse arrays have some advantages over dense arrays. The angular resolution in
radians that can be resolved by a ULA is given by

∆φ =
λ

D
, (20)

with D once again the dimension of the array. An array with M elements will then clearly
have a finer resolution if the inter-element spacing is larger. Sparse arrays therefore have
the advantage of a better resolution compared to a dense array with the same number of
elements.

Another advantage of sparse arrays is reduced mutual coupling, which is the interac-
tion of two antennas in the same vicinity, causing some of the energy directed to the one
to be received by the other [18]. This interaction is caused by the nonideal directional
characteristics of practical antennas, and is more prominent if the antennas are closer
together. In most applications, mutual coupling is undesired, and therefore sparse arrays
are preferred in this regard.

With the benefits that sparse arrays pose, DOA estimation is clearly an application
that can gain from the use of sub-sampled analysis, as will be shown in Part 1 of this
dissertation.

One-Bit DOA Estimation Using VEXPA

Consider a fixed time t and take the narrowband assumption into account, which states
that the signal response does not change significantly as the signal traverses the array [17].
The equation (17) can then be written as

fm =

n∑

i=1

si exp (ψimd), m = 0, 1, ...,M − 1, (21)

where

ψi =
−jω cosφi

c
. (22)

Relating (5) and (21), it is seen that the DOA estimation problem follows the sampling
scheme of Prony’s method, where the inter-element spacing d is the equivalent regular
sampling step and si are the coefficients.

The sub-sampled scale-and-shift configuration can then be created through the use of
two sub-ULAs, each with an inter-element spacing of σd. The positions of the second
ULA elements are the the same as the first ULA but shifted with a spacing ρd. This
concept is elaborated in Part 1.

For cases where the antenna samples are quantised to one bit of data, the ampli-
tude information is lost and therefore the coefficients si can not be retrieved accurately.
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The classic VEXPA method described in this chapter, where the shifted base terms are
computed from the coefficients, therefore needs to be altered to be independent of the co-
efficients. This requirement introduces the eigenvector method [19], which computes the
scaled and shifted base terms concurrently and omits the calculation of the coefficients.
This method is described in more detail in Chapter 2.

Antenna Position Estimation

Some antenna arrays are required to operate at a large fractional bandwidth, which
means a strictly dense configuration would require an inter-element spacing less than half
a wavelength at the highest frequency [20]. This means that the array is over-sampled at
the lower range of the frequency band, which is undesirable due to the cost. A solution
to this problem is a sparse spacing at the higher frequencies in the band.

A method that is used to alleviate the effect of the grating lobes of sparse arrays is to
disturb the regularity of the array grid. This helps to spread out the grating lobes over
all angles, smoothing out the main beam over frequency and scan angle. Irregular arrays
have the added benefit that a fast and slightly inaccurate placement of the elements will
not affect the performance significantly, but this also means an accurate knowledge of the
element positions is lacking.

For large irregular arrays such as the Low-Frequency Aperture Array (LFAA) system
of the SKA, the large number of antennas (up to hundreds of thousands) creates a difficulty
in the precise placement of these elements. Moreover, the human error of connecting the
cable of one element to a channel of another at the back-end becomes more likely when
the number of antennas and cables is very large. Incorporating a method that accurately
finds the positions after the antennas have already been installed could therefore help to
save costs since less accuracy is required while placing the antennas [21].

The main idea of the method is to transmit harmonically related signals from an
unmanned aerial vehicle (UAV) at a known position in the sky [22]. Essentially, the
antenna position estimation problem is the inverse of the direction-of-arrival problem.
For the former, the DOA is known and the position is extracted from the time delay; for
the latter, it is the opposite case. However, the assumption made for the DOA problem
that the source is in the far-field of the receiving array is no longer true, since feasible
flight paths of the UAV will occupy the near-field. This requires a linearisation step in
the VEXPA method, which is described in Chapter 3.

The Low Frequency Array (LOFAR) [23] is an important precursor to the LFAA of the
SKA-Low. Developed by the Netherlands Institute for Radio Astronomy (ASTRON), it
consists of 38 stations in the Netherlands and 14 international stations across Europe [24].
Two frequency bands are covered by LOFAR: the Low Band Antenna (LBA) array oper-
ating at 10 - 90 MHz, and the High Band Antenna (HBA) array at 110 - 240 MHz. The
LBA is a sparse irregular configuration and is used as an example when employing our
antenna position estimation method.

Part 2 of this dissertation is dedicated to the discussion of the application of sub-
sampled exponential analysis to solve the antenna position estimation problem.
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Antenna Position Estimation Using VEXPA

A UAV transmits narrowband odd harmonic signals at time tp from a position rp =
xpx + ypy + zpz in the sky. The samples at the mth antenna element on the ground at
time tp for frequency i are [22]:

fmip = si(tp) exp(jωitp) exp ((2i+ 1) Ψmp) , (23)

where the index i ∈ N distinguishes between frequencies ωi = (2i + 1)ω0. The base
frequency is ω0 = 2πf0. The base terms Ψmp are defined as

Ψmp = jω0τmp, (24)

with

τmp = τm (xp, yp, zp) =
1

c

(
rp −

√
r2p + ∆mp

)

∆mp = u2m + v2m − 2(umxp + vmyp),
, (25)

where rp = ‖rp‖, and um and vm are the unknown x- and y-positions of the mth antenna,
respectively. The sample set of each antenna are divided by that of the reference antenna
(m = 0) to give

f ′mip =
fmip
f0ip

= exp ((2i+ 1) Ψmp) . (26)

From the above equation, we can see that in this case, the regular sampling step used by
VEXPA is 2ω0. The time delay τmp is more complex than that of the DOA estimation
problem, since here it is assumed that the UAV is in the near-field of the antenna array,
meaning that the incoming signal has a curved phase front. Because there is only one
signal transmitted from the UAV, no detection of the number of signals is required.

The near-field base terms Ψmp are non-linear, thus the model is first linearised using
a first order Taylor series partial sum. Another implication is that, instead of the usual
scale-and-shift configuration of VEXPA, two coprime scale parameters (σj , j = 1,2) are
used that relate to the height zp of the UAV. This is discussed in detail in Chapter 3.

Ripple Characterisation

Reflector antennas operate by reflecting and transmitting incident plane waves from each
reflector to a focal point [25]. The feed antenna is located at the focal point, and is usually
a horn antenna. The largest reflector is known as the main reflector, with the remaining
ones referred to as the sub reflectors.

The design of the MeerKAT telescope as well as the SKA-Mid is that of an offset
Gregorian configuration. The term “Gregorian” refers to the fact that the shape of the
sub reflector is an ellipsoid. The alternative is a Cassegrain layout, for which the shape
of the sub reflector is a hyperboloid. The two different configurations are portrayed in
Fig. 4.

The term “offset” refers to the fact that the antenna feed is not directly in front of the
reflector, but rather offset to the side of the reflector. An offset reflector has the advantage
that there is reduced blockage from the feed, supporting struts and sub reflector surface.
Fig. 5 shows both a front feed and offset feed reflector.
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Figure 4: Gregorian (left) vs Cassegrain (right) reflector configuration

Figure 5: Front feed (left) vs offset (right) reflector configuration
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Using spherical coordinates Ω = (θ, φ), the electric fields in the far-field of an antenna
system can be described by

E(f,Ω) = Eθ(f,Ω)θ̂ + Eφ(f,Ω)φ̂, (27)

where the angle from zenith is denoted by θ and the azimuthal angle by φ. The operating
frequency is f . From the electric field pattern, the radiation intensity can be computed,
which is the radiated power per unit solid angle [25]:

P (f,Ω) =
r2

2η

(
|Eθ (f,Ω) |2 + |Eφ (f,Ω) |2

)
, (28)

where r is the radius at which the electric field components are evaluated, and η is the
intrinsic impedance of free space (η = 120π Ω ≈ 377 Ω).

Reflector antennas are often described in terms of electrical size, which is given as
a number of wavelengths at a certain frequency. Since most reflectors are designed to
operate over a frequency range, its electrical size will therefore increase with frequency
while its physical size remains constant [26]. Small reflectors have evident advantages
compared to larger ones such as reduced cost due to fewer materials and simpler manu-
facturing. Their compact and lightweight design also contribute to easier transportation
and deployment.

The downside, however, to small reflectors is that non-ideal effects become more pro-
nounced as the size of the reflector decreases. One of these effects is edge diffraction.
This is the phenomenon where waves reaching a metal surface bend around the edges of
the surface due to the spherical radiation caused by surface currents on these edges. This
leads to radiation occurring in the shadow region behind the surface.

To understand why the effect of edge diffraction worsens as the size of the reflector
decreases, consider two reflectors of different sizes. The ratio of the circumference to the
area of the reflector will be larger for the smaller reflector, since the circumference scales
linearly with the radius while the area scales quadratically [26]. The amount of diffracted
energy is directly related to the circumference, since diffraction occurs at the edges of
the reflector. On the other hand, the amount of directed energy is directly related to
the radiating area. Because the ratio of circumference to area is higher for the smaller
reflector, the ratio of diffracted to directed energy will also be higher, leading to more
prominent non-idealities in the total radiation pattern.

The differences in path length between the fields reflected by the main reflector and
the fields diffracted by the sub reflector will cause general interference. Specifically, the
sub-reflected diffracted fields are smaller than the reflected fields, and this will result in
a small ripple appearing on the main reflector fields over frequency [27]. This ripple will
subsequently also appear in figures of merit that are influenced by the radiation pattern,
such as the sensitivity, aperture efficiency and antenna noise temperature. It is important
that this ripple is characterised and, if possible, minimised through optimisation of the
reflector design.

Sensitivity

A primary figure of merit of reflectors is the so-called sensitivity, which is defined as
the minimum detectable signal on a given collecting area [26]. Non-idealities such as
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the previously-described interference of diffracted and reflected fields cause a ripple in
the sensitivity over frequency. This ripple is negligible in larger reflector systems but is
noticeable in smaller reflectors. This means that a fast and accurate computation of the
sensitivity is more difficult.

The importance of the characterisation of the sensitivity ripple lies in the fact that,
when the frequency response of the reflector is analysed, this ripple could be mistaken
for a radio source, since the spectral widths of the ripples are often similar to those of
HI galaxies [28]. It is therefore critical that the ripples are characterised to allow dis-
tinction between observations caused by instrumentation and true sources. However, this
characterisation requires sampling the radiation pattern at Nyquist rate, which means a
significant number of simulations at different frequencies are required. This is computa-
tionally expensive and introduces the appeal of using sub-sampled exponential analysis
to reduce the number of frequency simulations and in turn the computational load.

The sensitivity is defined as the ratio between the effective aperture area and the
system noise temperature

Ae

Tsys
=

ηapAphy

TA + Trec
. (29)

The product of the aperture efficiency ηap and physical aperture area Aphy equates to the
effective aperture area, while the addition of the antenna noise temperature TA and the
receiver noise temperature Trec gives the system noise temperature. Assuming that the
low-noise amplifier (LNA) and antenna are well-matched, the receiver noise temperature
Trec is slowly varying with frequency, while the physical aperture area Aphy is a constant.
This means that the ripple behaviour noticed in the sensitivity mostly stems from the
aperture efficiency ηap and antenna noise temperature TA.

Aperture Efficiency

The aperture efficiency ηap of a reflector is defined as the ratio of the co-polarisation
radiation intensity on axis to the radiation intensity of an aperture producing the same
total power but without any cross-polarisation [29], computed as

ηap =
λ2|Eco(f, 0, 0)|2

AphyPrad
. (30)

The co-polarisation component Eco(f, 0, 0) is defined by Ludwig’s third definition [30].
Specifically, it is evaluated at the direction of the main beam, and at a frequency f with
corresponding wavelength λ. The physical area of the aperture Aphy is determined by the
main reflector and the total power radiated by the antenna is denoted as Prad.

The aperture efficiency can be approximated as a product of a few sub-efficiencies [31]

ηf = ηBOR1ηillηspηpolηphηstηabηd, (31)

where the specific sub-efficiencies are defined as:

– ηBOR1: the Body Of Revolution Type 1 (BOR1) efficiency, relating to the rotational
symmetry of the feed pattern,

– ηill: the illumination efficiency, which relates to the uniformity of the field amplitude
distribution over the surface of the reflector,
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– ηsp: the spillover efficiency, which relates to the power radiated within the taper
angle of the feed compared to the total power radiated by the feed,

– ηpol: the cross polarisation efficiency, relating to the amount of power radiated in
the co-polar component relative to the total power radiated in the designed taper
angle of the feed,

– ηph: the phase efficiency, which relates to the proximity of the phase centre of
the feed relative to the focus point of the reflector, which is an indication of the
uniformity of the phase distribution in the aperture plane,

– ηst: the surface tolerance efficiency, which relates to manufacturing errors in the
surface,

– ηab: the aperture blockage efficiency, which relates to physical components that
block the aperture area,

– ηd: the diffraction efficiency, which relates to the losses due to diffraction, e.g. edge
diffraction.

The approximation in (31) does not take the frequency ripple into account, which is
why (30) is preferred for accuracy. The calculation is made with only the main beam
radiation pattern, i.e., one direction, which makes it easier and faster to simulate than
the antenna noise temperature.

Antenna Noise Temperature

The antenna noise temperature is a measure of the total noise received by an antenna. It
is calculated as

TA (f |r̂0) =

∫∫
4π
N (f,Ω|r̂0) sin θdΩ

Prad
, (32)

where
N (f,Ω|r̂0) = Tb (f,Ω)P (f,Ω|r̂0) . (33)

The product in (33) consists of the brightness temperature Tb (·) and the antenna ra-
diation intensity P (·), with the reflector pointing in the direction r̂0 and operating at
frequency f [32]. This product can be approximated as

N (f,Ω|r̂0) =

{
P (f,Ω|r̂0)T sky

b (f, θ) , 0 ≤ θ ≤ π/2,
P (f,Ω|r̂0)

[(
1− Γ̃(π−θ)

)
Tgnd + Γ̃(π−θ)T sky

b (f, π−θ)
]
, π/2 < θ ≤ π,

(34)
where Γ̃ is the average reflection coefficient for the ground [26]. The ground temperature
is denoted as Tgnd and assumed to be 300 K, while T sky

b is the sky noise model.
The sky noise model, or sky brightness temperature, includes the temperature due

to atmospheric absorption, the cosmic microwave background (CMB) and the galactic
emission. The latter consists mostly of synchrotron emission, which is produced by the
acceleration of ultrarelativistic electrons by a magnetic field [33]. Ultrarelativistic elec-
trons have kinetic energies much larger than their rest mass (E � mec

2).
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The synchrotron emission has a power law response, which then dominates the re-
sponse of the antenna noise temperature TA for relatively low microwave frequencies (be-
low a few GHz), as seen in Chapter 5. On top of this power law shape is the contribution
of the ripple that originates from the radiation intensity P (f,Ω|r̂0).

The antenna noise temperature is calculated over the 4π steradian sphere and therefore
its ripple is influenced by the ripple in the radiation intensity for each direction. The
radiation intensity at each direction is weighed with the brightness temperature at that
direction, which means that some directions will have a larger contribution to the TA
ripple than others. For these reasons, characterising the ripple in the antenna noise
temperature is a more challenging task than that of the aperture efficiency, as will be
seen in Chapter 6.

Ripple Characterisation Using VEXPA

The main difference between the ripple characterisation and the previous applications is
that in this case, no physical parameter (such as a DOA or antenna position) needs to be
extracted. Rather, we want to model a function using an exponential model. Furthermore,
we are mostly interested in the frequency components in this exponential model, to get
an understanding of the ripple behaviour.

In the first case, we want to model the real-valued antenna noise temperature as

TA(f) =

n∑

i=1

ai exp (νif), ai, νi ∈ C. (35)

Dropping the subscript A, the temperature function is sampled at a regular dense interval,
giving the samples

Tm =

n∑

i=1

ai exp (νif0) exp (νim∆), (36)

form = 0, 1, ...,M−1. A few pairs of scale and shift parameters are then used to determine
subsets of samples for which the exponential analysis problem is solved individually. It
should be mentioned that a densely-sampled function is assumed, but that the coprime
sampling configuration is used in order to find solutions from a few subsets of samples
instead of one solution from all the available samples. By doing this, a final, trustworthy
solution can be found by seeing which one occurs for all or most cases.

Because only one snapshot of data is available, this application of VEXPA does not
use cluster analysis to determine n, but rather an iterative method that increases the
estimate of n until a reconstruction with a small enough error at the sampled points is
found. This is described in Chapter 6.

The procedure for the reconstruction of the electric fields is very similar, except for
the fact that the co-prime parameters are used for the sub-sampling of the function
rather than just for validation. Both of the orthogonal components of the electric field
are modelled for every required direction. If the goal is to characterise the ripple in the
antenna noise temperature, this means all the directions considered for the integration
over the 4π steradian sphere. On the other hand, if the goal is to characterise the ripple
in the aperture efficiency, this means only the single direction of the reflector main beam.
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Contributions

The following contributions arose from this research project:

1. The use of one-bit quantised data in the direction-of-arrival (DOA) estimation prob-
lem was investigated. A method was proposed that accurately obtains the DOAs of
multiple sources impinging on sparse uniform linear arrays (ULAs). This method
is also capable of accurately finding the number of incoming signals. The findings
of this research were recorded in a conference paper [34] and a research letter [12]:

(a) R.-M. Weideman, R. Louw and D.I.L. de Villiers, “Practical performance of
the VEXPA estimation method in sparse regular arrays,” 2021 XXXIVth Gen-
eral Assembly and Scientific Symposium of the International Union of Ra-
dio Science (URSI GASS), Rome, Italy, 2021, pp. 1-4, doi: 10.23919/URSI-
GASS51995.2021.9560510.

(b) R.-M. Weideman, F. Knaepkens, A. Cuyt, R. Raal, D.I.L. de Villiers and W.-S.
Lee, “One-bit Direction-of-Arrival Estimation with Sparse Arrays,” submitted.

2. A method was developed to estimate the positions of antenna elements in large
sparse irregular arrays by transmitting harmonically related signals from an un-
manned aerial vehicle (UAV) at known positions in the sky. The method is able
to solve these positions when the UAV is in the near-field of the array by making
use of a linearisation step. It was shown that the method works well with synthetic
data as well as simulated data including practical effects such as mutual coupling.
A research letter [22] and conference paper [35] describe the method and results:

(a) R. Louw, F. Knaepkens, A. Cuyt, W.-S. Lee, S.J. Wijnholds, D.I.L. de Villiers,
and R.-M. Weideman, “Antenna position estimation through sub-sampled ex-
ponential analysis of harmonically related input signals,” in URSI Radio Sci-
ence Letters, vol. 3, 2021. [Online]. Available:
https://www.ursi.org/publications.php, 2021, pp. 1–4.

(b) R.-M. Weideman, R. Louw, F. Knaepkens, D.I.L. de Villiers, A. Cuyt, W.-S.
Lee, and S.J. Wijnholds, “Simulated performance of antenna position estima-
tion through sub-sampled exponential analysis,” in 2022 International Con-
ference on Electromagnetics in Advanced Applications (ICEAA), Cape Town,
South Africa, 2022, pp. 128–132, doi: 10.1109/ICEAA49419.2022.9900012.

3. The characterisation of the frequency ripple in reflector figures of merit such as aper-
ture efficiency and antenna noise temperature was explored. Firstly it was shown
how the frequency contents of the antenna noise temperature can accurately be de-
scribed by using densely-sampled points. Subsequently, a method was established
to model the reflector electric fields from sub-sampled data, whereafter accurate
reconstructions of the previously mentioned figures of merit can be obtained. This
research led to a conference paper [36] and a journal paper [32]:

(a) R.-M. Weideman, A. Cuyt and D.I.L. De Villiers, “Characterising the Fre-
quency Ripple in Antenna Noise Temperature Using Exponential Analysis,” in
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International Conference on Electromagnetics in Advanced Applications (ICEAA),
Venice, Italy, 2023, in press.

(b) R.-M. Weideman, A. Cuyt and D.I.L. De Villiers, “Characterising the Electric
Field Ripple in Reflector Antennas Using sub-sampled Exponential Analysis,”
submitted.

Conclusion

Sub-sampled exponential analysis methods allow sampling at a sub-Nyquist rate, which
poses benefits such as improved computational complexity and increased resolution. The
VEXPA method makes use of an underlying Prony-based method and builds on it by
making use of a scale-and-shift coprime configuration.

In this dissertation, we use VEXPA in three main applications: direction-of-arrival
estimation with quantised data, antenna position estimation and frequency ripple char-
acterisation in reflector systems. The latter is described as two sub-applications: firstly,
characterising the frequency contents of a well-known antenna noise temperature model,
and secondly, sub-sampling the reflector electric fields and reconstructing them to iden-
tify the ripple across frequency. All of these applications adjust the VEXPA method to
optimise its working for the specific problem description. Table 1 summarises the main
specifications and variations of the different applications.

The versatility of the VEXPA method can be seen in the reliable performance and ac-
curate results when used in different applications. If the problem statement is understood
well, the adequate adaptions can be made to the method to fit the specific application
at hand. This promises us that VEXPA is suitable to solve a myriad of real-world cases
that are yet to be explored.
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Table 1: Main specifications of VEXPA in different applications
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Underlying method Eigenvector method

Estimating n DBSCAN

Dimension 1D

Antenna Position Estimation

Regular dense parameter Virtual dense frequency ω0

Underlying method Root-MUSIC

Estimating n N/A - only one source

Dimension 2D

Antenna Noise Temperature Ripple Characterisation

Regular dense parameter Dense sampling step ∆

Underlying method Matrix Pencil

Estimating n Iterative method - see Chapter 6

Dimension 1D

Electric Field Reconstruction

Regular dense parameter Dense sampling step ∆

Underlying method Matrix Pencil

Estimating n Iterative method - see Chapter 6

Dimension 1D
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Part I

Direction-of-Arrival Estimation with

Quantised Data



Preface to Part I

The first part of this thesis is dedicated to the investigation of using VEXPA as a direction-
of-arrival (DOA) estimation method in linear antenna arrays, specifically when using
quantised data. In DOA estimation methods, the goal is to determine the angle from
which a far-field signal is impinging on an antenna array. In [1], it was shown how VEXPA
can be applied to sparse regular arrays in solving the DOA estimation problem. Sparse
antenna arrays are often preferred to dense arrays because of a finer angular resolution
and decreased mutual coupling.

In Chapter 1, the practical performance of VEXPA is investigated further by 1) sim-
ulating cases where the number of incoming signals is unknown, and 2) determining the
effect of quantisation on the method [2]. This publication opened up the discussion on
the need for an adaption of VEXPA that can accurately handle one-bit quantised data,
since the analogue-to-digital converters with higher numbers of bits are more costly in
practice.

The necessary adjustments to VEXPA are made to be suitable to one-bit data, and
the method is discussed in Chapter 2 [3]. Different methods to estimate the number of
incoming signals are also explored. The performance of one-bit VEXPA is compared to
that of dense one-bit MUSIC and the sparse coprime method that makes use of a similar
configuration as VEXPA.
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Abstract

This paper presents an investigation into the practical per-
formance of a direction of arrival (DOA) estimation method
for sparse regular arrays, called VEXPA. Its ability to esti-
mate the number of incoming signals through cluster anal-
ysis is compared to the traditional method used by dense
estimation techniques. It is seen that the usefulness of the
cluster analysis method depends on the underlying estima-
tion method used by VEXPA. The effect of quantisation er-
rors introduced by the use of an ADC is also investigated.
It is found that VEXPA performs satisfactorily with one-bit
data for a maximum of one signal.

1 Introduction

A common application of antenna array systems is to esti-
mate the direction of arrival (DOA) of one or more incom-
ing radio signals. Several well-established methods, such as
MUSIC [1] and the Matrix-Pencil method [2] exist which
traditionally use dense arrays. Such arrays adhere to the
spatial Nyquist criterion that elements must be spaced less
than a half-wavelength apart, so no ambiguity is caused in
the output of their solutions, since aliasing does not occur.
A regular sub-sampling algorithm called VEXPA [3] has
been formulated and successfully applied to the DOA es-
timation problem on sparse regular linear array examples
using full-wave simulations in [4]. The elements in a
sparse antenna array system are spaced more than a half-
wavelength apart, which would normally lead to ambigu-
ity in the output. The VEXPA algorithm overcomes this
aliasing effect by intersecting the output of two sparse sub-
arrays arranged in a co-prime configuration.
Sparse arrays have a number of advantages over dense ar-
rays, including lower mutual coupling and an improved an-
gular resolution. VEXPA introduces the possibility of solv-
ing the DOA problem in sparse regular arrays. It is used
on top of a traditional Prony-like method, e.g. the Matrix-
Pencil method, and includes features such as automatic de-
tection of the number of incoming signals.
In this paper, the performance of VEXPA is investigated
when practical non-idealities are present. Specifically, we
investigate VEXPA’s ability to correctly estimate the num-
ber of signals, as well as its performance when quantisation
errors are introduced.

2 DOA Using Exponential Analysis

2.1 Dense Uniform Linear Array

With reference to Fig. 1, consider a uniform linear array
(ULA) of M antenna elements receiving n signals Si(t). The
output of the ULA at the mth element is the sum of the n
signals, with time delays related to φi and d, the distance
between antenna elements. The narrowband signals Si(t) at

Figure 1. Illustration of a uniform linear array receiving a
signal Si(t) at an angle φi.

a frequency ω and time t can be expressed as

Si(t) = ai(t)e jpi(t)e jωt (1)

with ai(t) and pi(t) denoting the slowly varying amplitude
and phase of the signal, respectively. The source is assumed
to be in the far-field of the antenna, so that Si(t) is a plane
wave incident on the ULA. The time delay of incidence on
consecutive antenna elements is given by

τi =
d cos(φi)

c
, (2)

with c equal to the propagation velocity of the signal or in
free space, the speed of light. At a time t the output of the
ULA at the mth element is

fm(t) =
n

∑
i=1

Si(t +mτi) (3)

with n equal to the number of signals. According to the nar-
rowband assumption, the signal does not change noticeably
as it moves across the elements of the array so that

fm(t) =
n

∑
i=1

Si(t +mτi)≈
n

∑
i=1

Si(t)exp( jωmτi)

=
n

∑
i=1

Si(t)exp
(

jωmd cosφi

c

)
.

(4)
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Therefore, the time delay of each signal as it moves across
the array leads to a phase shift that depends on the direc-
tion of the incoming angle of the signal φi. These angles
can be recovered with the use of exponential analysis. At
a fixed time t, the output of the ULA is called a snapshot.
By introducing shorthand notations, the DOA problem is
formulated as:

fm = fm(t), αi = Si(t),

ψi =
jω cosφi

c
, Ψi = exp(ψid),

(5)

where fm is referred to as the samples of the exponential
analysis problem, αi are the coefficients, ψi the exponents
and Ψi the base terms. Considering a single snapshot, it is
possible to rewrite (4) as

fm =
n

∑
i=1

αiΨm
i , m = 0, . . . ,M−1, (6)

which can be solved from 2n samples if the base terms Ψi
are mutually distinct and the number of signals n is known.
Solutions of the base terms lead unambiguously to the di-
rections of arrival of the signals φi.

2.2 Sparse Regular Linear Array

The VEXPA algorithm requires an antenna array consisting
of two sparse ULAs in a co-prime configuration, where one
is a shifted version of the other, as illustrated in Fig. 2. The

Figure 2. Layout of two sparse regular arrays in a co-prime
configuration with an underlying virtual dense array.

array is configured from an underlying virtual dense ULA
with antenna element spacing d < λ/2. The first sparse
ULA is then found from a scale parameter σ which leads to
a spacing of σd between the elements. For sparse ULA 2,
a shift parameter ρ is used from which the sparse ULA 1
is shifted by a distance ρd. It is required that σ and ρ be
chosen as co-prime, i.e., gcd(σ ,ρ) = 1 in order to recover
from the aliasing effects of each sparse ULA. The samples
from sparse ULA 1 satisfy

fmσ =
n

∑
i=1

αi(Ψσ
i )

m, m = 0, ...,Mσ −1, (7)

from which the base terms Ψσ
i can be solved using any one-

dimensional Prony-like exponential analysis method. The

aliasing effect caused by the sparseness of the array can be
seen by the fact that all values in the set

{
exp
(

ψid +
j2π
σ
`

)
: `= 0, . . . ,σ −1

}

are possible solutions to Ψi. The output from the second
sparse ULA satisfies

fmσ+ρ =
n

∑
i=1

(αiΨ
ρ
i )(Ψ

σ
i )

m, m = 0, ...,Mρ −1, (8)

which contains the same base terms Ψσ
i as in (7). To locate

the correct solution for Ψi, the coefficients αi are first found
from the Vandermonde structured set of linear equations us-
ing the samples fmσ , after which another Vandermonde set
of equations can be solved to find Ψρ

i using the samples in
(8). From the solutions Ψρ

i , all values in the set
{

exp
(

ψid +
j2π
ρ
`

)
: `= 0, . . . ,ρ−1

}

are possible solutions to Ψi. Now, since σ and ρ were
chosen to be co-prime, their intersection results in the de-
aliased solution of Ψi. VEXPA overestimates the number
of incoming signals, and repeats the underlying estimation
method multiple times using different snapshots. By doing
this, the true base terms will form clusters, whereas the spu-
rious ones will be scattered. A clustering algorithm, such as
DBSCAN, is used to detect the clusters and thereby deter-
mine the number of signals.

3 Estimation of the number of signals

In the previous section, we described how VEXPA makes
use of cluster analysis to estimate the number of incoming
signals. Traditional dense DOA estimation methods use a
different approach. The covariance matrix of the output ar-
ray data is decomposed into the signal and noise subspaces
by using either a singular value decomposition (SVD) or
eigenvalue decomposition. With the number of signals de-
noted as n, it is shown in [1] that only n eigenvalues rise up
above the noise floor, while the others are equal to the noise
variance. The number of signals can therefore be deter-
mined by subtracting the multiplicity of the smallest eigen-
value from the total number of eigenvalues.

3.1 Experimental Setup

The two methods for estimating the number of signals
are compared by performing two simulations: one with
VEXPA in its original form, and another with the clus-
ter analysis step of VEXPA replaced with the eigenvalue-
counting method. The latter method is incorporated by
adding this step to the underlying estimation method,
whereas the cluster analysis is performed on the base terms
returned by the underlying method.
MATLAB is used to assemble the experimental setup, with
ten elements in ULA 1 and five in ULA 2. This means a
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maximum of Mσ/2 = 5 can be detected [4]. We vary the
number of signals from one to four, with the respective an-
gles of arrival at 90◦, 70◦, 60◦ and 5◦, and the signal-to-
noise ratio (SNR) is varied from 0 to 30 dB. We use both
Root-MUSIC and the Matrix-Pencil method as underlying
methods to VEXPA, and 100 Monte Carlo runs are per-
formed. The scaling and shifting parameters are σ = 11
and ρ = 5.

3.2 Results

Fig. 3 shows the results from the experiment as explained
above. The success rate is calculated as the percentage of
the Monte Carlo runs that are successful. For a run to be
considered successful, the number of signals must be esti-
mated correctly, and the errors of the estimated angles need
to be smaller than the angular resolution, given by ∆φ ≈ λ

D .
D is the total length of the array in the linear case.
We see a considerable difference between the results of the
different underlying methods. The main difference between
using Root-MUSIC and the Matrix-Pencil method is that
the latter is performed by using a single snapshot of data,
whereas the former uses a subset of the total snapshots in
order to estimate the covariance matrix more accurately.
This means that, when Root-MUSIC is used together with
the cluster analysis method, a slightly less accurate covari-
ance matrix is used, as not all snapshots are used. This
explains the slight improvement in success rate when using
the eigenvalue counting method.
When using the eigenvalue counting method with the
Matrix-Pencil method underlying, the results seem to
worsen as the number of incoming signals are increased.
On the other hand, when using the cluster analysis method,
the results do not seem to depend on the number of sig-
nals to such an extent. For the cluster analysis method,
the overestimation of the number of signals ensures that
all possible base terms are returned, and later those that do
not form clusters are discarded. For the eigenvalue method,
some signals are wrongly identified as noise when their cor-
responding eigenvalues are too small. As the number of
signals increases, it is evident that the distinction between
noise eigenvalues and signal eigenvalues become vaguer.
From this, we can conclude that DOA estimation methods
that are solved per snapshot can benefit from the cluster
analysis method, whereas for methods using the covariance
matrix, the effect of a higher number of snapshots has a
more significant impact, and both the eigenvalue method
and cluster analysis method are accurate.

4 Quantisation errors

In order to capture the data successfully from the antenna
ports, an analogue-to-digital converter (ADC) is required.
The resolution of the ADC contributes to the accuracy
thereof, but as higher-resolution ADCs are more costly,
low-resolution ADCs are often preferred in antenna array
applications. For example, a one-bit ADC can very easily
be implemented as it consists solely of a comparator. In [6]

0 5 10 15 20 25 30

SNR (dB)

0

20

40

60

80

100

S
u

c
c
e

s
s
 r

a
te

 (
%

)

Root-MUSIC

Eigenvalue method

Cluster analysis

n = 1 n = 2 n = 3 n = 4

0 5 10 15 20 25 30

SNR (dB)

0

20

40

60

80

100

S
u

c
c
e

s
s
 r

a
te

 (
%

)

Matrix-Pencil

Figure 3. Success rate estimating the number of incoming
signals by using two methods: identifying eigenvalues cor-
responding to the signal subspace (black), and using cluster
analysis (red).

it was shown that MUSIC performs accurately when one-bit
data is used. The question therefore arises whether VEXPA
is able to do the same.

4.1 Experimental setup

Firstly we compare the performance of the two underly-
ing methods on a dense configuration (12 elements, 0.48λ
spacing). The number of signals vary from one to three and
the angles of arrival are 10◦, 30◦ and 90◦. The number of
bits of the ADC is varied from 1 to 8.
Next, we perform a similar experiment, but now we use
VEXPA with a sparse co-prime configuration. The virtual
dense spacing is 0.48λ and the scaling and shifting param-
eters are σ = 11 and ρ = 5. As before, 100 Monte Carlo
runs are performed.

4.2 Results

The root-mean-square (RMS) error of Root-MUSIC and the
Matrix-Pencil method with dense configurations are shown
in Fig. 4. As expected from [6], we see that Root-MUSIC

— 27 —



1 2 3 4 5 6 7 8

Number of bits

0

20

40

60

80

R
M

S
 e

rr
o

r 
(d

e
g

)

Matrix-Pencil

Root-MUSIC

n = 1 n = 2 n = 3

Figure 4. Performance of Matrix-Pencil and Root-MUSIC
with a dense array configuration, with data quantised by
ADCs of different bit sizes. Root-MUSIC performs accu-
rately with low-resolution quantised data, whereas Matrix-
Pencil has difficulty estimating the correct directions when
multiple signals are present.

delivers small errors even when the number of ADC bits is
as low as 1. On the other hand, the Matrix-Pencil method
performs well with few bits only when a single signal is
present.

In Fig. 5 we show the results of VEXPA with a sparse
configuration using quantised data. For one incoming sig-
nal, the results are comparable to those of the dense setup
in Fig. 4. For multiple signals, however, even Root-MUSIC
cannot estimate the DOAs accurately with one-bit data. The
Matrix-Pencil method fails to return any DOAs for multiple
signals for data quantised by fewer than three bits.
The lowered accuracy at low-resolution data for the co-
prime setup is introduced by the fact that the signal co-
efficients αi play an important role in the formulation of
the Vandermonde system in (8). As quantisation decreases
the resolution of the signal amplitudes, a significant error
is added to these coefficients, which negatively affects the
performance of VEXPA.
We can therefore conclude that, if only low-resolution
quantised data is available, the preferred underlying method
for VEXPA is Root-MUSIC, although for multiple signals
the performance will be compromised.

5 Conclusion

The investigation of the practical performance of VEXPA, a
DOA estimation for sparse arrays, is presented. It is shown
that, to estimate the number of signals, the cluster analy-
sis method introduced by VEXPA is useful when incorpo-
rated with an underlying method that uses a single snapshot.
When quantisation errors are considered, it it shown that for
one signal, VEXPA performs comparably to its underlying
method, but if multiple signals are present, the performance
worsens.
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Figure 5. Performance of VEXPA (with Matrix-Pencil
and Root-MUSIC underlying) with a sparse co-prime ar-
ray configuration, with data quantised by ADCs of differ-
ent bit sizes. Root-MUSIC performs accurately with low-
resolution quantised data, whereas Matrix-Pencil does not
return any DOA when multiple signals are present.
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Abstract—One-bit data may be used in direction-of-arrival
(DOA) estimation to reduce system costs. In this paper, we present
a DOA estimation method that is specifically tailored for one-bit
data analysis. The method builds on the VEXPA method that uses
two sparse sub-uniform linear arrays (sub-ULAs). The results
show that multiple DOAs can accurately be identified by this
method. It is also shown that an estimate can be found for the
number of incoming signals, if the signal-to-noise ratio (SNR) is
reasonable.

I. INTRODUCTION

Sparse antenna arrays have advantages over dense arrays,
such as an improved angular resolution for the same number of
sensors and reduced mutual coupling. Validated EXPonential
Analysis (VEXPA) is a sub-sampling exponential analysis
method that was first applied to the direction-of-arrival (DOA)
problem in sparse arrays in [1]. In a follow-up paper, an
investigation was performed into the performance of VEXPA
when practical effects, such as quantisation, are considered [2].

An important step in the data capturing process of an
antenna array is the quantisation of the incoming analogue
signals. This is done by an analogue-to-digital converter
(ADC), with a certain number of quantisation levels [3]. Each
quantisation level is represented by a binary number, which
is made up of a number of bits b relating to the number
of quantisation levels L by 2b = L. The resolution of the
quantiser is then ∆ = R

2b−1 , where R is the range thereof. As
higher-resolution quantisers come with the disadvantage of a
higher cost and intricate circuit design [4], the use of low-
resolution ADCs is desirable for antenna array applications.
One-bit ADCs are especially attractive as they can be imple-
mented by simply using a single comparator, as these return a

logical value indicating whether the signal amplitude is above
or below a certain threshold value. A quantiser with one bit
results in 21 = 2 quantisation levels. The quantisation function
can be described as

Q(z) =
1√
2

(sign (Re{z}) + j sign (Im{z})) . (1)

In practice, the real component is the received signal itself,
whereas the imaginary component is derived from the real
part by techniques such as the Hilbert transform [5]. Hence,
by (1), each complex sample is quantised to become one of the
four values 1√

2
(±1 ± 1j). It is noteworthy that all amplitude

information is therefore lost, with only phase and frequency
information remaining.

Examples of DOA estimation methods successfully applied
to one-bit data include one-bit MUSIC [6], [7] and the coprime
sparse array method [8]. The traditional MUSIC algorithm
was adapted in [6] for one-bit data by reconstructing the
unquantised covariance matrix from its quantised equivalent.
However, in [7] it was shown that accurate results can be
achieved without this reconstruction.

In [2], it was noted that the amplitude information is cardi-
nal in the original implementation of VEXPA. It is therefore
to be expected that the method suffers when using one-bit
data. In this paper, we present an alternative implementation
of VEXPA that avoids the use of the signal amplitude infor-
mation, which makes it suitable for use with low resolution
quantised data. When discussing this method in II, III and IV,
we keep it general to both unquantised and quantised data.
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II. SCALE-AND-SHIFT SPARSE ARRAY CONFIGURATION

Consider a dense uniform linear array (ULA) consisting
of Md elements, oriented along the z-axis of a Cartesian
coordinate system, spaced along the x-axis. The elements
are linearly polarised in the z direction. From its far-field,
n uncorrelated narrowband z-polarised signals are arriving
at azimuthal angles φi for i = 1, ..., n. The regular spacing
between neighbouring elements is small enough that the spatial
Nyquist criterion is satisfied, i.e., d < λ/2, where λ is the
wavelength.

At a fixed time t, the sample received at element m can
then be described by

fm =
n∑

i=1

αiΨ
m
i + nm, m = 0, ...,Md − 1. (2)

Here, the αi are the coefficients and nm is the additive noise,
which both consist of complex random Gaussian values. The
terms Ψi are defined as the base terms

Ψi = exp

(
−jωd cosφi

c

)
, (3)

where ω is the narrowband frequency in radians and c is the
speed of light. For a dense array with half-wavelength spacing,
these base terms simplify to

Ψi = exp
(
j2πφi

)
, (4)

where φi = 0.5 cos(φi) is termed the normalised DOA as
in [8].

VEXPA creates a sparse array configuration by placing
antenna elements at a subselection of the dense array antenna
positions [9]. This subselection is described by the so-called
scale and shift parameters, denoted by σ and ρ, respectively.
Specifically, the configuration consists of two sparse sub-
ULAs. Firstly, every σth element of the dense array is chosen
to describe the scaled sub-ULA, starting at element m = 0.
The measured signal at this ULA is then described by

fmσ =
n∑

i=1

αiΨ
mσ
i + nm1 =

n∑

i=1

αi(Ψ
σ
i )m + nm1,

m = 0, ...,Mσ − 1. (5)

A shifted ULA is also created by translating the elements of
the scaled ULA by a distance of ρd. The samples at its output
are

fmσ+ρ =

n∑

i=1

αiΨ
mσ+ρ
i +nm2 =

n∑

i=1

(αiΨ
ρ
i )(Ψ

σ
i )m+nm2,

m = 0, ...,Mρ − 1. (6)

Both the scaled and shifted arrays are therefore ULAs with in-
terelement spacings of σd, consisting of Mσ and Mρ elements,
respectively. Fig. 1 illustrates the scale-and-shift configuration,
along with that of a dense ULA and a coprime array. The
scale-and-shift array is similar to the coprime array in the
sense that both use a virtual dense array with two coprime
parameters, but the latter applies both of these parameters as

scaling factors, whereas the former applies the second as a
shift parameter.

Fig. 1. Configuration of a dense array (top), scale-and-shift array (middle)
and coprime array (bottom). The parameters for the sparse arrays are σ = 5,
ρ = 3 and Mσ = Mρ = 5.

VEXPA first solves the scaled and shifted base terms Ψσ
i

and Ψρ
i using a method specific to the relevant application.

For the one-bit case, the eigenvector method is used, which
is described in the next section. After these base terms are
computed, the de-aliased base terms can be found by using the
method described in [9]. This method requires the parameters
σ and ρ to be coprime, meaning that the greatest common
divisor (GCD) of the two numbers should be 1. Finally, the
DOAs are determined by using (3).

III. THE EIGENVECTOR METHOD

Samples are collected from the two sub-ULAs at a fixed
time t to construct the data vectors

fTσ =
[
f0 fσ . . . f(Mσ−1)σ

]
. (7)

and

fTρ =
[
fρ fσ+ρ . . . f(Mρ−1)σ+ρ

]
. (8)

In the case of the eigenvector method, the number of antenna
elements in the two sub-ULAs are equal, i.e., Mσ = Mρ. The
total number of elements is denoted as M = Mσ + Mρ.
The maximum number of signals that can be identified is
nmax = Mσ = Mρ.

The concatenated data vector of the full array can be
expressed as

f =

[
fσ
fρ

]
= Vα + n, (9)

where

V =

[
Vσ
VσDρ

]
, (10)

with

Vσ =




1 1 . . . 1
Ψσ

1 Ψσ
2 . . . Ψσ

n
...

...
. . .

...
Ψ

(Mσ−1)σ
1 Ψ

(Mσ−1)σ
2 . . . Ψ

(Mσ−1)σ
n


 (11)
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and

Dρ = diag
[
Ψρ

1 · · · Ψρ
n

]
. (12)

The signal vector α consists of the coefficients
αi, i = 1, ..., n. The noise vector n has size M × 1.

As with most subspace-based DOA methods, we first ex-
press the covariance matrix of the received signal as

R = E[f fH ]

= V E[α αH ]V H + E[n nH ]

= V RssV
H + pnI,

(13)

where Rss represents the signal covariance matrix and pn the
noise power [10]. The statistical expectation E[ . ] can be
approximated by using the temporal average of the antenna
samples. The data vector f is therefore collected at K different
snapshots, denoted as f(tk)T = [fσ(tk)

T
fρ(tk)

T
] for

k = 1, ...,K. The approximated covariance matrix is then
computed as

R ≈ 1

K

K∑

k=1

f(tk)fH(tk). (14)

A singular value decomposition (SVD) is performed on the
covariance matrix to give

R = UΣWH . (15)

Assuming the number of signals n is known, we can define
the signal subspace US and noise subspace UN by splitting
the matrix of singular vectors U as

U = [US UN ] , (16)

where US is of size M × n, containing the eigenvectors
corresponding to the n largest singular values. Similarly, UN
consists of the M−n eigenvectors corresponding to the smaller
singular values.

If the incoming signals are incoherent, the columns of V
and US span the same subspace. This means that a nonsingular
matrix T exists such that

US = V T. (17)

Separating US into two matrices corresponding to the two sub-
ULAs leads to

US =

[
Uσ
Uρ

]
=

[
VσT
VσDρT

]
. (18)

An n×n nonsingular matrix can be defined to map the signal
subspace of the one sub-ULA to that of the other [11]:

UσΛ = Uρ

VσTΛ = VσDρT,
(19)

from which it follows that

VσTΛT−1 = VσDρ. (20)

Assuming that Vσ is full rank, the equation above leads to

TΛT−1 = Dρ. (21)

The equation above takes the form of a similarity transfor-
mation, which means that the diagonal elements of Dρ are
the eigenvalues of Λ [10]. The shifted base terms Ψρ

i for
i = 1, ..., n are therefore computed by finding the eigenvalues
of the matrix Λ, which is formed by solving the top equation
in (19) in a least-squares sense.

To find the scaled base terms Ψσ
i , we first note that

the matrix UσT
−1 consists of the properly normalised right

eigenvectors of Λ. This means that

UσT
−1 = Vσ, (22)

implicating that the multiplication of the matrix Uσ with
the properly normalised right eigenvectors of Λ delivers the
matrix Vσ containing the information on the scaled base terms.
Specifically, we can find Mσ − 1 estimates for each Ψσ

i by
the element-wise division

(Vσ)j+1,i

(Vσ)j,i
, j = 0, 1, ...,Mσ − 2. (23)

A final value for each Ψσ
i is found by taking the mean of

the Mσ − 1 solutions. At this point, the normalisation of the
matrix Vσ is no longer important, as the base terms result from
the ratios in (23). Since the largest possible size of both Uσ
and Uρ is Mσ × Mσ , the maximum number of columns in
Vσ is Mσ , which means the maximum number of detectable
incoming sources is nmax = Mσ = Mρ.

It is clear that, by using this method, we get solutions for Ψσ
i

and Ψρ
i while avoiding the need of an accurate computation

of the coefficients αi, which is impractical when one-bit data
are used.

IV. ESTIMATING THE NUMBER OF SIGNALS

It is often the case that the number of incoming signals
is unknown. In these cases, traditional DOA methods use the
structure of the eigenvalue or singular value decomposition
to find an estimation of the number of signals. The singular
values, found as the diagonal entries of the matrix Σ in (15),
are used. Since the rank of the data matrix is equal to the
number of terms n, only n of the singular values are non-
zero [10]. When working with noisy data, the M −n singular
values that correspond to the noise subspace will, however,
not be exactly zero but still significantly smaller than the
signal singular values. The number of terms can therefore be
estimated by inspecting the ratio of each singular value to the
maximum singular value, i.e., si/smax. A threshold p is chosen
for this singular value to be regarded as a noise singular value.
The estimated number of terms is then the number of singular
values for which

si
smax

≥ p (24)

is true [12]. The parameter p can be chosen according to the
noise level of the data, but this is a subjective process and is
therefore not ideal.

In [13], a method is presented that requires no subjective
judgment. Specifically, the number of signals is estimated as
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the value for which the Minimum Description Length (MDL)
criterion is minimised. The MDL criterion is given by

MDL(k) = − log

(∏M
i=k+1 s

1/(M−k)
i

1
M−k

∑M
i=k+1 si

)(M−k)K

+
1

2
k(2M − k) logK, k = 1, ...,M, (25)

where s1 > s2... > sM , M and K are the singular values,
number of antennas and number of snapshots, respectively.
The estimation for the number of signals is then determined
as the value of k between 1 and M that minimises (25).

The VEXPA method avoids using the singular values, and
rather uses cluster analysis to estimate the number of signals.
To do this, the K total snapshots are divided into Ks subsets
of snapshots, each containing Kt snapshots. These subsets
are selected at random. The value Kt should be smaller
than K, but since the covariance matrix is estimated by
taking the temporal average of the antenna samples, it should
also be sufficiently large. An example of a good choice is
Kt = 0.5K. The eigenvector method is then performed a
total of Ks times, with each execution using data of a different
subset. With each run, the number of signals is assumed to
be the maximum possible value, i.e., Mσ . This means Mσ

results are delivered for both Ψσ
i and Ψρ

i with each run. A
total number of Ks×Mσ solutions are therefore collected for
each base term.

Because of the random noise, only the n true solutions will
cluster around the same position for each run, whereas the
Mσ − n noisy or spurious base terms will be dispersed
randomly [9]. The number of signals therefore equals the
number of clusters formed by the solutions of Ψσ

i and Ψρ
i .

A well-known cluster analysis algorithm that is often in-
corporated by VEXPA is Density-Based Spatial clustering
of Applications with Noise (DBSCAN) [14]. This algorithm
identifies clusters by using two parameters: mδ and δ, where
the first indicates the minimum number of points required in
the neighbourhood of a specific point for that point to be
recorded as the core point of a cluster, and the latter represents
the maximum distance between two points for them to be
considered neighbours.

In the case of quantised data, the clusters do not appear in
such a predictable manner as when using unquantised data.
This makes it difficult to choose the DBSCAN parameters.
For this reason, we take a slightly different approach. For
the solutions of both Ψσ

i and Ψρ
i , we find a total of Mσ

clusters. This is done by firstly searching for the densest
point among the possible Ks points. The densest point has a
specified minimum number of points mδ around it within the
smallest possible radius. This point is identified by calculating
the Euclidean distance between all possible pairs of points, and
finding the point for which the distance to the mδth closest
point is the smallest. After the first cluster has been found, the
points contributing to this cluster are removed and the process
is repeated Mσ − 1 times. This method avoids defining
the radius parameter δ. The parameter mδ is slightly larger

for the Ψρ
i cluster identification than that of Ψσ

i , since the
scaled base terms are computed as the eigenvectors of the
generalised eigenvalue problem, which is less accurate than
the eigenvalues, which give the solutions for the shifted base
terms.

A last step is to discard the clusters that are significantly
larger than the others. Specifically, this is done by computing
the ratio of the radius of each cluster with the radius of the
smallest cluster, and subsequently discarding the clusters for
which this ratio is larger than a threshold τ . Through empirical
evaluation, this threshold is chosen as τ = 3.

Finally, the number of incoming signals is estimated as the
number of validated clusters, and the final value for both Ψσ

i

and Ψρ
i are determined as the centroid of each cluster.

The method is summarised in Algorithm 1.

V. RESULTS

We consider a dense ULA with an inter-element spacing
of d = λ/2 and M = 12 elements. A scale-and-shift
array with the same number of elements has a virtual dense
spacing d and parameters σ = 11 and ρ = 5. Each
sub-ULA has Mσ = Mρ = M/2 = 6 elements. We
also consider a standard coprime sparse array with the same
parameters. The performance of VEXPA is compared to the
coprime method [8] and dense one-bit MUSIC [7].

The number of incoming signals is varied as n = 2,
n = 4 and n = 5. The respective angles of arrival are 10◦,
90◦, 30◦, 120◦ and 135◦, with the normalised DOA defined
as φi = 0.5 cos(φi). The coefficients αi(tk) for i = 1, ..., n
and k = 1, ...,K are complex Gaussian random values. The
received samples are quantised to one-bit data by using (1).

Firstly we vary the signal-to-noise ratio (SNR) from −10 dB
to 30 dB, while the number of snapshots stays constant at
K = 28 = 256. It is assumed that the number of incoming
signals n is known, which means that DBSCAN is not needed
and all the snapshots are used to calculate a single covariance
matrix. A total of 100 Monte Carlo runs are executed.

The results are shown in Fig. 2, with the vertical axis
indicating the mean-squared error (MSE), which is defined as
MSE =

∑n
i=1(φ̂i − φi)2/n, where φ̂i is the estimation of the

normalised DOA. It is clear that VEXPA performs very well,
especially for an SNR value of 0 or higher, where the error
is smaller than that of both dense MUSIC and the coprime
method.

Next, an experiment is performed where the SNR stays
constant at SNR = 0 dB, with the number of snapshots in-
creasing in powers of two, i.e., K = 2p with p = 5, 6, ..., 10.
In Fig. 3 we see that the MSE decreases as the snapshots
increase, which is to be expected. The performance of the
three methods is comparable, with VEXPA delivering results
of up to an order of magnitude better when more snapshots
are available.

To evaluate the different methods estimating the number of
incoming signals, we keep the same experimental setup but
do not specify the parameter n. Once again, the number of
snapshots remains constant at K = 256 while the SNR value
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Algorithm 1 One-bit Sparse DOA Estimation
1: At K different timestamps tk, k = 1, ...,K, collect M

antenna samples f(tk) from the scale-and-shift configura-
tion.

2: Set mδσ , mδρ and Ks = Kt = 0.5K.
3: for j = 1 to Ks do
4: Select a random subset of Kt snapshots from the total

K snapshots.
5: Compute the covariance matrix R using (14), where k

now assumes the Kt values of the chosen subset in the
previous step.

6: Compute the SVD as [U, S,W ] = SVD(R).
7: Separate the matrix U into Uσ and Uρ, containing the

first and last Mσ rows of U , respectively.
8: Find the matrix Λ by solving the top equation in (19)

in a least squares sense.
9: Find Mσ solutions for Ψρ

i by computing the eigenvalues
of Λ.

10: Compute the matrix Vσ by using Uσ and the normalised
right eigenvectors of Λ in the multiplication in (22).

11: Find Mσ solutions for Ψσ
i by taking the mean of the

division in (23).
12: end for
13: for m = 1 to Mσ do
14: From the KsMρ available solutions for the Ψρ

i values,
find the mδρ ones that form the densest cluster. Take
the mean of these points to find the final solution for
Ψρ
m.

15: From the KsMσ available solutions for the Ψσ
i values,

find the mδσ ones that form the densest cluster. Take
the mean of these points to find the final solution for
Ψσ
m.

16: Remove the solutions found in the two previous steps
from the total set of solutions and decrease KsMρ and
KsMσ , respectively.

17: end for
18: For Ψρ

i , discard the clusters for which the radius is at least
τ = 3 times larger than the radius of the smallest cluster.
The number of remaining clusters is the final estimation
of the number of signals n.

19: Use the de-aliasing method in [9] to solve for Ψi from
Ψσ
i and Ψρ

i for i = 1, ..., n.
20: Use (3) to find the DOAs φi for i = 1, ..., n.

is varied. The threshold in (24) is chosen as p = 0.4. A total
of 1000 Monte Carlo runs are performed and the success rate
is defined as the percentage of these runs that result in an
accurate estimation of the number of signals. The number of
runs is set higher than the previous experiments because of the
anomalous behaviour of some of the results, which are shown
in Fig. 4.

We see that for SNR values of 10 dB and higher, VEXPA in
conjunction with DBSCAN delivers a success rate of 84% or
higher for all three cases of incoming signals. When using
the MDL criterion with the covariance singular values, a
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Fig. 2. The performance of VEXPA, one-bit dense MUSIC and the coprime
method on one-bit quantised data for n = 2, n = 4 and n = 5 incoming
signals. Each point is averaged from 100 Monte Carlo runs.
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Fig. 3. The performance of VEXPA, one-bit dense MUSIC and the coprime
method on one-bit quantised data for n = 2, n = 4 and n = 5 incoming
signals. Each point is averaged from 100 Monte Carlo runs.

very high success rate is obtained when n = 5, but the
results are less promising for n = 2 and n = 4. For
these cases, the number of signals is successfully identified at
SNR = 0 dB, but the success rate does not rise far above 0%
for the other SNR values. When investigating the estimated
number of signals returned by the MDL method, it is seen
that the estimate increases with the SNR. At SNR = 0 dB, an
accurate estimation is found, but at higher values the method
overestimates the number of signals and fails to return an
accurate result.

The method using the threshold as in (24) delivers a 100%
success rate for all cases when the SNR value is at 0 dB
or above. Here it should be mentioned that the threshold
was chosen specifically to be conducive to the estimation. In
practice, it is a difficult task to choose an appropriate threshold.
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Part II

Antenna Position Estimation
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Preface to Part II

The next application we explore is the antenna position estimation problem. In large
irregular arrays, faults can easily happen where the cable of one antenna is connected
to the receiver of another, and it is therefore helpful to have accurate knowledge of
the antenna positions. This problem is essentially the inverse of the direction-of-arrival
estimation problem, where we now know the direction of the incoming signal and want to
estimate the position of the antennas on the ground. The known source in the sky, from
an unmanned aerial vehicle (UAV), is in the near-field of the antenna array and therefore
the necessary adaptions to VEXPA need to be made.

In Chapter 3, the method is described, explaining how a linearisation step is used to
account for the near-field case [1]. A simulation is performed on synthetic data considering
the LOFAR low band antenna (LBA) array [2] to show that the method works.

Next, the practical effect of mutual coupling is considered in Chapter 4, by making
use of a simulated experiment in the full-wave solver FEKO [4], [3]. It is shown how the
effect of mutual coupling changes as the antenna elements are moved closer and further
away from one another.
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Exponential Analysis of Signals in the Near Field

Ridalise Louw, Ferre Knaepkens, Annie Cuyt, Wen-shin Lee, Stefan J. Wijnholds,
Dirk I. L. de Villiers, and Rina-Mari Weideman

Abstract – In a previous article we explored the
use of a subsampled exponential analysis algorithm to
find the antenna-element positions in a large irregular
planar array after the installation phase. The application
requires an unmanned aerial vehicle to be flown over
the antenna array while transmitting several odd har-
monic signals. The received signal samples at a chosen
reference antenna element are then compared to those at
every other element in the array in order to find its
position. Previously, the far-field approximation was
used to calculate the time delay between received
signals. In this article the method is reconsidered for the
more realistic case of when the source is in the near
field of the array. A number of problems that arise are
addressed, and results from a controlled simulation are
presented to illustrate that the computational method
works.

1. Introduction

Ensuring accurate placement of the antenna
elements in large-N radio interferometers like the Low
Frequency Array (LOFAR) [1] and the Square Kilome-
tre Array [2] is a costly and time-consuming process.
Methods for finding the positions of individual antenna
elements within an irregular array after the installation
phase have been proposed [3, 4] in which signals are
transmitted from an unmanned aerial vehicle (UAV)
toward the array. This saves time and money by

allowing for errors from the designed positions during
placement of the elements, as well as indicating which
elements are connected incorrectly to the back end. The

application of a subsampled exponential analysis
algorithm using the far-field approximation was pre-
sented in [4]. Here the method is extended for when the

UAV is in the near field of the array.

2. Problem Formulation

Figure 1 illustrates narrowband odd harmonic
signals Si (tp) transmitted from the UAV when it is

located at position rp at time tp. The index i � N
distinguishes between frequencies xi ¼ (2i þ 1)x0,
where x0 is the baseband frequency. At time tp, the

signals are expressed as

Si tp

� �
¼ si tp

� �
exp jxitp
� �

ð1Þ

where si(tp) is assumed to remain constant during the

measurement of Si (tp). As in [3, 4], we assume the
signals are strong enough that astronomical sources in
the field of view of the array can be ignored. With the

UAV in the radiating near field of the antenna, a curved
phase front is incident on the array.

A reference antenna element a1 ¼ (0, 0, 0) is

chosen to coincide with the origin. All elements are
assumed to be located in the (x, y)-plane, so their z-
coordinates are zero. In the near field, the time delay of

incidence on the mth antenna element at position am ¼
umx þ vmy þ (0)z relative to a1 at time tp is

Figure 1. The UAV transmits signals Si(tp) at time tp while in the
near field of the planar array.

Manuscript received 28 December 2021.

Ridalise Louw, Dirk de Villiers, and Rina-Mari Weideman are
with the Department of Electrical and Electronic Engineering,
Stellenbosch University, Cnr Banghoek Road & Joubert Street,
Stellenbosch, 7600, South Africa; e-mail: 17002567@sun.ac.za,
ddv@sun.ac.za, 18954626@sun.ac.za.

Ferre Knaepkens is with the Department of Computer Science,
University of Antwerp, Middelheimlaan 1, 2020 Antwerpen,
Belgium; e-mail: ferre.knaepkens@uantwerpen.be.

Annie Cuyt is with the Department of Computer Science,
University of Antwerp, Middelheimlaan 1, 2020 Antwerpen,
Belgium, and the College of Mathematics and Statistics,
Shenzhen University, Shenzhen, Guangdong 518060, China; e-
mail: annie.cuyt@uantwerpen.be.

Wen-shin Lee is with the Division of Computing Science and
Mathematics, University of Stirling, Stirling FK9 4LA, Scotland
(UK), and the Department of Computer Science, University of
Antwerp, Middelheimlaan 1, 2020 Antwerpen, Belgium; e-mail:
wen-shin.lee@stir.ac.uk.

Stefan Wijnholds is with the Netherlands Institute for Radio
Astronomy (ASTRON), Dwingeloo, The Netherlands, and the
Department of Electrical and Electronic Engineering, Stellenbosch
University, Stellenbosch 7600, South Africa; e-mail: wijnholds@
astron.nl.

URSI RADIO SCIENCE LETTERS, VOL. 3, 2021 DOI: 10.46620/21-00621

— 38 —



sm xp; yp; zp

� �
¼

rp

�� ��� rp � am

�� ��
c

¼
rp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

p þ u2
m þ v2

m � 2 umxp þ vmyp

� �q
c

ð2Þ
where rp¼ xpxþ ypyþ zpz is the vector from the origin
to the UAV’s position, rp ¼ rp

�� ��, rp� am is the vector
from the mth antenna element to the UAV, and c is the
propagation velocity of the signal, or the speed of light
in free space. From the narrowband assumption, the
samples at the mth element at time tp for frequency i are

fmi tp

� �
¼ Si tp þ sm xp; yp; zp

� �� �
’ si tp

� �
exp jxitp
� �

exp jxism xp; yp; zp

� �� �
ð3Þ

To extract the positions (um, vm, 0), we need multiple
samples at time tp, and this from several positions rp,
with p ¼ 1, . . ., P [5]. We use the following shorthand
notations for a fixed UAV position rp:

fmip ¼ fmi tp

� �
;

aip ¼ si tp

� �
exp jxitp

� �
;

Dmp ¼ u2
m þ v2

m � 2 umxp þ vmyp

� �
;

smp ¼ sm xp; yp; zp

� �
¼ 1

c
rp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

p þ Dmp

q� �
;

Wmp ¼ jx0smp so that 2iþ 1ð ÞWmp ¼ jxismp

ð4Þ

The samples at each element m are filtered into sub-
bands, so for position p,

fmip ¼ aip exp 2iþ 1ð ÞWmp

� �
ð5Þ

The frequency and positional dependence of the
coefficients aip are undesirable. Therefore, we first
divide the sample sets fmip by the reference antenna
element’s samples f1ip ¼ si tp

� �
exp jxitp
� �

exp 0ð Þ ¼ aip,
which gives

f 0mip ¼
fmip

f1ip

¼ exp 2iþ 1ð ÞWmp

� �
ð6Þ

3. Subsampled Exponential Analysis

To ensure that no aliasing occurs, we need
2Wmp

�� ��, p, which leads to the spatial Nyquist criterion

2 rp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

p þ Dmp

q� ���� ���, k0

2
ð7Þ

where k0 is the wavelength of x0. In the dense case
where (7) holds, the base terms Wmp can be recovered
from the signal samples by using any Prony-like
method. If (7) is not satisfied, we have a subsampled
exponential analysis problem that we can solve with a
technique similar to [6, 7]. This dealiasing method
works with coprime scale parameters r1 and r2 and can
also be used in the multivariate case [5]. The equations
for the near-field base terms Wmp in (4) are nonlinear, so

in order to recover from aliasing using this approach,
we first linearize our model with a first-order Taylor-
series partial sum.

4. Linearization of the Near-Field Model

While um and vm denote the coordinates of
antenna element am in the (x,y)-plane and (xp, yp, zp)
denotes the location of the UAV in space at time tp, we
introduce the general coordinates u and v in the plane.
During the linearization, we keep rp¼ xpxþ ypyþ zpz at
time tp fixed, so that the expression

gp u; vð Þ ¼ rp

�� ���
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rp

�� ��2 þ Dp u; vð Þ
q

;

Dp u; vð Þ ¼ u2 þ v2 � 2 uxp þ vyp

� �
varies only with the planar position (u, v). We
approximate gp(u, v) by

Lp u; vð Þ ¼ gp ~u;~vð Þ þ u� ~uð Þg uð Þ
p ~u;~vð Þ

þ v� ~vð Þg vð Þ
p ~u;~vð Þ ð8Þ

where g uð Þ
p and g vð Þ

p are the partial derivatives with
respect to u and v,

g uð Þ
p u; vð Þ ¼ xp � uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rp

�� ��2 þ Dp u; vð Þ
q ;

g vð Þ
p u; vð Þ ¼ yp � vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rp

�� ��2 þ Dp u; vð Þ
q ð9Þ

Substituting these equations into (8), the linearized
approximation Lp(u, v) becomes

Lp u; vð Þ ¼ rp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

p þ Dp ~u;~vð Þ
q

þ
u� ~uð Þ xp � ~u

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

p þ Dp ~u;~vð Þ
q

þ
v� ~vð Þ yp � ~v

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

p þ Dp ~u;~vð Þ
q

ð10Þ
Let the constant terms in (10), for a certain estimation
~u;~vð Þ, be denoted by

jp ~u;~vð Þ ¼ rp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

p þ Dp ~u;~vð Þ
q

�
~u xp � ~u
� �

þ ~v yp � ~v
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

p þ Dp ~u;~vð Þ
q ð11Þ

Then we can use the remaining function

Lp u; vð Þ � jp ~u;~vð Þ ¼
u xp � ~u
� �

þ v yp � ~v
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

p þ Dp ~u;~vð Þ
q ð12Þ

to solve the positions of the elements in the antenna
array in the near-field sub-Nyquist case, where the

common factor 1
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
p þ Dp ~u;~vð Þ

q
can be used to model

rj, j ¼ 1, 2, as explained in the next section.
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5. Exponential Analysis of the Linearized
Near-Field Problem

Choose 2P radial positions rpj
¼ xpxþ ypyþ zpj

z
with radial distance rpj

¼ rpj

�� ��, for j ¼ 1, 2 and p¼ 1,
. . ., P. Let ~um and ~vm be estimates of the coordinates um

and vm in the (x, y)-plane of antenna am, and let us
denote ~Dmp ¼ Dp ~um;~vmð Þ and jmpj

¼ jpj
~um;~vmð Þ. Note

that ~Dmp is independent of the z-coordinate and
therefore simply indexed by p, not pj. With p and m
fixed, the linearization

Lpj
um; vmð Þ � jmpj

¼
um xp � ~um

� �
þ vm yp � ~vm

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

pj
þ ~Dmp

q
ð13Þ

is used to model the near-field nonlinear

gpj
um; vmð Þ ¼ rpj

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

pj
þ Dmp

q
’ Lpj

um; vmð Þ ð14Þ

The approximation in the right-hand side of (14)
becomes more accurate as the value of ~um;~vmð Þ gets
closer to the true antenna element position (um, vm). We
additionally introduce the virtual UAV position Rp ¼
xpxþ ypyþ Zpz with virtual height Zp and Rp ¼ Rp

�� ��,
such that the spatial Nyquist criterion

2 Rp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

p þ Dmp

q� ���� ���, k0

2
ð15Þ

is met for all m. With Rp, we rewrite the value Cmpj
as a

scaled Cmp,

Cmpj
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
pj
þ ~Dmp

q ¼ rjmpCmp;

Cmp ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
p þ ~Dmp

q
ð16Þ

and we start the iterative improvement of the estimation
~um;~vmð Þ. During the iteration, the values of rpj

remain
constant while ~Dmp is updated at every iteration step.
The values of rjmp and Rp are manipulated in every
iteration step to give (16), with the only restrictions
being that the spatial Nyquist criterion in (15) must be
met and rjmp, j ¼ 1, 2 must be coprime in order to
recover from aliasing. If we set rp1

.rp2
, then Cmp2

.
Cmp1

for all m. The ratios

r2mp

r1mp

¼ Cmp2

Cmp1

ð17Þ

rounded to two significant digits provide coprime values
for r1mp and r2mp. For each antenna, we start with ~um

¼ ~vm ¼ 0 so that ~Dmp ¼ 0 and jmp¼ 0. A new value of
the estimated antenna position ~um;~vmð Þ is found as
follows, using our approximated model in conjunction
with the subsampled exponential algorithm.

The samples at each antenna element normalized
by f1ipj

according to (6) are

f 0mipj
¼ exp 2iþ 1ð Þ j

x0

c
rpj
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

pj
þ Dmp

q� �� �
ð18Þ

Thus, a priori we compute the base terms

exp 2j
x0

c
rpj
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

pj
þ Dmp

q� �� �
ð19Þ

using any Prony-like method for the samples f 0mipj
. Here

we prefer the Root-MUSIC algorithm [8] because of its
accuracy. For every antenna element am, every position
p, and every j we use Nt time samples of the form in
(18), with added white Gaussian noise from systematic
effects in the antenna array’s channels. Fortunately, the
noise encourages clustering in the complex plane
around the true solution of the base terms in (19) [6].
We use the densest point from all evaluations as our
best estimate of (19), which is defined as the point
inside the smallest possible radius that contains a
specified minimum number of points around it.

Subsequently, in every iteration step the estimated
base terms are shifted by multiplying them with
exp �j 2x0

c
jmpj

� �
. Since Dmp ’ ~Dmp, we find that

gpj
um; vmð Þ ¼ rpj

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

pj
þ Dmp

q
’ rpj

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

pj
þ ~Dmp

q

and hence that the linearization in (13) can be used.
Moreover,

j
2x0

c
rpj
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

pj
þ Dmp

q
� jmpj

� �

’ j
2x0

c

um xp � ~um

� �
þ vm yp � ~vm

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

pj
þ ~Dmp

q
0
B@

1
CA

¼ j
2rjmpx0

c

um xp � ~um

� �
þ vm yp � ~vm

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

p þ ~Dmp

q
0
B@

1
CA

ð20Þ

We can therefore denote the left-hand side of (20) by
rjmpUmp. The possible arguments Ump of expðrjmpUmpÞ
are collected in two sets ( j ¼ 1, 2):

Ump þ
j2p
rjmp

l : l ¼ 0; . . . ; rjmp � 1

	 

ð21Þ

Since rjmp are chosen as coprime for every m and p, the
intersection of the sets (21) for j ¼ 1, 2 contains the
unique dealiased argument which is the valid Ump [7].

A complication arises when trying to extract the
values of um; vmð Þ from Ump, which is our ultimate goal.
From the expression for Ump we find

j
c

2x0

Ump þ
rpj
� jmpj

rjmp

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

p þ Dmp

q

Inside the square root we have

R2
p þ Dmp ¼ x2

p þ y2
p þ Z2

p þ u2
m þ v2

m � 2 umxp þ vmyp

� �
¼ um � xp

� �2 þ vm � yp

� �2 þ Z2
p ð22Þ
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Equation (22) defines a circle with center xp; yp

� �
and

radius R2
p � Z2

p þ Dmp. Thus for any two distinct
positions of the UAV, the possible solutions of
um; vmð Þ occur at the intersections of two circles. To

find the correct solution, we add distinct UAV positions

so that P � 3 and we have Nc ¼
P

2

� �
combinations of

pairs of circles whose intersections are possible
solutions of um; vmð Þ. We use the mean of the Nc

closest intersections as the solution to um; vmð Þ, which
then becomes the updated value of ~um;~vmð Þ in the linear
model in (13). The entire procedure discussed in this
section is repeated untilffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

um � ~umð Þ2 þ vm � ~vmð Þ2
q

, 0:01 ð23Þ

This iterative process should converge due to the
convexity of the linearized function

gpðu; vÞ ¼ rp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

p þ u2 þ v2 � 2ðuxp þ vypÞ
q

¼ rp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxp � uÞ2 þ ðyp � vÞ2 þ z2

p

q
:

6. Simulation Results

In practice, this method is performed off-line
using the time-series signals from each antenna element
in the respective frequency bins, as described in (3). To
demonstrate that the algorithm works, we present results
from a controlled simulation that does not include
practical considerations such as mutual coupling or the
precision with which the UAV’s position can be
determined. However, the simulation parameters are
from actual in situ measurement campaigns that were
performed on the LOFAR low-band antenna (LBA),
such as in [9]. We use the outer LBA substation for our
simulation, for which the positions of the antenna
elements are indicated by the crosses in Figure 2. The
flight path of the UAV is a 100 m 3 100 m square, with
some deviations caused by wind. The black dots
indicate the P ¼ 16 positions that are used.

The fifth, seventh, ninth, and 11th harmonics of
the baseband frequency f0 ¼ 6.3585 MHz are transmit-
ted from the UAV, so i¼ [2,3,4,5]. One hundred Monte

Carlo runs were performed for signal-to-noise ratios
(SNRs) of 15 dB to 50 dB. The number of samples at
each position is Nt ¼ 80. For each antenna, the median
estimated position over all runs was taken and
compared with the actual position. The root-mean-
square (RMS) errors of the difference between the x-
and y-positions for all the antenna elements were
calculated at each noise level. The results are presented
in Figure 3 in terms of the wavelength of the highest
frequency harmonic k11 ¼ 4.29 m transmitted from the
UAV. Even at an SNR of 15 dB, the RMS error is less
than 1% of the smallest transmitted wavelength k11,
confirming the efficacy of the computational method.

7. Conclusion

This article expands on the work in [4] by
replacing the far-field approximation with the more
realistic near-field model, along with other subtle
improvements. In order to use the proposed subsam-
pling algorithm, it is necessary to linearize the model
and solve for the antenna positions iteratively. Simula-
tion results that do not yet consider various practical
problems indicate that the algorithm works well. In
future, practical effects such as mutual coupling
between antenna elements in the array will be
considered before moving on to applying the algorithm
to practical data from the field.
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Abstract—Antenna position estimation is an important prob-
lem in large irregular arrays where the positions might not be
known very accurately from the start. In a previous paper we
presented a method using harmonically related signals transmit-
ted from an Unmanned Aerial Vehicle (UAV), with the added
advantage that the UAV can be in the near-field of the receiving
antenna array. It was shown that the method delivers excellent
results using ideal synthetic data with added noise. In this paper
we continue the work by simulating the problem in a full-wave
solver. Although the results are less accurate than when synthetic
data are used, due to the effects of mutual coupling, the method
still performs satisfactorily, with errors smaller than 4% of the
smallest transmitted wavelength.

Index Terms—Antenna Arrays, Antenna Measurements, Mu-
tual Coupling, Unmanned Aerial Vehicles

I. INTRODUCTION

Large irregular antenna arrays such as the Low Frequency
Array (LOFAR) [1] and the Square Kilometre Array (SKA) [2]
have the disadvantage that the position of each antenna needs
to be verified after installation. Connection problems such as
switched cables will also translate to positional errors. By
using signals transmitted from an Unmanned Aerial Vehicle
(UAV) and received at each individual element, proposed
methods such as those in [3] and [4] can accurately find the
positions, compensating for inaccurate placements during the
installation phase.

In [4], we specifically focused on cases where the UAV is
in the near-field of the array. It was shown that the method
delivers sufficiently accurate results with synthetic data, with
the Root Mean Square (RMS) error less than 1% of the small-
est transmitted wavelength at a signal-to-noise ratio (SNR) of
15 dB.

In this paper, we investigate the performance of the method
further with the effect of mutual coupling included, by simu-
lating the problem in a full-wave solver, FEKO [5].

II. SUB-SAMPLED EXPONENTIAL ANALYSIS OF THE
LINEARISED NEAR-FIELD PROBLEM

In order to ensure that this paper is self-contained, we
provide a brief summary of the mathematical details presented
in [4].

The UAV transmits narrowband odd harmonic signals

Si(tp) = si(tp) exp(jωitp)

towards the array at time tp when located at position rp =
xpx + ypy + zpz where si(tp) is assumed to remain con-
stant during the measurement of Si(tp). The index i ∈ N
distinguishes between frequencies ωi = (2i + 1)ω0 where
ω0 = 2πf0 is the base frequency.

Let the reference antenna element have position
a0 = (0, 0, 0), coinciding with the origin. All M antenna
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elements are assumed to be located in the (x, y)-plane so that
the mth element is at position am = umx+ vmy+(0)z with
m = 0, . . . ,M − 1. The UAV is in the radiating near-field of
the antenna, so a curved phase front is incident on the array
and the time delay of incidence on am relative to a0 at time
tp is

τm (xp, yp, zp) =
∥rp∥ − ∥rp − am∥

c

=
rp −

√
r2p + u2m + v2m − 2(umxp + vmyp)

c
,

(1)
where rp = ∥rp∥, rp−am is the vector from the mth antenna
element to the UAV, and c is the propagation velocity of the
signal, or the speed of light in free space.

To extract the positions (um, vm, 0) we collect samples at
each antenna element while the UAV is at a fixed position rp
at time tp, with p = 1, . . . , P [6]. Then from the narrowband
assumption, the samples at the mth element at time tp for
frequency i are:

fmip = Si(tp + τmp)

≈ si(tp) exp(jωitp) exp(jωiτmp)

= si(tp) exp(jωitp) exp ((2i+ 1)Ψmp) .

(2)

where
Ψmp = jω0τmp,

τmp = τm (xp, yp, zp) =
1

c

(
rp −

√
r2p +∆mp

)
,

∆mp = u2m + v2m − 2(umxp + vmyp).

(3)

To get rid of the frequency and positional dependence in
(2), we divide the sample sets fmip by the reference antenna
element’s samples

f0ip = si(tp) exp(jωitp) exp (0)

to give

f ′mip =
fmip

f0ip
= exp ((2i+ 1)Ψmp) . (4)

In the dense case where |2Ψmp| < π and no aliasing occurs,
the base terms Ψmp can be recovered from (4) using any
Prony-like method. Otherwise, we use the de-aliasing method
described in [4] to solve the resulting sub-sampled exponen-
tial analysis problem, which uses co-prime scale parameters
σj , j = 1, 2. These parameters are generated from two distinct
UAV flights performed at different heights zpj and overlapping
planar flight paths. This gives us samples from 2P positions
rpj

= xpx+ ypy+ zpj
z normalised by f0ipj

according to (4)
at each element
f ′mipj

= exp
(
(2i+ 1)Ψmpj

)

= exp
(
(2i+ 1) j

ω0

c

(
rpj
−
√
r2pj

+∆mp

))
.

(5)

The near-field base terms Ψmpj
are non-linear, so we first

linearise the model with a first order Taylor series partial sum.
During the linearisation rpj

remains fixed and

gpj (um, vm) = rpj −
√
r2pj

+∆mp (6)

only varies with the planar position (um, vm). We approximate
(6) with

Lp(um, vm) = rpj
−
√
r2pj

+ ∆̃mp +
(um − ũm)(xp − ũm)√

r2pj
+ ∆̃mp

+
(vm − ṽm)(yp − ṽm)√

r2pj
+ ∆̃mp

=
um(xp − ũm) + vm(yp − ṽm)√

r2pj
+ ∆̃mp

+ κmpj

(7)
where ∆̃mp = ũ2m + ṽ2m − 2(ũmxp + ṽmyp) and

κmpj = rpj −
√
r2pj

+ ∆̃mp −
ũm(xp − ũm) + ṽm(yp − ṽm)√

r2pj
+ ∆̃mp

denote the constant terms in (7) for a certain estimation
(ũm, ṽm) of the mth antenna element’s true planar position.
Through an iterative process, the estimation of (ũm, ṽm)
gets updated so that the approximation in (7) becomes more
accurate as the estimation gets closer to the true value of
(um, vm). The remaining function

Lp(um, vm)− κmpj =
um(xp − ũm) + vm(yp − ṽm)√

r2pj
+ ∆̃mp

(8)

is used to solve the positions of the elements in the antenna
array in the near-field sub-Nyquist case, since the common
factor

Cmpj
=

1√
r2pj

+ ∆̃mp

can be used to model σj , j = 1, 2 if we introduce the virtual
UAV position Rp = xpx+ ypy+ Zpz with virtual height Zp

and Rp = ∥Rp∥, so that the spatial Nyquist criterion
∣∣∣2
(
Rp −

√
R2

p +∆mp

)∣∣∣ < λ0
2

(9)

is met for all m and p, and λ0 is the wavelength of the base
frequency f0. Then, let

Cmp =
1√

R2
p + ∆̃mp

such that
Cmpj = σjmpCmp. (10)

We start the iterative process for each antenna with ũm =
ṽm = 0 so that ∆̃mp = 0 and κmpj

= 0. For every iteration
step a new estimation of (ũm, ṽm) and thus ∆̃mp is found,
while rpj remains constant throughout. The values of σjmp

and Rp get updated at every iteration step to give (10), with
the only restrictions being that the spatial Nyquist criterion in
(9) must be met and σjmp, j = 1, 2 must be co-prime in order
to recover from aliasing. Assuming rp1

> rp2
then Cmp2

>
Cmp1 for all m and p. From the ratios

σ2mp

σ1mp
=
Cmp2

Cmp1

(11)
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rounded to two significant digits we get co-prime values for
σ1mp and σ2mp. Finally, we denote

σjmpΦmp = j
2ω0

c

(
rpj −

√
r2pj

+∆mp − κmpj

)

≈ j 2ω0

c


um(xp − ũm) + vm(yp − ṽm)√

r2pj
+ ∆̃mp




= j
2σjmpω0

c


um(xp − ũm) + vm(yp − ṽm)√

R2
p + ∆̃mp


 (12)

in order to find the unique de-aliased argument Φmp from the
intersection of the two sets (j = 1, 2):

{
Φmp +

j2π

σjmp
l : l = 0, . . . , σjmp − 1

}
. (13)

A new estimation for the antenna position (ũm, ṽm) is found
using

Φmp = j
2ω0

c

(
rpj − κmpj

σjmp
−
√
R2

p +∆mp

)
(14)

as described in [4]. The process is repeated until

ϵ =
√
(um − ũm)2 + (vm − ṽm)2 < 0.01.

A summary of the algorithm is described in Algorithm 1.

Algorithm 1 Antenna Position Estimation in the Near-Field
1: Set ω0, i, P and the 2P UAV positions at rp1

= xpx +
ypy + zp1

z and rp2
= xpx+ ypy + zp2

z
2: Collect the samples f ′mipj

, j = 1, 2 when the UAV is at
rp1 and rp2 as in (5)

3: for m = 1 to M − 1 do
4: Compute the aliased exp

(
2Ψmpj

)
, j = 1, 2 with Root-

MUSIC [7]
5: Initialize um ← 0, vm ← 0
6: repeat
7: ũm ← um, ṽm ← vm
8: Calculate ∆̃mp, Cmp1

, Cmp2
, κmp1

and κmp2

9: Find co-prime values for σ1mp and σ2mp from (11)
10: Find the de-aliased Φmp from the intersections in

(13)
11: Solve (um, vm) from (14) as the intersections of

circle pairs as described in [4]
12: until ϵ < 0.01
13: end for

III. EXPERIMENTAL SETUP

Our experiment consists of a full-wave method of mo-
ment (MoM) simulation using FEKO [5]. A simple model
is created to represent the 96 antennas of a LOFAR low-
band antenna (LBA) sub-station. The elements are inverted-V
dipoles, with the height of the vertical pole measuring 1.7m,
and each arm having a length of 1.38m. Fig. 1 shows a single
element as displayed in FEKO.

Fig. 1. Example of the inverted-V dipole antenna used as array elements in
FEKO. The port is located at the end of one of the dipole arms.

A voltage source of 1V is added to the port of a 2m-long
dipole, representing the UAV. Both the transmit and receive
antennas have 50Ω loads.

A realistic flight path with P = 16 positions was chosen,
taking on the shape of a 100m × 100m square, slightly
altered by the effect of the wind. The positions of the antenna
elements, as well as the UAV flight path, are shown in Fig. 2.

The frequencies used in the simulation are 31.79MHz,
44.51MHz, 57.23MHz and 69.94MHz. These are equivalent
to the 5th, 7th, 9th and 11th harmonics of the base frequency
f0 = 6.36MHz, meaning i = [2, 3, 4, 5].
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Fig. 2. Antenna positions and UAV flight path.

IV. RESULTS

We calculate the error in position of each antenna individu-
ally in both directions, as a fraction of the smallest transmitted
wavelength λ11 = 4.3m. The results are shown in the middle
panels of Fig. 3 and Fig. 4. The mean errors of all antenna
positions in the x- and y-direction are 0.023 λ11 and 0.031
λ11, respectively.

In [4], at an SNR of 15 dB, the RMS errors in both
directions are smaller than 0.01 λ11. It is to be expected that
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the results of the FEKO-simulated experiment will be less
accurate than those of [4], as the physical properties are now
included, leading to mutual coupling. However, the errors in
Fig. 3 and Fig. 4 are sufficiently low for accurate position
estimation.

To investigate further, we scale the entire array with a factor
of 0.5. This means the position of each element changes
from (um, vm) to

(
um

2 ,
vm
2

)
. The element dimensions remain

unchanged, as well as the UAV dimensions, flight path and
frequencies. As the spacing between the elements becomes
smaller, we expect the mutual coupling effects to be stronger
and the results to worsen. This expectation is confirmed, as
seen in the top panels of Fig. 3 and Fig. 4, where the mean
errors in the x- and y-direction are 0.11 λ11 and 0.098 λ11,
respectively. In a similar fashion, we also scale the array with a
factor 1.5, to enlarge the spacing between the elements. These
results are shown in the bottom panels of Fig. 3 and Fig. 4. As
expected, the results have improved from the top panels, as the
mutual coupling is weakened. The mean Euclidean errors of
the three experiments are summarised in Table I. Here we can
clearly see the trend that a larger spacing between elements
leads to smaller errors.

As part of future work, we will investigate the case of
switched cables in the array, and also incorporate a calibration
technique to mitigate the mutual coupling effects.

TABLE I
POSITIONAL ERRORS RELATING TO ELEMENT SPACING

Scale Mean Euclidean error (λ11)

0.5 0.17
1 0.042

1.5 0.038

V. CONCLUSION

In this paper, we extend the work done in [4], which
described the results of the sub-sampled antenna position
estimation in the near-field using synthetic data. To advance to
a scenario that is truer to the practical system, we specifically
focus on a simulated experiment including mutual coupling.
We do this by creating a FEKO model based on the LOFAR
LBA, with a UAV transmitting harmonically related signals
from known positions in the sky.

The results prove to be accurate, with the mean errors
in both x- and y-directions lower than 4% of the smallest
transmitted wavelength. We also see how the spacing between
the array elements relates to the positional error, with larger
separations translating into smaller errors due to decreased
mutual coupling.

Future work includes investigating the case of switched
cables, incorporating a calibration method, investigating the
impact of other practical effects, and testing our method with
practical data of LOFAR.
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Fig. 3. Positional errors in the x-direction in terms of the smallest transmitted
wavelength λ11 = 4.3m. The nominal positions are scaled coordinates of
the LOFAR LBA elements, with a scale factor of 0.5, 1 and 1.5 for the top,
middle and bottom panels, respectively.
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Preface to Part III

In the final part of this dissertation, it is shown how VEXPA can be used to characterise
the frequency ripple in different reflector antenna figures of merit. Simulating reflector
antennas at densely-sampled frequencies is computationally expensive, and therefore the
sub-sampling capability that VEXPA offers is useful in this application.

In Chapter 5, it is assumed that a densely-sampled function of the antenna noise
temperature is available, and VEXPA is used to extract the frequency components of
this function [1]. The method is compared to the Fourier transform with different pre-
processing steps. These steps are required due to the dominating power law behaviour of
the antenna noise temperature, while VEXPA requires no pre-processing.

Introducing the use of sub-sampling, in Chapter 6 we show how the electric field
components can be reconstructed from sub-sampled data points [2]. By achieving an
accurate reconstruction of the electric fields, corresponding figures of merit can accurately
be predicted. Specifically, these figures of merit are the antenna noise temperature and
the aperture efficiency. As in Chapter 5, it is shown how VEXPA can be used for the
spectral analysis of the reconstructed function, without the need for any pre-processing
steps required by the Fourier transform.
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Abstract—This paper presents a method for characterising the
ripple observed in the antenna noise temperature of reflector
systems as a function of operating frequency. The ripple, which
is superimposed on the dominant power-law shape, must be
accurately characterised in order to determine its impact. Tra-
ditional methods, such as Fourier transform analysis, typically
involve some preprocessing to reduce the effect of the power law,
which may inadvertently introduce additional ripple components.
To overcome this limitation, it is shown how the Validated
EXPonential Analysis (VEXPA) method can be used without the
need to remove the trend of the curve. The results demonstrate
that VEXPA produces accurate results and is therefore a valuable
alternative to traditional methods.

Index Terms—Ripple, Antenna Noise Temperature, Exponen-
tial Analysis

I. INTRODUCTION

Ground-based reflector antennas employed in radio tele-
scope instruments such as the MeerKAT [1], Square Kilo-
metre Array (SKA) [2], and HIRAX [3] telescopes operate
over wide instantaneous bandwidths. Characterization of the
instrumental response over the full operating frequency range
is an important requirement to determine the suitability of
using the instrument for observations towards specific science
goals. Specifically, one of the primary figures of merit is the
receiving sensitivity, which is a measure of the weakest signal
strength that can be detected by a receiver [4]. It is described
as the ratio between the effective aperture area and system
noise temperature:

Ae

Tsys
=

ηapAphy

TA + Trec
. (1)

One can see from the equation above that the effective aperture
area is described as the product of the aperture efficiency ηap
and the main reflector projected aperture area Aphy, whereas
the system noise temperature Tsys is the sum of the antenna
noise temperature TA and the receiver noise temperature Trec.
The antenna noise temperature is calculated as

TA (f |r̂0) =

∫∫
4π
N (f,Ω|r̂0) sin θdΩ∫∫

4π
P (f,Ω) sin θdΩ

, (2)

where
N (f,Ω|r̂0) = Tb (f,Ω)P (f,Ω|r̂0) . (3)

The product in (3) consists of the brightness temperature Tb (·)
and the antenna radiation intensity P (·), with the reflector
pointing in the direction r̂0 and operating at frequency f . The
spherical coordinate system is described by Ω = (θ, φ).

In reflector systems, the radiation intensity P (·) often
contains a frequency ripple, in turn creating a ripple in TA.
This is due to interference between plane waves apparently
emanating, due to reflection and diffraction, from the different
structures of the antenna - the feed, sub-reflector and main-
reflector [5]. This ripple could be troublesome when radio
frequency spectroscopy is performed, specifically in HI ob-
servations where the spectral width of the principle ripple
components are similar to the HI line widths of galaxies [5],
[6]. It is therefore important that this ripple is characterised to
determine its effect.

In this paper, we propose an exponential analysis method
to obtain an accurate description of the frequency contents of
TA, thereby characterising the ripple. Since the calculation of
TA is non-trivial, we assume its values are known at densely-
sampled frequency points, and only focus on converting it to
its frequency-domain representation.

We apply our method to an example reflector antenna, and
discuss how it circumvents certain issues that arise when
applying classic Fourier methods, while delivering accurate
results.

II. METHOD

We approach the ripple characterisation problem by consid-
ering a fixed pointing direction r̂0, and expressing TA as a
sum of exponentials

TA(f) =

n∑

i=1

ai exp (νif), ai, νi ∈ C (4)

where the ai are the complex amplitudes and the νi are the
complex frequencies in radians. Assume samples of TA are
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available at frequencies fm = f0 + m∆ for m =
0, 1, ...,M−1, where ∆ is the sampling step and M is the total
number of samples. Dropping the subscript A, the samples can
then be represented by

Tm =

n∑

i=1

ai exp (νif0) exp (νim∆), (5)

for m = 0, 1, ...,M − 1. Because the factor exp (νif0) is
constant, it can be included in the coefficient

Tm =
n∑

i=1

αi exp (νim∆), (6)

with αi = ai exp (νif0).
Validated EXPonential Analysis (VEXPA) [7] is an expo-

nential analysis method that computes the coefficients αi and
frequencies νi, as well as the number of frequency components
n. It makes use of scaled and shifted sets of samples, defined
by the co-prime scale and shift parameters σ and ρ.

Firstly, the scaled sets of samples are obtained by sampling
at the sampling step ∆ scaled with a factor σ, i.e., at frequen-
cies fmσ = f0 + mσ∆ for m = 0, 1, ...,Mσ − 1. The
scaled samples are expressed as

Tmσ =

n∑

i=1

αi exp (νimσ∆)

=

n∑

i=1

αi(Ψ
σ
i )m, m = 0, 1, ...,Mσ − 1,

(7)

where Ψi = exp (νi∆).
The first step is to use any Prony-based algorithm to

compute the so-called aliased base terms Ψσ
i . In this case,

our method of choice is the Matrix-Pencil method [8]. A total
of N base terms are computed, where N is an overestimation
of the number of frequency components n. Since 2n samples
are needed to extract the 2n parameters αi and Ψρ

i , a total of
at least Mσ = 2n samples are needed to recover n terms.
N is therefore set equal to a value between bMσ/3c and
bMσ/2c [7], [8]. The lower limit is chosen if many samples
are available, making it safe to assume that the number of
samples bMσ/3c is larger than the number of terms n.

It should be noted that, depending on the sampling step,
the recovery of the frequencies νi from the base terms Ψσ

i

might deliver ambiguous results if the Nyquist sampling
criterion is not met. This is dealt with by VEXPA through
the use of shifted sets of samples, taken at frequencies
fmσ + rρ = f0 + ∆ (mσ + rρ) for m = 0, 1, ...,Mρ − 1
and r = 0, 1, ..., R−1. Here, ρ is the shift parameter and R is
the number of shifts that are performed. The shifted samples
are

Tmσ+rρ =
n∑

i=1

αi exp (νi∆ (mσ + rρ))

=
n∑

i=1

(αiΨ
rρ
i )(Ψσ

i )m, m = 0, 1, ...,Mρ − 1.

(8)

For each shift r, we solve the Vandermonde system using the
base terms Ψσ

i (which have been computed by the Matrix-
Pencil method) and the shifted samples Tmσ+rρ to find the
values of αiΨ

rρ
i :




1 . . . 1
Ψσ

1 . . . Ψσ
N

...
. . .

...
Ψ
σ(Mσ−1)
1 . . . Ψ

σ(Mσ−1)
N







α1Ψrρ
1

α2Ψrρ
2

...
αNΨrρ

N


 =




T0
Tσ+rρ

...
T(Mσ−1)σ+rρ


 .

(9)

This system is solved R times, r taking a distinct value
between 0 and R − 1 each time. The combined results of
each system give the sequence

αi, αiΨ
ρ
i , αiΨ

rρ
i , . . . , αiΨ

(R−1)ρ
i . (10)

For fixed i, this follows the same exponential model as in
(7) [7]. The Matrix-Pencil method is therefore used again,
now to compute the Ψρ

i for i = 1, ..., N .
Because a large number of samples are available, one can

repeat the above-mentioned process for a number of different
starting frequencies f0. Define the number of repetitions as
K. For each repetition, solutions are collected for both Ψσ

i

and Ψρ
i for i = 1, ..., N , where N is the overestimated

number of terms. There are therefore in total KN solutions
for both Ψσ and Ψρ. To get a final solution for the aliased
base terms, one can pass these KN solutions to a cluster
analysis method such as Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) [9]. The underlying
function will stay unchanged with each repetition, while the
noise will have a different realisation with each one. This
means that the true base terms will form clusters, while the
noisy ones will be scattered [7]. The number of frequency
components n is therefore estimated as the number of clusters
found by DBSCAN1, and the final values of the base terms
are the centroids of these clusters.

To extract the de-aliased base terms Ψi from the aliased
ones, we find the intersections of the sets (Ψσ

i )
1
σ and (Ψρ

i )
1
ρ

for i = 1, ..., n, as described in [7]. From Ψi, the complex
frequencies can be found as νi = ln (Ψi)/∆.

When working with real-valued data such as the antenna
noise temperature, the frequencies νi appear as a combination
of two options: 1) real-valued νi that translate to exponential
decaying terms, and 2) complex conjugate pairs that translate
to cosine terms when summed as in (4). To illustrate the latter
option, consider a case with no decaying terms. We can write
the coefficients ai in their polar form as ai = |ai| exp (jpi)
and rewrite (4) as the sum of exponents consisting of complex

1Slightly adapted since publication.
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conjugate pairs:

TA(f) =

n/2∑

i=1

|ai| exp (Re(νi)f + j (Im (νi) f + pi))

+

n/2∑

i=1

|ai| exp (Re(νi)f − j (Im (νi) f + pi))

=

n/2∑

i=1

2|ai| exp (Re(νi)f) cos ((Im (νi) f + pi)).

(11)

From the equation above, we see that n/2 ripple compo-
nents are extracted from n exponential terms, with the ripple
frequencies being equivalent to the imaginary parts of the
complex frequencies νi.

The maximum number of detected ripple components is
therefore half of the maximum number of detected exponential
terms, i.e., bbMσ/2c/2c = bMσ/4c. On the other hand, if
we are working with a signal with decaying terms exclusively,
the maximum number of detected terms is the same as the
maximum number of exponential terms, i.e., bMσ/2c. In most
cases, both of these types of terms are present, and therefore
the maximum number of terms lies somewhere in between
these values. Since the data are densely-sampled, however,
we have a large number of samples available and can safely
find all the ripple components.

Now that we have found the frequencies of the ripple
components, the only step that remains is to find their weights.
This is done by computing the coefficients αi through solving
the Vandermonde system




1 . . . 1
Ψ1 . . . Ψn

...
. . .

...
ΨM−1

1 . . . ΨM−1
n







α1

α2

...
αn


 =




T0
T1
...

TM−1


 (12)

in a least squares sense.
A summary of the method is described in Algorithm 1.

III. EXPERIMENTAL SETUP

In order to investigate the performance of our method,
we construct an example using the TA data of a reflector
antenna at 801 frequency points in the range [0.7− 1.5] GHz,
and at tipping angle θp = 0◦. The reflector system is an
offset Gregorian system, defined using the description in [10],
with parameters Dm = 6m, θ0 = −73.7◦, θe = 45◦,
Ls = 1.3228m and β = 41.36◦. A Gaussian pattern with
−10 dB edge taper is used to illuminate the dish. Fig. 1 shows
the antenna noise temperature at zenith, calculated using the
background temperature model described in [11]. It is clear
that a slowly varying power law dominates the behaviour of the
function, meaning that performing a standard Fourier analysis
will result in a spectrum where the ripple components are
unidentifiable. A simple yet imperfect solution to this problem
is detrending the data. This refers to the process of fitting
an approximation to the trend of the data, and subtracting

Algorithm 1 Ripple Frequency Characterisation
1: Collect M densely-sampled TA data points for fixed r̂0

and varying f .
2: for k = 0 to K − 1 do
3: Use the Matrix-Pencil method to compute the aliased

base terms Ψσ
i for i = 1, ..., N using the samples

described in (7) with starting frequency f0 = fk.
4: for r = 0 to R− 1 do
5: Compute the terms αiΨ

rρ
i for i = 1, ..., N by

using (9).
6: end for
7: Use the Matrix-Pencil method to compute Ψρ

i for
i = 1, ..., N using the terms αiΨ

rρ
i computed in the

previous step.
8: end for
9: Pass the KN solutions of Ψσ

i and Ψρ
i to DBSCAN to

find the final estimation of the number of terms n, and
the final solutions of Ψσ

i and Ψρ
i for i = 1, ..., n.

10: Use the de-aliasing method described in [7] to solve for
Ψi.

11: Find the ripple frequencies by discarding one term of each
complex conjugate pair in Ψi and taking the imaginary
part of νi = ln (Ψi)/∆.

this approximation. The problem with this approach is that
the subtraction could lead to the injection of false ripple
components. VEXPA holds the advantage of avoiding this
subtraction, since the method will resolve both the power
law and ripple components as separate terms. The power
law will simply appear as real-valued νi, whereas the ripple
components are the result of the sum of complex conjugate
pairs, as described by (11).

Other methods attempting to distinguish the ripple compo-
nents from the power law behaviour include applying a win-
dow function or a high-pass filter to the data before performing
the Fourier transform. By applying a window function, the
amplitude of the signal is reduced towards the edges of the
window, which diminishes the impact of the dominant power
law in the Fourier spectrum. By filtering the data with a high-
pass filter, the components at lower frequencies are suppressed,
which will also remove the power law component from the
spectrum. However, these methods are also not faultless, as
will be shown in the next section.

To confirm the results delivered by VEXPA, we execute the
algorithm five times with different σ and ρ parameter pairs. A
frequency component is considered confirmed if it appears as
a result at least four out of five times.

The chosen parameters used by VEXPA for the different
σ, ρ pairs are summarised in Table I.

IV. RESULTS

The TA function reconstructed by using the results from
VEXPA and the exponential model in (4) is shown in Fig. 2,
with its absolute error. The reconstructed function clearly
follows the original function very closely and the error is very
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TABLE I
VEXPA PARAMETERS

σ, ρ Mσ Mρ R K

5, 2 161 161 3 σ
5, 3 161 161 3 σ
7, 2 115 115 3 σ
7, 3 115 115 3 σ
8, 3 101 101 3 σ

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

14

16

18

20

22

Fig. 1. Antenna noise temperature sampled at 801 frequency points.

small, with a maximum absolute error of 0.027K. This means
that the corresponding frequency components can be trusted.

0.8 1 1.2 1.4

14

16

18

20

22

0

0.01

0.02

0.03

Fig. 2. Original TA function, with the reconstructed version as described
by VEXPA, and the absolute error of the reconstruction function. The
reconstructed version follows the original one very closely, with a maximum
absolute error of 0.027K. This means that the frequency components used for
the reconstruction will be an accurate description of the ripple.

Fig. 3 shows the results of analysing the TA function with
the different Fourier transforms and VEXPA. The horizontal
axis displays the oscillation period; a peak located at a
smaller period implies a faster varying ripple component. The
vertical axis displays the magnitude in decibels for the Fourier
transforms, and the normalised magnitude for VEXPA.

For the top graph in Fig. 3, VEXPA is performed on
the original data with no subtraction of the trend. Because
the method returns individual frequency terms instead of
constructing a spectrum, one can simply discard the terms with
negligible imaginary parts, since these contribute to the power
law behaviour. The number of exponential terms n returned
by VEXPA for the five different σ, ρ pairs is summarised in

Table II. By inspecting the table, we can follow the process
that finally delivers the results in Fig. 3. Firstly, n refers to
the number of exponential terms that VEXPA returns. From
these n terms, ndecay are discarded as they have purely real
frequency values. The remaining number of terms are the
complex conjugate pairs npairs = (n − ndecay)/2. Finally,
the terms with small weights are discarded; specifically, after
the weights have been normalised, those with values smaller
than 0.05 are discarded. This leaves a final value of ripple
components nfinal. The four components seen in the top graph
of Fig. 3 are the ones that appear as a final result for four out
of the five σ, ρ pairs.

TABLE II
NUMBER OF TERMS n RETURNED BY VEXPA

σ, ρ 5, 2 5, 3 7, 2 7, 3 8, 3

n 46 46 33 33 31
ndecay 2 2 3 3 3
npairs 22 22 15 15 14
nfinal 5 5 6 6 6

By delivering the resulting ripple components as definitive
terms, VEXPA holds an advantage to the Fourier transform, as
the latter depends on identifying peaks in a spectrum, which
could be a difficult task. Considering the Fourier transform
results in Fig. 3, it is clear that the peaks are not easily
distinguishable.

The Fourier transform is applied to three different sets of
data. Firstly, shown in blue in Fig. 3, are the results from
the Fourier transform performed on the windowed data. A
Blackman-Harris window is used, chosen due to its low side-
lobe levels in the frequency domain. Even though the addition
of the window succeeds in revealing some of the ripple
components, it still contains dominating power law behaviour
at the higher end of the spectrum, meaning that the right-most
peak identified by VEXPA will not be identified.

Next, a high-pass filter is applied to the data, producing
the results in orange. The filter has a cut-off frequency that
corresponds to an oscillation period of 5 GHz (equivalent to
3.7 on the horizontal axis of the graph). The difficulty with
this approach is that some knowledge about the ripple in the
noise temperature is needed in order to provide a filter cut-off
frequency.

Finally, consider the detrended data, i.e., the original data
from which a trend approximation has been subtracted. The
trend is approximated by using a Trust-Region algorithm and
consists of two exponential terms, which can be denoted by
Tfit(f) = a exp (bf) + c exp (df). The fitted curve can be
seen alongside the raw TA data in Fig. 4. The resulting Fourier
transform is shown in black in Fig. 3.

We see that VEXPA and the Fourier transform on the
filtered and detrended data deliver similar results, with the
components identified by VEXPA corresponding to peaks in
the Fourier spectrum. The one exception is the peak in the
Fourier spectrum at a horizontal value of approximately 3.7,
which goes undetected by VEXPA.
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To investigate if this peak might have been introduced by
the subtraction of the trend behaviour, we also use VEXPA
on the detrended data, which is shown in the bottom graph
of Fig. 3. Comparing its results to those in the top graph,
we see that a new component has been detected. We can
therefore conclude that this component has been injected by
the subtraction and is not representative of the ripple in the
antenna noise temperature. The Fourier transform thus suffers
from the potential misidentification of ripple components when
the data is preprocessed through detrending or filtering.
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Fig. 3. Frequency contents delivered by VEXPA and the Fourier transform,
with the latter being performed on data that have been preprocessed by three
different methods. In the top graph, VEXPA uses the original data, whereas
it uses the detrended data in the bottom graph. As indicated by the red cross,
detrending the data could cause false ripple components to be injected into
the frequency analysis and should therefore be avoided.

V. CONCLUSION

In this paper, we describe how one can apply the expo-
nential analysis method VEXPA to characterise the frequency
ripple in densely-sampled antenna noise temperature functions.
Traditional methods like the Fourier transform rely on some
preprocessing of the data, which is cumbersome and could
inject artificial ripple components into the frequency analysis.
We show how VEXPA avoids this preprocessing, which leads
to a more accurate result.

Future work includes using exponential analysis to acquire
an accurate representation of the antenna noise temperature

Fig. 4. Antenna noise temperature sampled at 801 frequency points at tipping
angle θp = 0 degrees (black), and its trend approximation (red).

function when it is sampled at a sub-Nyquist rate. This is
especially important since sampling the temperature at a large
number of frequency points is computationally expensive.
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Abstract—Reflector antennas often exhibit frequency ripples
in key performance metrics, including aperture efficiency and
antenna noise temperature. These ripples stem from correspond-
ing fluctuations in the electric field pattern, due to interference
between fields radiated, reflected or diffracted by the feed and
reflectors, and it is important that they are characterised.

In this paper, we introduce an innovative approach for recon-
structing the electric fields of reflector antennas using simulated
data across a range of frequencies. By leveraging the power
of sub-Nyquist sampling, the number of required samples can
be reduced, leading to increased computational efficiency. This
presents an advantage to traditional methods such as the Fourier
transform that requires Nyquist sampling. We demonstrate how
these reconstructions can be used to characterise the frequency
contents of resulting reflector properties, such as aperture effi-
ciency and antenna noise temperature.

I. INTRODUCTION

In electrically small clear aperture dual-offset reflector sys-
tems, frequency ripples can often be observed in the electric
field components of their radiation pattern. These ripples
stem from standing waves between the main reflector and the
feed and/or sub-reflector, as well as from the interference of
diffracted fields from the sub-reflector and the reflected fields
from the main reflector [1], [2]. Consequently, this ripple is
also present in corresponding figures of merit, such as antenna
noise temperature and aperture efficiency. Characterisation of
this ripple is important in several applications in wideband ra-
dio astronomy and radiometry, where the systematic response
of the instrument must be accurately known in order to remove
its effect from the science products [3]–[5].

The prediction is challenging due to several reasons. Firstly,
multiple ripples may be present due to interfering fields with
multiple characteristic lengths, which also vary with angle.
Both long and short distances between the origins of interfer-
ing waves are present. Long distances translate to fast ripples,
in turn requiring a dense sampling due to the Nyquist sampling
criterion [2]. On the other hand, the additional presence of
short distances means that the response needs to be evaluated
over a large bandwidth. Since the response is wideband, the

possibility of band-limited Nyquist sampling is ruled out.
Dense sampling requires a large number of simulations at
many frequency points, which is computationally expensive.

Validated Exponential Analysis (VEXPA) is an exponential
analysis method that models a function as a sum of real and
complex exponentials, while facilitating sampling at a sub-
Nyquist rate. By using this method, we can therefore acquire
an accurate model to predict the behaviour of the ripple with
a decreased number of required frequency samples. This will
in turn speed up the computation of the ripple.

In [6] we showed how VEXPA can be used to identify the
frequency components from a densely-sampled antenna noise
temperature function. In this paper, the VEXPA method is
applied to the possibly sub-sampled electric field components
to characterise its ripple. From here, an accurate model of the
electric field is used to characterise the ripple in related proper-
ties of the reflector, specifically its antenna noise temperature
and aperture efficiency.

II. BACKGROUND

An example of an offset Gregorian dual reflector can be
seen in Fig. 1, with some important parameters denoted.

A. Antenna Noise Temperature Ripple

When characterising the performance of reflector antennas,
one of the primary figures of merit that is considered is the
receiving sensitivity, which is a measure of the weakest signal
strength that can be detected by a receiver [7]. It is described
as the ratio between the effective aperture area and system
noise temperature:

Ae

Tsys
=

ηapAphy

TA + Trec
. (1)

In the equation above, it is seen that the effective aperture
area is equal to the product of the aperture efficiency ηap
and the main-reflector projected aperture area Aphy, while the
system noise temperature Tsys is the sum of the antenna noise
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Fig. 1. An offset Gregorian dual reflector system, shown along the xz-
symmetry plane. Some of the important parameters used to describe the
reflector are shown.

temperature TA and the receiver noise temperature Trec.
The antenna noise temperature is calculated as

TA (f |r̂0) =

∫∫
4π
N (f,Ω|r̂0) sin θdΩ

Prad
, (2)

where Prad is the total power radiated by the antenna, and

N (f,Ω|r̂0) = Tb (f,Ω)P (f,Ω|r̂0) . (3)

The product in (3) consists of the brightness temperature Tb (·)
and the antenna radiation intensity P (·), with the reflector
pointing in the direction r̂0 and operating at frequency f . The
brightness temperature Tb (·) is described in [8]. It incorporates
various influencing elements, such as the cosmic microwave
background, galactic emissions, atmospheric emissions and
absorptions, as well as ground emissions and scattering [2].
The spherical coordinate system is described by Ω = (θ, φ),
where θ is the elevation angle measured from the z-axis,
which coincides with the antenna main beam, and φ is the
azimuthal angle measured from the x-axis toward the y-axis.
The resolution at which the grid is evaluated is dictated by the
convergence of the integral in (2) [9].

The radiation intensity P (·) is given by

P (f,Ω) =
r2

2η

(
|Eθ (f,Ω) |2 + |Eφ (f,Ω) |2

)
, (4)

where r is the radius at which the electric field components
are evaluated, and η is the intrinsic impedance of free space
(η = 120π Ω ≈ 377 Ω).

It is clear that, for a fixed direction r̂0, a ripple in Eθ (f) or
Eφ (f) will translate to an equivalent ripple in the behaviour
of the noise temperature in (2). VEXPA is therefore used to
model both Eθ (f) and Eφ (f) for each direction on the grid
independently, from where an accurate representation of the
noise temperature can be found using (2).

B. Aperture Efficiency Ripple

In (1), one of the factors influencing the sensitivity is the
aperture efficiency ηap, which is defined as the ratio of the
antenna gain in a specific direction and the gain of an ideal
uniformly illuminated aperture [10]. It is computed as [11]

ηap =
λ2|Eco(f, 0, 0)|2

AphyPrad
, (5)

where Eco(f, 0, 0) is the co-polarisation component of the
radiation pattern as defined by Ludwig’s third definition [12].
Specifically, it is evaluated at boresight, where the radiation
intensity is at a maximum, and at a frequency f with corre-
sponding wavelength λ. The projected aperture area Aphy is
determined by the main-reflector size.

As with the noise temperature ripple, VEXPA is used to
reconstruct the field component Eco(f, 0, 0), from which an
accurate representation of the ripple in the aperture efficiency
ηap can be found using (5).

C. Sub-Nyquist Sampling

According to the Nyquist sampling limit, in order to re-
construct a sampled signal without the risk of aliasing, the
sampling step needs to be smaller or equal to half of the
minimum frequency rate of the signal. In the application of
reflector antennas, the minimum frequency variation of the
electric field is dependant on the dimensions of the reflector
system, and the Nyquist sampling limit is

FS (max) = c/(2Dms), (6)

where c is the speed of light and Dms is the maximum distance
between the main- and sub-reflectors, as indicated in Fig. 1.
Generally, this is a worst-case scenario limit, as most ripple
components in the aperture efficiency and noise temperature
will be caused by effects of shorter path lengths than this
maximum.

If the aperture efficiency or antenna noise temperature is
sampled instead of the electric field, the maximum sampling
step is half of that in (6), since the field component frequencies
are squared in (4) and (5).

VEXPA allows sampling at a rate above this limit, in
turn allowing an accurate reconstruction from fewer simulated
frequency points.

III. METHOD

A. Overview

Reflector antenna simulations are usually executed by fre-
quency domain methods, such as the method of moments
(MoM) for full-wave simulations or physical optics (PO)
for asymptotic approximations. For both methods, frequency
samples are more computationally expensive than angular
ones. For this reason, VEXPA is used on each direction Ω
independently while sub-sampling across frequency.

Consider a fixed direction Ω and the generic field com-
ponent E, representing either Eθ or Eφ. The goal is to
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approximate E as a sum of real and complex exponentials
to fit the model

E(f) =

n∑

i=1

ai exp (νif), ai, νi ∈ C (7)

where ai and νi are the complex amplitudes and frequencies in
radians, respectively. The electric field E is sampled densely
at frequencies f = f0 + m∆ for m = 0, 1, ...,M−1, where
M is the total number of samples. For now, the sampling step
∆ is sufficiently small that the Nyquist sampling criterion is
respected. The samples can then be represented by

Em =

n∑

i=1

ai exp (jνi (f0 + m∆))

=

n∑

i=1

ai exp (jνif0) exp (jνim∆),

m = 0, 1, ...,M − 1.

(8)

Because the factor exp (jνif0) is constant, it can be included
in the coefficient:

Em =
n∑

i=1

αi exp (jνim∆), (9)

with αi = ai exp (jνif0).
One can use VEXPA to reduce the number of samples M

by means of a co-prime scale-and-shift configuration using a
possible sub-Nyquist sampling step. The sampling configura-
tion is visually portrayed in Fig. 2. The co-prime parameters σ
and ρ define two subsets of samples. First, the scaled samples
are defined as

Emσ =
n∑

i=1

αi exp (jνimσ∆)

=
n∑

i=1

αi(Ψ
σ
i )m, m = 0, 1, ...,Mσ − 1,

(10)

where Ψi = exp (jνi∆). Note that ∆ need no longer be
the true sampling step, but may be virtual, as one only truly
samples at multiples of σ∆.

With the samples in (10), VEXPA first uses an underlying
Prony-based exponential analysis method that computes the
base terms Ψσ

i = exp (jνiσ∆). In general, Prony-based
methods can construct models of up to n = bMσ/2c
terms, where Mσ is the number of samples in the scaled
subset. Subsequently, the coefficients αi for i = 1, ..., n are
determined by solving the Vandermonde linear set of equations
in (10).

Since the sampling step σ∆ may now be larger than the
Nyquist sampling limit, the frequencies νi can no longer be
recovered unambiguously from the base terms Ψσ

i [13].

Second, a subset of samples is created to mitigate this
problem. This subset makes up the so-called shifted samples,
defined as

Emσ+ρ =
n∑

i=1

αi exp (jνi (mσ + ρ) ∆)

=
n∑

i=1

(αiΨ
ρ
i )(Ψ

σ
i )m m = 0, 1, ...,Mρ − 1.

(11)

As with the scaled subset, this set of equations is solved to find
the coefficients αiΨ

ρ
i . Since the coefficients αi have already

been computed by using (10), the shifted base terms are found
as the quotients (αiΨ

ρ
i )/αi for i = 1, ..., n.

From the Mσ samples in the scaled subset, 2n parameters
are found, i.e., the n base terms Ψσ

i , and the n coefficients αi.
Since only n parameters are obtained from the shifted subset,
the number of samples in this subset need only be half of that
of the scaled subset. Here it should be noted that n is unknown
and requires an estimation technique, which is described in an
upcoming section.

The goal is to interpolate the field values over a specific
frequency range, and therefore we want to distribute the used
samples evenly to achieve an adequate coverage of this range.
Since the number of samples in the shifted subset is only
half that of the scaled subset, a shifted sample is placed
after every second scaled sample. Essentially, this means that
the indices m = 0, 1, ...,Mρ − 1 in (11) are changed to
m = 0, 2, ..., 2(Mρ−1). The sample configuration is visually
described in Fig. 2.

Fig. 2. Placement of the sampling points for the co-prime scale-and-shift
sparse configuration. For this case, the parameters are σ = 5, ρ = 2,
Mσ = 6 and Mρ = 3. Note that a shifted sample is placed only after
every second scaled sample.

Now that both the scaled and shifted base terms are known,
the de-aliasing method presented in [13] is used to compute
the base terms Ψi = exp (jνi∆) from the aliased base terms
and the co-prime parameters σ and ρ.

Finally, the electric field values are computed at the frequen-
cies of interest by using the continuous exponential model,
after which an accurate representation of the antenna noise
temperature or aperture efficiency can be found.

B. Underlying Method

The first step while using VEXPA in a new application is
to decide which underlying Prony-method is used to compute
the scaled base terms Ψσ

i . In this case, methods using the
covariance matrix are immediately discarded, since an accurate
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estimation of the covariance matrix requires many temporal
samples. As the electric field components are independent of
time, we only have one snapshot or time sample with which to
work. Therefore methods such as MUSIC and Root-MUSIC
are unfitting. The Matrix Pencil method [14] seems to be the
ideal underlying method to use in this application. In short,
the MP method constructs Hankel matrices from the received
signals, after which it uses the singular value decomposition
(SVD) to obtain the signal and noise subspaces. The base
terms Ψσ

i then equal the generalised eigenvalues of the signal
subspace.

C. Choosing the Number of Terms

As with most subspace-based methods, the MP method
usually estimates the number of exponential terms n by
exploiting the structure of the SVD. When dealing with a
sum of n exponentials, there will be n singular values that
are significantly larger than the others, signifying the signal
subspace. Using this information, we can estimate the number
of terms by counting the number of singular values that are
larger than a certain threshold, i.e., those for which

σi/σmax > 10−p (i = 1, ..., N) (12)

is true. Here, N is an overestimation of the number of terms.
The maximum number of terms that can be returned by the
MP method is bMσ/2c and therefore N is often set to this
value. The threshold value p can be chosen by considering
noise levels.

In many applications, this is a very accurate method to
estimate n. However, since we do not have exact exponential
signals at hand but rather want to approximate these signals
by using exponentials, there is not such a clear distinction be-
tween the singular values corresponding to the signal subspace
and those of the noise subspace. This can be seen in Fig. 3.
Here, the ratio of the singular values to the largest singular
value is shown. The red line indicates the singular values when
using the sparsely sampled data of the Eθ component for a
particular reflector and direction. The black line indicates the
same, but when using data from a synthetic exponential signal
containing four terms. Specifically, the exponential signal is
the one found from an accurate reconstruction of the real data.
For the black line, there is a clear drop in the ratios between
singular value σi = 4 and σi = 5. The number of terms
can therefore be confidently estimated as n = 4. On the other
hand, for the red line, the decline in ratio values is much more
gradual, making the distinction between the signal and noise
subspace more vague. Still, this singular value approach is a
good starting point to get a rough idea of the number of terms
needed to reconstruct the signals. If, for example, p is set equal
to 3 in (12), this would result in a first estimate of n = 6
for the real data of Fig. 3.

After this first estimate is made, the rest of the algorithm
proceeds. Once the reconstruction of E is completed, an eval-
uation is performed to see if enough exponential terms have
been used to accurately interpolate the signal. This is done by
comparing the estimates |Ê|2 to the true values of |E|2 at the
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Fig. 3. The ratios of the 18 singular values to the largest singular value. The
black line shows the ratios for the singular values when using a synthetic
exponential signal with n = 4 terms. The red line shows those when using
the electric field data.

sampled points. These are sampled at the frequencies defined
as fmσ := f0 + mσ∆ for m = 0, 1, ...,Mσ − 1 and
fmσ+ρ := f0 + (mσ + ρ) ∆ for m = 0, 2, ..., 2(Mρ− 1).
The estimates |Ê|2 are computed by using the computed
coefficients and base terms in the continuous model (7) at the
respective frequencies, and subsequently squaring the modulus
of these values. Note that the squared values are compared
rather than the absolute values, since these are the ones used in
the reconstruction in (4) and (5). If the approximated values are
close enough to the true ones, the number of exponential terms
is regarded as adequate to reconstruct the signals accurately.

To set a criterion for determining if the approximation is
satisfactory, the relative error is used. However, for some of the
interpolation points the magnitude of the sample is inherently
small. For these cases, the relative error would misleadingly
appear to be very large. The absolute error is therefore rather
used for these samples. To summarize, the error is calculated
as

ε(f) =
||E(f)|2 − |Ê(f)|2|

|E(f)|2 (13)

if

|Ê(f)|2 ≥ max(|Êmσ|2 ∪ |Êmσ+ρ|2)

1000
(14)

and else,
ε(f) = ||E(f)|2 − |Ê(f)|2|. (15)

Furthermore, two different domains are defined, namely the
centre and the edges. The set of centre frequencies is defined
in (19). The remaining frequencies are classified as the edge
frequencies. Because the interpolation will evidently be less
accurate towards the ends of the interpolation range, different
tests are used for these two domains, with the one for the edge
frequencies being less stringent.

An approximation is seen as acceptable if

max(ε(f)) < γ, (16)
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where γ is a threshold value, defined as γe = 2× 10−2 and
γc = 1× 10−2 for the edge and centre cases, respectively.
Thus, the error ε is also defined separately for the edge and
centre cases as

εe = max {ε(f) : (f = fmσ or f = fmσ+ρ) and f /∈ C},
(17)

and

εe = max {ε(f) : (f = fmσ or f = fmσ+ρ) and f ∈ C},
(18)

where

C={f :f0 + 0.1(Mσ − 1)σ∆ ≤ f ≤ f0 + 0.9(Mσ − 1)σ∆} .
(19)

If this test fails, an iterative process is started: the estimated
number of terms is incremented by 1, and the reconstruction
procedure recommences. This is repeated until either the
approximation is close enough to the true signal, or the
maximum number of terms that can be used, i.e. bMσ/2c,
has been reached. If the latter case occurs, the final estimated
number of terms is set to the value of n for which the error ε
is the smallest.

An example is shown in Fig. 4. As a first guess using
the singular values, the method estimates n to be 4. The
succeeding reconstruction of |Eθ|2 is shown in the top graph.
The errors at the sampled points (indicated by the blue and
green dots) are investigated and found to be too large for
a confident reconstruction. The iterative process starts by
incrementing n to n = 5. This process continues until the
error at the sampled points is sufficiently small, which happens
at n = 9 for this case, and is shown in the bottom graph.

Since the maximum number of terms is directly proportional
to the number of samples available, there is a trade-off that
occurs when deciding on the number of samples to use: if
a small number of samples is chosen to reduce computation
time, it might be that not enough terms are available to create
an accurate reconstruction. However, a number of samples cor-
responding to a sampling rate significantly below the Nyquist
limit should still be sufficient, as will be shown in the Results
section. An attractive feature that is left as future work will
be to find a procedure to determine the number of samples
required for an accurate reconstruction automatically.

D. Filtering High Frequency Terms

A physical limitation exists on the rate of variation of
the electric field over frequency in reflector antennas. This
limitation is determined by the maximum distance as

νmax =
2πDms

c
, (20)

where c is the speed of light. This means that terms returned
by VEXPA with frequencies that are higher than this value
should be discarded. In the case that one or more terms are
discarded for this reason, new coefficients αi are computed
for the remaining exponential terms.

A summary of the algorithm is given in Algorithm 1.

Algorithm 1 Electric field reconstruction using VEXPA
Input: Field data Eθ(f,Ω) and Eφ(f,Ω), sampled at one

or multiple directions Ω on discrete sphere S and at
frequencies fmσ = f0 + mσ∆ for m = 0, 1, ...,Mσ − 1
and at frequencies fmσ+ρ = f0 + (mσ + ρ)∆ for
m = 0, 2, ..., 2(Mρ − 1).

Output: Continuous model for Êθ(f) and Êφ(f) with n
complex coefficients and frequencies, as in (7).

1: Set edge and centre error thresholds γe = 2× 10−2 and
γc = 1× 10−2.

2: Set nmax = bMσ/2c.
3: for each direction Ω in S do
4: if |Eθ| � |Eφ| for collected samples then
5: Set Êθ equal to the mean of the samples for all

interpolation frequencies.
6: else
7: Get a first estimate of the number of terms n by using

the SVD and the threshold p = 6, defined in (12).
8: repeat
9: Use the Matrix Pencil method to compute the base

terms Ψσ
i = exp (jνiσ∆) for i = 1, ..., n.

10: Compute the coefficients αi for i = 1, ..., n by
using the Vandermonde linear system in (10).

11: Compute the base terms Ψρ
i = exp (jνiρ∆) for

i = 1, ..., n by using the Vandermonde linear
system in (11).

12: Compute the de-aliased base terms Ψi =
exp (jνi∆) by finding the intersections of the sets
(Ψσ

i )
1
σ and (Ψρ

i )
1
ρ for i = 1, ..., n.

13: Compute frequency information νi = −j log (Ψ)
∆ for

i = 1, ..., n.
14: if νi > νmax as defined in (20) for any i then
15: Repeat step 10 with high frequency terms dis-

carded.
16: end if
17: Reconstruct Eθ as follows: Êθ =∑n

i=1 αi exp (jνim∆) at desired interpolation
points m = 0, 1, ...,M − 1.

18: Compare Eθ and Êθ at the sampled points and
find the error εe (defined in (18)) and εc (defined
in (17)) for the edge and centre frequencies, re-
spectively.

19: n← n+ 1
20: until (εe < γe and εc < γc) or n = nmax
21: if n = nmax then
22: Find n that minimises εe and εc.
23: Execute steps 9 to 17 with n set to the value found

in step 22.
24: end if
25: end if
26: if |Eφ| � |Eθ| for collected samples then
27: Set Êφ equal to the mean of the samples for all

interpolation frequencies.
28: else
29: Execute steps 7 to 24 for Eφ.
30: end if
31: end for
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Fig. 4. At its first iteration, the method initially estimates n = 4, for which
the reconstruction is shown in the top graph. An accurate reconstruction is
achieved at n = 9, for which the reconstruction is shown in the bottom
graph.

TABLE I
REFLECTOR DIMENSIONS: APERTURE EFFICIENCY EXAMPLE

D Dms Dm Ds dc θe

13.5 m 16.8 m 15.7 m 4.2 m 0.5 m 48.9 deg

IV. EXPERIMENTAL SETUP

A. Aperture Efficiency

As an example, consider the offset dual reflector system as
portrayed in Fig. 1. The dimensions are summarised in Table I.
The antenna feed is a -10 dB edge taper Gaussian pattern feed
polarised in the symmetry plane.

The reflector system is simulated using physical optics (PO)
including physical theory of diffraction (PTD) methods with
the software GRASP [15]. The interaction between the feed
and reflector is ignored for this illustration, but can be added
when using the method of moments (MoM) as simulation
method. A full simulation is performed at 251 frequency points
in the simulation bandwidth 500 MHz - 1000 MHz, translating
to a sampling step of ∆ = 2 MHz. This provides us with a

TABLE II
VEXPA PARAMETERS: APERTURE EFFICIENCY EXAMPLE

σ ρ Mσ Mρ

21 11 12 6

TABLE III
REFLECTOR DIMENSIONS: NOISE TEMPERATURE EXAMPLE

D Dms Dm Ds dc θe

6 m 8.7 m 7.5 m 2 m 1 m 45 deg

densely-sampled function that can later be used as validation
data.

Since the aperture efficiency calculation only uses the
co-polarisation electric field evaluated at a single direction,
VEXPA only needs to be applied to this direction (θ = 0◦,
φ = 0◦). The parameters used by VEXPA is sum-
marised in Table. II. The total number of samples is equal
to Mσ + Mρ = 18.

Using (6), the maximum Nyquist sampling limit is calcu-
lated to be FSmax = 8.9 MHz. The maximum sub-sampled
sampling step used by VEXPA is FS = σ∆ = 42 MHz.
This is clearly well above the Nyquist limit, which emphasises
the advantage of using VEXPA. From a different perspective,
if the Nyquist sampling step was used instead of sub-sampling,
a total of at least 58 samples would have to be used, which
is significantly more than the 18 used by VEXPA. The results
are shown in Fig. 5 and are discussed in an upcoming section.

B. Antenna Noise Temperature

A reflector system with parameters as in Table III and a
Gaussian pattern with -10 dB edge taper is simulated. The
tipping angle of the reflector is θp = 0◦. The simulation
is performed at 801 frequency points in the range 700 MHz
- 1500 MHz, sampled at a sampling step of ∆ = 1 MHz.
These densely-sampled data are used as a validation set. In
order to evaluate the integral in the numerator of (2), the field
components are sampled on a spherical grid at a resolution
of 1◦ for elevation angle θ and 2◦ for azimuthal angle φ.
This totals to 32,761 directions, each requiring a reconstruction
using VEXPA.

The parameters used by VEXPA are tabulated in Table IV.
A total of Mσ + Mρ = 55 samples are used. According to (6),
the maximum sampling step that can be used to avoid aliasing
is 17.2 MHz, but since the noise temperature ripple consists
of contributing factors from ripples in all the electric fields on
the grid, classical Fourier methods would need to be used on
the noise temperature data rather than the electric field data.
This would imply a sampling limit of 17.2/2 = 8.6 MHz, or
a total of 95 samples. By using 55 samples and a maximum
sampling step of FS = σ∆ = 22 MHz, VEXPA introduces
the advantage of fewer simulated frequency points through the
use of sub-sampling. The results are shown in Fig. 8 and are
discussed in an upcoming section.
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TABLE IV
VEXPA PARAMETERS: NOISE TEMPERATURE EXAMPLE

σ ρ Mσ Mρ

22 5 37 18

V. RESULTS

A. Aperture Efficiency

The resulting reconstructed co-polarised electric field com-
ponent is shown in Fig. 5. The solid black line portrays the full
GRASP simulation at 251 frequency points, whereas the red
dashed line portrays the reconstructed function as determined
by VEXPA. The scaled and shifted samples as defined in (10)
and (11) are displayed as blue and green markers, respectively.
The reconstructed function clearly follows the original one
closely, meaning that an accurate model was determined by
VEXPA. Subsequently, the aperture efficiency is calculated
from both the original and reconstructed field component,
using (5), and compared in Fig. 6. In the top graph, the original
and reconstructed function are portrayed, where it can be seen
once again that the latter follows the former. Specifically,
the shape of the frequency ripple is accurately captured by
the reconstructed version. The percent error is shown in the
bottom graph. The mean percent error is 0.024 %, whereas the
maximum percent error is 0.17 %. It is clear that VEXPA is
capable of characterising the ripple in the aperture efficiency.
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Fig. 5. The reconstruction of the co-polarised electric field component in the
direction of the main beam, using VEXPA. The function from the full GRASP
simulation is indicated by the black solid line, whereas the reconstructed
function is indicated by the dashed red line. A total of 18 samples are used
by VEXPA, which are indicated by the blue and green markers.

Next, the VEXPA-based method described in [6] is used
to extract the frequency components from the reconstructed
ripple. The method is used with one slight change: in [6] n is
determined by use of cluster analysis, whereas we now use the
same iterative method described in a previous section of this
paper. The results are shown in Fig. 7. The horizontal axis
displays the oscillation period. A peak located at a smaller
period implies a faster varying ripple component [6]. Along
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Fig. 6. The resulting aperture efficiency reconstructed by using the recon-
structed co-polarised electric field component. In the top graph, the function
from the full GRASP simulation is indicated by the black solid line, whereas
the reconstructed function is indicated by the dashed red line. The bottom
graph shows the percentage error of the efficiency reconstruction.

with the peaks determined by VEXPA, which are indicated
by the purple stems, a Fourier spectrum is shown. The stems
are normalised to the value of the maximum peak. An FFT is
performed on the full simulation aperture efficiency function
that has been detrended, which means that a trend line is
subtracted from the original function. The FFT spectrum
corroborates the results of VEXPA with some peaks not
identified by VEXPA. Since VEXPA accurately reconstructs
the function accurately without these components, as seen in
Fig. 6, it can be concluded that these are superfluous peaks.
It was also seen in [6] that the detrending of the data tends
to introduce artificial ripple components. In a practical sense,
VEXPA has the advantage that there is no need to preprocess
the data through detrending, as well as the fact that no peak-
picking technique is required, since actual components are
returned rather than a spectrum [6].

B. Antenna Noise Temperature

VEXPA is used to find reconstructions for the electric
field components of all directions on the specified integration
grid, after which (2) is used to find a reconstructed noise
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Fig. 7. Frequency contents delivered by VEXPA and the Fourier transform
using the reconstructed aperture efficiency and full simulation, respectively.
The results of both methods are in agreement, but VEXPA is the preferred
method as no preprocessing of the data or peak-picking technique are required.

temperature. The resulting reconstruction can be seen in the
top graph of Fig. 8, with the percent error in the bottom
graph. The maximum and mean percent error are 0.18 %
and 0.068 %, respectively, with the reconstructed function
following the original closely. In Fig. 9, VEXPA is again
used to identify the frequency components of the reconstructed
noise temperature, which are indicated by purple stems. The
Fourier spectrum of the noise temperature of the full sim-
ulation is presented in black. VEXPA accurately finds the
correct frequency components, which is seen by the peaks of
the spectrum aligning with the positions of the purple stems.
Once again, there are some superfluous peaks in the Fourier
transform.

VI. CONCLUSION

In this paper, we present a method to reconstruct electric
field patterns of reflector antennas from sub-sampled data
using exponential analysis. By sampling at a sub-Nyquist
rate, the number of simulations can be reduced, which saves
computational time. From the reconstructed electric fields,
accurate representations of reflector properties such as the
aperture efficiency and antenna noise temperature can be
found, as well as its frequency contents.

Future work includes developing a technique to determine
the number of required samples or sub-Nyquist sampling rate
automatically.
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Fig. 8. The resulting antenna noise temperature obtained from the recon-
structed electric field components on a grid. In the top graph, the function
from the full GRASP simulation is indicated by the black solid line, whereas
the reconstructed function is indicated by the dashed red line. The bottom
graph shows the percentage error of the noise temperature reconstruction.
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Fig. 9. Frequency contents delivered by VEXPA and the Fourier transform
using the reconstructed antenna noise temperature and full simulation, re-
spectively. The results of both methods are in agreement, but VEXPA is the
preferred method as no preprocessing of the data or peak-picking technique
are required.
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