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ABSTRACT
The Architecture Analysis and Design Language (AADL) is a rich
language for modeling embedded systems through several con-
structs such as component extension and refinement to promote
modularity of component declarations. To ease processing AADL
models, OSATE, the reference tool for AADL, defines another model
(namely ‘instance’ model) computed from a base ‘declarative’ mod-
el/s. An instance model is a simple object tree where all information
from the declarative model is flattened so that tools can easily use
this information to analyze the system. However for modifications,
they have to make changes in the complex declarative model since
there is no automated backward transformation (deinstantiation)
from instance to declarative models. Since the instance model is a
‘view’ of the declarative model, this is a view-update problem. In
this paper, we propose the OSATE Declarative-Instance Mapping
Tool (OSATE-DIM1), an Eclipse plugin for deinstantiation of AADL
models implementing a solution of this view-update problem. We
evaluate OSATE-DIM with a benchmark of existing AADL model
processing tools and verify the correctness of our deinstantiation
transformations. We also discuss how our approach could be use-
ful for decompilation of Object-Oriented languages’ intermediate
representations.

CCS CONCEPTS
• Computing methodologies → Modeling methodologies; •
Computer systems organization→ Embedded and cyber-physical
systems; • Software and its engineering→ Software creation and
management.

KEYWORDS
Model-Driven Engineering, Cyber-Physical Systems, Embedded
Systems, View-Update Problem, AADL

1https://mem4csd.telecom-paristech.fr/blog/index.php/osate-dim/
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1 INTRODUCTION
The Architecture Analysis and Design Language (AADL) [9] was
developed to model real-time embedded systems composed of soft-
ware and physical execution platform components tightly coupled
with actuators and sensors (also physical components) to inter-
act with their environments. It is standardized by the Society of
Automotive Engineers (SAE-AS55062) for scheduling/flow-control
analyses and code generation for various embedded platforms. It is
supported by the Open-Source AADL Tool Environment (OSATE3),
the reference tool for AADL released under the Eclipse Integrated
Development Environment (IDE).

Factorization of component declarations in AADL is made pos-
sible through constructs like extensions, refinements, inheritance,
and different levels of component abstractions allowing for a rich
specification of the structural and behavioral characteristics of em-
bedded systems. This richness of the language complicates the
analysis of an AADL model. To solve this, OSATE provides another
simpler Instance metamodel. An Instance model represents the run-
time configuration of a system. It is generated from the original
Declarative model through a transformation called Instantiation.
During Instantiation, all properties of the system components and
their elements like Features, Connections and Modes are collected
from all parent classifiers/specifications, and collapsed into one
entity. The architecture of the system is represented in the Instance
model through a containment tree of components and other ele-
ments. Traces in the form of references relate the generated Instance
elements to their corresponding Declarative elements.

Many AADL analysis tools such as RAMSES [19], MC-DAG [17],
Cheddar [20] and OSATE itself use the generated Instance model
for analysis, but for refinement/modification they have to use the
traces to identify locations in the Declarative model where changes
are to be made. Updates performed by tools include (but are not
limited to) addition of computed properties to system components
or change in the structure of the system by application of some
design patterns.

Artifact available: https://doi.org/10.5281/zenodo.6971720
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Figure 1: Activity diagram of AADLmodel analysis in OSATE

It becomes increasingly difficult to track each change in the
Declarative model as it could (undesirably) propagate to other ele-
ments through extensions, refinements, and property inheritances.
Also, it is imperative to decide the level of abstraction at which
the modification should be made. Conversely, directly modifying
the Instance model is much simpler. To maintain consistency of
information in such a case, the changes should be reflected back in
the Declarative model. Since the Instance model is essentially a mu-
table View of the Declarative model, this is the Instance Model-View
Update Problem in AADL, derived from the well known View-Update
Problem in database theory.

It will be very beneficial for the AADL-users/developers com-
munity to have an automated solution for the Instance Model-View
Update Problem in AADL, so that users/tools need only focus on
modification of the Instance model directly, which will greatly sim-
plify tools development.

In this paper, we present an approach and tool forDeinstantiation
(backward transformation from Instance to Declarative model) of
AADL models in the form of an Eclipse-based plugin as an exten-
sion of OSATE. The proposed novel tool is called the OSATE-based
Declarative Instance Mapping (OSATE-DIM3), which greatly sim-
plifies the processing of AADL models throughout the design-space
exploration process illustrated in Fig. 1.

The contributions of this paper are:
(1) an approach and Eclipse plugin tool, OSATE-DIM, for auto-

mated incremental Deinstantiation of AADL models,
(2) a scope for the application of the proposed approach to Object-

Oriented Programming (OOP) languages like C++, Rust, and
LLVM-IR,

(3) and improvements suggestions for the current Instantiation of
AADL models.
This paper is structured as follows: Section 2 describes the theo-

retical background of the work including AADL and its Declarative
and Instance metamodels released in OSATE, and the View-Update
Problem and its possible solutions. Section 3 discusses the method-
ology for Deinstantiation through OSATE-DIM, as a case-by-case

analysis of the possible modifications using a running example.
Section 4 explains the implementation of OSATE-DIM, including
the supported Deinstantiation scenarios. Section 5 describes the
benchmark and case-studies used to validate OSATE-DIM. Section
6 discusses the lessons learnt and our recommendations. Section 7
concludes the paper.

2 BACKGROUND
In this section, we first introduce a subset of the AADL language
required to understand this work and its reference tool OSATE.
Then we present background on the View-Update problem and
show how its notions map to the problem addressed in this work.

2.1 AADL and OSATE
The AADL language, formally specified as a grammar in the stan-
dard, is implemented as a metamodel in OSATE. The core concepts
of the AADL language are shown in the right part of Fig. 2 as
depicted by the OSATE Declarative metamodel4.

2.1.1 AADL Core Language. AADL is a component-based archi-
tecture description language. Its Components represent hardware
or software entities as parts of a modeled system. They can be
categorised as data, subprogram, subprogram group, thread, thread
group, process, memory, bus, virtual bus, processor, virtual proces-
sor, device, system, and abstract. Their structure is defined through
Component Classifiers which are of two kinds: Component Type and
Component Implementation. Similar to interfaces in OOP languages
aComponent Type defines the external structure of a component and
its connection points for interaction with other components. Similar
to classes in OOP languages, a Component Implementation defines
the internal structure of a component including Subcomponents and
their Connections. A Component Implementation "implements" a
Component Type and there can be several implementations defined
for a given Type.

The aforementioned connection points defined by Component
Types for transmission of information to and/or from other compo-
nents consist of Features. Features can be of different kinds like Ports
(event, data, event-data), Parameters, Access (data, bus, subprogram)
with different semantics.

The aforementioned Subcomponents contained in a Component
Implementation are Components within a Component. They are spec-
ified with a Component Classifier to define them. Connections are
linkages between Features to define sharing of data or control be-
tween Components. They have the same categories as Features (port,
access, parameter), since a Connection can only connect Features of
the same category.

2.1.2 Richness (Classifier Extensions, Subcomponent/Feature Re-
finements, Property Visibility, Component Libraries). Similar to OO
languages, the AADL Declarative language defines various kinds
of relations between model elements in order to favor reuse of
component specifications. A Type can extend another Type subject
to conditions like category, etc. Similarly, an Implementation can
extend another Implementation. Within a Type that extends another,

4Although not shown in Fig. 2, there are subclasses of Component Implementation,
Component Type and Subcomponent for every component category in the Declarative
metamodel. Those are not shown due to space limitations.
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Figure 2: Subset of AADL. The red dotted line separates the Instance (left) and Declarative (right) metamodels.

Features from the super-Type can be refined. Similarly, Subcompo-
nents and Connections in an Implementation can be refined subject
to conditions. The structure of the system is emulated through a
containment hierarchy of Components and their Subcomponents
specified in the Implementation. Properties can be set to any element
of an AADL model, and their visibility follow a complex search
algorithm starting from the element itself to its classifier classifier
extension, etc. In addition, Properties can be of inherit kind, meaning
that a Property set in a parent Component Implementation will be
inherited by all its Subcomponents.

These constructs allow the definition of complex cyber-physical
systems in a highly modular fashion. There are many standard
component libraries in the literature [13], which allow reuse of
previously defined components. Users can import these component
declarations located in Packages to be used into their own Packages.

2.1.3 Instance Metamodel. In OSATE, an Instance model is gen-
erated from a Declarative model, albeit with significant loss of
information. A subset of the Instance metamodel is shown in the
left part of Fig. 2. During Instantiation, a System Implementation
Classifier is selected as the root Declarative element from which
a System Instance is created and set as the root element of the
newly created instance model. This element is computed by col-
lecting all Properties, Subcomponents, Features, Connections, Modes,
etc. from its Implementation, its super-Implementations, its Type,
and its super-Types. Similarly, its Subcomponents are recursively

instantiated to Component Instances to arrive at a simple tree-graph
model of containment.

Due to the Instantiation procedure, information such as Clas-
sifier extensions, Subcomponent/Feature/Connection refinements,
Property inheritance, Subprogram calls, Requires-modes clause, etc.
are unavailable in an Instance model. One special characteristic of
Instantiation is the formation of Semantic Connections, where a Con-
nection Instance is formed from the ultimate source to the ultimate
destination by following a sequence of Connection declarations on
the Declarative model.

It should be noted that the name Instance metamodel may be
confusing since it does not refer to the standard type-instance re-
lationship in MDE. Indeed, there is only one Instance model for
a given System Implementation of the Declarative model, but in
general there will be several Instance models for several System
Implementations so that different designs can be explored. The OS-
ATE Instance metamodel can be seen as the semantic domain of
constructs of the Declarative language used to modularize specifi-
cations such as Component extension, Subcomponent refinement
and Property visibility. Nevertheless, we keep using these terms in
this paper since they have been used for many years by the AADL
community.

2.2 View-Update Problem
The View-Update is a classic problem in database theory appearing
first in [2]. A View is a subset of the core database obtained as a
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Figure 3: (a) GeneralizedView-Update Problem (b) Delta-based
Lens with 3 ‘very-well-behavedness’ laws adapted from [8]

result of a user query, and acts as an interface to the core database.
It is often a security measure by allowing the Viewer access to only
authorized information [5] generated for that View. In application of
this problem to the model-driven domain, the core database is called
the Model State, say 𝑠 . In our case, the Model State is the Declarative
AADL model. On the other hand, the View is the Instance model.

The View-Update formalisms illustrated in this section are stan-
dard within the community. They originated in [14], and are further
reported in [6, 11]. We refer the reader to these articles for more
information.

Mathematically, for Model State 𝑠 , in the Model Space, say 𝑆

(i.e. 𝑠 ∈ 𝑆), the View-Generating Function 𝑓 : 𝑆 ↠ 𝑉 , is a non-
injective surjective function (↠ means surjective relation) over 𝑉 ,
the View Space. The View Space is the set of all Views, 𝑣 (i.e. 𝑣 ∈ 𝑉 ).
Therefore, 𝑓 (𝑠) = 𝑣 . In our case, the View-Generating Function 𝑓 ,
is the Instantiation model transformation that generates Instance
models.

The View-Update 𝑢 ∈ 𝑈 : 𝑉 → 𝑉 defines the modification
of the View, where 𝑈 is a complete set of possible View-Updates.
The View-Update produces a refined/modified View-State, say 𝑣 ′

(∴ 𝑣 ′ = 𝑢 (𝑣)). The ordering relation in𝑈 comes from priority-based
ranking of the View-Updates. In our case, the View-Update is the set
of modifications (automated or manual) carried out on the original
Instance model, to produce the refined/modified Instance model.

An update 𝑢 in the View has to be translated to the sourceModel
State, 𝑠 , to maintain consistency of information. Let the Translation
be𝑇 , and the Model-Update corresponding to 𝑢 be𝑇 (𝑢) = 𝑇𝑢 : 𝑆 →
𝑆 . The Translation T is the solution of the View-Update problem. The
Translation𝑇 is said to “have no side effects", iff ∀𝑢 ∈ 𝑈 , 𝑓 (𝑇𝑢 (𝑠)) =
𝑢 (𝑓 (𝑠)). In our case, this Translation is the task for OSATE-DIM.

There are many theories and solutions in the literature for the
View-Update Problem. In the following, we discuss the theory of
Lenses, which is the most relevant for the View-Update Problem.

2.2.1 State/Delta-based Backward Transformation. Lenses are an
asymmetric Bidirectional Transformation (BX) framework [8]. Asy-
mmetric meaning: in the two models being synchronized, one (In-
stance) is derived from the other (Declarative), and the View-Gene-
rating Function (Instantiation) is non-injective. Two functions, get
and put, define the Lens. get is the View-Generating Function 𝑓 ,
whereas put is the Translation 𝑇 .

Most BX frameworks are state-based (rather than delta-based),
where put takes states of models as input and ignores how updates

were actually done. This is due to the fact that it was only recently
realized that deltas could be valuable, but also because deltas are
not always available since modifying tools may not have recorded
them.

However the state-based approach introduces many synchro-
nisation problems. It has been proven in the literature, ∃𝑢1, 𝑢2 ∈
𝑈 |𝑢1 ≠ 𝑢2, 𝑢1 (𝑣) = 𝑢2 (𝑣),𝑇𝑢1 ≠ 𝑇𝑢2 , 𝑓 (𝑇𝑢1 (𝑠)) = 𝑓 (𝑇𝑢2 (𝑠)) where
𝑓 (𝑠) = 𝑣 . This means there exist different View-Updates that have
the same net result on the View, but a state-based framework fails
to capture this difference since it ignores the update procedure. For
example, an update-modification of an element can also be achieved
through deletion and addition of the modified element.

The updated Model State 𝑠 ′ can be significantly different for
these two updates. This is an ambiguity that cannot be captured in
state-based Lenses. Hence, we opt for the Delta-based framework
that uses the precise update information 𝑢 as input and outputs a
corresponding𝑇𝑢 . In the Delta-based Lens the put uses information
from the original Model State, 𝑠 , and the View-Update, 𝑢, as input,
to generate theModel-Update,𝑇𝑢 as shown in Fig.3(b). A “very-well
behaved" Lens satisfies the three laws given in Fig. 3 (b). The laws
are derived for a delta-based Lens from [8].

In this article, the get function of the BX Lens is defined by the
current Java-based Instantiation forward transformation defined in
OSATE, and the put function is the Deinstantiation performed by
OSATE-DIM.

3 METHODOLOGY
3.1 Principles, Requirements and Assumptions
As shown earlier, the Deinstantiation of AADL models is a View-
Update problem, which allows us to borrow concepts from this
domain. From [7], for a given Translation𝑇 , we get the conditions for
‘translatability’ of a View-Update, which is a desirable characteristic.
A View-Update 𝑢, is translatable to 𝑇𝑢 if:
(1) there is a unique translated update𝑇𝑢 , corresponding to each 𝑢,
(2) there are no extraneous (unnecessary) updates in𝑇𝑢 , i.e. unnec-

essary side-effects on Model State 𝑠 ,
(3) there are no side-effects on the View State 𝑓 (𝑇𝑢 (𝑠)), 𝑓 (𝑇𝑢 (𝑠)) =

𝑢 (𝑓 (𝑠)),
(4) and 𝑢 preserves model validity.

The uniqueness criterion is not trivial to meet since the View-
Generating Function 𝑓 is non-injective. Therefore, for Deinstanti-
ation we need to find a unique 𝑇𝑢∀𝑢 ∈ 𝑈 through incremental
Translations given semantic/side-effect constraints that allow dis-
ambiguation of the multiple Deinstantiation choices. [7] stresses on
the desire for 𝑇𝑢 to be minimal to help accomplish requirement (2)
for ‘translatability’. This also aligns with our principle of making the
least Model Update as possible, to avoid (undesirable) propagation
of these modifications.

There are many Lens Laws in literature, which define the relation-
ship between the get and put functions of the Lens. The literature
suggests that Lenses be at least ‘very-well behaved’ to simplify anal-
ysis and composition (if required) of the Lens. Hence, it is desirable
for the Lens to satisfy the three laws defined in Fig.3(b).

We also desire, given the complexity of AADL and various
choices to be made for Deinstantiation, to give users flexibility
in deciding the course of the Deinstantiation depending on their
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knowledge about the model being Deinstantiated. Flexibility is an
important principle given the complexity of the language, and the
methodology for providing flexibility in the OSATE-DIM approach
will be described in Section 4.2.

We assume that:

(1) The root model element is a System Implementation,
(2) Features are only contained within Components, i.e. there are no

Features within Feature Groups (Feature Groups are collections
of Features which can be connected as a single unit outside the
Component),

(3) The user ensuresView-Updates preserve semantic consistency. If
the updated View does not satisy semantic constraints, OSATE-
DIM and OSATE return errors while serializing the Declarative
model during the model save operation.

3.2 Running Example
Our running example is a simplified version of the sampled-commu-
nications example project from the RAMSES tool. Its AADL In-
stance specification (left part of Fig. 4) consists of a system contain-
ing a Memory Subcomponent ‘the_mem’, a Processor Subcomponent
‘the_cpu’, and a Process Subcomponent ‘the_proc’ having two Thread
Subcomponents, ‘the_sender’ and ‘the_receiver’ that communicate
with each other through a Port Connection. It is a model of a simple
producer-consumer pattern for which implementation code can be
automatically generated for different operating systems platforms.

The Declarative model of sampled-communications is shown on
the right part of Fig. 4. Traces from the Component Instances to
their Classifiers on the Declarative side are represented as red edges,
whereas traces from Component Instances to their Subcomponent
definitions on the Declarative side are shown as blue edges.

3.3 View-Update Translation Rules
In this Section, we describe the Model Update 𝑇𝑢 corresponding to
each View-Update 𝑢, in the set of updates 𝑈 , currently supported
by OSATE-DIM. This is done through the running example. Due
to lack of space, we cannot describe the rules for Deinstantiation
of all kinds of Instance objects. However, for an in-depth analysis
of the Translation rules associated with OSATE-DIM, we refer the
reader to the rules webpage5.

3.3.1 Updating a Component Instance’s Name. -
Example: Change the name of ‘the_cpu’ Component Instance to

‘new_cpu’.
The simplest Translation of such a View-Update is to change

the name of the corresponding Subcomponent ‘the_cpu’ contained
within the Component Implementation ‘main.linux’.

3.3.2 Adding a new Component Instance. -
Example: Addition of a third Thread Component Instance named

‘the_viewer’ to ‘the_proc’.
To add the new Component Instance, the simplest Translation is

to add a Thread Subcomponent in the Implementation of ‘the_proc’,
i.e. ‘proc.impl’. On the Declarative side, a Subcomponent is typed by
a Component Classifier. Consequently, a new Component Type for

5https://mem4csd.telecom-paristech.fr/blog/index.php/osate-dim/rules/

‘the_viewer’ should be created within the Package ‘dim_test_experi-
ment’ to define ‘the_viewer’. Since ‘the_viewer’ has no Subcom-
ponent or Connection, only a Component Type and not a Compo-
nent Implementation is created. If more such elements are added
to ‘the_viewer’ in later View-Updates, a Component Implementation
for ‘the_viewer’ may be created then.

If the new Thread Component is defined incrementally, i.e. it
is first added as a child to ‘the_proc’, and then its characteristics
like name, classifier, and category are set, then the definition of
these characteristics triggers rules of component updates, and not
component creation. Instead, if the whole Component Instance is
first constructed separately, and then attached to ‘the_proc’, then
only the component creation transformation rules are triggered.
3.3.3 Changing (not refining) a Component Instance’s Category. -

Example: Change the category of ‘the_cpu’ Component Instance
to virtual processor.

In this case, the simplest Translation is to replace the Processor
Subcomponent ‘the_cpu’ with a Virtual Processor Subcomponent with
the same name, and other characteristics.

Consequently, to define the structure of the newly created Vir-
tual Processor Subcomponent, a new Virtual Processor Type, say
‘the_virtual_cpu’, has to be created in the Package ‘dim_test_experi-
ment’. ‘the_virtual_cpu’ should contain all properties/features that
are contained in previous the classifier i.e. ‘cpu.impl’, to avoid any
unnecessary side-effects.

3.3.4 Refining a Component Instance’s Category. -
Example: Assume there is anotherMemory Subcomponent ‘new_-

mem’ in ‘main_linux_Instance’ with an abstract Classifier. Change
the category of ‘new_mem’ to memory.

AADL supports the partial specification of Component Classifiers,
as a template, which can be completed according to the use-case.
For Components, their category is said to be refined when changed
from abstract to concrete category like thread, process, etc.

In the case of refinement (i.e. when the old category of theCompo-
nent being refined was abstract), the Translation should be different
to adhere to our principle of maximum information preservation as
described next. In this case, the Translation is to create a new Classi-
fier which extends the Classifier of the parent of ‘the_cpu’ i.e. to cre-
ate a new Component Implementation ‘main_linux_Instance_new’,
such that it extends ‘main_linux_Instance’. Then if possible, we can
refine the category of the ‘the_mem’ Subcomponent.

3.3.5 Deleting a Component Instance. -
Example: Deletion of the Component Instance ‘the_mem’.
The simplest Translation in this case is to delete the ‘the_mem’

Subcomponent from ‘main.impl’. We do not need to delete the cor-
responding Classifiers (‘mem.impl’ and ‘mem’), since an important
value for us is maximum information preservation as described in
Section 3.1.

3.4 Avoiding Undesirable Change Propagation
Consider the following three statements:

(1) If a Classifier contributes to the definition of more than one
different Component Instances, a Model-Update in the Classi-
fier due to a View-Update in one of the Component Instances

https://mem4csd.telecom-paristech.fr/blog/index.php/osate-dim/rules/
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Figure 4: Running example. Blue edges represent Subcomponent traces and red edges represent Classifier traces from the
Instance (left) to Declarative (right) model. Refer the AADL Graphical Syntax for more information.

will propagate (often undesirably) to the other Component In-
stances. An example of this for the running example is shown in
Fig. 5 where a second process component ‘the_proc2’ with the
same classifier as ‘the_proc’ has been added to improve fault
tolerance.

(2) A change in the Classifier of a Subcomponent, is also a change
in the structure and characteristics of the Classifier which con-
tains the Subcomponent. For example, a deletion of the Feature
‘p’ within ‘the_sender’ in ‘the_proc’ (a change in ‘sender’ Com-
ponent Type) is also a change in ‘the_proc’. Consequently, the
corresponding feature ‘p’ within ‘the_proc2’ will also be deleted.

(3) Statement (2) can not only be applied to a parent-child relations,
but also to ancestor-child relations, i.e. a change in the Classifier
of a child Subcomponent is not only a change in the charac-
teristics of the containing Classifier, but also all its ancestors
(through the Implementation-Subcomponent containment hier-
archy), i.e. the change is not just propagated to the immediate
parent Component, but all the containing ancestor Components
as well. In the example, this means, the deletion of Feature ‘p’
is also a change in the Classifier of ‘main_linux_Instance’ i.e.
‘main.linux’.

The three statements imply that the Translations described in
Section 3.3 are not enough to ensure that the Model-Updates do
not propagate undesirably to other Components. To handle this,
and avoid undesirable propagation, a special method is built into
OSATE-DIM, which is called within all Translation rules.

It is undesirable to change the definition of Classifiers in com-
ponent libraries. Hence, the method crawls the Declarative side to
find the Classifier at the highest level that has been reused multiple
times, or is from a Component library (tracked using OSATE-DIM
Property Set, see Section3.4.1). Once identified, it goes on to copy
each Classifier at a lower level, and recreates the extension and
inheritance relations, to ensure there is no undesirable propagation.

3.4.1 ‘DIM_Properties’ Property Set. OSATE-DIM provides a Prop-
erty Set containing 3 properties:

Figure 5: Example showing undesirable update propagation

(1) Is_Library_Classifer : Boolean Property to tag Classifiers which
are part of a Component Library.

(2) Is_Classifier_Library : Boolean Property to tag if a Package is
part of a Component Library.

(3) DIM_Classifier : see Section 4.2.3

4 TOOL IMPLEMENTATION
The proposed tool, OSATE-DIM, has been implemented as a set of
Eclipse IDE-based plugins. The source code for the tool is available
in a GitLab repository6. Users can install this tool into their Eclipse
installations through the update-site3.

4.0.1 VIATRA. OSATE-DIM uses VIATRA7 for executing graph-
transformations. The Instance and Declarative models are graphs
where objects are nodes, and their relationships are edges. VIATRA
is a scalable reactive framework, which allows for incremental exe-
cution of transformations. Incrementality is offered by separating
the pattern matching and transformation steps. A pattern matcher
identifies patterns, and whether they are newly created, updated,
or deleted. The transformation uses information of each pattern
(and its state of creation, updation, or deletion) as input. When the
state of a pattern changes, the corresponding transformation rules
are ‘fired’. A new match for a pattern is a creation, the disappear-
ance of a match is a deletion, and a change in the properties of
6https://gitlab.telecom-paris.fr/mbe-tools/osate-dim/
7https://www.eclipse.org/viatra/

https://gitlab.telecom-paris.fr/mbe-tools/osate-dim/
https://www.eclipse.org/viatra/
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objects in the match is an update. Patterns are specified through
a Domain-Specific Language (DSL) called Viatra Query Language.
The transformations are written in an Xtend-based DSL providing
a model manipulation Application Programming Interface (API).

Our choice of VIATRA was guided by our recent benchmark of
incremental model transformation tools with an industrial AADL
case study [18]. Out of the four benchmarked tools, our bench-
mark indicated that VIATRA was the best choice given its maturity
and expressiveness, especially compared to TGG approaches for
which shortcomings were found regarding expressivity. This is par-
ticularly important given the richness and complexity of AADL.
Besides, implementation constraints were given favoring a Java-like
model transformation language (the current instantiation transfor-
mation is also implemented in Java) implemented with the Eclipse
Modeling Framework on which OSATE is based.

4.1 Deinstantiation Scenarios
OSATE-DIM supports Deinstantiation in many different scenarios.
A View-Update, 𝑢 may be an in-place or an out-of-place transfor-
mation. Consequently, the Model-Update, 𝑇𝑢 should be an in-place
or out-of-place transformation respectively. The transformation
rules for all the scenarios are the same. The difference is only in
the interface to the transformation rules.

4.1.1 State-based. Firstly, OSATE-DIM supports a state-based de-
instantiation scenario as shown in Fig.6.(i). This state-based case
is derived from the delta-based case as a pure backward transfor-
mation when it is assumed there is no original Declarative model 𝑠 .
It is basically a put(𝑣𝜙 ,𝜙), where 𝑣𝜙 ∈ 𝑉𝜙 ⊂ 𝑈 |𝑣𝜙 (𝜙) = 𝑣 . 𝑉𝜙 is the
set of view-updates 𝑣𝜙 , which result in the updated View 𝑣 , when
applied on empty View 𝜙 .

In this scenario, OSATE-DIM takes all information from 𝑣 and
creates the simplest Declarative model from that information. By
comparing the output of this scenario with the original Declara-
tive model (if it exists) used to create the View, the user can also
understand what kind of information is lost in the Instantiation
transformation.

4.1.2 Delta-Inplace. In an in-place transformation, the changes
are made directly in the model. Hence, for an in-place View-Update
𝑢, the corresponding translated View-Update 𝑇𝑢 has to be in-place
as well. That is, it should make changes directly on the Declarative
model.

OSATE-DIM detects the changes in this scenario, using VIATRA’s
built-in transformation engine that listens for changes to query
patterns in the View model as shown in Fig.6.(ii).

4.1.3 Delta-outplace. The scenario where an entirely new Instance
model (with modifications) is computed from the base Instance
model, is the out-place scenario as shown in Fig.6.(iii). In this case, a
new corresponding Declarativemodel should be constructed reflect-
ing the modifications, instead of directly modifying the Declarative
model.

In this scenario, the View-Updates can be computed from differ-
ences between the new and original Instance models. OSATE-DIM
provides the delta-trace model to define trace relations between an
instance model and its out-of-place update. The delta-trace model

borrows concepts from EMF Change [21] to store information re-
garding the specific change operations that were performed on the
Instance model to lead to the new Instance model.

4.1.4 Delta-trace Model. The Delta-trace meta-model (provided
in OSATE-DIM) consists of an ‘Aaxl2AaxlTraceSpec’ class that
relates the roots of the two instance models, and contains the
‘Aaxl2AaxlTrace’ trace. Each trace relates elements from the original
to refined instance models. An ‘Aaxl2AaxlTrace’ has three prop-
erties: ‘ObjectsToAttach’, ‘ObjectsToDetach’, and ‘ObjectChanges’
which respectively represent addition, deletion, and modification
of objects. ‘ObjectsToAttach’ is a non-containment property that
references objects in the new Instance model that have been added.
Similarly, ‘ObjectsToDetach’ refers to objects in the old Instance
model that have been removed in the View-Update. ‘ObjectChanges’
contains FeatureChanges (an object from the EMF Change meta-
model) to represent updates in values of features of objects.

4.2 Preferences and Utilities
As discussed in Section 3.1, flexibility is an important principle for
us to give the user more control over the Translation. We accomplish
this through user-defined preferences which decide the course of
theDeinstantiation. Fig.7 displays the preferences dialog for OSATE-
DIM. Some preferences enable model manipulation utilities that
ease the modification of Instance models. Other preferences enable
users to direct the course of Deinstantiation according to their
knowledge of the models.

4.2.1 Instance Model Property Inheritance Utility. To simplify the
modification of Instance models, OSATE-DIM provides a utility
which automatically adds inherited properties to newly-created In-
stance objects. If the parent object of a newly-created Instance object
contains some Property Association, if the Property is inheritable,
and if the Property applies to the child as well, then it inherits this
property. In the Instance model, the Property Association is copied
into the child (while in the Declarative model, it is simply inherited
from the parent’s definition without copying). This is a require-
ment to ensure semantic validity of the Instance model. Instead of
the users having to manually copy the Property Association from
the parent to the child, OSATE-DIM does it automatically, if the
corresponding preference is set to TRUE. If TRUE, when a new
child Instance element is created, OSATE-DIM checks for inherita-
ble properties in the parent, and automatically copies them to the
child element.

4.2.2 Instance Model Mode Inheritance Utility. Similar to Property
Associations, Modes are also inherited. If a parent object is only
active in certain Modes, then its children can only be active in a
subset of these Modes. Hence, if the corresponding preference is
set to TRUE, OSATE-DIM automatically copies these Modes to the
child object. The user can choose to delete some/all of these (auto-
matically added) modes later, according to the intended behavior
of the object.

4.2.3 Modification of multiply-used Classifier. A classifier can con-
tribute to the definition of more than one Component Instances. In
such a case, an Update on a classifier may unwantedly propagate to
other Component Instances. To avoid this, OSATE-DIM provides an
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Figure 6: Possible AADL deinstantiation scenarios supported by OSATE-DIM

Figure 7: OSATE-DIM preferences menu

option to the user, such that Updates on multiply-used Classifiers
are not performed directly, but instead through extension of the
Classifier (in the case of addition update), or copying the Classifier
and performing Updates on the copy (in the case of modification and
deletion updates), similar to the flow for library support described
in Section 3.4.

Depending on the user’s knowledge: if the Declarative model is
simple and no classifier contributes to the definition of multiple
Component Instances then the user can set it to TRUE/FALSE (it
won’t make any difference); if theDeclarativemodel is complex with
multiply-used Classifiers, and if the user does not want Translated
Updates to propagate, the user should select TRUE; on the other
hand, if the user wants Translated Updates to propagate, then the
user should select FALSE for the corresponding preference.

4.2.4 Addition of DIM_Classifier Property to new Classifiers. For
additional ‘book-keeping’ of OSATE-DIM’s actions, we provide a
Boolean Property within the ‘DIM_Properties’ Property Set called
‘DIM_Classifier’. If the corresponding preference is set to TRUE,
every time a new Classifier is created by OSATE-DIM, an additional
‘DIM_Classifier’ Property is added to it, and set to TRUE.

5 VALIDATION
We empirically verify the ‘very-well behavedness’ (defined in Sec-
tion 2.2.1) of the BX Lens composed of OSATE-based Instantiation
and OSATE-DIM-based Deinstantiation. All the tests performed in
this section are available as JUnit tests in the test package in the
OSATE-DIM code repository6.

5.0.1 GetPut Law. The GetPut law states ‘if no View-Update has
been performed on the View 𝑣 , then the put function should re-
turn the identity function for Model-State i.e. there should be no
difference between the original and updated Model State’.

This is verified by the incremental Deinstantiation in OSATE-
DIM. If no View-Update 𝑢 is performed, no Translated Update 𝑇𝑢 is
performed either.

5.0.2 PutGet Law. The PutGet Law states ‘a well-behaved Lens
has no side-effects’, i.e. the Instantiation of the updatedModel-State,
𝑓 (𝑠 ′), should be equal to the updated View-State 𝑢 ′. This is also
described in Fig.3.(a).

We verify this through test cases generated for each of the View-
Updates mentioned in Section 3.3. The updated Model-State is In-
stantiated and compared with the updated View-State using EMF
Compare. In addition, tests are also generated for the case studies
described in Sections 5.1 and 5.2.

5.0.3 PutPut Law. The PutPut Law states that ‘View-Updates should
completely overwrite the effect of the previous View-Update’. So,
the effect of two puts in a row, should be the same as just the second.
Mathematically, if there is a View-Update 𝑢, followed by 𝑢 ′, then,
𝑇𝑢 ·𝑢′ (𝑠) = 𝑇𝑢′ (𝑇𝑢 (𝑠)).

OSATE-DIM is incremental and reactive, where eachView-Update
is considered atomic. Hence, even if Deinstantiation is performed
after composing the View-Updates, the Deinstantiation would in-
volve the same steps, in the same order, had the Deinstantiation
been done reactively. Hence, the two Declarative models will be the
same.

5.1 Case Study: MC-DAG
The Mixed-Criticality Directed Acyclic Graphs (MC-DAG) frame-
work developed by our group computes scheduling tables for AADL
systems with mixed-critical tasks. This case study from the MC-
DAG benchmark [16] is a system with a multi-core processor and a
process. The process Component has eight threads, each with a dif-
ferent task. There are two SystemOperationModes for low-criticality
and high-criticality in the case of a failure. The transitions from
one mode to another are relayed through Connections from the
processor to the process.

The View-Update in this case study is the addition of static sched-
uling tables for each Thread. Such tables are modeled in AADL using
the RAMSES-specific ‘Execution_Slots’ Property, so that RAMSES
can take those into account when generating OS configuration files
during code generation. These tables specify for each Thread, its
binding to one of the two cores of the processor and its execution
start and stop times. Overall, there is an addition of nine rich Prop-
erty Associations, which are not just value-based, but also contain
references to other Instance objects.

5.2 Case Study: RAMSES
RAMSES is an AADL-based tool available as an additional OS-
ATE component and developed by our group for the automatic
generation of C code for POSIX, ARINC653, and OSEK-compliant
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Operating Systems (OS). Starting from an Instance model, RAMSES
refines the model by adding details for a specific OS platform as
selected by the user. From this refined Instance model, analyses can
be performed, which are typically more precise given the lower
level of abstraction of the model.

In its current version, RAMSES must first create a new Declara-
tive model from of the selected Instance model, to which the OS-
specific details are added. A new Instance model is then computed
by OSATE from the newly created Declarative model. The RAM-
SES refinement model transformation, implemented with the ATL
model transformation tool and its EMFTVM (EMF Transformation
Virtual Machine) [22] virtual machine is very complex and hard to
maintain and evolve. In this context, OSATE-DIM will be extremely
useful as it will allow simplifying the transformation by avoiding
the need for this transformation to create the Declarative model.
Hence, RAMSES will only need to update the Instance model and
OSATE-DIM will take care of creating the corresponding Declara-
tive model. Versions of these simplified RAMSES transformations,
processing only Instance models, have already been developed for
our benchmark of Incremental Model Transformation Tools [18].

Following this, we have used a simple AADL producer-consumer
communications module instance model, refined for a Linux-based
platform by transforming Port Connections to Shared Data Accesses
and by adding several Data Components and RAMSES-specific Prop-
erties as second case study for OSATE-DIM. The View-Updates in
this case consist of the addition of 41 Data Components to a process
component, which are shared by two threads. The Port Features
interfacing the two threads with each other are changed to a Data
Access kinds. New Data Access Connections are also added between
the shared Data Component and the threads. The added Data Com-
ponents have varying numbers of Properties, and the total number of
newly added properties is 122. This RAMSES case study is included
as a much more complex example than the simple View-Updates
performed in the MC-DAG case study.

6 DISCUSSION
While developing OSATE-DIM we experienced some shortcomings
and unnecessary complications of AADL that need to be discussed
within the community:

(1) The current Declarative metamodel is highly complicated, since
it includes specific classes for each category of Component,
Feature, and Connection. This was done to introduce constraints
on component composition. The Object Constraint Language
(OCL) could be used to expressed these constraints instead of
component category subclasses.

(2) In the current version of OSATE, there is no class in the Instance
model to represent Subprograms and Subprogram Calls. Infor-
mation for these elements is only available from the Declarative
model.

(3) Another issue relates to Annexes. The core AADL language can
be extended by embedding sub-languages such as the Behav-
ioral Annex (BA) and the Error Model Annex (EMV2). Currently
those are not represented in the Instance model although it is
currently under development for EMV2.

6.1 Envisioned Utility of OSATE-DIM
OSATE-DIM has been developed keeping in mind the needs of
both AADL-based tool developers and AADL-users. Support for
various scenarios allows for integration of OSATE-DIM into a wide
array of workflows for AADL-based research and development.
For users, OSATE-DIM is envisioned to provide incremental model-
synchronization capabilities, which ensures no loss and consistency
of information. It also simplifies the modification of AADL models
for users, who previously had to make changes in the Declarative
models directly.

For the AADL-based tool developer, OSATE-DIM is useful for
them by simplifying the development of their tool. Instead of having
to design complex algorithms to modify theDeclarativemodel at the
correct location, the developer can simply implement algorithms
to modify the Instance model. They can integrate OSATE-DIM
within this modification (whether in-place our out-of-place) to
automatically perform the synchronizationwith the quality of being
the simplest changes having least loss of knowledge.

This especially will simplify the migration of tools to the AADL
Version 3 when it will be released. AADL targets significant changes
of the Declarative metamodel on the lines of suggestion (1) in Sec-
tion 6. If developers have integrated OSATE-DIM into their pipeline
being therefore isolated from the Declarative model, they need
not worry about such updates of the Declarative language, since
OSATE-DIM after having been updated for AADL V3 will take care
of interfacing tools with Declarative models.

6.2 Generalization of Concepts to OOP
While the methodology we propose for theDeinstantiation of AADL
models in this paper was clearly developed to solve a real problem,
we envision that it could also be useful for High-Level Languages
(HLLs), since constructs of these languages can be related to those
of the AADL Declarative model. The compiled source code of HLLs
where several flattening operations occur can be related to the gen-
eration of Instance models. For instance, languages such as Rust,
Swift, and C/C++ are compiled to Low Level Virtual Machine Inter-
mediate Representation (LLVM-IR)8. LLVM-IR is a typed-bitcode
that unifies multiple programming languages in a common repre-
sentation which can be used with the LLVM Optimizer tool9.

Compilation of most HLLs to LLVM-IR is non-injective surjec-
tive10 as shown in Fig.8. Since high-level constructs such as inher-
itance and virtual functions are not supported by LLVM-IR, the
inheritance hierarchy needs to be ‘flattened’ to a simpler structure:
virtual functions are simplified to function pointers with virtual
function dispatch tables resulting in different inheritance hierar-
chies being flattened to similar LLVM-IR structures. An OO-class,
its member variables and its functions are translated to a single
IR-struct containing variables and IR-functions operating on the
IR-struct. The variables of an OO-class are copied into the IR-structs
corresponding to both, the base OO-class and its derived classes.
The IR-functions corresponding to the base OO-class can use the
IR-struct corresponding to the derived OO-class to access its mem-
bers.

8https://llvm.org/
9https://llvm.org/docs/CommandGuide/opt.html
10https://mapping-high-level-constructs-to-llvm-ir.readthedocs.io/

https://llvm.org/
https://llvm.org/docs/CommandGuide/opt.html
https://mapping-high-level-constructs-to-llvm-ir.readthedocs.io/
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Figure 8: OO Classes mapping to LLVM-IR structs

After optimizations have been applied, the IR is no longer con-
sistent with the source code and is inconvenient to debug. De-
compiling the IR to source language can improve accessibility for
debugging [10]. since source HLLs are more widely known and
more accessible than LLVM-IR. Besides, de-compilation from IR
to source language could allow translation between languages (ex.
C++ to Rust).

Modification of the inherited members of a derived IR-struct can
be Translated as changes local to the derived OO-class or a change
inherited from the parent class. Deciding the correct Translation in
such a case is a challenge. We can illustrate the similarity between
this problem and our methodology by relating the OO concepts to
AADL classifiers:
• Interface→ Component Type: Interfaces define the exposed struc-
ture of the implementing classes and its member accessors and
public functions. This matches the Component Types which ex-
pose the ports and properties.

• Class/Struct → Component Implementation: Classes and Structs
in OO Languages contain the actual data members and function
implementations for any Interfaces being implemented.

• Member Variables→ Subcomponents: Member variables are in-
stances of other existing interfaces or classes. They relate to
subcomponents in AADL and any calls to their methods map to
AADL connections.

• Functions→ Subcomponents: Functions are internally stored as
pointers with or without virtual function dispatch tables. They
are data members and thus mapped to Subcomponents.

• Overriding→ Refinement: Derived classes can override function
implementations in the base class. This can be matched to the
refinement/View-Update in AADL.
By modifying the Deinstantiationmethods discussed in the paper

to apply to the OO constructs as illustrated above, we can extend
the concepts to apply to the decompilation methods. Additionally,
the State-Based method similar to 4.1.1 can be applied to LLVM-IR
that is generated from one HLL to decompile into another HLL.
LLVM languages such as Objective-C, which are phased out can be
decompiled to newer languages like Swift in order to update their
codebase and enhance language interoperability. This could also
be useful for the specific case of Rust↔ C++ given that Rust may
become a replacement to C++ for embedded systems.

6.3 Related Work
Many tools apply the concept of views to MDE. EMF Views [3] uses
an SQL-like DSL to define a virtualization engine. It looks at views

as non-concrete entities, and implements them as virtualization of
real base models so that there is no data duplication. Thus, changing
data in the view implies change of the data in the base model.

OpenFlexo [4] is a tool for homogeneously handling and relating
data from various sources. As soon as a view is computed, it is
connected with different base models for synchronization. The
synchronization is conceptually similar to EMF Views.

ModelJoin [12] is a tool for the creation of heterogeneous models.
Its DSL is used to define not just the elements of the view, but also
the meta-model of the view. Support for editability inside the views
is provided using OCL constraints.

Orthographic Software Modelling (OSM) [1] is a hub-and-spoke
architecture-based approach and tool that allows for the definition
of multiple views from a Single Underlying Model (SUM). The defi-
nition is through a unique bidirectional transformation between the
SUM and each view. Vitruvius [15] is based on the OSM approach
but instead of a SUM, it uses a Virtual-SUM that is a non-invasive
combination of many legacy metamodels. Flexible view definition
allows restriction of possible view updates. Updating a view results
in execution of corresponding synchronizing transformations.

These methods provide light-weight backward transformations,
through virtualization using invertible transformations to define
virtual views (EMF Views, OpenFLexo), or through constraints and
restrictions on possible model edits (ModelJoin, OSM, Vitruvius).
They are not as flexible and as specifically made for AADL as
OSATE-DIM and often require to severely limit the class of possible
updates to the view to guarantee well-behavedness.

7 CONCLUSION AND FUTUREWORK
We presented our approach for the automatic Deinstantiation of
OSATE Instancemodels. It will be very useful for the AADL commu-
nity, since it allows model processing tools to only manipulate the
Instance model and have their modifications automatically synchro-
nized with the original Declarative models. This is achieved thanks
to an incremental model transformation implemented with VIA-
TRA solving this View-Update problem for AADL. The presented
approach can be generalized for other similar problems such as
decompilation of programming languages’ intermediate represen-
tations for debugging.

Future work for OSATE-DIM will consist of completing the out
of place scenario to make use of model change information (deltas)
stored in the OSATE-DIM-provided trace models, on which process-
ing tools can write their changes as they are performed. Besides,
the current OSATE Instantiation transformation written in plain
Java could be redeveloped in VIATRA to make it a truly BX Lens.
Reducing the assumptions listed in Section 3.1, to increase the scope
of usability of OSATE-DIM, as well as providing further flexibility
to the user to alter the Deinstantiation by providing preferences
such as choice of level of Deinstantiation (whether the user wants
Model-Updates to occur at the Subcomponent, Implementation, or
Type abstraction level) are also part of future work.
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