
Molecular Ecology. 2024;00:e17278.	 ﻿	   | 1 of 15
https://doi.org/10.1111/mec.17278

wileyonlinelibrary.com/journal/mec

1  |  INTRODUC TION

A primary goal in evolutionary biology is to identify the genetic 
mechanisms that give rise to the large variety of adaptive traits 
seen in nature (Elmer & Meyer,  2011; Hoekstra et  al.,  2006; San-
Jose & Roulin,  2017). Colouration is an abundantly variable trait 

and provides a striking example of such diversity (Wellenreuther 
et  al.,  2014; Zamudio et  al.,  2016). Across animals, intraspecific 
colour variation has been linked to adaptive consequences such 
as higher resilience to environmental change (Cattin et  al.,  2016; 
Ducatez et  al.,  2017; Takahashi & Noriyuki,  2019) and spe-
cialization within different ecological niches (Hoekstra,  2006; 
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Abstract
Colour is an important visual cue that can correlate with sex, behaviour, life history or 
ecological strategies, and has evolved divergently and convergently across animal lin-
eages. Its genetic basis in non-model organisms is rarely known, but such information 
is vital for determining the drivers and mechanisms of colour evolution. Leveraging 
genetic admixture in a rare contact zone between oviparous and viviparous common 
lizards (Zootoca vivipara), we show that females (N = 558) of the two otherwise mor-
phologically indistinguishable reproductive modes differ in their ventral colouration 
(from pale to vibrant yellow) and intensity of melanic patterning. We find no asso-
ciation between female colouration and reproductive investment, and no evidence 
for selection on colour. Using a combination of genetic mapping and transcriptomic 
evidence, we identified two candidate genes associated with ventral colour differen-
tiation, DGAT2 and PMEL. These are genes known to be involved in carotenoid metab-
olism and melanin synthesis respectively. Ventral melanic spots were associated with 
two genomic regions, including a SNP close to protein tyrosine phosphatase (PTP) 
genes. Using genome re-sequencing data, our results show that fixed coding muta-
tions in the candidate genes cannot account for differences in colouration. Taken to-
gether, our findings show that the evolution of ventral colouration and its associations 
across common lizard lineages is variable. A potential genetic mechanism explaining 
the flexibility of ventral colouration may be that colouration in common lizards, but 
also across squamates, is predominantly driven by regulatory genetic variation.
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Kusche et  al.,  2015; Pizzatto & Dubey,  2012). Within species or 
groups of species, colour polymorphisms are more likely to lead to 
diversification and speciation compared to monomorphic coloura-
tion (Brock et al., 2021; Hugall & Stuart-Fox, 2012). Many species 
exhibit colour variants within populations, and these ‘colour morphs’ 
may be associated with differences in physiology (McKinnon & 
Pierotti,  2010), behaviour (Sinervo & Lively,  1996) and life-history 
traits (Roulin, 2004), often with a direct adaptive benefit (Maan & 
Sefc, 2013; Wollenberg Valero et al., 2019). However, associations 
between colour polymorphisms and other traits can be complex and 
even have detrimental effects. More specifically, theoretical work 
suggests that frequency-dependent polymorphisms (such as colour) 
can lead to a higher population extinction risk under environmental 
change (Bolton et al., 2015; Svensson & Connallon, 2019). Therefore, 
studying the mechanisms that give rise to colouration differences 
between individuals can provide crucial insights into understanding 
how diversity is generated and maintained, and may lead to adapta-
tion and speciation.

Reptiles exhibit widespread colour variation (Olsson 
et  al.,  2013; Vitt & Caldwell,  2009), and several studies have 
identified colour polymorphism in reptiles as a heritable trait (Jin 
et  al.,  2022; Olsson et  al.,  2007; Sinervo et  al.,  2001; Vercken 
et al., 2007). Particularly within different groups of lizards (Andrade 
et al., 2019; Brock et al., 2021; Stuart-Fox et al., 2020), but also 
across the animal kingdom (Jamie & Meier, 2020), it has been sug-
gested that ancestral variation in colouration genes may be re-
sponsible for the repeated evolution of colour polymorphisms. For 
example, repeated introgression across divergent lineages within a 
group leads to mosaic genomes (Yang et al., 2021), with potentially 
widely shared adaptive genomic regions, including colouration 
genes (Andrade et  al.,  2019). Among the lacertid lizards there is 
extraordinary intraspecific colour variation (Andrade et al., 2019; 
Brock et al., 2020; Stuart-Fox et al., 2020; Yang et al., 2021), and 
transitions from colour monomorphism to polymorphism in this 
group have been associated with a positive net diversification rate 
(Brock et al., 2021).

In reptiles, as across vertebrates, colouration is generated 
by pigment cells in the dermal layer of the skin, known as chro-
matophores. Reptiles have three types of chromatophores: mela-
nophores contain the pigment eumelanin, responsible for black/
brown colouration; iridophores are pigment cells that contain 
light-reflecting structures, thus determining skin reflectance/
iridescence and xanthophores contain carotenoid and pteridine 
pigments, which impart yellow/orange or orange/red colouration 
respectively (Vitt & Caldwell,  2009). Synthesized pigment cells 
are stored in organelles such as carotenoid vesicles (carotenoids) 
and pterinosomes (pteridines). Each chromatophore has a specific 
structure, and its combined activity with other pigment cells re-
sults in distinct colouration patterns (Vitt & Caldwell, 2009). The 
synthesis of pigment cells is controlled, in part, by genetic mecha-
nisms (Hubbard et al., 2010). However, few studies have attempted 
to identify the genetic mechanisms which allow variation in colour 
patterns to be expressed and transmitted to future generations 

(Olsson et  al.,  2013). Of these, most describe the mechanisms 
of melanin pigmentation (Olsson et  al.,  2013), with great focus 
on MC1R, a highly conserved gene across vertebrates that is re-
sponsible for the production of melanin (Rosenblum et al., 2004). 
However, genes responsible for other pigmentation patterns re-
main largely uncharacterized.

The common lizard (Zootoca vivipara) is the most widespread 
terrestrial squamate, covering a large part of Eurasia spanning 
from west (Spain) to east (Japan) (Roitberg et al., 2013; Takeuchi 
et al., 2013). The species is split into six distinct evolutionary lin-
eages that vary in geographic distribution and include two alter-
native reproductive modes, being either egg-laying (oviparous) 
or live-bearing (viviparous) (Recknagel et al., 2018; Surget-Groba 
et al., 2006). Common lizards vary considerably in their ventral co-
louration, from white to bright orange (Fitze et al., 2014; Vercken 
et  al.,  2007, 2010), and their colour polymorphism is associated 
with differences in behaviour (Vercken & Clobert,  2008), immu-
nity (Vercken et  al.,  2008) and reproductive strategies (Vercken 
et  al.,  2007). For example, in one lineage (western viviparous), 
three female ventral colour morphs can be distinguished, each 
associated with a different level of aggression: the yellow morph 
being aggressive, the orange being submissive and the mixed 
morph (intermediate colour or both yellow and orange scales) dis-
playing either of the two behaviours depending on the context 
(Vercken & Clobert, 2008). Maintenance of all three colour morphs 
was suggested by an overdominance effect of the mixed morph 
(Vercken & Clobert,  2008). In another lineage (western ovipa-
rous), males display three different ventral colour morphs, and 
these are associated with behaviours that follow a pattern of neg-
ative frequency-dependent selection (Fitze et  al.,  2014; Sinervo 
et al., 2007). Therefore, while the type of colour–behaviour asso-
ciations are variable and both sex- and lineage-dependent (Fitze 
et  al.,  2014), ventral colour variation exists across the species. 
Understanding the genetic mechanisms of colouration in the com-
mon lizard, thus, provides an excellent opportunity towards re-
solving a detailed understanding of colour polymorphism and its 
associations with other traits.

Here, we report on female ventral colour variation in two com-
mon lizard lineages and explore its associations with reproductive 
traits and molecular differences. We do so by leveraging an admix-
ture zone where the alternative colour/parity lineages hybridize 
and by characterizing colour morph variation from a molecular to 
cellular to organismal level. First, we quantified and described the 
colour variation of oviparous and viviparous females, as well as 
hybrids. Using data on clutch and offspring size, we evaluated the 
extent to which colouration is associated with female reproductive 
investment, given that in this species colour has been found to be 
associated with reproductive behaviours. Second, we used genomic 
and transcriptomic approaches to explore the genetic basis of co-
lour, both in regions of genomic association and in functional gene 
expression. With this information, we finally evaluated population 
genomic patterns and signals of selection in candidate colouration 
genes identified here and from the literature.
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2  |  MATERIAL S AND METHODS

2.1  |  Sampling, husbandry and reproductive traits

Collection and husbandry followed Recknagel and Elmer  (2019). 
Briefly, female common lizards (Z. vivipara) were collected (under 
permit number HE3-NS23-959/2013) between 2014 and 2019 from 
a known contact zone (~0.3 km2) between an oviparous and a vivipa-
rous lineage (Lindtke et al., 2010; McLennan et al., 2019; Recknagel 
et al., 2021; Recknagel & Elmer, 2019) located in the Carinthian Alps 
in Austria. All females captured with a bite mark, indicative of mating 
and pregnancy (N = 597), were individually housed in terraria until 
oviposition or parturition (from here on referred to as ‘parition’, fol-
lowing (Blackburn, 1992)).

After parition, females were weighed (female post-parition mass 
[FPPM]), snout–vent length (SVL) was measured, a tail-tip tissue 
sample was taken and females were released at site of capture. Their 
clutches were counted (clutch size [CS]) and weighed (clutch mass 
[CM]) using a digital balance on the morning after parition and incu-
bated at 24°C until hatching. Each hatchling was weighed (offspring 
mass [OM]) before being released to the site of their mother's cap-
ture. From these data, we derived the following measures to describe 
reproductive investment: average egg mass (CM/CS = EM), relative 
clutch mass (CM/FPPM = RCM), relative offspring mass ([CS*HM]/
FPPM = ROM) and hatchling survival (N hatched offspring/CS = OS).

2.2  |  Ventral colouration measurements and 
statistical analyses

Females were photographed using a Canon 70D and a 60-mm fixed 
lens under standard settings (fixed ISO: 160, aperture: 8, exposure 
compensation: 0) and with an X-rite ColorChecker to standardize 
colour between images. X-rite ColorChecker software (vers 1.0.1) 
was used to calibrate colour of the original images prior to analysis. 
The colour profile was applied to the image and white balance was 
selected using the off-white square on the ColorChecker board. RGB 
(red, green, blue) values for the selected square were set to 230 nm 
using the eyedropper tool in Adobe Photoshop CC 2017. Five repre-
sentative ventral scales were selected from the lower two-thirds of 
the belly using the lasso tool, excluding any melanic spots and glare. 
The colour from the five selected areas was averaged with the RGB 
values recorded and these were converted to hue, saturation and 
lightness (HSL) values.

Repeatability of the colour measure over time was inferred from 
a subset of five females. Variation within the season was inferred 
from images taken once each week for 11 weeks, and variation 
within a day was inferred from images taken twice (morning and af-
ternoon) on the day of measurement.

Absolute number of ventral melanic spots was counted on each 
female in Adobe Photoshop CC 2017. In addition, proportion of ven-
tral area covered by melanic spots (proportion of spots) was calcu-
lated as follows: the area of melanic spots was selected using the 

magic wand tool, the selected area was extracted and divided by the 
total area of the ventral body (from vent to neck, excluding limbs).

Statistical analyses of colour were carried out in R (R Core 
team, 2015). A PCA was conducted in R with the ‘prcomp’ package 
to derive one major axis (PC1) summarizing HSL colour variation. For 
count data (number of spots), a generalized linear model (glm) with 
quasi-Poisson distribution was performed, followed by an analysis of 
variance (ANOVA). A beta regression was fitted to the proportional 
data (proportion of spots). Colour variables hue, saturation and light-
ness were fitted using a glm and ANOVA.

Model-based clustering using the R package ‘mclust’ was per-
formed to classify colour PC scores, excluding hybrid individuals. We 
tested the most likely number of clusters in the data and if these 
were predicted by parity mode.

Generalized linear models (GLMs) were performed to test for an 
association between colour, parity mode and reproductive invest-
ment. HSL and the combinatorial effect of those variables in the 
PCA (PC1) were considered as the response variables, with parity 
mode (measured as number of days that it took offspring to emerge 
from eggs) and reproductive investment (clutch size [CS], offspring 
mass [OM], offspring survival [OS], relative clutch mass [RCM], rel-
ative offspring mass [ROM] and average egg mas [EM]) as explan-
atory variables and size (SVL) as a covariate. Model simplification 
was used, removing the least likely explanatory variable (based on 
p-value) successively until only significant results remained.

2.3  |  Admixture mapping

Genetic data corresponding to 496 of the 558 females phenotyped 
for ventral colouration, reproductive mode and reproductive invest-
ment were extracted from NCBI (PRJNA657575) as raw ddRADSeq 
data. These had been generated in a prior study on viviparous and 
oviparous common lizards (Recknagel et al., 2021). Data were first 
processed using STACKS (Catchen et  al.,  2013) to remove reads 
with uncalled bases and low quality (options -c and -q). Next, fil-
tered reads of each individual were mapped to the common lizard 
reference genome (Yurchenko et  al.,  2020), deposited with NCBI 
(GCA_011800845.1, UG_Zviv_1, PRJNA638687). Genotypes were 
extracted from STACKS with the following conditions: each SNP had 
to be present in at least 66% of all individuals, an individual cover-
age of >5× and a minimum allele frequency of 10%. The resulting 
vcf file was phased and missing data were imputed using BEAGLE 
(Browning & Browning, 2007). Duplicate individuals (same individu-
als sampled across multiple years) were identified and removed using 
KING (Manichaikul et al., 2010); all phenotypic analyses were con-
ducted excluding duplicate individuals (total N without duplicates: 
ventral colouration = 445, melanic spots = 414).

The proportion (Q) of each female's genome deriving from 
the oviparous or viviparous lineage was reconstructed based on 
all SNPs and k = 2 using ADMIXTURE (Alexander et al., 2009). To 
estimate standard errors in Q, 200 bootstrap replicates were per-
formed. Individuals in which the standard error did not cross 1 or 0 
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were counted as a hybrid (McFarlane & Pemberton,  2019), while 
the remaining individuals were counted as either pure oviparous or 
viviparous.

Multivariate linear mixed models (MVLMMs) in GEMMA (Zhou 
& Stephens,  2012) were used to map (i) colouration (using the 
HSL measurements; N = 445) and (ii) melanic spots (measured as 
number of spots and proportion of spotted area; N = 414). A cen-
tred relationship matrix was estimated to correct for individual 
relatedness and population stratification. Statistical significance 
was assessed by adjusting p-values with the Benjamini–Hochberg 
correction.

For a single SNP showing the highest association with ventral co-
lour (Log p-value: 7.78 on chromosome 5 at position 6,100,408 bp), 
we tested for the correlation between allelic state (homozygous 
A/A, homozygous G/G, heterozygous A/G) and hue.

PCAdapt (Luu et al., 2017) was used to infer signals of selection 
between the two parity modes from the genotypic data, which iden-
tifies divergently selected SNPs between two groups while correct-
ing for background noise. The selection scores generated for each 
SNP (Benjamini–Hochberg corrected p-values) were then compared 
to the p-values obtained from admixture mapping to test whether 
any SNPs associated with colour were under divergent selection. 
In addition, we tested if SNPs significantly associated with ventral 
colouration were linked to or within regions associated with parity 
mode in the common lizard. Genetic regions associated with parity 
were extracted from the literature (Recknagel et al., 2021). We con-
sidered colour-associated SNP as linked if they were within ~100 kb 
of a region associated with parity mode, following Recknagel 
et al. (2021).

2.4  |  Differential expression analysis by RNA-seq

Seven ventral tissue samples were selected for RNA extraction: 
four pale oviparous (mean hue = 29.67 ± 0.88 std. error) and three 
yellow viviparous (mean hue = 42.00 ± 2 std. error) females. Lizards 
were sacrificed (as per the approved Schedule 1 method) and ven-
tral scales from the lower two-thirds of the belly were excised. RNA 
was extracted using the PureLink RNA Mini kit (Life Technologies, 
Carlsbad, CA) following the manufacturer's instructions, with an ad-
ditional homogenisation prior to extraction. After quality control, 
one sample from each colour was removed. RNAseq library prepara-
tion and sequencing were carried out by NovoGene on a NovaSeq 
using 150 bp paired-end chemistry.

After filtering of reads containing adapters and removing 
low-quality sequences with Trimmomatic version 0.39 (Bolger 
et al., 2014), all reads were mapped to the common lizard reference 
genome (Yurchenko et al., 2020) using STAR v2.7.2b_0928 (Dobin 
et al., 2013) with default parameters. Gene expression was quanti-
fied with htseq v0.11.2 (Anders et al., 2015) using the function htseq-
count (parameters: --stranded = no, --order = pos, --type = CDS and 
idattr = gene_id). Genes with <20 reads across all samples were 
removed and counts normalized via log2 transformation with the R 

package DESeq2 v3.543 (Love et al., 2014). Differential expression 
analyses were carried out with DESeq2 and visualized using the R 
package EnhancedVolcano v1.0.1 (Blighe et al., 2020), applying a 
q-value (p-value adjusted for discovery of false positives) cut-off of 
<.05. A principal component analysis of the sequenced individuals 
was performed with the pca function and the method “svdImpute” 
in the R package pcaMethods (Stacklies et al., 2007). An analysis of 
gene ontology term enrichment was carried out using PANTHER 
v16.0 (Mi et  al.,  2021) GO-slim with the Anolis carolinensis refer-
ence set.

Through a review of the literature, genes with previous asso-
ciations with melanin (N = 7) and pteridine (N = 8) pigment syn-
thesis pathways (Braasch et  al.,  2007) and carotenoid metabolism 
(N = 25) (Waagmeester et al., 2009) were identified and exhaustively 
checked for differential expression between colour morphs in our 
dataset. Iridophore-related gene expression was investigated using a 
set of genes previously found to be enriched in iridophores (N = 409) 
(Higdon et al., 2013).

2.5  |  Structural assessment of skin cell 
pigmentation

To identify the presence of cellular structures associated with 
colour, we conducted transmission electron microscopy (TEM) on 
ventral skin from one representative pale (oviparous) and yellow 
(viviparous) female used in the RNAseq. Skin samples were first 
fixed in 2.5% glutaraldehyde/0.1 M sodium cacodylate buffer, 
then dehydrated by ethanol series, stained and embedded in 
resin. Ultrathin sections (60–70 mm) were produced, addition-
ally stained with 2% methanolic uranyl acetate and Reynolds 
lead citrate and then viewed on a JEOL1200EX transmission 
electron microscope at an accelerating voltage of 80 kV. Images 
were captured using an OLYMPUS ITEM soft imaging system. 
Chromatophores were identified with the aid of reference images 
(Andrade et al., 2019).

2.6  |  Identification of candidate genes

Candidate genes for ventral colouration and melanic spots were 
identified by first examining top SNPs (Benjamini–Hochberg cor-
rected p-value <.05). These SNPs were assigned to candidate 
regions if at least two significantly associated SNPs were within 
a distance of 5 Mb. This conservative wider cut-off (e.g. Pallares 
et al., 2014; Pollinger et al., 2005) was chosen under the assump-
tion that a relatively simple genetic basis underlies colouration 
with few loci of large effect, and because our marker density 
was only moderate, likely missing causal variants (Santure & 
Garant,  2018). The top SNP within a candidate region was first 
examined in more detail by identifying the nearest gene using 
bedtools (Quinlan, 2014). Next, the candidate gene was inspected 
for differential expression between yellow and pale females and 
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its involvement in pigmentation pathways. If the nearest gene to 
the top SNP did not reveal any differentiation in expression and 
had no role in pigmentation pathways, we widened the search to 
the other genes within the 5 Mb candidate region. Any genes in a 
candidate region that were differentially expressed and showed 
an association with a pigmentation pathway were also considered 
candidate genes.

2.7  |  Population genomics of colour candidates 
DGAT2 and PMEL

To investigate variation in colouration candidate genes, whole-
genome sequence data of oviparous (N = 6) and viviparous (N = 16) 
females generated during a prior study (Recknagel et  al.,  2021) 
were extracted from NCBI (PRJNA657575). Candidate genes of 
interest were extracted from 5′ UTR to 3′ UTR using the common 
lizard reference genome annotation (Yurchenko et al., 2020). Allele 
frequency differences (AFD) and FST (with 100 bp windows using 
a 50 bp step) were calculated using vcftools (Danecek et al., 2011). 
Variants with FST in the 97.5th percentile of the distribution were 

identified as outliers. Characterization of exons, introns and 
UTR regions was based on the common lizard reference genome 
annotation.

3  |  RESULTS

3.1  |  Ventral colour variation between lizards of 
different parity modes

Colour co-varied with parity mode: it was best described by a bi-
modal distribution, with about ¾ of individuals correctly assigned 
to their oviparous or viviparous parity mode based on colour model 
classification (adjusted Rand index = 0.24; correctly assigned ovipa-
rous: 82% out of 169, viviparous: 71% out of 203; total N = 372 and 
excluding hybrids) (Figure  S1). Oviparous females were paler and 
lighter in their ventral colouration compared to the more brightly 
yellow-coloured viviparous females (hue (ANOVA): F(2,442) = 98.86, 
p < .0001; saturation (ANOVA): F(2,442) = 43.82, p < .0001; light-
ness (ANOVA): F(2,442) = 33.48, p < .0001) (Figure  1A–D; Table  S1). 
Colour measurements were stable over time (Table  S2). All three 

F I G U R E  1 Phenotypic divergence in 
colouration between oviparous, hybrid 
and viviparous females. (A) Representative 
pale oviparous (up), hybrids (middle) 
and brightly yellow-coloured viviparous 
female (down). (B) Boxplots illustrating 
differences in ventral colouration, 
measured as (B) hue, (C) saturation and 
(D) lightness and the (E) number of ventral 
melanic spots and (F) proportion of ventral 
melanic spots. Hybrids are intermediate 
between the two parity modes; all 
differences are significant between parity 
modes. Letters a–c, denote significant 
differences. Box plots show the median, 
lower and upper quartile and outliers. (G) 
Violin plot showing differences between 
parity modes in PC2 of the ventral 
colouration PCA. (H) Ventral colouration 
PCA (derived from hue, saturation, 
lightness and number of spots) showing 
differences and overlap between the 
parity modes and hybrids.
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pigmentation vesicles in the chromatophore layers (xanthophores, 
iridophores and melanophores) were observed at the cellular level in 
both parity modes (Figure S2).

Oviparous females had more melanic spots and these occupied 
a larger area on their ventral region relative to viviparous females 
(number of spots (ANOVA): F(2,411) = 60.01, p < .0001; proportion 
of spots (beta regression): z = 11.61, R2 = .14, N = 413, p < .0001) 
(Figure 1E,F).

Hybrid individuals (N = 73, confirmed with genomic admix-
ture analysis) were intermediate both in colouration and in num-
ber of melanic spots. Differences between hybrid and oviparous 
or viviparous colouration are significant in all but one comparison 
(Figure 1B–F; Table S1).

3.2  |  Reproductive investment is not associated 
with ventral colour

Reproductive investment was not associated with ventral colour 
variation after accounting for parity mode. More specifically, after 
model selection from generalized multiple regressions, only a sig-
nificant association between parity mode and colour remained in the 
model (Hue: t-value = −14.90, p < .0001; saturation: t-value = −14.24, 
p < .0001; lightness: t-value = 12.73, p < .0001; PC1: t-value = −16.66, 
p < .0001; Table S3), while other variables such as clutch size and 
mass and offspring mass and survival were not associated with 
colour.

3.3  |  Genetics of ventral colouration

Admixture analysis of 83,665 genome-referenced single nucleo-
tide polymorphisms (SNPs) derived from 445 colour-phenotyped 
females revealed that 16.4% of individuals had genomes composed 
of at least 1% contribution of more than a single lineage (N ovipa-
rous = 169, N viviparous = 203, N hybrids = 73; Figure 2A). Using ad-
mixture mapping, we found 16 SNPs significantly associated with 
ventral colouration (Benjamini–Hochberg corrected p-value <.05) 
and most of these were within two genomic regions (Figure 2B). The 
most prominent candidate region (2.5 Mb) was on chromosome 5 
and held six significantly associated SNPs, including the SNP with 
the strongest association (−log10p). The closest gene (~4 kb) to the 
SNP with the strongest association was DGAT2. Out of the top 28 
associated SNPs genome wide (above −log10p > 4 cut-off), 11 (39%) 
were found to be associated with this candidate region (2.5 Mb) on 
chromosome 5 (Figure 2B).

Another candidate region was found on chromosome 2, spanning 
approximately 4 Mb (Figure 2C). This region had five SNPs showing 
an association with colour (p < .0001; Table  S4) and included 86 
genes. The top SNP fell within the COPRS gene, which is associated 
with gene regulation (Lacroix et al., 2008) and has no apparent role 
in pigmentation.

Finally, the second most significantly associated SNP overall was 
an isolated SNP located on chromosome 3 (Figure 2A), with the clos-
est gene to this SNP being PLCB1.

We found two candidate regions (four SNPs) associated with 
the number and size of melanic spots on the female ventral region 
(Figure 2D). The most prominent region and the most strongly as-
sociated SNP were found on chromosome 1 (three significantly as-
sociated SNPs). The two closest genes downstream to the top SNP 
were the protein tyrosine phosphatases PTPRJ (~32 kb) and PTPN5 
(~173 kb). An isolated SNP was found on chromosome 12, with the 
two closest candidate genes (LPP, ~19 kb; TPRG1, ~71 kb) not exhibit-
ing an apparent role in pigmentation.

3.4  |  Differential gene expression of ventral 
colouration

From RNAseq of ventral skin, a total of 1798 genes were differ-
entially expressed between pale and yellow females (Figure  3A). 
Gene ontology (GO) analysis revealed 54 significantly enriched GO 
terms in the ventral skin (Table S5), and these were mostly related 
to metabolic and cellular processes. Background differences in ven-
tral skin gene expression were expected to be high and potentially 
confounded due to the ca. 4 million year evolutionary divergence 
between the two colour/parity lineages (Cornetti et al., 2014); there-
fore, we focused our analysis on the set of known colour genes we 
had extracted from the literature (Table S6).

We found that all seven of the candidate genes involved in the 
melanin synthesis pathway (Braasch et al., 2007; McLean et al., 2017) 
were expressed in the ventral skin tissue. Three of these were signifi-
cantly differentially expressed – TYR, TYRP1 and SLC24A5 – and up-
regulated in the yellow (viviparous) individuals (Figure 3b; Table S6). 
Another melanin synthesis gene, PMEL, was marginally significant 
(q = 0.056). This gene was located within the candidate region for co-
louration on chromosome 2 that was identified in the genetic mapping.

All 25 of the known carotenoid metabolism genes were expressed 
in the ventral tissue (Table  S6). Five of these genes (ALDH18A1, 
DGAT1, DGAT2, DHRS3, SCARB1) were found to be significantly dif-
ferentially expressed between colour morphs (Figure 3C); four genes 
were up-regulated in yellow relative to pale females, while DHRS3 
was up-regulated in the pale skin. The differentially expressed carot-
enoid genes included DGAT2 (q < 0.05), which was the gene closest 
to the most significantly associated SNP on chromosome 5 identi-
fied in the genetic mapping.

Six known pteridine synthesis genes (from a total set of eight 
genes) were expressed in the ventral skin but none were differen-
tially expressed between yellow and pale (Figure 3d; Table S6).

Additionally, 115 of the genes known to be associated with iri-
dophores were found to be expressed in ventral tissue, including 15 
genes that were differentially expressed between the two colour 
morphs, approximately evenly divided between up-regulated in pale 
and up-regulated in yellow (Table S7).
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    |  7 of 15RECKNAGEL et al.

F I G U R E  2 Genetics of ventral colouration in oviparous and viviparous common lizards. (A) Admixture graph based on 445 female 
individuals from the contact zone of hybridizing pale oviparous and yellow-bellied viviparous common lizards (to facilitate visualization, 
standard error bars are not shown). (B) Genetic mapping results of the ventral colouration phenotype show a peak on the start of 
chromosome 5, with the strongest SNP closest to the gene DGAT2. (C) Closer view of chromosome 5 and the candidate region with the 
colour locus. Regions associated with parity mode are shown in red. The closest distance between colour loci and parity mode loci is not 
less than 10 Mb, which is beyond the distance of LD decay (Recknagel et al., 2021) and therefore not expected to be in strong linkage. The 
candidate region (~5 Mbp) is indicated by a yellow vertical bar. Density of SNPs is shown in blue along the top. (D) The candidate region on 
chromosome 2 contains the colouration candidate gene PMEL and is more than 7 Mb apart from the closest parity mode genes and is also 
not expected to be linked. The candidate region (~5 Mbp) is indicated by a yellow vertical bar. Density of SNPs is shown in blue along the 
top. (E) Genetic mapping of the ventral melanic spots illustrating a peak on chromosome 1. The closest genes to the top SNP are PTPRJ and 
PTPN5, two different protein tyrosine phosphatases and candidate genes for pigmentation phenotypes.
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3.5  |  Molecular variation in candidate 
colouration genes

Using whole-genome sequences, we examined the two candi-
date genes that were both differentially expressed in RNAseq and 
strongly associated with colouration in the genetic mapping, DGAT2 
and PMEL. We found no fixed differences either in the coding se-
quence, intronic regions or UTR regions of the genes (Figure 4A–C). 
DGAT2 and PMEL allele frequency differentiation between colour 
morphs was relatively low compared to other differentially ex-
pressed pigmentation genes (Figure  4A). Close investigation of 
DGAT2 and PMEL candidate gene sequences revealed that variants 
in exonic regions had generally lower differentiation between col-
our morphs and were never FST outliers (Figure 4B,C). Further, we 
found no evidence that the genomic regions containing the colour-
associated loci were under selection (Figure S3), as inferred from PC 
analysis of outlier loci. Rather, the majority of SNPs significantly dif-
ferent between colour morphs (13 out of 15 in DGAT2, and all 7 in 

PMEL) were located in introns (Figure 4B,C). Two of the outliers in 
the DGAT2 sequence were located in the 3′ UTR region.

We found that colour candidate genes DGAT2 and PMEL were 
not more closely linked to previously identified parity mode genes 
(Recknagel et al., 2021) than expected by chance (across all SNPs, 57.4% 
are closer to a parity mode region than DGAT2, and 53.6% are closer 
than PMEL; Figure S4). Similarly, candidate genes for melanic spots are 
not linked to previously identified parity mode candidate genes (64.3% 
of SNPs are closer to a parity mode region than PTPRJ) (Figure S4).

From the RADseq dataset, analysis of the most highly associ-
ated SNP close to the DGAT2 gene showed that females with pale 
ventral colour were always homozygous for one allele (genotype 
G/G), while hybrid and yellow females had all three genotypes (G/G, 
G/A, A/A) (Figure 4D). Nonetheless, individuals that had the A al-
lele had a higher hue value, meaning they tended to be more yellow 
(F(2,442) = 36.0, p < .0001). This was the case for both heterozygous 
and homozygous individuals, which did not differ significantly 
(Figure 4D).

F I G U R E  3 Differential expression in melanin- and carotenoid-based pigmentation between colour morphs. (A) Volcano plot depicting 
differential gene expression between pale (oviparous) and yellow (viviparous) ventral skin. One gene, MATN1, exhibited an extreme log2FC 
value (−25.8) and was excluded for graphical reasons. Labels indicate pigment pathway genes that show significant differential expression 
between colour morphs. Horizontal dashed line: q-value = 0.05. Vertical dashed lines: log2 fold-change = 2 or −2. Light grey: Non-significant 
data points; Orange: higher expression in yellow viviparous individuals; Dark grey: higher expression in pale oviparous individuals. (B) Mean 
log2-transformed counts of genes involved in melanin synthesis. (C) Mean log2-transformed counts of genes involved in carotenoid 
metabolism. (D) Mean log2-transformed counts of genes involved in pteridine synthesis. Significant differences in gene expression are 
denoted by asterisks (*q < 0.05; **q < 0.01; ***q < 0.001).
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    |  9 of 15RECKNAGEL et al.

4  |  DISCUSSION

Common lizards represent a well-known example for the role of ven-
tral colour polymorphisms in ecological and evolutionary strategies 
(Fitze et al., 2014; San-Jose et al., 2014; Sinervo et al., 2007; Vercken 
et al., 2007, 2008, 2010). Here, we show that oviparous and vivipa-
rous common lizards differ significantly in their ventral colouration 

within a contact zone: oviparous females have pale bellies covered 
with melanic spots, while viviparous females have yellow bellies with 
fewer or no spots (Figure 1). Hybrid individuals were intermediate in 
both colouration and the number of melanic spots.

While ventral colour polymorphisms have been described in 
other common lizard lineages, ours is a first evaluation of two co-
occurring but evolutionarily distinct viviparous and oviparous 

F I G U R E  4 Evolutionary history and divergence of pigmentation genes. (A) Allele frequency difference (AFD) of genetic mapping 
candidate genes and differentially expressed genes between oviparous and viviparous individuals derived from whole genome sequences. 
Shown are differences in coding regions, introns and UTRs. The first two genes were the candidates derived from genetic mapping (DGAT2 
and PMEL), and the other eight genes were differentially expressed. Box limits show the first quartile (25th percentile) and third quartile 
(75th percentile). The whiskers extend to 1.5× inter-quartile range from the box limit. (B) Mean FST between oviparous and viviparous 
individuals within the DGAT2 sequence. (C) Mean FST between oviparous and viviparous individuals within the PMEL sequence. The outlier 
threshold was calculated as the 97.5th percentile of the distribution separately for each gene. Fifteen outliers were identified in DGAT2 
and seven outliers were identified in PMEL. Gene sequences are displayed above the graphs, with exons, introns and UTR regions shown by 
chromosomal position. Exons are coloured in orange, introns are coloured in blue and UTR regions are coloured in purple. (D) Frequency of 
genotypes of the SNP showing the highest association with colouration and close to the DGAT2 gene. Females with the A allele had a higher 
hue value and were more yellowish than individuals homozygous for the G allele. Violin plot and box plots with the median, lower and upper 
quartiles and outliers are shown.
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lineages differing in colour morph. In contrast to previous research 
within the Western Viviparous lineage (Vercken et al., 2007, 2010), 
we found no association between female ventral colouration and 
female reproductive investment (based on measures of clutch size, 
weight and viability; N = 558) once accounting for differences in 
parity mode. This suggests that female ventral colour is not linked 
to reproductive investment. We conclude that while parity mode 
(being oviparous or viviparous) has been shown to be associated 
with reproductive investment (McLennan et al., 2019; Recknagel & 
Elmer, 2019), ventral colour does not play a role in these differences. 
This suggests that common lizard colour variation and its genetic 
links with other reproductive traits such as strategies and behaviour 
are evolutionarily unstable.

A key to understanding the evolution of colour polymorphisms, 
their adaptive significance and correlations with other traits is to 
identify the genetic mechanism and basis of colouration. Our admix-
ture mapping approach and differential expression data identify a 
strong colour candidate gene: DGAT2. The SNP showing the highest 
association with yellow ventral colouration is closest to this gene, 
and it is also differentially expressed in ventral scales of the two 
parity modes differing in colouration. Vertebrates cannot synthesize 
carotenoids endogenously and must acquire them through their diet 
(von Lintig,  2010). During the metabolism of dietary carotenoids, 
lipids are involved in their transport and delivery to the chromato-
phores. Our gene ontology (GO) analysis revealed 54 significantly 
enriched GO terms in the ventral skin (Table S5), mostly related to 
metabolic and cellular processes, including lipid biosynthesis, an 
important process for carotenoid metabolism (Toews et al., 2017). 
The DGAT2 gene encodes a transmembrane protein that promotes 
the synthesis of triacylglycerol droplets (Bhatt-Wessel et al., 2018; 
Chitraju et  al.,  2019), where dietary carotenoids are stored. The 
protein is involved in the cellular uptake of carotenoids and is as-
sociated with carotenoid-based colouration in lizards (de Mello 
et  al.,  2021; McLean et  al.,  2017), birds (Toomey et  al.,  2017) and 
fish (Ahi et al., 2020). A direct link between expression differences 
in DGAT2 and presence and absence of carotenoid esters in yellow 
and white cichlid skin (Ahi et al., 2020) suggests that DGAT2 might 
be involved in the esterification of carotenoids, a process that may 
affect the deposition and distribution of these pigments in the skin, 
and thereby influence colouration. The most significantly associated 
SNP from our admixture mapping that lies close to the DGAT2 gene 
suggests a dominant allele effect for yellow colouration. We found 
no fixed differences between pale oviparous and yellow viviparous 
individuals in the coding region, and together with the differential 
expression of DGAT2, this may suggest that regulatory variation 
rather than fixed coding differences play a role in regulating the co-
lour polymorphism.

A second candidate gene for ventral colouration that we iden-
tified is PMEL, located within a region of 4 Mb associated with ven-
tral colour in our admixture analysis. Further, PMEL was marginally 
significant in the differential expression analysis (Figure 3b). PMEL 
is a transmembrane glycoprotein involved in early melanogenesis 
and production of eumelanin in melanocytes (Hellström et al., 2011; 

Watt et al., 2013). More specifically, PMEL regulates the formation of 
fibrils in the melanosome (Watt et al., 2013). In later stages of mela-
nogenesis, these fibrillar sheets are packed with melanin, leading to 
black or brown colouration. In vertebrates, PMEL is associated with 
pigmentation-related mutants that can result in yellow colouration, 
particularly in epidermal tissue such as skin (Burgon et  al.,  2020), 
scales (Wang et al., 2022), and feathers (Ishishita et al., 2018; Zheng 
et  al.,  2020). For example, in golden tilapia, CRISPR knockouts of 
PMEL genes lead to weak vertical stripes and a yellowish colouration 
(Wang et al., 2022).

Finally, the SNP with the second largest −log10p score was near-
est to PLCB1. This gene is also related to colour, as it is part of the 
protein kinase C pathway and is involved in melanocyte differen-
tiation (Vidács et  al.,  2022). A study on common North American 
woodpeckers found that PLCB1 and PLCB4 were associated with yel-
low and orange plumage colouration (Aguillon et al., 2021). Overall, 
support for PMEL and PLCB1 genes as candidates is less clear than 
for DGAT2 but highly suggestive and worth further research.

In addition to identifying candidate genes for ventral coloura-
tion, our admixture mapping of ventral melanic spots revealed 
another interesting candidate gene class: protein tyrosine phos-
phatases (PTPs). These proteins have been previously shown to be 
involved in pigmentation phenotypes (Baxter et  al.,  2019). More 
specifically, the gene PTPN11 is responsible for the LEOPARD syn-
drome in humans, a phenotype that includes the formation of multi-
ple lentigines (melanic spots) (Digilio et al., 2002; Legius et al., 2002; 
Motegi et al., 2015), and mutations in the PTPN6 gene are involved 
in a range of abnormal skin pigmentation phenotypes in mice (Green 
& Shultz, 1975; Nesterovitch et  al.,  2011). In common lizards, the 
extent of black spotting on the ventral scales is sexually dimorphic, 
with females having fewer (Vroonen et  al., 2013). In males, it has 
been associated with fitness traits (San-Jose et al., 2017), while its 
role in females remains currently unclear. As far as we are aware, 
this is the first genetic mapping to identify candidate genes for me-
lanic spots in a squamate. Given its potential covariation with fit-
ness, it is ripe for further exploration within and across species.

Across common lizards and through extensive behavioural ecol-
ogy research, ventral colour has been thought to vary with reproduc-
tive strategies (Fitze et al., 2014; Vercken et al., 2007, 2010; Vercken & 
Clobert, 2008). Our findings suggest that colouration is not associated 
with, nor genetically linked to, parity mode or reproductive invest-
ment. Considering that linkage is already weak (below an R2 of .15) 
at a distance of around 100 kb (Recknagel et al., 2021), it is unlikely 
that proximity to parity mode genes allowed for genetic hitchhiking of 
DGAT2 (closest to parity mode gene at ~11.3 Mb; Figure S4a) or PMEL 
(closest to parity mode at ~7.3 Mb; Figure S4b). Combined evidence 
from the absence of a signal of selection and a lack of association with 
variation in reproductive investment suggests that ventral colouration 
is not a trait under strong selection in females in these common lizard 
lineages. Instead, we suggest that colour is genetically independent of 
parity mode and reproductive investment. Future behavioural experi-
ments co-varying colour and parity mode would be valuable to infer if 
there is lineage-based mate preference for ventral colour.
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Colour polymorphism has frequently been implicated as a trait 
facilitating species diversification (Brock et  al.,  2021; Hugall & 
Stuart-Fox,  2012). For example, colouration is extremely import-
ant in mate choice as a visual cue and can quickly lead to assorta-
tive mating and divergent adaptation (McKinnon & Pierotti, 2010; 
Seehausen & Van Alphen,  1998). Our results and published data 
on colouration of other squamate species suggest that colouration 
evolves flexibly and convergently. In the wall lizard, a lacertid liz-
ard species closely related to the common lizard, it was found that 
entirely different genes (BCO2, SPR) regulate differences in orange/
yellow ventral colouration driven by pteridines and/or carotenoids 
(Andrade et  al.,  2019). In a broader evolutionary context, we sug-
gest that colouration polymorphisms evolve quickly and through 
diverse genetic mechanisms (Hofreiter & Schöneberg, 2010; Keene 
et al., 2015; Kratochwil, 2019).

Colouration genes are usually best known for their involve-
ment in biological pathways leading to the production of pigments. 
However, most of these genes have pleiotropic roles and are cru-
cial components of metabolic pathways during ontogeny and the 
maintenance of organisms (Hoekstra, 2006; Hubbard et al., 2010), 
and loss-of-function mutations can have lethal consequences 
(Nadeau et al., 2008). Therefore, it is likely that non-coding, regu-
latory regions play an important role in colour variation (Galbraith 
& Hayward, 2023; Kratochwil et  al., 2018; Orteu & Jiggins, 2020; 
Toomey et al., 2017; van der Burg et al., 2020). In common lizards, 
we showed that there are no fixed differences in protein-coding re-
gions in the set of colour candidate genes between the pale-bellied 
oviparous and yellow-bellied viviparous lineages that we identi-
fied. Indeed, this would be compatible with research showing that 
squamate reptiles have the highest proportion of intraspecific cis-
regulatory mutations regulating pigmentation (Elkin et al., 2023).

5  |  CONCLUSION

Here, via genetic mapping and differential expression analyses, we 
identified genomic regions and candidate genes that show signals 
consistent with regulating ventral colour variation between syn-
topic oviparous and viviparous common lizards of pale versus yellow 
ventral colouration: the DGAT2 gene, and a larger region contain-
ing the PMEL gene as a potential candidate. Moreover, we identi-
fied a genomic region associated with ventral melanic spots, which 
is potentially under control of a PTP candidate gene. The ventral 
colour and melanic spot genes warrant further exploration to vali-
date their function and infer their frequencies and phenotype as-
sociations more broadly in these and other common lizard lineages. 
Contrary to other common lizard lineages, reproductive investment 
is not associated with ventral colouration in the oviparous–vivipa-
rous contact zone studied here. The degree of colour variation in 
common lizards and its association with behavioural syndromes has 
been questioned and remains contentious in the scientific commu-
nity (Cote et al., 2008; Vercken et al., 2008). Therefore, the conse-
quences of ventral colouration appear to vary across lineages and 

must be further addressed to get a clearer understanding of genetic 
correlations and their evolutionary significance in common lizards. 
Our findings provide valuable candidate gene information and 
genomic patterns that can be explored in other populations and set-
tings. Finally, our findings suggest that the evolution of differential 
colouration by regulatory changes may be a mechanism by which be-
havioural syndromes and other colouration–life-history trait correla-
tions can co-evolve quickly, but this warrants further investigation.
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