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ABSTRACT: We perform the analytical next-to-leading order calculation of the process
p+ A — v* 4 jet + X, at forward rapidities and low x. These kinematics justify a hybrid
approach, where a quark from the ‘projectile’ proton scatters off the gluon distribution of
the ‘target’, which can be a nucleus or a highly boosted proton. By using the Color Glass
Condensate effective theory approach, this gluon distribution is allowed to be so dense
that the quark undergoes multiple scattering. Moreover, large high-energy logarithms in
the ratio of the hard scale and the center-of-mass energy are resummed by the Balitsky,
Kovchegov, Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner or BK-JIMWLK
evolution equations. We demonstrate that all ultraviolet divergences encountered in the
calculation cancel, while the high-energy divergences are absorbed into BK-JIMWLK.
The remaining singularities are collinear in nature and can be either absorbed into the
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution of the incoming quark, when they stem
from initial-state radiation, or else can be treated by a jet function in case they are caused
by final-state emissions. The resulting cross section is completely finite and expressed in
function of only a small set of color operators.
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1 Introduction

In order to apply Quantum Chromodynamics (QQCD) to the analysis of collider experiments
with hadrons, the standard approach is to rely on collinear factorization. A hard scale u
justifies a perturbative treatment of the underlying partonic hard scattering process, while
the hadron structure is parameterized by parton distribution functions (PDFs) or frag-
mentation functions (FFs). Using the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
equations [1-3], the scale dependence of the PDFs and FFs can be perturbatively calcu-
lated, resumming large collinear logarithms in the ratio u?/u3 of the hard scale and the
hadronic one.

However, collinear factorization is known to break down whenever there is an additional
large ratio of scales in the process under consideration. For example, it is implicitly assumed
that the center-of-mass energy /s is of the same order as the hard scale pu. At high
energies or low z ~ p?/s, this condition can be violated, and it becomes necessary to
perform an additional resummation of large high-energy- or rapidity logarithms a In s/p? ~
aslnl/z > 1. A commonly used framework to do so is High-Energy Factorization (HEF) [4-
6], in which the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equations [7, 8] are used to resum
the high-energy logarithms on top of the collinear ones already resummed by DGLAP.

In this paper, we work within another framework applicable at small z, known as the
Color Glass Condensate (CGC) [9-19]. The CGC is an effective theory based upon the
separation of fast and slow gluon fields in a highly boosted proton or nucleus (a shockwave).
Only the former are regarded as quantum fields, while the latter are integrated out and
treated as a semiclassical background field with a characteristic scale (Js. This scale is
known as the saturation scale, because it marks the onset of a regime in which nonlinear
gluon recombinations counteract the exponential growth of the gluon density predicted by
BFKL [20]. The renormalization group evolution associated with the CGC effective theory
leads to the nonlinear Balitsky, Kovchegov, Jalilian-Marian, Iancu, McLerran, Weigert,
Leonidov, Kovner or BK-JIMWLK evolution equations [12-19, 21-24]. In a sense, JIMWLK
can be regarded as the generalization to the nonlinear saturation regime of the linear BFKL
evolution, to which it corresponds in the hard scattering limit k2 > Q?, with k; the typical
transverse momentum of the small-z gluons. Moreover, in contrast to BFKL approaches
such as HEF, the CGC in general does not factorize in terms of a single unintegrated gluon
distribution. Instead, it incorporates all operators of ‘genuine-twist’ Q2/u? [25, 26].



Although there have been many hints, conclusive experimental proof of saturation is
still lacking, see for instance [27] and references therein. After all, it is an effect hidden in a
corner of phase space. Precise theoretical predictions are, therefore, essential, and since the
last decade a lot of progress has been made to compute several relevant processes in the
saturation regime at next-to-leading order (NLO) accuracy. Nowadays, the impact factors are
known for single inclusive hadron production in proton-nucleus collisions [28, 29], inclusive
deep-inelastic scattering (DIS) [30-35], DIS with massive quarks [36-38], exclusive vector
meson production in DIS [39-42], photon plus dijet production in DIS [43], diffractive dijet
or dihadron production in DIS [44, 45], inclusive dijet [46] or dihadron [47, 48] production in
DIS, semi-inclusive DIS [49], and inclusive dijet photoproduction [50]. The next-to-leading
logarithmic extension of the JIMWLK equations has been studied in refs. [51-54]. Finally,
results for multiparticle production at tree level were obtained in [55-60]. We will not
attempt to list all NLO calculations in other approaches to low-x physics; a recent example
in BFKL can be found in ref. [61].

Here, we are interested in the production of a Drell-Yan [62] pair and a jet, i.e.,
p+A—~/Z+X — 0T +0" +jet+ X. At leading order (LO) in the CGC, the calculation
was first performed in ref. [63] and the process further studied in, e.g., refs. [64, 65]. This
reaction has also been extensively analyzed within the HEF framework (at LO). In [66],
it was used to study different prescriptions for the low-x evolution, expanding the BFKL
resummation to take additional physical mechanisms into account. In [67], the HEF
calculation was compared with the collinear results at LO and NLO, incorporating initial-
and final-state parton showers. In both works, the theoretical predictions were compared
with Z + jet data from the LHCb collaboration [68].

In this work, we contribute to the above-mentioned theory effort by presenting the
next-to-leading order calculation for the p + A — v* 4 jet + X process at forward rapidities
and at high energies. The result equally applies to the production of a Z-boson when
replacing the electromagnetic coupling constant. The resulting cross section is easily
promoted to the inclusive production of a Drell-Yan pair plus a jet by multiplying with
the v* — £~ + (T decay rate, provided the angular distribution of the leptons in their
rest frame is integrated out [70]. Note that the virtual photon and the jet are required to
be sufficiently close in rapidity such that BFKL ladders a la Mueller-Navelet [69] can be
disregared, or parametrically: An,«_jet < 1/as.

In the kinematics under consideration, a quark or gluon carrying a longitudinal mo-
mentum fraction x, from the ‘projectile’ proton, probes the low-z, gluon distribution of
the ‘target’ proton or nucleus. This motivates us to work in an approximation known as
the hybrid or dilute-dense factorization scheme [71, 72], in which the partonic structure of
the projectile proton can be parameterized with collinear PDFs, while the CGC is applied
to the gluon structure of the target.! In spirit, this hybrid scheme is in fact very similar
to the dipole picture [74, 75] used in deep-inelastic scattering. In particular, it allows one
to formulate the p + A — ~* + jet + X cross section as a convolution of the projectile

In the recently appeared work [73], the hybrid approach has been generalized to include transverse-
momentum dependence also on the projectile side.



quark PDF with the perturbative ¢ — v* + ¢(+4g¢) splitting inside the semiclassical color
background field of the target, described by the CGC. In this work, we limit ourselves
to the quark channel, and perform the calculation using light-cone perturbation theory
(LCPT) [76-78]. We refer to [33] for a very clear presentation of LCPT in the context of
the dipole picture and the CGC.

As in most higher-order calculations, we will encounter different classes of divergences.
We will use the standard approach of dimensional regularization [79] to treat ultraviolet (UV)
and infrared (IR) singularities. At the present perturbative order, the former only appear
in the loop diagrams, and will be shown to cancel in the total virtual NLO contribution.
Infrared or, in this case, collinear divergences, appear both in virtual diagrams (more
specifically in the asymptotic quark self-energy corrections), and on the cross section level
after integrating over the momentum of the radiated gluon. The poles stemming from
collinear gluon radiation in the initial state will be shown to cancel with the DGLAP
evolution of the incoming quark, while those in the final state will be regulated by a jet
definition. Finally, we will regularize high-energy or rapidity divergences with a cutoff
method, as is customary in CGC calculations, and demonstrate how they are absorbed in
the JIMWLK evolution of the target.

The paper is organized as follows: we start with the derivation of the cross section at
leading order in section 2, which allows us to introduce the conventions of our light-cone
perturbation theory approach to the CGC. In section 3, we list all the one-loop virtual
diagrams and their corresponding amplitudes. The cancellation of the ultraviolet divergences
which they contain is then treated in section 4. In the next section, 5, we present the
results of all the real radiative corrections to the cross section. The treatment of the
corresponding collinear singularities in the initial and final state is discussed in sections 6
and 7, respectively. In section 8, we show how the remaining rapidity singularities can be
absorbed into the JIMWLK evolution of the leading-order cross section, after which we
present the completely finite total cross section in section 9. We conclude with a discussion
of the applications of our calculation and further research directions. Readers interested in
the technicalities of deriving the one-loop amplitudes in our framework are referred to the
appendix, section C, where the calculation of one virtual diagram is presented in full detail.

2 Leading-order cross section

In this first section, we briefly review the leading-order (LO) calculation of inclusive forward

virtual photon plus jet production (p + A — ~v* + jet + X). Along the way, we will specify

the notations and conventions that we use throughout this work. First and foremost, let us
introduce our convention for light-cone (LC) momenta, namely:

+  ko+ks —  ko—ks 21

kT = 7 and k= = 7 (2.1)

where 3 is the direction along the beam line. Transverse momenta or coordinates are always

written in boldface, and directly evaluated in Euclidean space. The metric is, therefore,
defined by the scalar product:

k-p=ktp +kp" —k-p. (2.2)
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Figure 1. The two Feynman graphs for the LO partonic ¢ + A — 7" + ¢ process. The highly
boosted target A, a shockwave, is represented by the full vertical line.

In light-cone perturbation theory, all particle momenta obey the mass-shell condition:
k~ = (k% + m2)/2k*. For this reason, we can use the compact notation k = (k*,k) for a
generic momentum vector.

Figure 1 depicts the two Feynman diagrams corresponding to the partonic g+ A4 — v*+¢q
process. All fermions are taken to be massless, and we choose a frame in which the momentum
of the incoming quark is oriented along the positive light-cone direction:

po=(pg,Po=0). (2.3)
As is conventional, the gluon fields are described using the light-cone gauge A* = 0. Such a
gauge condition cannot, however, be set for the virtual photon field, which has a virtual mass
M and is described by the Proca equation. Taking ¢ = (¢, q) to be the momentum of the
virtual photon, we make the following choice for its transverse (A = 1,2) and longitudinal

polarization vectors Eéf resp. €h:

t- 0T

gt = M> q
e = . ). (2.4)

—— a
€)) and 60—(M, STl
Furthermore, in what follows we work with linear transverse polarization vectors eg\ = 5.

In D dimensions, the leading-order partonic cross section is given by:

p?“=P) dpfd”pi6(p}) dgtd”2q(qh)
2}08L (27‘()D*12pzr (2m)P12¢+

~ 1 2

dO'LO = 2776(])8_ —pi‘r—q+)ﬁ’MLO’ ; (25)
where p; = (pf, p1) is the momentum of the outgoing quark, and where Mo = Myo1 +
Moz is the sum of the two amplitudes associated with the diagrams in figure 1. From
eq. (2.5), the pp- or pA cross section is obtained after convolving with the quark PDF
and averaging over the semiclassical gluon fields in the target (an operation we denote
with (...)):

dpt T + .
dovo = [ LI £, (% ) doso)
0 D

p i’
= g ) T T V) dad RO (2.
Pl ) oy T @mP ey (em)Piagt '

1

55 {Mro1 + ML02|2>

X
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In the above equation, =, = par / p; is the plus-momentum fraction of the quark with respect
to its parent (projectile) proton.

As already mentioned, we work in the dipole picture, formulated in LCPT. In this
approach, the projectile dynamics take place on a much shorter timescale than those of the
target. Therefore, on the partonic level the projectile can be described by a Fock state with
perturbatively calculable dynamics, interacting with a static external potential provided by
the target. The amplitudes M are defined as follows:

Ha@ Y (@ F - 1a@d)), = 208(pg —pf —aM, (2.7)

where the external potential F (—1 for reasons of unitarity) is evaluated between the Fock
states of the incoming (i) quark, and the outgoing (f) quark together with the virtual
photon. The first step is to calculate the perturbative evolution of the asymptotic Fock
states to and from the position of the shockwave at 27 = 0. Indeed, the two interacting or
‘dressed’ Fock states |...); r are related to eigenstates |...) of the free Hamiltonian through
the time evolution:

A

|a(pb)); = U(0, —o0)|a(pb)) ,

o o (2.8)
AaE)y (@] = (a(@)7*(@)|U(+00,0),
where U is the LC-time evolution operator defined as:
N . b .
Ub,a) = Texp(—i/ dx+?-t(a:+)) , (2.9)

with 7' the (LC)-time ordering operator and #(z1) the LC Hamiltonian. In the interaction
picture, the time evolution of the latter is given by:

H(l’+) — eiﬁox+ve—iﬁo$+ (210)

with Hy the free Hamiltonian, and V the collection of interaction terms. Acting with (2.9)
on the Fock state |q(ﬁo)>, which is per definition an eigenstate of the free Hamiltonian with

Hola(fo)) = py |a(fo)), we obtain:

la(Po)), = U0, —o0)|a(fo))

= o) —i [PS@R [ arlaliy ()

(2.11)

A

x (O (k)| T PP g (5y))

QB B[V ]a@) 5
= latw) + [ ps(@ B LI OWO gy iy,

up to the perturbative order we are interested in, and where we have introduced the following
notation for the phase-space integration measure:

. D—17p/p+
/PS(E) - ,ﬁ—D/%. (2.12)



Likewise, at leading order:
(a(B)Y (@)U (+00,0) = (a(B1)v"(@)]
. +oo R
+/PS(€)<q(ﬁl)7*((D|exp(—i/0 d ™ H(@") ) a(f))(a()|,

T @V]a®),

= {a)r @) + [ s@ WP D) 5

Combining (2.7), (2.11), and (2.13) we obtain:
Ha@E)y (@ F-1la()), = (a(p CmF 1q(po))

NVia@), = - .
+/PS Py +q q£|—l?0+><Q(€)’ ~ta(po))

+ [ PSRy <‘;O__€’?L‘”'ﬁjﬁi”<q<ﬁ1>w*<q->|ﬁ—1|q<f>v*gi¥>>-)
2.14

In the eikonal approximation we are using, the potential F can never change the particle

content of the Fock states, which are orthogonal. The first term in the above equation,
therefore, disappears. The second and third lines correspond to the first and second diagram
in figure 1, respectively. In the former, the incoming quark scatters off the external potential
after which it emits a virtual photon. In the latter, the photon is emitted before the
interaction with the potential. We will now evaluate eq. (2.14) further, starting with the
perturbative interaction terms in the numerators. The relevant piece of the interaction
part of the QED LC Hamiltonian is, with the short-hand notations [dP3% = [dz~dP~%x
and Z = (27, x):

V=P AP e (@A @) - (2.15)

where : : denotes normal ordering. Using the definitions of the fermion- and boson fields in
terms of the creation- and annihilation operators:

7) = / PS(R) (e FFu(R)by + eFFu(E)dl),

. (2.16)
/PS fzk:v k) +ezk xﬁ/*( ) J]%)
it is then a straightforward exercise to show that:
Oy (k)|V]a(po)) = (0]bgaz V bl |0
(a0 (k)|V|a(po)) = (0lbzag V by [0) 2.17)

= (2m)"” 15(D (o — £ = k) gemu (D) (F)u(i)

We note that the Fock states are normalized the usual way with the help of the (anti)-
commutation relations:

{bg. b} = {dg, db} = (2kF)(2m)P 1PV (k - ), )18
lag, al] = (2k™)(2m)P 0P (% — p), 219

such that, demanding that for empty states (0|0) = 1, it follows that, e.g.,
() () |alo)y (k) =24 (2m)PL6PD(Fy — F)2et (2m) PSPV (@ - ). (2.19)



In order not to clutter the formulas, we will always suppress spinor indices, fundamental
color indices, and fermion helicity indices.

We now proceed by simplifying the Dirac algebra in (2.14). Keeping the anticommu-
tation relation {*,7”} = 2¢g"” in mind, we introduce the projectors P = v~ ~v* /2 and
Pp =~~~ /2 which allow us to define ‘good” and ‘bad’ spinor components:

u(l;) = (Pg + Pg)u(k) = UG(? +usp (2.20)

(k) = @(k)(Pg + Pg) = ap(k) + @

The same definitions hold for the antifermion spinors v(k). The Dirac equation ¥u(k) = 0
then introduces a dependence between both components:

- +
up(k) = o=k -yua(k"), (2.21)

with exactly the same equation holding for the antifermion spinors, at least in the massless
case. Note that the good spinors only depend on the plus-momentum component.
Relation (2.21) allows us to rewrite a generic spinor product @(ky)¢(ks)u(ks) as:

(k)¢ (ks )u(ks)

~ Ko~y At . o K (2.22)
= (k) (14 K525 ) (e ()¢t ()= y-elfa)) (1597 1) wa(h).
1
Applying the above identity to the spinor product in (2.17), using the polarization vec-

tors (2.4), we find in the case of a transversely polarized photon:

(@5 (0)|V]aBo)) = gem(2m) P16~V (5o — 7 k)

B o by - (2.23)
x ag (et )yt ( +om T+ ;;g’)’/\’)’)‘) uG(py)

since from {y#, "} = 2¢"" it follows that vty = 0 and {7, ~'} = 0. For this same reason,
it is easy to see that ug~y'ug = 0. Finally, for the momentum configurations in (2.14), we
end up with:

(@(E)73(@)|V]a)) = gom (2m) 710D (1 + 7= 1)

m_ (P <1+ 2p1>5,\5\_i0,\5\ v, (2.24)
and:
(D75 (B)|[V]a(@0)) = gom (27)P 6P~ (o — £ — k)
X %UG(FF) (1 + kﬁ) S _ Z-UA>\:| Y (2.25)

In the above formulas, we replaced the product of two transverse gamma matrices with:
~Niyd = =59 — g (2.26)

where the Dirac sigma is defined as o™ = (i/2)[~v%, v/].



Let us now turn to the interaction of the projectile with the target, which is, as explained
above, described by an external potential. Moreover, the Color Glass Condensate approach
asserts that, in the eikonal approximation, this potential is built from Wilson lines along
the projectile direction x™:

“+oo
Ux = Pexp ( — igs/ dzt A (z7, x)t“) ,

—00
N (2.27)

o0
Wx = Pexp ( - igs/ de™ A7 (27, X)T“) ,
—00

where P is the path-ordering operator, gs is the strong coupling, A, the minus-component
of the gluon field, and where t* and T* are the generators of SU(N,) in the fundamental
and adjoint representation, respectively. The precise form of the potential depends on the
Fock state. In transverse coordinate space, each (anti)quark and gluon in the projectile
adds a Wilson line to the potential that inherits the quark or gluon transverse coordinate
and color representation. In the present case, the projectile-target interactions in (2.14) are
given by:

()P = 1) = 2pf 2w} — ) [ (U~ 1),

X

(a7 (D F—1]|a(@)y* (k) = 2pf2md(py — €1)2q 2m0(q — kT) (2.28)
x / P10 ([, 1)

where we introduced the short-hand notation [, = pP=4 [dP~2

x for the integration over
D — 2 transverse coordinate space. Moreover, in the present eikonal approximation, the
interaction preserves plus-momentum and the helicity. Combining (2.7), (2.14), (2.24), (2.25),

and (2.28), we can finally write down the expressions for the leading-order amplitudes:

+pA < +
—gemq Pi  _ 2p —ik | x
Moy = 222 (o)™ (14 2 ) uolo) [ e (- 1),
pO J_+p1 q X <2 29)
+ o < + ’
A —gemq'Td” 4\ 4 GAX 2p + —ik, -
Moy = 2208y S™ (14 25wl [ e (Ue - 1),

where we have introduced the following momentum combinations, which will be used
throughout this work:

to ot
PLEq P1—p;q

= and  k; =p1+q, (2.30)
0
as well as the definition: . . .

SM(€) = £6M 1y —io™ . (2.31)

A similar calculation for the longitudinally polarized virtual photon gives:

T2 T2
em Do P —py M~° _ ik -
Moy = TP P QUG(pT)WUG(ch)/e X (U, - 1),
M po PL +pi M x 9.39
0 gem Py a4’ — pi M? Tyt + ik, x (2.52)
. _ Jem a7 —tk - —
MLOQ = M pla? +py M? UG(pl )'Y UG(pO )/xe (UX 1) :



Multiplying the amplitudes (2.29) and (2.32) with their complex conjugate, and summing
over the polarization indices A of the transversely polarized virtual photon or vector boson,
we arrive at:

2 _
2 2 g q qgPL T, A\ 2
> [Mbor + Mioo|” = g2, S
[ Mzo1 + Mios|” = gemNe P4 piM? g2 pprar ) 1OLO |

(2.33)
% e*ikj_‘(xfx’) (Sxx’ —+ 1) ,
x,x/
and: )
Ne (piPe —piM*  piq® —pfM* 0 |2
MO + MO 2 _ 2 c < 0 1 S
| LO1 L02| Yem M2 pS—PJ_ +p+M2 pg—qz + pTMQ ’ LO| <234)
x / e X (5 1))
x,x’
In the above results, we used syyx to denote the dipole color operator:
1
S = ETr(UxUl,) : (2.35)

where we take the trace over the fundamental SU(N,) color indices (which we do not write
explicitly). The traces over spinor indices are given by:

, 1
|ST>\>\‘2_TrluG( Yy SM <1+ p1> e (e )y +S>\)\( +2;1>UG(17+)]7
(2.36)
’880‘25Tr

uc(pg )VWG(M)@G(H)’YWG@J)] :

Applying the cyclic permutation property of the trace as well as the completeness relation
(a summation over fermion spin is understood):

ug(q")ua(q" )yt =2¢"Pg, (2.37)

we obtain:
) ’ ot T < 2T
SIS = T [2;0 PeSM ( +qu) 2pf PaSM <1+;’¢>] (2.38)

Since the projector Pg commutes with transverse gamma matrices, from which the structures
S are built, the above expression further simplifies to:

STN? = 4p0+p1+1&~[736~ (( +2”1 ) 5”]14+ia”> <<1+2p1 ) 5”]14—2'0M>] ,

) (2.39)
+ Y / 5y )/
= 4pdp; T&"[PG (( + 2;}) AN My + oM oM + 2i0M (1 420 )) ]
Finally, with the help of the identities:
M oM = (D = 3)6" My +i(D — 4)o™?, (2.40)



as well as:

Tr(Pg) =2,  Tr(Pgo) =0, (2.41)
we end up with:
_ ) N2
ISTAA2 = gpit pit 67 <<1 + quj> +D— 3) : (2.42)
and similarly
|Stol® = 8pipg - (2.43)

In appendix B, the most important gamma-matrix identities used in this work are collected.
Combining (2.5), (2.33), (2.34), (2.42), and (2.43), we eventually arrive at the following
result for the partonic cross sections:

da—go _ geszc 5(1 o . 2) 14 (1 - 2)2 P, + q 2
TP, Pk, (2n) — \pear Teear (2.44)
% / / e—ik¢~(x_x/) (5xx’ + 1) ,
X,X
d‘ATII:O _ ggrnNeé(l _ Z—E) 1 Pi*ZMQ - qugMQ 2
GAEPP LAk | (2n) 220 \ P2 420 qF ¥ a0 .15

% / ek (x=x) (sxx, + 1) ,
x,x/

defining the momentum fractions z = ¢* /par and z = 1 — z. In principle, the ‘1’ in the
last lines of the above two expressions can be dropped, since performing the integral over
x would yield a delta function forcing k; = 0. But then, remembering definitions (2.30),
it is easy to see that the hard parts in the first lines of (2.44) and (2.45) evaluate to zero.
Moreover, the dipole sy quantifies the potential provided by the target and experienced
by the projectile. It is built from Wilson lines that depend on the semi-classical gauge
fields A~ of the highly boosted target shockwave. These fields carry the information on the
target gluon structure, which is at least partially nonperturbative. To indicate that, on
the hadronic level, the fields still need to be related to the target properties, for instance
using a model or by linking them to gluon transverse momentum dependent PDFs, we write
the above mentioned ‘target average’ (...). Likewise, the incoming quark can be related
to its parent proton by convolving the cross section with the quark PDF, and a factor
Qe

3:dln M? takes the v* — ¢/~ splitting into account in the simple scenario where only

the total three-momentum and the invariant mass of the lepton pair is measured [70]. We

finally obtain:

doro
dzdzd?Pd2%k, d1n M?2

202N, 1 o [ 14 (1—2)? P, q 2
Y (27r)4xpr($p”u ) [ z P?% + zM? T q? + zM? (2.46)

1 P2 — s\ 2 _ 2 2 e
+ S e S e tki(x X)<sxx/—|—1>,
2zM?2 \ P2 +zM? q2 +zM? %.x!

in agreement with earlier results in the literature [63, 64].
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& T s m

Do Do
D1
SE1 SE2
Nt q N~ g
Do E‘O\DQL Do
D1 — D1
SE3 SE4

Figure 2. The four virtual contributions with a gluon loop on the quark, which in two cases (SE2
and SE3) scatters off the shockwave. Similar one-loop corrections on the asymptotic incoming or
outgoing quark are treated separately in subsection 3.6.

Before turning to the next-to-leading order calculation, we remark that, apart from
the universal coupling constant gem, the four amplitudes in (2.29) and (2.32) all contain
a spinor structure g (p; )y (.. Jug(pd). In fact, this will also be true for all the NLO
amplitudes. For ease of notation, we therefore define the ‘reduced amplitudes’ M:

M = gemtic(pi )7 Mua(pg) , (2.47)
with which we will work in what follows. We also define, for later convenience:
. < +
S = s (1 + 2;1) . (2.48)

3 Virtual next-to-leading order corrections

In this section, we review all the one-loop Feynman graphs for the channel ¢ + A — v* + q.
The corresponding amplitudes are presented in general D dimensions, as many of them
contain ultraviolet divergences which will be regulated using dimensional regularization.
The resulting UV poles are subtracted from the amplitudes with the help of counterterms
that will, in turn, be shown to cancel in the next section. Readers who are interested how
the amplitudes themselves are obtained within our LCPT approach to the CGC are referred
to appendix C, where a representative amplitude is calculated from start to finish.

3.1 Self-energy corrections

Diagram SE1. The reduced amplitude corresponding to a quark self-energy correction
after having hit the shockwave, but before the emission of the photon (see figure 2), reads:

+
asCr ingi —pi M?* [P0 dk* E QSJJ ( -‘r)
kT \pF SE\Po

Nl =
SE1 D —2 M pIP2? + pf M2 (3.1)

x Ao(Ap) / LN (U 1) |

X

- 11 -



for a longitudinally polarized virtual photon, and

X + 2 -
asCr q"P) Po dk* (k" SM gid (pd)
D —2ptP2 +piM2 Ji+ Kkt \pf LO“SE\F0

x AO(AP)/ X (U 1) |

Mé\El = =
(3.2)

when the photon is transversely polarized. In the above formulas, Cr = (N2 —1)/2N., and
we defined the Dirac structures:

m' () = 205\ sni - 2py m' o
Sgg (5 ) = 1— 220"y —io o — 1) 0"y —io , (3.3)
as well as: o — k)
Ap = —&W(pa?i -l—pi’_MQ) — 07" . (3.4)

At a later stage we will evaluate the kT-integral and encounter logarithmic branch cuts.
Therefore, we keep track of the infinitesimal imaginary part i07 in the above expression,
stemming from the energy denominator from which this term stems.

The quantity Ap(Ap) in egs. (3.1) and (3.2) results from the integration over the
gluon transverse loop momentum, which we have evaluated using integral identity eq. (A.8).
As could be expected, the result is divergent in the ultraviolet, and we use dimensional
regularization with D = 4 — 2eyy to regulate it. Finally, My, and M2, diverge in the

limit of vanishing gluon plus-momentum k™ — 0. This rapidity divergence is regulated
+

using a cutoff &k ;.

We now introduce a counterterm to cancel the UV-pole in expression (3.1):

+ 2
Ny, g = ©:Cr LpPL—pfa? [kt (K0\E Gy
SE1,UV D_QMP(JJrPi +pr2 et Kkt + SE\0

min Do (35)
X .A()(AU\/)/ eiikl'x(Ux — 1) .
The UV-subtracted amplitude can then be evaluated in D = 4 dimensions:
n 2
~ ~ C Po dk+ /€+ .. A
Mg b = M(ﬁmaTF /k+ Fy=s <p$> S (pg) In AUPV
o (3.6)

+ 2 2
o eCr [T akt (N (e Ar
= Mo g /kJr‘ i+ \ ot 1 o +1 lnAUV.
The exact same steps we just took can be followed in the transversely polarized case, defining
a counterterm:

- + 2
~ COp q*Pﬁ Do qkt [ kT AN @ff /ot
M} =2z T (5 ) SPASIL(p
SE1,UV D—2p0+Pi+pr2 kr-:in k+ pé LO SE( 0) (3 7)

X .A()(AU\/)/ €7ikL‘x(Ux — 1) ,

such that the UV-subtracted amplitude can be evaluated in D = 4 dimensions, yielding:

iy 2 2
~ A o asCr Po drt [kt 2p3’ Ap
MSEl,sub - MLOl T /kf Akt E T et +1]In Aoy (38)

- 12 —



Comparing the above result with (3.6), it is clear that the loop correction calculated here is
independent of the polarization of the virtual photon.

Diagram SE2. Using the expressions (A.2) and (A.3) for the so-called Weizsécker-
Williams fields A%(x) and A%(x,A), as well as the property (A.4), one obtains for the
diagrams where the quark self-energy loop scatters off the shockwave before emitting a
virtual photon (see figure 2):

+ 2
MO — % ingi—PTM2 Po dk™* E Sl (p+)
SE2 D_ZMparPi —|—p1+M2 ot k+ p0+ SE\F0
X / A'(x —z)A'(x — z,Ap) (3.9)
X,z

. (po+ -kt kY )
—’LkL- fx—ﬁ—jz
X e Po Po ) (t°ULUSt°U, — CF),

and:

— + 2
+pA D + + - ..
~A O q P 0 dk L AN odi o+
Mgy = D—2p7P2 4 pi M2 /k+‘ =S e SLOSSE<p0)

X /XZ Al(x — z)A'(x — z, Ap) (3.10)

)

. (pé kT kT )
—ik | - T xt 1z
X e Po Po /) (tUUSt°U, — CF) .

Note that we have used the Fierz identity t*W@ = Ut’U to transform Wilson lines W
in the adjoint representation, which parameterize the virtual gluon interacting with the
shockwave, into the usual Wilson lines U in the fundamental representation (2.27).

In the limit z — x, or equivalently when the virtual gluon obtains an infinitely large
transverse momentum, the amplitudes (3.10) and (3.9) exhibit an UV divergence. Indeed,
introducing the notation [, = pt=P [dP~2p/(27)P~2 that we will use throughout this
work, we have from definitions (A.2) and (A.3):

Al(x —2)A(x — z,A)

_ / ikt (x-m) k'€
k.0 K202+ A7 (3.11)

D -2

2(4=D) 1 D-—2 _—
=L D2 3D—10F< )(\/Z) 2 KD—2(|X_Z|\/Z>7

20272) % |x — 2| 2 5

which is singular for x —z — 0 but tends to zero for x — z — oo. Moreover, since
lima 0 VAK; (VA) = 1, there are no extra divergences generated when integrating over
k* (since Ap(kt — pf) — 0).

A counterterm for this UV divergence can be constructed from (3.10) and (3.9) by
setting z = x everywhere except in the singular part, after which the integral over z can be

~13 -



evaluated by reverting to momentum space and using the standard result (A.8):

Mg uv = —j’;sc’;%pipg _piM2 /p0+ @ <ki>2 Sk (vg)
’ T2 MpgPL APt ME i R Awg (3.12)
X AO(AUV)/xe_ikLX(Ux -1) = _MgEl,UV’
and similarly for the transverse case:
/\;@‘EQ,UV = = MéEl,UV' (3.13)

Therefore, the UV counterterms of the amplitudes ./\;lg‘igz happen to be the exact opposite
~ 2,0
of those for Mg, .
The UV-subtracted amplitudes read, in D = 4 dimensions:

+ 2 2
M2 _ o LpiPL —piMe /po det (k" 20\ g
SE2sub TS M pi PR+ pf M2 Jpk KT \pf K

N (pé LA )
—ik, - X+—Tz
) Po P (tCUxUZTtCUZ — CF)

)

X l/szi(x—z)Ai(x—z,Ap)e

—AO(AUV)/ e X Op (U — 1)] ,
X
(3.14)
and:
MéEQ,sub
B i 2 SOV PP /i N LI o i Nl SR A R
— asparPi—}—prQ gt krtix) L+ par kt+
+ _ gt +
L AL (3.15)

. . —ikJ_'( z>
X l/ A'(x —z)A'(x —z,Ap)e Po P (tCUxU;tCUz —Cp)

- AO(AUV)/

e_ikl'xCF (Ux — 1)] .

X

Diagram SE3. This diagram is the counterpart of graph SE2, when the emission of the
virtual photon takes place before the quark self-energy loop (see figure 2). The corresponding
amplitudes read:

+
A0, = @D piat —pf M2 1 (PEdk (T 2Sjj( 1)
SES T D2 piq+pi M2 M Jir kT \pp ) TSEVL

x [ Aia—x)4i—x Ag) (3.16)

X,Z
+_ ket kt

—’L‘kL-(pl+x++Z)

X e P Pi /(U UStU, — CF)
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and:

— + 2

- s(—1 4—-D + oA P dkT kKt .

Mé\E3:a( : +qq+ T+ \oF Sé(f)g
-9 Dy q2 +p1 M2 kiﬂn k+ D]

D
x /x Ai(z — x)Al(z — %, Ag) (3.17)

In the above, we defined:

+ _ Lt
%(poq + pf M?) —i0* . (3.18)

Aq

Just like the amplitudes /\;lé\é)g, also (3.17) and (3.16) are UV-divergent in the limit z — x.
Again, this divergence can be extracted by setting z = x everywhere except in the singular
part, defining the counterterms:

~ 2 D + +
0 po q? ] M 1 1 dk k 2p7]

min

x Ao(Auy) / e’ikL'x(Ux _1),
x (3.19)

+ 2 2
P dk+ k+ 2 +
qtq? AN Dy
MSE3 uv = —asCr ITO o +T+ M2'5Lo /k i <p1+ T+ D-3

min

X AO(AUV)/ €7ikL'x<Ux — 1) .

X

The subtracted amplitudes then become:

+ 2 2
MO = a0 q2 piM? 1 [Pkt [k i\ g
SE3,sub 2 +p+M2 M k+ k+ p<1|» kJr

min

(et
—ik || ——F——x+—F2z
l / Ai(z — x)Ai(z — x, Ag)e Pi P (U UU, — Cp)
— Ao(AUv)/ e HLXCp (Uy — 1)] ,
(3.20)
and:
+ 2 2
~ q+q)\ )\5\ P dk+ kJr 2p+
M3 sub = —asWSLO /k:;in K \pf o le +1

( — kT kT >
. , —iky [ P xb
X [/ Az —x)A'(z — x,Ag)e 2 Pi (t°UUt°U, — CF)

- AO(AUV)/

X

e KLXOp (Uy — 1)1 :

(3.21)
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2y

V1 V2

&

V3 V4

Figure 3. The four virtual contributions with a vertex correction, which in two cases (V2 and V3)
scatters off the shockwave.

Diagram SE4. Evaluating the Feynman diagrams corresponding to a quark self-energy
correction after the photon emission, but before the scattering off the shockwave (see
figure 2), we find:

+ 2 N 2
qu —p1M2 1 1 dit g _2p1 -
MSE4 = OZSCF72+Z)+M2 M o+ Tt p1+ Tt +D 3

min

% Ao(Ag) / X (U 1) |

b + 2 2
~ +q N + P qkt [kt IpT
A 7 q AX 2 kt _2py B
Mima = 0aCr o ® <1+2q+)/k+ K+ (pT) (( "‘*) o 3)

x Ao(Aq) / X (U 1)

(3.22)

The counterterms are simply defined by setting Ag(Aq) = Ao(Ayvy), and are once again
opposite to those of MSE3

MSE4 uv — MSES uv - (3’23)

In D = 4 dimensions, the subtracted amplitudes are then given by:

N 2 2
o aCr [P1dk® (kT 2pF A
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3.2 Vertex corrections

Diagram V1. The amplitude for Feynman diagram V1 (see figure 3) reads, when the

produced virtual photon is longitudinally polarized:

+
A0 — ___asCp 1 1 [P dkT (KTq")? SI09
Vi pyP2 +piM> M D=2 [y k* pi(py —kt)(pf —kt) Y

min
X {

R +\2 + 4
—oNr? (;) PiBl(O,AP,;PL)}/eZkl'x(Ux—l),
1 X

1

+ et 10— —kt
—ap+ B0 Y —pr2)]Ao<Ap>

with the Dirac structure (simplified using the spinor relations in section B):

St — (1 _ 9P gmig, —igmi| [(22 _ 1) gm0, — o
v = TSt 4 — 10 E— 4 — 10 s

S@Oj——(D—z)((Qﬁ— )(2Z§— )+D—3>,

and the definition:

N + et (pt _ ket
w2 = PR =B ot

(3.25)

(3.26)

(3.27)

Expression (3.25) features the familiar UV-divergent integral A4y(Ap), as well as the integral
B1 whose expression is a finite albeit complicated sum of hypergeometric functions, see

egs. (A.10) and (A.14) in the appendix.
When the virtual photon is transversely polarized, the amplitude reads:

+
~N asCr 7]/ 1 P dk+ (k+q+)2 k+

pg P2 +py M2T LD =2 [+ kT pi(pf — k) (pg — kT) py
X{

min
+

2 17kt V. D-32
po (o — k%) (K 2Pz 1A [ 2P2 PV
_ = p;r J_+2 P+ pf 1 AV
. A + 2 +
ijginy € 1 K 2 K
+ € SV D—32<AP+(p+) PJ.)][)H(O?APvaPJ-)

1
x [ e U 1),

T
(1—P+p° i )5’\’7 8{}]—1—6”8”\]76" 1]AO(AP)

with:
<, + _ _ + _ .t < N
S’ — [(1 - 22’;) Sy — iam’] Kl - qu+p1> MMy — z’a”]
p+ ! /
R(EnP—]

3 Bt ot + + -
SN = (D - 2) (1 —2 qf’l) ((1—221) (27]:1 - 1) - (D—3)) My

—il(D—2)<(1—2§£) (zg?t— )—(D—S)) +8(D—4)]a’\5‘.
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We introduce the following counterterms to absorb the UV divergences:

+
MO a.Cr 11 [P odk” (kq*)? 309
VLUVT 7 8Pt i M2 MD =2 [y kY pg (o] — k) (og — k1) 7V
I (3.30)
Py — Py — 2 2 —ik, -
X | =Ap+ == (pg P —p M )AO(AUV)/e XUk - 1),
pi (¢*) x
and N
N asCr w1 /pl dk " (k*q*)? L
VLUV pePL A pi M2T LD =2 Jy kT pg(pf — k) (pg — k*) pf

1 24 N iN | i eing € ]
X [(2 _pii_ (;+]€+ )5 778'7 ! +e ]SV]D 32]A0(AUV) (3 31)

x / eHLX (U — 1)

The subtracted amplitudes, therefore, become:
-0 alr 1 [PUdkt (ktg?)? P ) (9P _
MVl,sub - p0+P2 —|—p+M2M k+ e (p+ k) (pg + —k+) 2k+ 2k+ +1

T — k) (pT — kT 1 A
y {l_AP+ (b — KDl — k) (4p2 MQ)]MIH e (3.32)

pi(q")?

. + 2 + A
— N2 (I’;) PiBl(O,AP,;PL)}/e_’ki'x(Ux— 1),
1 X

1

and:

.
aCr n 1 /pl dk ™t (k*tq™)? k*
peP2 +pf M2 L D=2 fi+ Kkt pl(pf—kt)(pg —kT) pf

min

~\ B
MVl,sub -

1_ +p+ A’ JNj ij iXj € An' 1|1 Auv
X{ (2 P1o v >5 SR ] Rt

P k) (KN po 1 (a0 (K p2 ) | s g (3.33)
H G R G v A v

el iXj N k* ? 2 k*
SV D33 Ap—i-( 1) PJ_ Bl(ovAP7EPJ_)
x / e~RLX (U 1).

Diagram V2. The amplitude for Feynman diagram V2 (see figure 3) reads, in case of a
longitudinally polarized virtual photon:

M Qs pi d]ﬂ+ (k+) l] SﬁOn’ (3 34)
M Jix R 320 o — k)Y '
_ i Z+QPL (x—z)
7zk1 (x—2) kT Q € ( o ) (3 35)
. k2 £2 ot 2 :
: (e+5PL) +a
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+ipt et 2 + +
’ K“WPL) T (3:30)

kT kT
—ik | - ( T x++z>

X e Po Po ) (Ut Ul Uyt® — C]. (3.37)
To the best of our knowledge, the transverse integral over £ does not allow a general analytic
solution.? However, we expect amplitude /\;1%2 to contain a UV divergence in the limit
z — x. With the same procedure as for the counterterms in section 3.1, namely setting
z = x in the phase and the Wilson-line structures, but not within the divergent integrations,
the integral over z can be carried out, after which one obtains:

+
_aCr 1 [PUdkT (kKM)Pq" 50j
Jim M2 = =57 5 P O s S
e (e+ - ) .
X/g 2 kt 2 kt 2
f (“fPL) (4 55p0) +ar (3.39)

2 + (T _ Bt
+ )PJ_> o (pl k )(p() k )M2
pl

e
/X —ikLx (U, —1).

The loop integral can now be evaluated with the help of the identities (A.15):

; ‘. (e+ ;;PL) X
IV2 = / -
¢ g2 (e+ %PL) (z+ 5 PL) ¥ Ap
Py

pif kN5 N2 F =k d k) o
X [(E—MPJ_) - (q)? M]

(3.39)

P +t et Kkt Lkt
:AO(A ) pg ll€+q+ (p_li_) PLBl(O AP, EPL)

1(p1_k)(p0_k) +p2 _ +as2
2 (¢ (b5 PL —p10r%)

Kt )2 52 =
X BO(AP) + BO(APa _pTrPJ_) - <p+> PLCO(APa —FPL)) .
1

+

1 1

+ +
The infrared poles contained in the structures By(Ap), Bo (0, Ap, —%PL), and Co(Ap, —%PL)
1

1

+
all cancel (see eqs. (A.13) and (A.17)). Since B; (0, Ap, —%Pl) is finite, the only remaining

1
singularity is the ultraviolet one contained in Ag(Ap). We can, therefore, define the

counterterm N
0. esCr L [PdET () o
V2UVT M D=2 fyr kT (p)2pf (0f — k)Y (3.40)

X .A()(AU\/)/ eiierafx — 1) .

2See [46, 50] for very similar integrals in NLO v+ A — dijet + X calculations.
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Finally, the subtracted longitudinal amplitude reads

/

+
as [Prdk* (K")°q* S0
M Ji+ kT (pd)2pf (pf —kT) TV

min

B i(€+%PL)~(x—z)
o £ e 71
X / ZAW(X—Z)/E—2 5
xz £8 (4 5PL) 44

1

2
" ((ﬁ ol — kﬂPl) (i =KD (s - k+)M2> (3.41)

atpf (q+)?

‘ pg- —kt kt
—ik - 7+X+TZ errt .
X e Po Po J U t°UNUxt® — Cp|

~0 _
MV2,sub -

— %»AO(AUV) / efikl'xCF(Ux — 1)1 .

X

The amplitude for the emission of a transversely polarized virtual photon is equal to:

+
~ D1 qkt (k+)3q+ iz’
MYy =a / _— ShAn
V2 o kT e )2ef — k)Y

7 + 57 +_kt_ 5
en_k P" 5N Py —k 5y
7Pl PPy

x/ z‘A”/(x— z)/eie'("*z) 3.42
X,z Vi (e_%PJ_)2 £2+Ap ( )

' pa— _ Kkt kt
—ik - T xt—Tz errt .
X e Po Po J U, t°U}Uxt® — CF].

Like in the longitudinal case (3.37), we are not aware of an analytic solution for the integral
over £. The integral, however, can be shown to be free from UV (and rapidity-) divergences

Py

(see appendix D).

Diagram V3. We obtain for diagram V3 (see figure 3):
+

as [Prodkt  (KD)’q"  gnon

M [e+ kT (p))2pd (pd — k)Y

min

[ l+£q (z—x)
- e e oy
x/ ZA"(X—Z)/—
X,z £

L
My =

£2 pt )2
+ g+ \2 + Y (ot et
po —k _(p1_k’ (pg — k") 5 r2
X (E—i— pes q) )2 M
+ ot +
—ik | <p1 +k X+k+z>
X e pi PL U teUS Uyt — Cr) .

Similarly to the amplitude /\;1%2, eq. (3.43) contains a UV divergence in the limit z — x:

+
. sCr 1 Pr dk* (kT)3q™ i0j
lim MO, =28 —_— = SJY
z—>xMV3 M —2 kT kt (pf)zpar(parfk-&-) \Y%

min
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X

ot \2 ) (pt — ket
(£+p0q+ q) _(pl (q)Jr(;o )MQ

X / e kL (U —1). (3.44)

The integral over £ can be calculated with the help of the identities (A.10) and (A.15) in
the appendix:

kT
70 e‘<£+fq) 1
V3 — 3 ot \2 ot \2
¢ (€+p—+q <£+p—+q) FA,

)2 (vf — k)i — k*)MQ]

(g7)?

oo+ () 08 o

1

l(p kg —K) (4 2 a2
T3 (a")%py (po oM )

k+ k+ 2 k+
[ + BO Qs Eq) - (pir) q2C0 (Acp piﬁq)‘| .

Due to the cancellation of IR divergences in the last line of (3.45), the only remaining
divergence is the ultraviolet one in Ag(Ay). We can, therefore, define the counterterm:

A0 _aCp 1 ”1+ Akt (K)’q" g0
VBV M D=2 fi+ K (pf)pg(pg — k)Y (3.46)
% Ag(Auy) / emRLX (U, — 1),
X
which leads to the following UV-subtracted amplitude:
+
MO s Py E (k+)3 + 877077
V3,sub — M 0 L+ (p+) e (p 7k+)
) o i(e+’;—+q)-(z—x>
x[/ z’An(x_z)/e—Qe S
2
<<£ n k+ q> - k;)fff — k) Mz) (3.47)

1
—oF xtoy

— kT kT
7ikJ_ . ( T Z)
X e P1 Pr ) [ULtUSUt® — C)

+ ﬁ,le(AUV)/ L X O (Uy — 1)1 .
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In the transversely polarized case, the amplitude is given by:

+ .
My = a [ G s
- S
o Kk opd )2y -k TV

+
— + + —
x / A (7 — x) / ¢ ( »i 8 il (3.48)
X,z £ (Z—i—’;—iq) "l‘Aq
1

4 (pl+ -kt kT )
—ik - T xt+ Tz
X e Pi Pr ) U teUS Ut — Cr] .

It can be shown that, similarly to the case of M§\,2 (section D), although we cannot analyti-
cally evaluate the transverse integration, ./\/l{‘,3 is free from UV (and rapidity-) divergences.

Diagram V4. One obtains for the vertex correction where the outgoing quark scatters
off the shockwave (see figure 3):

+
MY, = 1 asCr _1 /pl dk* (@)K gh0j
poal+pi M2 M D=2 i+ kT pg(pf — k) (pg — k)Y

d

+\ 2 N + ,
— 2 (;) q2M281 (O7 Aq’ Z’_q)} / 6—’LkL'x(Ux _ 1) ,
1 1 X

(pf — k") (pg — k")

and

+
N, — q” a:Cr [P1 dkT KT (ktq")?
Va =

poa? +pi M2 D =2 Jy+ kT pipd (0] — k) (pg — kT)
X{

_l’_

+

1 +_k . 31 1 il
(2 —HD(J)rp1k+q+ >S€,p] + ep)‘emS\Z,]] Ao(Aq)

2D -3

2 .
(; (Aq+ (f;) q2> - k*(pf;):q/f)M2> sir (3.50)
1 1

s 01 1 K\ 2 i iNj k*
+¢” 537 (Aq +(3z) q2> “SV]]& (0:Ea pfq)}

The corresponding UV counterterms read:

0 B
My uy =

+
1 asCp 1 /7’1 dk* (gM)2(kT)?
pga®+piM? M D=2 [i+ kb pf(pf —k+)(pg — k)

min

j0j
SV

(pf — k") d — k1)
g l_Aqu ) pf(qf)2

(patqz _ pii-MQ)‘| Ao(Auy) (3.51)

X / e kXU — 1),

—99 _



and

NG Mkt (ktg*)?
VAUV ™ pgaz +pf M2 D =2 Jy+ k* pf pd(pf — k*)(pg — k)

min

11 (3.52)

L, oopf =k cipi | ph ij QiNj
3100 g ) S+ 55 S [ Ao(Auv)

X

X / e kX (U, —1).
Therefore, the subtracted amplitudes become:

j0j
SV

+
MQM L= 1 OésCFl/pl dk* (¢")*(k*)?
S pga?tpi M2 M2 fi kY pg(pf — k) (pg — k)

+_ ket +_ et 1 A
o {[_ Aq + (p )(Po )(patq2 _p;rM2)] o AUqV (3.53)

pi(g+)?

+\ 2 N + )
—92 (1];_) qQMZBl (0’ Aq7 ;q)} / e—ZkL.x(Ux . 1) ’
1 x

1

and:

+
M - q’ asCr /pl CLAN (k7q)?
Vdsub T pla? +piM> 2 Jir kT pfopd(pf — kF)(pd — k)

d

+

1 i — KT\ Gipi oal ijcini| 1, Auv
( +p Sy + e 5€ Sy 4ﬁln A,

2 0 ktqt

2 2 L.
(_; (Aq+ (k+> q2> N w) sir (3.54)
1

24

2 _
X1 1 k* 7 QiN] k"
+ € 533 (Aq—l—(H) q2> eljSelel(O,Aq,pfq)}

x / eRIX (U 1)

3.3 Antiquark vertex corrections

Diagram A1l. We obtain for the amplitude corresponding to diagram A1l in figure 4,

which we dub an ‘antiquark vertex’ correction:

+
o0 = 1 aCr_1 [P0 dk* k'pi(pf = k) gjoj
ALT piP2 +py M2 M D=2 [+ kF pyat v

1

~ )2A
x |2M*Ag(M?) + — @) - Ao(Ap)

po — k"

— 2M?ApBy(Ap, M, TPL)

ot ot .o ot ot )
+2’“+%(J+’“M2P181(AP,M2,WPL)] /eﬂer(Ux—m,
X

Py
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Figure 4. The four virtual contributions with a virtual gluon and a virtual antiquark.

when the photon is longitudinally polarized. In the transverse case, we find:

+
~A P/ asCr /po dk™  kTpiqt
poPL+p M2 D=2 J+ kT pi(pf — kF)

k" 12\ ((@ipi L o ij oiXi
X {QpirAO(M)(SV +D7—36 € SV )

+ + . + - Y- + +
Py — k k 1 X ij @i ~o Py —k
— <OQ+S</PJ 4 ET—Z&ép EUS\l/J> APBO(AP,M ’OTPJ‘)
kg — k") (20T (o5 —K") —k'qt (1o | 1o
+ Pi +p M .
2py (¢%)? Py Pt <p0 LR ) (3.56)

ot
o — k

+ (i = K)PL - o - k*)M?))s@% (ap, 312, B Fp )

Kkt N p+_k+ 2 1 N 57 i N p+_k+
_2])IL<AP_M2_(OQ+PL D73€pA€ljS€/]Bl (AP)M27OTPL)

X / (fikl'x(Ux -1).

Note that the spinor structures appearing here are the same as the ‘vertex’ ones (3.29)
and (3.26), and that M? was defined earlier in (3.27). Moreover, both amplitudes are
divergent in the ultraviolet, the singularities being contained in the structures Ay. We can

extract them by defining the counterterms:

+
M?ﬂ Uy = 1 asCr 1 /pO dk* k'*'pf(paL — k"')Sjoj
, T opiP2 4ptM2 M D-2 | + kt + o+ \%
PotL b Pi bod (3.57)

)2 Ap —ik, x
(20 4 G ) Aoae) [0,
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and:

+
M — P asCr [P0 dk* (k+)2 "
ALUV T piP2 +pf M2 D=2 Jyr K 2pf (p] — k)

X (S{;pj + 7D 1_ 361)5\6@‘]‘8@]') AO(AU\/)/ e_ika(Ux — 1) .

X

(3.58)

The subtracted amplitudes then become:

+
MO _ -1 asCrp [Po dkt kerr(pg——k‘Jr) 2@_ 2@_ 11
Alsub = p2 4 pf e M b KT peqt E+ Tt

2 1 Auv (g")*Ap 1 Auv
(207 5 S+ G i = A

(3.59)

~ + _ 7.+
— 2M2ApBy(Ap, N2, 20 qf P)

kYot -k
i at

~ + _ 1.+ .
(AP,M2,p°q+kPl)] /e*ler(Ux —-1),

and:

+
M = L a.Cr [P0 dk* k'piqt
Al,sub —

poPL+pf M2 D =2 [+ k* pi(pl — k)

1 1 A
JPJ A gy MJ) UV
x{2+(8 53¢ €Sy ) - In I7E

pd - T KT 1 X ij oid ~o py — kT
( q S pTD—36 € SV APB()(AP,M, q+ PJ_)

k(g — k) (201 (g — k+) kgt o 2
+ P2 +piM
27 (¢+)? ( vipT (Po 1T ) (3.60)

R ~ + _ k+
+ ((pf)i_ - kJr)P%_ - (pii_ - k+)M2)>S</p]BI (APa MQ; pOTPJ_)

gt 2 . ot
2 (A M2 <p0q+k PJ_) >D1 36p)\ 1‘782)\]6 (AP7M27p0q+k PJ_)}

/ lkJ_XU _1)

Diagram A2. For the production amplitudes of a longitudinally or transversely polarized
virtual photon, we obtain, respectively:

+
M%2 _ as Po qrt (k+)2( + k+)8ﬁ0n,
3 o G — kY

g4k pi (zJr pf{ﬂﬁPL)? e
x [ AT (x—z) [emitn i~ (3.61)
0 £+ Ap —kt 2 - '
x,2 (e+ PL) + N2

+ k+ k+
—ikL(poier—l—fz

Po Po ) (tUUJtU, — CF) ,

X e
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and:

+
MRy = as /po dk™ (K°)*(pg — K1) ey
bt K ()20 — k)Y
_ _ - + .+ <
' o) Pl (£A+ e Pi)
. —il-(x—2z
x/ i A" (x—z)/e e2+1A 5 (3.62)
X,Z £ P (£+ poq+ PL) 4 M2

) pg _ k+ k+
—'lkl' (7+x+7+z>
p P/ (t°UUNtU, — CF) .
Similarly to the integrals encountered in amplitudes Mvg’g, the transverse integrals over £ do
not admit an analytic solution, at least to the best of our knowledge. It is, however, possible
to study their behavior in the limit lim, ,x where they might exhibit a UV divergence,
which turns out to be the case for the ‘longitudinal” amplitude (3.61):

+
0 asCrp 1 [Podkt (k1) (pf — k) Gjoj
fi e = 57555 [ T G
2 2 po — kT
x | Ao(Ap) — 2M*=By(Ap, M=, p=s P,) (3.63)

nopt — kT ET . + et -
—on?e = pTPiCl(Ap,MQ,pO = PL)]/e Lx([7 — 1)
1 X

The counterterm, therefore, reads:

+
) M D-2

bt B @Rl kY (3.64)
X -AO(AUV) / €_Z‘ka(Ux — 1) ,
X
such that the subtracted amplitude becomes:
+
N, e [P AR R ) oy
A2,sub M Jp+ kT (pd)2 () — k)Y
_ 2 .
, ' 0+ EpT <e+ P(Tq}“ PL> — M2
x| [ g [t A
I R O R

. (po+ L AN
—ik - 7+X+TZ tec
X e Po Po 7 (t°UxUNt°U, — CF)
s’

5 —5Ao(Auv) /

X

+

eiikL'xCF<Ux — 1)1 .

Amplitude /\;IXQ turns out to be UV-finite.

— 96 —



Diagram A3. We obtain for the amplitudes where both the virtual quark and antiquark,
as well as the outgoing quark scatter off the shockwave (figure 4):

+
~ Po gt 2k™( 5 — k") Lnon! ~ ~
0 _ Qs Po 70n 2 2
Mo =57 [ gt S s Y
1 1,X2,X3

1 _ L gm
X / e—i£~xlze—i£2-x23 £ p;r 2 <3 66)
£.0s 02 (E _ pd —k+t 82)2 B pg(pgfkﬂ(pf,kﬂez
at py (¢1)2 2
iq(pg_ker pf_lﬁ’()
e —iq- 1— 9
X e 1P1 X3€ q+ q+ [Ux3tCU;£2 letc o CF] ’
and
+
~ Do qrt+ k:+( + —k+) < _ R
A= Po AN A 2
MAg—OéS/+ F#S\/ / 1A (Xl—X27M )
Py a"Po X1,X2,X3
, i _ kY pn
771-)(12 72[20(23 e" ¢ PT 62 3 67
X ¢ € £2 T mt N2 ottt (o —kt (3.67)
£, (g _ by — 32) _ py (pg —kT)(p) — )ez
a* Pl (a1)2 2

71'01‘(]08r e Xl*p;r il X2)
X e "P1X3e at a* [Ux;;tCU)tQ Ux1tc - CF] :

In the above expressions, we used the short-hand notation x;; = x; — x;. The definition
of K can be found in the appendix, eq. (A.6). Investigating the limit x; — x93 — x3 in
search for ultraviolet divergences, it turns out that /\;lﬁg is finite while /\;lgg contains an
ultraviolet pole, which can be absorbed into the counterterm:

+
MOy oy = — a,Cr 1 [Po dk* Kk (pf — k*)S{/oj
) M D-2 K+ +pd
X .A()(AU\/)/ eiier(Ux — 1) .
X
The subtracted amplitude becomes:
7 p(JJr + et (pt — kT
M0A3 b:% \77/017/ % (pg —k7)
ST My ST
2 2
X / 2M K;(Xl—Xg,M )
X1,X2,X3
ﬂ—%@
! (3.69)

—il-x19 —ils-xa3 L

X et e

/2’12 £2 0 p(ffk*e 2 B p0+(p§*k+)(P1+*k+)£2
ot Py (a)? 2

' _iq.(p(f —kt x1_p1+ —kt xz)
x e WP1 X3, qt qt [UX3tCUi2 le 1 — CF]

g’

+ D= 2AO(AUV)/x67ikJ‘.xCF(Ux — 1)‘| .
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Diagram A4. In the longitudinal case, the amplitude is given by:

+
N0 pea —pi M aCr 1 /po dk™ k" (pj — k)
MT @ +pi M M D=2 fir BT pigt

~ k+ + k+ ~ + k+
X (AO(QZ) + pTLpOT(fBl (0,Q% ™ Q)) (3.70)
1

q+
x [ e (U 1),

j0j
SV

where we have defined:

0? _pg (g — kD) — k)

2 ot
+1207 . 3.71
i (g+)? 4Tt (371)

Likewise, in the transverse case, we find:

+
~ qP asCr Po gkt q+(k,+)2
My = /
p

poa® +pf M2 D=2 [+ kT 2p5 (p7 — k)

d

_l’_

S{}pj + eijS{,;\jepj‘D 1_ 3] AO(QQ)

(3.72)

g4 2 o +4 3. T
(A2 (ps—k jpi K (o —k") 2 ij qidj _px 1
(Q ( pe q) )5\/ + o q eS8y e 3

Ao p—kt ik x
X BI(OaQ27 quJrq)} /xe iky (Ux - 1) .
Clearly, both MOA4 and ./\;IAA4 are divergent in the ultraviolet. The poles are extracted by
defining the counterterms:

S i et AL L/ / A7k g —k7) 6307
4,UvV PSQQ +pr2 M D—2 L+ péq* \%

2 (3.73)
X AU(AU\/)/ e_ikJ"x(Ux — 1) s
X
and:
’ pea?+pf M2 D =2 fo+ kT 2pf (pf — k)
(3.74)

x ls{fﬂ' + ISP e DI_B]AO(AUV) / eI (U — 1)

The subtracted amplitudes, therefore, become:
+
~0 50 asCr Po dkt k+(p+ _ k+) p+ p+
Mg sub = Moz X — /+ 4?# 2y - 1) (255 —1)+1
Py (3.75)

+ gt
o — k

+ o+ _ .t A —
X <ln Auvy +47Tk—+p° i q281(0,Q2,pQ)> )

Q2 Dy q+ q+

~ 98 —



Do ) K Do } % Do

Ql p1 Q2 Y41
Figure 5. The three virtual contributions with an instantaneous gqgq vertex or, equivalently, a
fictitious instantaneous gluon in the ¢-channel.

Y

P

Q3

in the longitudinally polarized case, and:

+
o _ q’ asCr /po det gt (k)
Adsub = ox e e D2 |+ kY 2pt (pf — k)

Py
>< {

+ + 2 . +(nt + - -
_(p2_ (Po=k" ) joi K (po —kT) 2 ijeidi px 1
(Q ( gt q )SV + pILQJr q e SV € D=3

1
D -3

1 Auyv

47rnQ2

S+ 1S e

(3.76)
+

A ¢ — k" —ik) x
XBl(O7Q27pO q+ Cl)}/e L (Ux_1)7

when the photon is transversely polarized.

3.4 Instantaneous four-fermion interaction

Diagram Q1. We obtain the following amplitudes for the first diagram in figure 5:

~ —asCrpM a Spi et (¢T =4 ~ _ikx
Wy = et [T agy ) 4, (01?) [ (1), (3.77)
with: o
2 =4 %qgf )2 — ot (3.78)

In the transverse case, the amplitude simply disappears (it is proportional to an integral of
the form [, £'/(€% + A)):
My =0. (3.79)

The UV counterterm for M%l is given by:

+
~0 asCrM T sl (gt -6 / —ik, x
=___—sTrT derZria e "/ A L -1 3.80
MQLUV ngi+pTM2A 1 q+(p3-_€;_)2 AO( UV) Xe (Ux ) ( )

such that the subtracted amplitude is equal to:

+
~ SCFM q +8p+€+(q+—f+) 1 AUV —k, -
M :—ai/ de—1 L —In— e L X (Ug—1). 3.81

Qb ™ PR 4pi M ot gt (pg—e)? Am AP Jy (Ux—1) (3:81)
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Diagram Q2. We obtain for the amplitude in which the outgoing photon is longitudi-
nally polarized:

+ ot

MO 8as/ d€+ pi ¢} / 2K JVE

9= — X12

Q )p-lFJr[lF X1,X2,X3 ( ’ )

il-x13 iy X23
X
/5732 Py 2+ pl e p e (3.82)
Fapy 2 @ =6y +61)?

, (q+ - L )
—iq- Xo+—X o
X e qa* a* ' e P [Ux3tan2 Ux1 t* — CF] )

and for the transverse case:

+ < +
_ + Pty AA %_
ity = o [t gt s (1)

x / iA> (x12, N?)
X1,X2,X3

/ ei£~x13 ei£2<x23 (383)
X

2
£, ( 2 Pl g

1
£+ lf+pfz2) + @ ) (pr+e7)2

' ( + _ €+ +€+ )
—iq- Xo+— . .
X e ¢t gt emeexs [y g0yt UL 10 — Cr.

To investigate whether these amplitudes contain any divergences, we will take the x5 —
X9 — X1 — X limit in the non-divergent piece, i.e. the last line, which allows us to evaluate
the integrals over x2 and x3 inside the transverse momentum integrations. We easily obtain:

40650F ("= ¢ 2 ik X B
Jim A0, / de (po £ U Ao (31%) /X i A IR

+ ﬁmte terms,

where we made us of identities (A.8) and (A.9). The counterterm for M%ZUVa there-
fore, reads:

~ 4a5C [‘— of —ik | x
Moy = — F/ d£+7£+)) . AO(AUV)/ kXU 1),

C o ) x (3.85)
dasCr Ps +91) . Po —ik, -x
=— | 2+—"F"In Ao (A / L *¥(Ux — 1
i ( + p ) o(Auv) 3 (Ux —1),
and the subtracted amplitude is given by:
A0 _ _ 8as /q+ arr— 1 pi el / M?K (x12, M?)
Qb = AL | o G5 20 Sy xas >
o / eie-x13 eiez-ng
Y, o+ 2 ptetptez
€2 <£ + [f_ip?_ £2> + (¢t — E-F)l(pg—fz‘#)Z (3.86)

. (q+—€1+ +€1+ )
—1q- X2+ X .
x e ¢t et TP 0T Uyt — Cr

_ po +pi . Ps
(1 ol )AO(AUV)/

1 X

e KLXOp (Uy — 1)1 :
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Figure 6. The four virtual diagrams with an instantaneous ggyg-vertex. Two additional diagrams
where the gluon is attached to the asymptotic incoming or outgoing quark disappear.

In the transversely polarized case, the amplitude turns out to be free from UV divergences:

lim MQ2 =0. (3.87)

X; —X

Diagram Q3. We obtain the following expressions for the production amplitudes for a
longitudinally resp. transversely polarized virtual photon:

+
~ —pi M? a,C 4t (gt —ef ~ ik, x
WMoy mp el [Pt @) [ e hexue-n), (389)
with
~ ttot(gt — ot .
@ = (3.59)
and:
M3 = 0. (3.90)

The counterterm for /\;1%3 is given by:

to?—pt M2 0 Cp [T 40t (gt —0F ik
pod —pi M a.Cr d@f%m@w) / X ), (3.91)
0 1 X

such that the subtracted amplitude reads:

_ pia’—piM?aCr +4£+ TtH) Avv [ ik, x
My = e o / a2 g Ao [ (1) (392)

M3 v =—
UV piaz+pi M2 M

0

3.5 Instantaneous gqvq interaction

Diagram I1. We obtain the following result for the amplitude corresponding to graph I1
(see figure 6) in the longitudinal case:

A0 _asCF parg k* 2L 2270 +D—4) Ao(Ap) —ZkLX(U _1) (3.93)
L VA A AN A ) LS o

Po
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The amplitude disappears when the outgoing virtual photon is transversely polarized:
M =0. (3.94)

Clearly, /\;l% has a ultraviolet divergence, contained inside Ay. We extract it by defining
the counterterm:

+ 2
g0 _asCe [PodkT (RTNT gt (2p) _

x Ao(Ayv) / e_ika(Ux — 1) ,

(3.95)

such that the subtracted amplitude reads:

+
asCr g+ [P0 dk* Avv [ k) x
— 1 X —1). 3.96
Mllbub 4M[2p3/0 W —pT nAs xe (Ux —1) (3.96)

Diagram I2. We obtain for the amplitude when the virtual photon is longitudinally

- Py dk+ A / r [ 2pd
0 _ % Ll AT (x — m’ (2P0 _
M =3 )y <po) i~k /szA (x-2)$ <k+ 1)

+5 A0 _ . .
% |f] iA"(x Z>AP)(5m+Z-Um)

polarized:

py — k*
(3.97)
2p+ — Kkt . kT . .
~ P e A0) (7 i
+ k+ k+
—ik¢'<p0 T X+TZ>
X e Po Po 7 (t"UxUJt"U, — CF) .
Likewise, in the transverse case:
+ 2
~ Po qrt kt L=
May = as/ e (+) (pd — k+)/ iA"(x — z)K(x — z, Ap)
0 Po X,Z
1 1) o Lo LN ax| oni po _
Xl<pir—k++p$>6 +<p1+—k+ po>w ]S e (3.98)
+ kJr kJr
—iki'(po T X+Tz)
X e Po po / (1"UUSt"U, — CF) .

Not surprisingly, the amplitude /\;1?2 contains an ultraviolet divergence in the limit z — x:

Po gkt [kt 2 +
iy M5, = 57 dk(k*> ot =) (2%“) 4)

Z—X M kT \ pd (399)
X .A()(Ap)/ e_ika(Ux — 1) .
X
Defining the counterterm:
+ 2
~ C Po gkt [kt q+ 2p,

My 1y = 2CE (%) 575 (B +p-4)

12UV M Jo k* pf)‘r (piF —k*) (3'100)

x Ao(Auv) / e X (U —1) = _M?l,UV’

X
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we obtain the following result for the UV-subtracted amplitude:

~ R + et / r [ opT
MYy == dkT KT | KT Po / iA" (x—2)8™ “Po 4
2,su M 0 k+ p(-)F pE)F p'lF_kJr x,2 kt

qHiA (x—2,8p) i | miy 208 —kT - i Kt
><<+k+(5 +io™) — P’ K(x—z,Ap) (4 +72p1+7k+w

7o Ez) (t*UxUjt*U,—CF)

S A(Auy) [ IO (U 1)]

(3.101)

Diagram I3. The results for the amplitudes corresponding to the Feynman graph 13 read:

+
~0 _ « P +k+( ) 2p+ L=
ML?) == M 0 dkf Tsnn Ti [{z ZAn(X - Z)

)

+ _ .t . +; A% _ .
« [(pfp0+ k )q’IC(x—z,Ap)—i— g iA' (x —z,A) )5711

1 (pg —k* (py — k) (pf — k)
(3.102)
(R ike(x — ¢HiA (x —2,0q) ) . i
(pnpo* Sy Kb =2 &)+ o~ )
kY kT
—zkl~( 1 X+ )
X e pi P (U U, — OF) |
and
K (pf —k7) 2p
Miy = “S/ " (1 k*)
1 1 o (L 1 nA
X[<p{r+p5r—k+>6 +<p1+ pSr—/f*)w ]
. <p1+ — kT kT )
_ —ik - T Xtz
X / iA"(x — z)K(x — z, Ap)e b1 Pi ) (U UStU, — OF) .
(3.103)
Amplitude /\;1?3 is UV divergent in the limit z — x:
_asCr _|_ k‘+ 21)1
lim My, = / dk (ot —k+) ( D= 4) Ao(Aq) (3.104)
—’Lkl X U _ 1)
The counterterm reads:
+
~0 asCr (P14 kY q+ <2p1 )
. = dk — D—4
Mizov =" ()2 (bd — k) " (3.105)

X Ao(AUv)eiikJ"x (Ux — 1) ,
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such that the subtracted amplitude becomes:

+
e Py dkT k+(p+ _ k+) L
MY e elka/ / ! 1A' (x — 2
13,sub — M < 0 pg _kt . (pf)z ( )

y ( B ﬁq*’z’Ai(x —z,A)

kS pf —k

) L . (3.106)
kT 2pg — k 2p
+quC(x—z,Ap) <Ok+< _ki> —1>>
k-‘r
i—k, -(x—2) +
X e Py - (taUxUthaUz — CF) — %AO(AUV)CF(UX — 1)] .
1
Diagram I4. We obtain for the last diagram in figure 6:
+1.+ 2
MI4 _ asCF/ dk+% < p1 +D— 4)
p1) (p k+) (3‘107)
x Ao(Aq) / LN (U 1) |
and:
My =0. (3.108)
The counterterm reads:
- Ne; gtk 2T
M gy = =2 F/ dk*( “L+D- 4)
14,Uv (p1 )2 (p+ —kT) (3‘109)
X AO(AUV)/ e_Zka(Ux —-1)= M?s uv >
with the subtracted amplitude:
~0 asCr Py + qt Auy —ik] -x (3.110)
Migsub = 537 /0 dk e In A, /xe (Ux—1). .

3.6 Quark field-strength renormalization

The last class of virtual diagrams that we consider are those corresponding to self-energy
corrections on the asymptotic quarks. Although the corresponding amplitudes vanish in
dimensional renormalization, we will compute them explicitly. Indeed, they consist of two
identical parts with an opposite sign, one corresponding to an ultraviolet pole, the other
to an infrared one. Since in dimensional renormalization eyy = €r, the net result is zero,
although in our analysis we will treat the ultraviolet and infrared parts separately.

The amplitudes corresponding to the diagrams in figure 7 each feature a vanishing
energy denominator, e.g., < (p, — Py )~1 for Z1 and Z2. One possible solution would be
to add an artificial mass term, calculate them, and taking the massless limit in the end.
Instead, we make use of the normalization properties of the Fock states (see e.g., [21, 32, 80]).
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Figure 7. The four virtual contributions with a gluon loop on the asymptotic in- or outgoing quark.

Indeed, as demonstrated in appendix E, the total contribution of the diagrams in figure 7
can be summarized into the following renormalization constant of the quark field strength:

= a:Cr (1 1 3 Py Py
Z2=1- T (€UV N ecou) <_2 +lnk$m + lnk;in ’ (3-111)

which appears on the level of the squared amplitude as:

2M£o (Mz1 + Mza + Mgz + Mzy) = (2 — 1)\MLO\2 , (3.112)

irrespective of the polarization of the emitted virtual photon.
In anticipation of what follows, we rewrite Z as

Z =14 Zyy + Zly + Zis + Zls + Zrs + Zlg, (3.113)
with: , N .
IO/ O U T (- N P T o
2oy = ™ <€UV +ln'u%?> (4 21nk$in 21nkrtin> 7
_aCe (1t (L8 1w
Zig = 2 <€C0H +lnui) < S +amg ) (3.114)
2

_ale (N (8
ZFS o ™ <5coll +1n/‘l’%> < 8 + 2lnk+ ’

min

Since the scale p2 cancels on the cross-section level, we are free to adjust it at will.

4 Ultraviolet divergences

At the perturbative order of our calculation, all short-distance or ultraviolet divergences are
contained in the virtual corrections presented in the previous section. Because contributions
to the running coupling take place at higher perturbative orders, and since we work in the
massless limit, these singularities have to cancel on the level of the total virtual amplitude.
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In this section, we will demonstrate that this is indeed the case, which is an important
check of the calculation.

Two classes of virtual amplitudes, namely the self-energy corrections in section 3.1,
and the ones with an instantaneous gqyq interaction (section 3.5), are somewhat particular.
Indeed, we have seen that (see egs. (3.12), (3.13), and (3.23)):

MSEQ uv = MSEI yy  and MSE4 uv = MSES uv (4.1)

and, therefore, all UV divergences already cancel in the sum of these four self-energy
amplitudes. The same is true for the amplitudes with an instantaneous ggyq vertex and a
longitudinally polarized photon (egs. (3.100) and (3.109)):

~0 0 ~0 x50
Mipuv = —Mpuy  and My yy = —Mpyy, (4.2)

while in the transverse case, the amplitudes never exhibit UV divergencies to begin with.
All the ultraviolet divergences we encountered are contained in integrals Ag(A) (A.8)
which, when evaluated in dimensional regularization, give:

1 1 /(1 ?
Ap(A) = /15 FiAT I (euv —vp +Indmr +1n Z) + O(evv) - (4.3)

Following the MS scheme, we will extract the poles together with the universal constants
—vg + Indn, writing:

1
Ao(8) = - (F+m )+ Ofenv), (4.4)
where we defined:
%;% o+ Indr. (4.5)

4.1 Longitudinal polarization

Vertex corrections. We start by collecting the UV-divergent parts of the vertex-
correction amplitudes, which are absorbed in the counterterms. The counterterms (3.30)
and (3.40) can be combined into:

+
~ ~ ~ asCr (P dk™ (k 05
My v + M uy = Mior X =575 /k+ T ( P)l S Ao(Auv) (4.6)

min

while summing (3.46) and (3.51) gives:

v v v sC 2 dk™ (k
Mz ov + Migov = Mios X —5=5 / = (+ - SJO]AO(AUV) (4.7)
’ ’ kj;nn k 0
In the above expressions, S{}Oj is the symmetric part of the Dirac structure (3.26). We then
easily find:
asCF ? 3pi +2¢" 2 1pf
Myt v+ M pv =M o ( +In Auv> ( 14p0+ +In ki.lm I | (4.8)
and:
OésC'F 1 u? 3pf +2¢" pt 1pf
Mz v+ Mgy =ML o=+ (€+1H Auv>< 14p0+ +In kﬁin I (4.9)
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Antiquark vertex corrections. Likewise, let us collect the UV counterterms for the
four amplitudes with an antiquark vertex. We see that the first three of them: (3.57), (3.64),
and (3.68), nicely combine into:

-0 ~ 0 ~ 0
M1 v + Masuy + Masuy

+
aCr [P0 dk* K (f = k) cjoj (4.10)
= Moy % D—2/p;u kTpgTSV Ao(Ayy).
The UV counterterm (3.73) is equal to:
+
~0 50 asCr [P0 dk™ kT (pd — kT) ojoj
Masuv = Mio2 X =53 /p1+ FPS-TSV Ao(Auv). (4.11)

Using expression (3.26) for the symmetrized part of the Dirac structure, the plus-momentum
integral in the above expressions can be easily evaluated, yielding;:

- -0 asCr | (1 2 7, pi 3pi+pg o po | 4t

Mait2430v=MLo1— (€+lnAm/> <4+4p— 5 hlﬁ | (4.12)
and

0 o0 asCr| (1 e A;i, 3 +pg 1. ps ) 4"

Mas,uv = Miog <€ +In Aw) ( + pres o0 In oF W | (4.13)

Instantaneous four-fermion vertex. Another category of ultraviolet-singular virtual
diagrams are those with an instantaneous four-fermion vertex. Summing the countert-
erms (3.80) and (3.85), we obtain an expression proportional to the leading-order ampli-
tude M%Olz

4]
M vy + Mo vy = MLOl4asCF/ dg+7£+))2 —Ao(Ayv) - (4.14)

Likewise, the counterterm (3.91) for the amplitude /\;1%3 is:

~ ~ gt ot — ot
M&w=wﬁﬁ%@% Mﬁ%%@%mmwy (4.15)

Evaluating the plus-momentum integrals, we obtain:

asCr ’ ps +p1 Po
M2uv = Mio1 = ( +In AUV) ( 2+ 27 ) (4.16)
and:
asC'F 1 w? B pd +pf ﬁ
MQ3 uv = Moo <€ +In Aw) < 2+ e In o) (4.17)
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Total UV contribution. The last set of UV divergences are those stemming from the
field-strength renormalization diagrams, see eqgs. (3.112) and (3.114):

~0 ~0 asCr (1 — w2 3 1, p& 1, pf
Fov M1 5= Mo 52 <€_1n47re vE+1nH%> <4—21nk£in—2lnk£m o (418)

Combining them with the results from the previous paragraphs, namely (4.8), (4.12),
and (4.16), we obtain:

~0 =0 -0 0
Mir42,uv + Maryorsuv + Maipouv + ZuvMior

o0 aCr| (3 1. pf 1. py dre g 1 (4.19)
= M{o, — ( 4—1—2111 k;m+21n K In Aov 1l

Likewise, combining (4.18) with egs. (4.9), (4.13), and (4.17):
Mspauv + Miguy + Moz oy + ZuvMios
o0 asCr| (3 1 pt 1 g\ dremd 1 (4.20)
= Mioo = (—4—1—2111@“4—21nk$in In Aov 1|

The above two results confirm our earlier claim, namely that in the longitudinal case all the
UV divergences encountered in our calculation cancel between the different virtual diagrams.

Note that there are still divergences left, in the form of single logarithms depending on the
+

plus-momentum cutoff k_; . In section 8, we will show how they can be absorbed into the

high-energy evolution of the target gluon density.

4.2 Transverse polarization

When the outgoing virtual photon is transversely polarized, the structure of the ultraviolet
cancellation is slightly different compared to the longitudinal case. In particular, there are
no contributions from the diagrams with an instantaneous four-fermion vertex. Moreover,
since the Dirac structure is now much more complicated than in the previous case, we are
forced to replace the spinor structures with simpler ones, obviously in such a way that this
procedure still yields the correct cross section. Hence, although the ultraviolet divergences
should already cancel at the level of the amplitude, as was the case in the previous section,
in practice we will demonstrate this cancellation in a way closer to the level of the squared
amplitude. )

The first step is to expand the ‘even’ and ‘odd’ parts of the Dirac structure S@)‘”/ (3.29)
as follows:

SN = (D -2) (1 2k+q_+p1+> ((1 27]£> (2z?+F - > = (DB)) oM

omn((1- ) )oY

and:

S - = N + _ ot —+ + _ .,
MM S — A l (1 L q+p1 ) <2p° k++p1 —2— (D - 4)) 6Mig™
(4.22)

+ _ + _ _
- (1 - 221) oMo (2::1 - 1) o™ oM ia"”aApU"”/] .
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All the amplitudes we consider here are virtual, hence they will contribute to the cross
section being multiplied with the conjugate of the leading-order amplitude, which contains
the Dirac structure:

! + -i— ! !
SM (1 + 2;’;) (1 42 ) SN i (4.23)

After multiplication with the above LO Dirac structure and evaluating the trace, the
different spinor structures appearing in (4.21) and (4.22) all become proportional to 6*':

, + < + + <.,
Tr{PgS»‘T(l T Qﬂ)(i’\)‘} — 9P qtpl SN

To{Pes™H(1 + 2”1 oM = —2(D - 3)™,
e T s+ 2L W L = 4
Mo Tr{P SWH(1 4 oy mz} 45N < 2p+Ir — (D _4)> ’ (4.24)
e Te{Pes™ (1 + 2p1 oM g = 4 ( 2D 4)

EXpeﬁ”,Tr{PGSAA/T(l + %)ia"ﬁg)‘paml} = 4(5’\/\/(D —4) (1 + 2p1> ,

where we made use of the identities in appendix B. Therefore, in anticipation of the fact
that the virtual amplitudes we consider will be multiplied with the leading-order one, we
can rescale the Dirac structures in (4.21) and (4.22) as follows:

o™ = —(D = 3)—L— M

p1 +p

P 530 gm’ 2 5”‘

+
e MGy 9 <1 - (D g ) S (4.25)

e g g My 9 (1 + (D —4)

S ) -
M Mg g™ —y 2(D — 4)6™

such that the even and odd parts of Sy can be replaced by:

(122 (14 2) 4 0 -9)

-\ - - =+
SN = (D —2)0M 21—

p1 + Do
(4.26)
Py pe (D—-4)(D-3)
and
o’ <iipn’ 8¢t 2pf — kY (pd +pf
EPEWnSQZPnﬁT(S l(l"‘ 1q+ )(Ok+1_1
(4.27)

D—4 kY
25 (58]
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Likewise, the leading-order Dirac structure is to be replaced with:

— —+ -+ —
SW (1+2qu) - ((1+2qu> +(D-3)-L >5M. (4.28)

P +pg

In the following paragraphs, we will use an underline to denote the (reduced) amplitudes in
which the rescaling procedure (4.25) has been performed. For instance, the leading-order
amplitudes (2.29) become:

’ 2
Y —gtPA at ot +pt ik
Mio = L L0 ) +D-3 e X (U — 1
LOL™ peP2 1 pf M2 pf +p7 q* x (Ux=1),

Y Y + + 4,1\ 2 ,
Mém: q"q q ((pl +po) _|_D_3>/€—sz'x(Ux_1)‘
X

pea? +pf M2 pf +pg a*

(4.29)

Vertex corrections. Let us first study the UV counterterm M{\/LUV (3.31). Applying

the rescaling procedure M{‘,LUV — M{\/LUV and expanding A (Ap), we get:

~ A ~ A asCr 1 Py + gt (kT)?
My iy = Moy x / dk
TN () pg i, IR 0T RGE R)

min
q

F -k K —pi !
x { (;+p0+pk+q+ ) [((1—2(#’) <1+2qp+> +(D—3))
(D—3)(D—2)

x ((1—2ﬁ> <2Z§— ) —(D—3)> 12D -3
1 2
X <€+1H AUV)

2pf —k* (pd+pf D—4(q" k"
(1+ gt L+ -1+ 2 k++q+
Expanding around eyy = 0, we obtain, introducing for convenience = = k¥ /py, a = p{ /p{,
and b= k. /p:

min
~ A o2 asCrf3ala—1) L
My uv = Mror 151 Jy vo1

(4.30)

4
+

™
1 T 1+ 2a
+ (g +In AUV) (—2(1+a2) —1nb> (4.31)
+6a5—17a4+14a3—6a2—8a+3_§a—1 a—1
8a(a? +1)2 12+1 " a '

Following the same procedure for M{\M,UV in (3.52), we get:
~ A 2 asCr | 3a(a—1) 1 dz 1 w2 B 14+2a B
Moy = Mio2=— {4 a?+1 /0 1t (E_Hn AUV)( 2(14a2) In b)

6a® — 17a* + 14a® — 66> —8a+3 3 a—1 a—l}

(4.32)

8a(a? + 1) _Za2+11n a
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Antiquark vertex diagrams. The counterterm M/\Al,UV (3.58) reads, after rescaling

according to eq. (4.25):

+
A o) a;Cr 1 /po dk* kT ktpf
? +D-3 pl+ k+ SPT pé—(iﬂf - kJr)

(4.33)
20 2 (D —-4)(D—3)
x ((1—21{;+ 2% 1) — (D —3)) +sL=AD
8 2p7 —kt pd +pf D—4 Et
+ sy | (1 o)+ 5 () |
Expanding around eyy = 0, and reintroducing x = k™ / P, a=Dpg / P
c A A aCr 2 3 1+ 2a 1
MAI’UV - MLOl T { ( +1n AUV) (_4 + 2(1 4 a?) + 21na>
(4.34)
3a(a—1) [* dx 3+ 6a — 18a* + 18a® — 17a*
4 a2+1 /1 $—1+(a_1) 8a(a? + 1)2
Likewise, the UV counterterm (3.74) becomes:
- A RSP 1 Po dkt (k1)
Masuv = Mios ¥ —asCr (22i) 4 p 3 /ﬁ k* 2pf (py — kt)
2 k" _p7L 2171
(4.35)
+ +
P P (D —4)(D — 3)
: ((1_%) (o5 1) - 0 - ) +s2=22
8 pl—kt pa +pf D 4 Et
t (D—2)(D-3) <1+ qt ) ( it 1<:++ :
After performing the integrations over the gluon plus-momentum:
oA oA aCr ) (1 s 3 1+ 2a 1
MA4’UV = Mio: ™ {<€ +1n AUV) ( 4 + 2(1 + a?) T 5111(1)
(4.36)

3ala—1) [* dz 3+ 6a — 18a% + 18a® — 17a*
+ - ( )/ —I—((I—l) ) 2 2 .
1 a(a® +1)

Total UV contributions. In order to add the results (4.31) and (4.34) for M{\/LUV

= A L .
and My, yy, some closer attention is needed to the two plus-momentum integrals we left
unevaluated. Indeed, there is a singularity for x — 1 at the end- resp. starting point of the
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leftover integration in Mi\/l,UV and M?‘\J,UV' Introducing an infinitesimal regulator 0™,
these integrals can be added and evaluated using the Sokhotski-Plemelj theorem:

1 da N a da B a—1 dy _p ail%_i
o e—1+i0t " J; -1+t ), yror T ) Ty T (4.37)

= In(a—1) —ir.

The same holds for the integrals in the results (4.32) and (4.36) for Mi\/ALUV and MLLUV,
respectively.

With the above manipulation, we are finally in a position to add (4.31) and (4.34) to
the contribution from the quark field-strength renormalization (3.114), yielding:

~ A - A - A
My uv + Mag vy + ZuovMior

~ A sCr |3 TqT ) +
:MLOla F{ Po g <—z7r+lnq+)

™ | 4(pd)?+ (07)? Py
b A (3 L )
471—67WE/’L%{ 4 2 kr+nin 2 k"jr;in
_L 9 w3 pigt g ab
8 A2+ @) A+ @) py |’

and similarly for (4.32) and (4.36):

-~ A - A - A
My uy + Masuv + Z2uvMi oo

~A aCr )3 Fqt . +
= Mio,™ { P (—m+lnq+)

™ | 4(pg)?+ (p)? Fa
b e (3Lt Ly 39
47[’67’”3 u’% 4 2 ki;in 2 krtin
_W 9 pipy 3 piat g db
8 " A(p)2+ ()2 4+ ®)? by

Hence, we have proven that, also in the case of a transversely polarized photon, the
total virtual contribution to the cross section is free from UV divergences. Just like in
the longitudinal case, however, there are rapidity divergences left, which will be treated in
section 8.

Note that, in this section, all our expressions are proportional to one of the two leading-
order amplitudes. We have chosen to keep these amplitudes defined in D dimensions.
However, we have checked that, when factorizing the leading-order amplitudes out in D = 4
dimensions instead, the extra finite terms that appear all compensate each other. One,
therefore, obtains exactly the same result irrespective of the precise procedure followed,
which is an interesting nontrivial check of our calculation.

3Note that, whenever necessary, we consistently assign a positive infinitesimal imaginary part to the
gluon plus-momentum.
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4.3 Contribution to the cross section due to ultraviolet counterterms

Collecting our results (4.19) and (4.20) for the sum of the UV counterterms, and applying
the definition (2.6), we eventually obtain the following contribution to the cross section in
case of a longitudinally polarized photon:

L _ ;L oaCr 3 p pa dpe B 1
dO'UV = dO'LO p (—2 -f‘ In krtin + hl k;ﬁ;in ln TUV — 5 . (440)

Similarly, (4.38) and (4.39) can be combined into:

asCr
T

T _ 4T
dogy = doro

3 pigt ( , Y 2 A 11
TN VR S 7 I P S £ < S ) (N
2(pd)2 + (p7)? pi o Tat pd g

5 Real next-to-leading order corrections

In this section, we present the amplitudes for the real NLO corrections. One should be very
careful to note that, due to momentum conservation, the plus-momentum of the incoming
quark is equal to

Pn =11 +a" 037 (5.1)
We denote this quantity with an additional index R, to avoid confusion with the same
momentum component par = pf + ¢T in leading-order and virtual amplitudes. This
distinction also allows us to introduce both par » and par in many of the expressions below,
where paLR = pa' +p§'.

5.1 Initial-state radiation

Diagram IS1. The reduced amplitudes corresponding to graph IS1 in figure 8 read:

+p2 + a2 + 4
~O0n po Pl —piM” 1 p; 7l 2pg
Mo = R PLopiME L by gy (), 200

pg P2 +pf M2 M pg, 3 (5.2)
x / PAT(x — Z)e X PR (UL U, — 1°),
X,z
and: by + + +
~ P by 2p = 2p,
MM — L P g (1 + 1) S (1 + 0)
ISL™ py P2 +pf M2 pd, at P (5.3)

X / iAT(x — z)e” KL XTI (U UTU, — t°) .
X,Z
Diagram IS2. The amplitude for diagram [S2, when the photon is longitudinally polar-
ized, reads:
- 1 _ 2p+ er
MO — 2 gm (1 + 0) D3
152 M p;,r pgR
/ o pi (ate+pia)” —pipipd M?
e ¥ pi(a+e+pia)” + pratpial® + pipipd M2

N / o~ il (x—2) ,~ik L X ,~ip3-z (UxUthcUz _ tc) .
X,z

)
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q N g
ﬁOR ﬁOR
P ~— P1
IS1 Ps IS2 s
e q N q
3 = ™ p3
Por Por :
— ﬁl — ﬁl
N =
1S3 b3 1S4

Figure 8. The four diagrams corresponding to real gluon emission in the initial state.

In the transverse case, we obtain:

- + _ +
M, — ]() 3)” gA ( L ) S < 2p+0 )

P3

/ / —il-(x—2z) gn q+£;\ +p§q; (55)
2
pi (¢t +pia)” +piatpdal® + pipips M?

—ik | -x —ng Z(U UthU tc)

In the above expressions, we have used the definition:
P 42y g2
Ars = o d o (Poed” + (P17 +p5)M7). (5.6)

Diagram IS3. The amplitudes for the production of a longitudinally or transversely
polarized virtual photon read, respectively:

N0 — Pon@’ = (b +pD)M 1 pl oy <1 e )
193 pina? + (0] +p3)M2 M p} +pg p3
+

j2 (5.7)
_ i%q(x*z) ” )
X / iA"(x — z, Arg)e P1 +P3 e L Xe TIP3 E (UXUZTtCUZ —t9),
X,z
and:
S a"q* pi_gm (1 ) SM ( Py +p§)
Miss = ot v e+ T 7
ot (5.8)
_ i%q(x*z) ” )
X / iA"(x — z, Arg)e P1 T P3 e L Xe TIP3 E (UXUZTtCUZ — ).
X,z

)
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2y

ot

ﬁOR j ﬁOR :
\%%7\ 7 7

FS3 Ps FS4

Figure 9. The four diagrams corresponding to real gluon emission in the final state.

Diagram IS4. Finally, for the instantaneous ¢ — v*gq splitting, we obtain the following
result for the longitudinally resp. transversely polarized amplitudes:

MO = ﬂ/ ¢ iA'(x — 7, Arg) (6™ +ic™)
154 (p! +p3)M X,Z o ’

pi g
2p5 +p5 i ( i 2
4+ Lo TP qikc(x — 7, Ag) (67 + —L2 g (5.9)
s (o7 +08) (  Ais) 2pg +p3
Py

q-(x—z)

e~ ik X —ipa-
x e P1 TDPs3 e ki xe ZpsZ(UxUthcUz—tc)v

and:

+. +
~An Py P3 1 1 A 1 1 : M
M = ( 4+ — | + — — ) i0"
154 pir p;,r pir p;,r p0+ T 5 .

Py +P3 Po
) (5.10)
P3

i/ q-(x—2) . .
X / K(x —z,Arg)e Pl +ps e_ZkL'xe_ZPS"Z(UxUZTtCUZ —t9).
X,z

)

5.2 Final-state radiation

Diagram FS1. The amplitude corresponding to the first final-state radiation diagram in

figure 9 gives, in the longitudinally polarized case:

oy B )
L pi P2 +pf M2 M pf 5

(pg _ %lﬁ)” (5.11)
X

- . / e—iX'(Q+p1+p3)tC(Ux _ 1) ,
(p3 - %kj_) + Apg /X
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and when the photon is transversely polarized:

TP pi o ( 2pf ) ( 2p )
- =538 14+ &L ) sm e
MFSl pO+P2L i pil’MQ + p3
n
ps — —k (5.12)
% ( ° . L) / e*ix-(Q+P1+ps)tC(Ux -1).
(ps - %kL) + Arg

0

In the above, we have introduced:

Aps = ﬁ—( Pi +pi M), (5.13)
P gt

For later purposes (for instance the high-energy resummation in section 8), it can be

convenient to go to transverse coordinate space, writing (obtained by inverting (A.3)):

7 n ) p?L +
(P3 — *kJ_) . (ps — *kj_) —1 (pzs—ikL X —ipfier
e_lPB'X — e p() e po ,

(P3 - 7kL)2 + Ars (p3 - %kL) + Ars (5.14)

+ T

fzpfkl X —i<P3—pikL>‘z _
—e¢ P /e Po iA"(x — z, Apg)
z
such that:

FS1 ™ éPi +pi M2 M pf o

( i ) + (5.15)
—t| P3— +kJ_
x/ e Po

X,z

.P3
Z —zjklx
)

e Do e KL% AN (x — 7, Apg )t (Uyx — 1),

and:

+PpA s + +
AN P P3 oA 2p; 7l 2pg
Ml = — ——— L5 2SN (14 =L ) ST (1 =2
S pyP? +p M2 p q* Py
i (pspikl)z P (516
X / e Po e Po e~ KL% A (x — 7, Apg )t (Uy — 1) .
X,z

)

Diagram FS2. The amplitudes read:

_ +
MFS2 = L&ssnn <1 + 2p+1>

M p + pa
_ + +, + 2
7 _ Py 7 _pi+pg pOR(p1+p3) 2
" P3 p1+P1 <p3+p1 7q) — =T M (5 17)
pT 2 o P; 2 _ pied 2 pt o (o+p) '
(m=3im) i (o=t (oremn—2Ea) izt

X / emB@rpipa)ie (1)
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and:

+ < 2(pT + p
MFS2:_S7777( pj)S)"\<1+w
P3 q
7—*1) X 5 pi+pd s
R pP3+P1— T q
pi o P 2 py+p: 2 bt (ot (5'18)
(PS +P1> q1+p0f (P —p%m) +(p3+p1 1q+3q) + OR(qi> s) g2

x/e q+p1+p3)xtC(U _1)

Diagram FS3. The amplitudes corresponding to Feynman graph FS3 (figure 9) for the
emission of a longitudinally or transversely polarized photon read, respectively:

~ 1 pgra® — (0F +p3)M? p3 anin 2p
Mon _ _ 1 Por 1 3 L.em14 =
FS3 M pi.q® + (pf +pg)M? pf Py
_ + _
Pl — &pv (5.19)
« 3 + 1 / —ix- q+p1+p3)tC(U _ 1)
(ps - ﬁpl) x
1
and:
_ + _
A pl — “&p]
MA"] —q q Py
FS3 p+ q2+(p+ +)M2 <p3 _ ;p1)2
o Pegm (1 ( 2p1 ) SV ( 2(py +p3+)> (5.20)
Py js q*
[, ).
X
With the help of the relation:
_ + + p+
pj — 24p] . ~iBp X o (psim)-z. _
1 e XP3 — o D /6 P1 ZAn(X _ Z) , (521)
z

Py 2
(o siv)

the above amplitudes can also be cast in coordinate space, yielding:

1 piaa® — (o +p3)M? ps 2p
M OR 1 3 3 S (1 + l>
FS3 = Mp =4+ (P1 +p3 )M? pl P
( pi ) ot (5.22)
—U| P3— P11 |z —1—rPp1X Zik X AT
></ e b1 e P e XA (x — 2)t°(Ux — 1),
X,z

)

and:

. ot o opT 5 2(pi +p3)
o ¢ta P gni (1 n P1> SV (1 4+ 2wl + ) 5.23
FS3 ™ piea® + (pf +pd ) M2 pf Py q* (5.23)
( Py > Ny
“UP3T P11 |'Z —1—p1-X ik X AT
% / e P1 e b1 e L XZAU(X — Z)tc(Ux — 1) .
X.,Z

5
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Diagram FS4. The last diagrams we consider correspond to the instantaneous ¢ — ¢v*g
splitting after the initial quark has interacted with the shockwave. In the longitudinal case,

we find:
1 p p 1 q+ pTL no_ . B
My, = M 3p - por (P +p7) <p3_pikl) (o7 =ie™)
0 <P3—*kl) +Apg LFORVL T 0
(5.24)
QPTJFP; n ( —ix-(q+p1+p3)
+— P 57777—%710"77 e”aTPITR e —1
pi (i +p3)" 2p] +pf x (Ux—1),
while we obtain for the emission of a transversely polarized virtual photon:
~ +, .+ 1 1
M;\‘TS]4 =5 ZOR n 2 ( Tt + ) oM
0 (p3 - p%kj_) +Aps L NP1 TS Py
Po (5.25)
1 1 ;
+ ig™ ( — ) /e‘”"(qule“pB)tc Ugx —1).
pi+pi vy ) | x (Ux=1)
For later purposes, it can be useful to write:
+ +
. Ps .P3
' —i| ps——Tki |'x —i=k,-
! 2 e P = +1 2 € ( pa' L) ezpar Lx?
- —k A ( _ Py ) A
(p3 L) + Ars P3 or 1) + ArFs (5.26)
+ +
—Z&kl X '<P3— ikL> z
—e P /e 0 K(x — z, Aps)
z
such that:
1 ptpt q* no_ e
Mo — - PsPor ——k 5 _ oMM
PS4 M py | pialer +p3) \P? L) )
pi (pf +p7) 2p1 +p3 '
+ +
—Z’p%kl'x —1 (ng)ikL>-Z .
x e Po / e Po K(x — Z,AFS)/ e”kLXe (U — 1),
X,Z X
and:
~ 1
M < ) 5™ 4 o ( )
PS4 +p3 po +p3 pg—
(5.28)

ot +
D3
+kl x (ps—.ﬂq)'Z ”
xe Do / e Po K(x — z,AFS)/ e X (U — 1) .
X, X

6 Infrared safety in the initial state

In this section, we show that two of the initial-state radiation diagrams (figure 8), namely
IS1 and IS2, lead to infrared divergences on the level of the cross section, i.e. after squaring
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and integrating over the outgoing gluon. These divergences stem from the kinematic region
in which the gluon, radiated from the incoming quark, is collinear to its emitter. First,
we will evaluate the divergent integrals over the transverse momentum ps3 of the gluon
using dimensional regularization. The collinear singularities will be parameterized by the
poles econ. We shall then demonstrate how these poles can be absorbed into the DGLAP
evolution equations of the incoming quark.

6.1 Collinear divergences from initial-state radiation

Real corrections to the NLO cross section are obtained by computing the 2 — 3 partonic
amplitudes, multiplying them with their complex conjugate, and integrating the additional
parton out (see below, subsection 6.2). When considering the initial-state radiation ampli-
tudes M?gl (5.2) and M?QQ (5.4), we obtain after promoting the reduced amplitudes to the
full ones according to formula (2.47), multiplying them with their complex conjugate, and
integrating over the gluon transverse momentum:

208 NCr (pf 28\
/ & + M| :W<3> 891 Pon ((1+° +D -3

Por p3

/ / ﬂe (x—x' ( Pi — M2
e ° o P +p1+M2 (6.1)

2
Ps3 (q+£+p0q) —py P pg M? )
2

p3 (q*@ + p(J)rOI) + i atpgpl? + pg i pg M?

K e ) (g 1))

Power counting teaches us that the integral over the transverse momentum of the gluon

with respect to its emitter contains a collinear divergence:*

1 _p(x—x' 1
/e?e ex') _ _E( — + 75 + In(u(x — x) %)) + Olecon) (6.2)

which is easily proven with the help of the Schwinger trick (A.1). Therefore, in the collinear
limit £ — 0, the third line in formula (6.1) can be approximated by:

2
pi(¢*€+pia)’ —pipipi M poa’ —pi M
—+ + .
i (a0 +p5a)” + ol at ol + pipipg M2 Poa® +pi M

(6.3)

With these simplifications, the collinearly divergent part of eq. (6.1) can be rewritten as:’

J,

2
(0,27 (0% coll. |\ 0N 2

+In(pPm(x — x )2))

(p3)? < 2pg >2
X 1+ +D—-3].
Py Por P

4Ultraviolet divergences £2 — oo are cut off by the phase.
Of course, the above notation is somewhat symbolic, as the square of the leading order part |Mrol?

(6.4)

still contains the integrals over x and x’, which also appear in the logarithm.
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It is easily verified that the above result also holds in the case of a transversely polarized
virtual photon, hence the index (0,\). This implies that we have extracted a universal
collinear factor, which is independent of the details of the leading-order process. It is,
therefore, natural to associate it with quantum fluctuations of the incoming quark before
it participates in the hard process. Indeed, in the next section we demonstrate that the
collinear pole can be absorbed into the DGLAP evolution of the quark PDF.

6.2 From parton to hadron level

On the partonic level, the amplitudes for the real NLO corrections are transformed into
contributions to the cross section using the following formulas:

1

R L 1 2
dbreal = 5 PS(PI, q,13)210(pgr — P — 4" — p3) g | Mueal| - (6.5)
OR

As discussed in section 2, the partonic cross section needs to be transformed into a hadronic
one by convolving with the leading-order quark PDF fq(o) and taking the CGC average:

dpg ~
dUreal = /%fq@) (?) <d0'rea1>7 (66)

where x, = p{/ p;L according to the leading—order definition of projectile quark momentum
fraction, and where we have introduced § = pg & /od Dor- Finally, the radiated gluon is integrated
out in order to obtain the real radiative corrections to the full NLO cross section:

dUredl

donto = dovo + dovirtual + 1~ /dD 15 P3gp-1,, (6.7)

We shall now apply the procedure above to transform eq. (6.4) into a contribution to the
NLO cross section. Promoting (6.4) to a part of the partonic cross section, performing the
convolution with the PDF, and averaging over the semiclassical background fields, we find:®

2
4D 1}1_, d01512c011 dpg, Zp / dpy (p}') ( 2p0)
d il s (D5 1 D—
TS T <f) kr @mP2T \pi, ) TP
1 o 6.8
x %ﬁ/PS(pl,d)?M(pHR—pT—q ~ ) (Mo E8)

X aSCF( + In (g7 (x — x)z)) .

Changmg the integration variable from the gluon plus-momentum to £ using the relation

py =pg z —¢ , and with d¢/¢ = dp3 /pgy, we finally obtain:

o o /(05 +hhin)
4 D/dD 1_»(;1;15112 _11/ 0 d€1+§ a:pfq < >

. r1+)2 /Ps(ﬁ1,®1<}MLo\2> (69)
X —QSCF(

+ e + In(pin(x — x )2)) :

€coll

5Note that we do not distinguish anymore between the polarization states of the virtual photon, since
the collinear initial-state radiation is insensitive to them.

— 50 —



The upper bound pg /(pd +kfs,

while the requirement £ > x;,, comes from the domain of the PDF. To cast it in a form in

) > £ in the integral stems from the rapidity cutoff p3 > o

min?

which one can recognize DGLAP, let us start by splitting up the integration over &:

p+/(p++k;;in)
/o 0 d§1+£ a:pfq < )

et (6.10)
o) (N 14 2y o) (2
= (Llaes [ ae) e ()
The next step is to make use of the definition of the plus-distribution:
[ - ra s de
— 6.11
[aeg = [[aef Q=10 gy [7 0 (6.11)
using which the first integration in (6.10) can be written as:
1 + 1+
5 x”f ( ) / dg 5 mf'f (mp)+xpf<0> zp / df—. (6.12)

The second integral in (6.10) is the one that contains the divergence for p3 — 0, or
equivalently, & — 1. In this limit, one can write:

/(pO mm) 1 /(pO + mm) 2
/1 act € e = () :xpfq(o)(xp)/l dé2s . (6.13)

Combining (6.12) and (6.13), eq. (6.10) eventually becomes:

+ /(pt LT
/po /(pO +kmin) d€1+£ xpf(o) (ZCp)
Tp

Py /(0§ +hhim)
B dg 1+§ 22 0 <w€p>+$pf (@ )/00 ° df%g’ (6.14)

xT

a /zp de <(11j§)+ * 35(1 B €)> %pfq(()) (?) + <_ +2In kim) xpfq(o)(fﬁp) .

In the last line of the above formula, one can recognize the Altarelli-Parisi ¢ — ¢ splitting

function:

P)(€) = Cr ((11 +§) + 5(1 - 5)) (6.15)

We, therefore, have shown that eq. (6.9) can be rewritten as:

u”df”*ﬁ‘;lil“"“[ / 4P ©%2 10 (%) +0r (G+2m 2 )xpfq(o)(xp)]

x W/Ps(ﬁ1,®%<|/‘/1w|2>

1
X —ag (a + g + In(pPm(x — x’)2)> .

(6.16)

~ 51 —



The above pole, stemming from real gluon radiation in the initial-state, is not the first
collinear singularity we have encountered in this work. Remember that in subsection 3.6,
we discovered collinear poles stemming from the quark field-strength renormalization:

+
(ZIS + ZITS)dO-LO = aSCF ( . +In ) (—g + 2111]5? )

(6.17)
x apf{0 () o1, D5 (|Mrol”).
Adding (6.16) and (6.17), one obtains:
pt D/ dP1p: j;“sfpi T (Zis + Zjs)doro
= W/Ps(ﬁl,@§<’MLo!2>
X [—as(c+7E+ln(u7rx—x / d{ f (x;) (6.18)

+ asCF ( ,uTrZ(’Y—EX’P) (— + 211’1 ) $pf(§0) (l‘p)‘| .

In the above equation, the only collinear singularity left is proportional to the leading-
order squared amplitude times the quark PDF convolved with the Altarelli-Parisi splitting
function. The final step is to notice that the (MS-) quark PDF at NLO: fq(l), is related to
the leading order one féo) as follows [81]:"

xpf (:Epa )_xpféo)(xp)

1 s [ d (6.19)
N (Ecoll N ’-}/E + ln 47T> ;7/$ €§P (g) f(O) ( > —'l— O(O{g) .
Therefore, we can rewrite the LO cross section as:
Qs d
doro = doro+parap + (— — e+ 111471 a / €P (€, f© ( >
(6.20)

so5e [ PSL D (Mol

where we defined dopo1pcrap as the leading-order cross section convolved with the NLO
quark PDF:

2 o 1
doro+parap = 1 fi (2, 1) = /PS(Z)L(T)T_2<|MLO|2>' (6.21)
2(pg )
Adding (6.18) and (6.20), we finally obtain:

D—1- doisi2
dULO'*‘N /d p3 3 40— Tps |,

+ (ZIS + ZITS)dULO = dopo+pcLap+dors, (6.22)

"In principle, eq. (6.19) contains an additional term proportional to the gluon PDF. The corresponding
collinear pole should cancel with initial-state radiation in the g + A — 7" + ¢ + ¢ contribution to the cross
section. The analysis of the gluon channel is left for future work, see also the discussion in the conclusions 10.
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with:

dals_aslln /dgp(o) f (33;)

+Cr (ln@) ( mm) l‘pféo) (%9)1 (6.23)
1 .
x W/PS(I?MTBQMLOF%

where cg = 2e772. The above result proves that, at least at NLO accuracy, the hybrid

dilute-dense factorization Ansatz employed in this work holds, as a collinear PDF is sufficient
to absorb all collinear singularities stemming from initial-state radiation.

7 Infrared safety in the final state

7.1 Jet algorithm

For the leading-order and virtual contributions to the cross section, the outgoing quark can
be trivially related to the jet which it will initiate. Indeed, it is sufficient to assume that the
jet will be centered around the outgoing quark, such that pjc = p1. However, for the real
next-to-leading order corrections, this is not true anymore. Instead, we need to specify what
we mean by a jet, using a specific jet algorithm. This algorithm allows one to distinguish
the case in which the quark and the gluon are grouped inside the same jet and the reaction
hence has a similar topology as the leading-order one, from the situation where both the
quark and the gluon each initiate a separate jet. Since our main purpose here is to prove
final-state infrared safety, we can limit ourselves to the following straightforward algorithm:
the outgoing quark and gluon are grouped inside the same jet when their momenta satisfy

the condition: .
D1 +p3
Ip1 + s

p1

<R. 7.1
p1 p3 ( )

The parameter R is known as the jet radius parameter and is bounded by 0 < R < 1.
Moreover, for our purposes it is sufficient to work in the so-called narrow-jet limit R — 0,
suppressing all positive powers of R in the calculation.® In practice, this means that there
is only a single configuration where the quark and gluon are part of the same jet, namely
when the gluon is radiated collinearly to the quark in the final state. Note that, in this
work, we always consider the case where the observed jet is initiated by the quark and the
gluon is integrated out, whether the latter forms its own jet or belongs to the quark one.
For later phenomenological applications, our intermediate ¢ + A — +* + ¢+ g results can be
directly used to calculate the contribution to the cross section where the observed jet stems
from the gluon, while the quark initiates its own jet that stays undetected. In addition, if
desired, it always remains possible to employ a more sophisticated jet algorithm.

In our calculation, it turns out that Mpgs and Mpgs are the only amplitudes that
lead (always on the level of the cross section) to final-state collinear divergences. They are,

8We note that, in this limit, our jet definition becomes equivalent to the Cambridge/Aachen
algorithm [82, 83].
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therefore, the only amplitudes contributing to the configuration in which the quark and
gluon are paired inside the same jet, due to the abovementioned narrow-jet limit we consider.
Let us add and square them, starting with the transverse case (egs. (5.18) resp. (5.20)):

9 it \2
(Misaysl® = 92n92CrNe <pi) SPTP(J)FR<<1+ pl) +D—3> <<1+2p1q+pg) +D—3)

by
2

_ ‘17 +
" 1 [p;L q p1++p§r (Pl PB) q+q ‘|

T 2 | F + 2 Tt g2 + M2
_ri Po _r Por9” + (1 +p3)M
(ps oF p1) (ps T kL) + Arg

(7.2)
where the spinor trace was evaluated with the help of the relations in section B. Similarly,
in the longitudinal case (egs. (5.17) resp. (5.19)):

pi)? 27\ 2 1 1
+o+
|M S2+3| gemgsCFN + 8p1 Por 1+ -& +D -3 M2 T 2
Py p3 P3
p3 — T_pl
2
(p1 +pd)a— q*(p1+ps)) a2 2
lpoRps Pap (Pl +73) _ pied” — (o +pi)M 2] (7.3)
+ + 2 + a2 + + 2
atps P3 - %ij_) + Ars Pond’ + (p1 +p3)M

% / —i(a+p1+p3)-(x— )(Sxx’ +1).

Indeed, from the structure of the above expressions it is clear that both of them contain a
divergence in the limit pj ps — p3 p1 — 0, i.e. when the gluon is radiated collinearly to its
parent quark.

7.2 Gluon inside the jet

Let us first consider the case when the quark and the gluon are grouped inside the same jet.
Integrating over the gluon momentum, the jet algorithm (7.1) is then imposed by adding
the following step function to the integrand:

2
Oun (1 ) = 0(<p1 4 ps)?R2 — (o} +p})? (;’ - ;’) ) - (7.4)

Moreover, the quark momentum pj is not the correct physical parameter anymore, but
rather we should work with the jet momentum p; = p; + p3. With the help of the

intermediate relations
1 pi—p—ps (0, —p3)(a" +p) —p3)
T 2 - + 4 gt)pt
(P3 - :%kl) + Ars (pj” +a*)p;
€1

X

' (7.5)

pa ’ p;(pj—_p;) + +\Pp2 + 72 7
P3 — 5 P; +W((pj +q*)P3 L+ pf M?)
J J

~ 54 —



and

+ 2 o e — —+ 2 + 2
P1—P;—DP3 p; p
(p - fyim) = ( — +) (ps - ipj> : (7.6)
N t T

one then obtains:

/ | Mo s|*0m (51, P3)
P3

ﬁl—ﬂ?] P3 2 + 2 + + + + p;r 2 p;— 2
Jem95CrNe o5) 8 =)y +a") (25 1) +D=3) | (1+23%) +D-3
J

3
2

X/ll(p —p3)p P, n g q
VA +)2 ps (0 —pd) +q2 4+ pt M2
¢ W) e BUR) (o 4 qr)P2, M) POT TS

(Pj-r)2q+

X 0<WP3R2 - £2> / e—i(q+pj)~(x—x’) (Sxx’ + 1) '

)

(7.7)
+
In the above expression, we changed the integration variable from p3 to £ = p3 — z—ipj and
j
introduced the analogues of the momentum combinations (2.30):
q'p; —pja

P'LE
J gt +p;

and ki =p;+q. (7.8)
Similarly, in the longitudinally polarized case, we have:

2 - o
/ |MOF82+3| 01n(p17p3)
P3

P1—D5=P3 gemds 2(p; —p3)\2
LI Gl 08 D+ (145 ) D 3)(p )
J
2
X/llpg(pfpgf) p(TP]L —pl M? pd’ p+M2] (7.9)
£ )2 T -p) 2t L2
¢ () g2 P (pi)2+ (b P2, +p7 M2) Py 9 +p

! (Wp?sz) / e AP0 (5300 11).
i x,x’

)

The transverse integrals in eq. (7.7) can be evaluated with the help of the following identities,
which are easily proven in dimensional regularization:

4-p [ 4% 6(b—0) 11 dme= B
a / (2m)P—2 £ - AT |:6C011 +1In ( >:| + 0O b 60011
ip [ 47 ob-0) L[ -
a / (2m)P=2 £2(£% + m) = T imm |:€c011 +1In ( >:| b 6Coll (710)
-D d”%¢  6(b—¢) 1 1 dme=E
H4 / (27T)D_2 eQ(eQ +m)2 = — A2 |:€coll +1In (1)2):| + O(b, GCOH) s

where we remind the reader that we work in the narrow-cone approximation R — 0,
keeping only negative power-like or logarithmic dependencies on R. We also expand

+
D — 3 =1 — 2¢¢oq from the Dirac structure (22—1 - 1)2 + D — 3. In both the transverse (7.7)

3
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and longitudinally (7.9) polarized case, we obtain a result proportional to the corresponding
leading-order amplitude:

[ IME, P65, 7

4me VE ,u2 (p*.')‘1
MO x —a,C 1+ln< ) >_
= i ()2 —pi)Pp2R2 ) ()2 + (p) —pi)? (7.11)

+\ 2 (pt — pt + 2
Ps3 (pj P3) ( p; >
X | =) ——— 2—- — +1]+0 .
(pf) Py < Py (€on)

+
Note that, in the transverse case, the structure (1+2pi+)2+D—3 is absorbed into ]MEOl +2\2,
q

which hence stays D-dimensional.

The next step is to integrate over the gluon plus-momentum. However, due to the shift
p1 — pj — p3 dictated by the jet algorithm, an additional dependence on p?f is introduced
on the level of the cross section:

do™ 34-p) [ dp3d”*ps 1 dpfd”’p; dg¢"d”*q
(27)P=12pF 2pd, (271')D42p1" (2m)P~12¢*

% 27T5(p0R _pl o q p3) |MFSQ+3| ein(ﬁlvﬁ?))v
ﬁlﬁgjiﬁs 3(4-D) / dp3d”~ ZPSL dp}LdD ’p; dgtdP—2q
g (277)5’*1219+ 2py (2m)P—12(pf — py) (2m)P 127 1)
7.12
x 2mo(pg =Py — 4 )53 |MF82+3| Oin (D — D3, D3) 5
+aD—2_ . . Do
(4D)1dpd p; dgtd®2%q P O
= 2pg (2m)P—12pf (2m)P- 12q+27r5( P =4 )
dpy pf / )
X M 0;
/(2#)13*32;0;( T —pd) | F82+3‘ m( — P3,P3) -

Evaluating the plus-momentum integral, regularizing the p3 — 0 pole with the cutoff k"

min’

1 4me VB > pf w2 217]
(e (5 ) G ) < -5 ] o

where dag(’)lj jet, 18 the leading-order cross section in terms of the jet instead of the quark.

we finally obtain:

T.L asCr
daln =do LO Jjet

Adding the above result to the ‘final-state’ part of the field-strength renormalization
corrections (3.114), which stem from virtual diagrams hence we can directly identify the
quark momentum with the jet one:

asC 1 uz p+
doz.s = doro r <€COH + lnll%> <— + hlk;f,m) ) (7.14)
we obtain:
asCr dwe VB L2 3 p+ 13 72 2 p
dain+dUZFS:dULOX In ( p?RQ ) (4 _lnk;ﬁm +?—?—11’l k,‘rgm . (715)
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We omitted the labels indicating the photon polarization since the above result does not
depend on it. The above expression is an important result, demonstrating the cancellation

of final-state collinear divergencies in our cross section. There is, however, one loose end in
Jr

the form of a double logarithm in the rapidity cutoff k. Since high-energy resummation
only involves single large logarithms, this term is unphysical and needs to cancel in the final
cross section. In the next subsection, we will show that the unphysical double logarithm

cancels when adding the contribution of a soft gluon just outside the jet.

7.3 Gluon outside the jet

In the scenario where the gluon and its parent quark each form a distinct jet, the quark
momentum can be directly identified with the one of the jet: p; = p1. The jet function, to
be added inside the integral over gluon plus-momentum, becomes:

2
1 —0w(py — pj,p3) =0 <(P;r +pd)? (;)i - p;) —(pj + P3)2R2> ;

7 3

+ 2 o +pt 2
:9<£2—(p_+pjp§> <£+ 3p_+3pj> R?) | (7.16)
J J

+
where we introduced £ = p3 — %pj and where the equality in the last line holds in the
j
narrow-jet limit R — 0. Integrating over the gluon momentum in (7.2) then gives:

| PSE) Myl (1~ (7. 7))

+ plipy
e+ L p 2
= g OéCFN/dp;/1|:D; qt G 7t
Y O VR A [ S )\ r92+(p) +pg)M?
p3 Je € |pg v +p3 (H%PL) LAy, Pond (p; +p3)
J
+\ 2 +\ 2 9\ 2 ot 2
2 (ri\" 2p2) (Ps o+ 2p; pj +ps
X9<£ _<pf) ij)(ﬁ) 8pijR<<1+ps+> +1> <<1+2 at +1

pi . Do
—1 (Z‘Fipl-f—?kL) '(X—X/)
X / e p; Po (sxxr +1).
x,x’
(7.17)
From experience [50], we expect that a similar unphysical double logarithm as the one in
eq. (7.15) will appear from the phase-space integration over the gluon, in the kinemati-

cal region where the latter is just outside the jet with small plus-momentum, i.e. when
simultaneously:

+
Eng—%pjﬁo and p3 — 0. (7.18)

J
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In this regime, eq. (7.17) can be approximated by:

lim [ PS(p3)|Mpsais|? (1 — 6in(P1,13))

soft
+oo + —il-(x—x") +\ 2
dp € 2 P 2 2
= |Mio 24q CF/ = [ 0| - (3> P;iR 7.19
’ ‘ S k;;;in p;r ¢ e2 p;r ] 9 ( )
+ +
QO[@CF Co 2 P
= [Myo] (2111 e In Ripix = x| +In k$in> ,

where we used the identity:

e 1 ® qe 1 c
/g 0 D7) = %/b FIollx]) = 5 2 (7.20)

and where we suppressed the polarization labels since the same relation holds in the
longitudinal case. Like everywhere in this work, we parameterized divergences in the limit
Promoting the result (7.19) to the
cross-section level and adding it to eq. (7.15), we end up with:

of vanishing gluon plus-momentum with the cutoff k7. .

deet = doin + dUZFs + dUout,soft

§ In de QWE,LL + 13 7 +1 ++ i co ’ (721)
4 p;I? k 2w (x — x')2

min

asCrp

= dULO X

in which the pathological double logarithm has cancelled.

8 High-energy resummation

In sections 4, 6, and 7, we have demonstrated that the different ultraviolet- and collinear
divergences encountered in our calculation all cancel or, in the case of initial-state collinear
poles, can be absorbed into the DGLAP evolution of the incoming quark. We are now in a
position to treat the remaining high-energy or rapidity divergences, which either stem from
the k; — 0 limit in the gluon loop for virtual diagrams, either from the p?{ — 0 limit in
the gluon phase-space integration of real next-to-leading order contributions to the cross
section. In both cases, the divergences are regularized with a cutoff k. and come in the
form of single large logarithms.” To be more precise, let us formally separate the integral
over gluon plus-momentum in the (fixed-order) NLO cross section as follows:

donro = / L doNro - (8.1)

Of course, pz,f is further constrained by delta functions or Heaviside step functions inside
onLO- Introducing the high-energy factorization scale k;[, we can rewrite the equation above:

dUNLO—/ 7HJIMWLKdULO+/ (dUNLO o(k} pg)HJIMWLKdULo) (82)

Hl in

9We refer the reader to [84] for a discussion on choosing the value of kf; .
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where H jmwiLK is the JIMWLK Hamiltonian, acting on the target averages in the leading-
order cross section. We will show in the following subsections that the above subtraction
method works, namely that all the rapidity-divergent contributions in our NLO cross section
can be combined into the first term of the above equation, such that the second term is a
completely finite rapidity-subtracted cross section that does not depend on k. anymore.
But first, we will argue that the first term in (8.2) is the first step in the JIMWLK evolution
of the leading-order cross section. Indeed, at fixed leading order, the target average of the
Wilson-line structure in the LO cross section 2.46 does not contain any evolution, hence we
label it with a zero:

<5xx’ + 1>0 . (83)

In the standard ‘naive’ approach that we use here [84], JIMWLK is used as an evolution
equation for the target averages with the factorization scale k}“, resumming the leading

high-energy logarithms ;" = ln(k‘Jr /k as follows:

mln)

anyr<5xx’ + 1>Yf+ = <HJIMWLK (Sxx’ + 1)>Yf+ . (84)
Integrating the above equation, we obtain:
vy
_ +/ 7
<Sxx’ + 1>yf+ - <3xx’ + 1>0 +/0 dYy <HJIMWLK (Sxx’ + 1)>Y+ ) (85)

= <3xx’ + 1>0 + Yf+<ﬁJIMWLK (Sxx’ + 1>> =+ (’)(Oz?) .

In the last line, we have performed a fixed-order perturbative expansion in ag. The JIMWLK
Hamiltonian is of order «y, and the dependence of the target average on the rapidity scale
is not specified since it is a higher-order effect. We can, therefore, write the analogue of
eq. (6.20):

k‘+

doro = dopot+simmwik — In HJIMWLKdULO (8.6)

min

Combining egs. (8.6) and (8.2), one then obtains the final result:

+
doro+doNLo= dULO+JIMWLK+/ (dUNLO e(kf —P3 )HJIMWLKdULO) (8.7)

In the remainder of this section, we will explicitly demonstrate that the procedure outlined
above works, analyzing all the different sources of rapidity divergences in our calculation.
We end this subsection with the explicit action of the JIMWLK Hamiltonian on the dipole
operator:

sN -
Hymiwrk (sx +1) = = 5 / re 72 (xrx — SaxSxa) - (8.8)

X — Z
8.1 Leftovers from ultraviolet- and collinear subtractions

In section 4, we have demonstrated how the sum of the different UV counterterms in the
virtual amplitudes yields a result which is free from any UV poles. There are, however, still
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+

rapidity divergences left, regularized by the cutoff k. . On the level of the cross section,

we have for the longitudinally polarized photon (4.40):

L _ L _ oCr 3 Py Py dme Ppk 1
dogy = doto X <—2 +1In . +In e In —QAov . 3| (8.9)

Following the usual high-energy resummation procedure, we will extract from above cross
section the terms enhanced by a large rapidity or high-energy logarithm, and cut off the
(implicit) integration over the gluon plus-momentum at the rapidity factorization scale k;{:

ki 20sC dme VB 2
li L _ L f s“VE Hr 1
Jim dogy = dotp X In o —In Aou (8.10)

We obtain the same result when the photon is transversely polarized (4.41):

Kf  20.Cp  Ame 3
: T _ 3,7 f asbr e " Hr 11
kliglo dogy = dogg x In o X In Aou (8.11)

min

Let us now turn to the real NLO corrections that contributed to the DGLAP evolution of
the incoming quark (6.22). Keeping only the high-energy logarithms, we find:

+

k C —YE
. — f asCUfF e 12
li}IEO dorg = dopo X In o X In e (8.12)

irrespective of the polarization of the photon.

Finally, there are leftover rapidity logarithms after the cancellation of collinear diver-
gences in the final state by the jet algorithm (7.21), namely:

kT C
i ot = Iy QT €0 8.13
lwgglo dojer = dopo x In - X —— In S (x —%)? (8.13)

Adding (8.10) or (8.11) to (8.12) and (8.13), we obtain both for transverse and longitudinally
polarized photons:

kT 2
lim (dUUV + dos + dajet) =doro X In k*f X 20:Cr In 0 . (8.14)

ket —0 ™ Ayy(x —x')?

It is worth remarking that, in the above result, the arbitrary scale pur stemming from the
quark field-strength renormalization has cancelled. This is not surprising, since eq. (8.14)
contains all contributions (UV, IS, FS and their conjugates) from the one-loop result for
Z (3.114), which is itself independent from pip.

8.2 Virtual contributions

We will show in the following section (see eq. (9.17)) that, although individually they are
divergent in the limit of vanishing gluon plus-momentum, the sums of the UV-subtracted
amplitudes Mgé\l,sub + M%i\,sub and ./\;lglé\47$ub + ./\;l(\),’isub do not contribute any rapidity
logarithms to the cross section, nor is there any dependence on the factorization scale k’;f
Moreover, the high-energy logarithms stemming from the field-strength renormalization

diagrams (3.114) were already taken into account in the previous subsection. It is, then,
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very easy to see that the only virtual diagrams left with a high-energy logarithm are
the subtracted diagrams Mgé\Z,sub in egs. (3.14) and (3.15), and /\;(gff&sub in egs. (3.20)
and (3.21). Indeed, using that in the limit k™ — 0 the Dirac structure (3.3) becomes:

we obtain

kl_&m M SE2,sub —

and:
lim M2
ot —0 SE2,sub —
as well as:
lim M2
et —0 SE3,sub —
and:

lim M2
50 SE3,sub —

= 4oy

ot AN
- o nm
klilgoSSE( )= 4(’“) "

M pfP? + pf M2

/ —ik | -x /Az

kto

— Ao(Auv)Cr(Ux — 1)] ;

5 +
— 4 7q+Pi SI:\(;\)/ _—
S
pe P2 +pf M2 kT,

/ ZkLX

Joe

— Ao(Auv)Cr(Ux — 1)] -

+
— ey poq —pf’M2 1 P1 gkt
ga? +pi M2 M Ji+

min

[

— Ao(Auv)Cr(Ux — 1)] ,

q"q* AX
— 4oy S /
i +pi M2 L0 [+

[ o

— Ao(AU\/)CF(UX — 1)] .
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| P2 = pf M /po i+

— 2)(t°UxUJt°U, — CF)

— 2)(t°UxU}t°U, — CF)

— 2) (t°UxUjt°U, — CF)

— 2) (t°UxUJt°U, — CF)

(8.15)

(8.16)

(8.17)

(8.18)

(8.19)



Cutting off the logarithmic integral over k™ at the rapidity factorization scale k;[, the above
amplitudes contribute as follows to the cross section:

lim dogmsss = 9710 x In 1
kt—0 SE2+3 - Sxx/ + 1 kj—nin
X dovg l2 /Z (AZ(X —z)A'(x —z) + A'(X —2)A' (X — z)) (8.20)
1
X (Ncsxzszx’ N Sxx! + QCF) - AO(AUV)2CF(SXX’ + 1)‘| .

8.3 Real contributions

The real contributions to JIMWLK that were not yet taken into account in subsection 8.1
stem from the interferences between the initial-state radiation amplitudes Mig; and
Miss (5.2), (5.3), (5.7), and (5.8) on the one hand, and the final-state amplitudes Mpg;
and Mrpg3 (5.15), (5.16), (5.22) and (5.23) on the other.

One obtains in the longitudinal case:

cocop 2 (piPl—pfM? piq® —piM?
im Migis= =37\ e s — oter g
kt—0 M \pyPq +py M?  pga®+pi M (8.21)
X / iA"(x — z)e” KL Xe T P2 (U U, — )
X,Z
and
. - 2 +P2_ +M2 + 2 +M2
R e
ket 0 M \pgP? +pi M?>  pya®+pi M (8.22)
X / e~ P B IkLXG AT (x — g)t¢(Uy — 1).
X,Z
Similarly, when the photon is transversely polarized:
< + +pX + g
. ~ X AX 2 Py q'q
lim M7 . =28 (1+2> ( + >
koo 19143 0t ) \po P +pi M? * pga?+pf M? (8.23)
x / PAT(x — Z)e X PR (UL U, — 1),
X,Z
oA AX 2pf q"P} atqt
lim M2 = —-25 (1 + == +
ko ESIH3 a" ) \pg P2 +pfM?  piqg>+pf M? (8.24)

x / e 1P —IKLX] AN (x — 2)1(Uy — 1).
X,Z

On the level of the cross section, the interference term due to the above amplitudes is,

independently of the photon polarization:

. dO’Lo k}— 1 1 /
lim dojg_pg = x In X 4o A'lx —2)A' (X' — =z
K+ o0 IS—FS S/ + 1 kjr_;in s : ( ) ( )

(8.25)

1
X (ﬁsxx’ — NeSxzSax! — 2CF) .
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8.4 JIMWLK
We can now, finally, add the intermediate results (8.14), (8.20), and (8.25):

lim (dUUv + dors + dojey + dosga43 + dUIS—Fs)

kt—0
- SdULfl x In Iﬁ X dag / (AZ( —2)Al(x —z) + AN (X' — 2) A} (X — z))
1
X (N SxzSzx! — ﬁsxx/ + 2CF) (8.26)
1
+/Az Z ) (Esxx’ — NeSxaSax! — 2CYF)

X

1 c?
+ <4,r In R o Ao(AUV)> 20F (sxxr + 1)] :
The terms in the last line of the above expression can combined into:

1 ca 1 1 47ru c
471_11’1 AU\/(X—X’)2 _AO(AUV> 47l' ( ’YE+1 UV _ln AU\/(X—X/)Q) ’

) (8.27)
:—E(——l—’yE—i—lnﬂ',u( x')?)
where we used the expansion (A.8) of Ay. But in this result one recognizes:
1
—*(7+7E+ln7w( x')?)
712 (x—x") (828)
—/ = /AZ z)Al(x' —z),
such that
kljlilo (dU uv +dois+dojes +dosga43 —|—dO’IS—FS>
_ dowo_ ; X 4oy (Al(x z)Al(x—z)+A'(x —Z)Ai(xl—z))
Sxx! +1 krtun s (829)

X (Ncsxzszx’ _Nisxx’"i_QCF) +/ Ai(X_Z)Ai(X/—Z)NC(Sxx’ _sz3zx’)] .
¢ z

Setting x = x’ in (8.28), we obtain a scaleless integral which in dimensional regularization

is, of course, equal to zero:
/zAi(x—z)Ai(x—z) = /Z%Q =0. (8.30)
We are, therefore, allowed to subtract from (8.29) the following vanishing contribution:
/ (A¥(x — 2)A'(x — 2) + A(x — 2) A (X'~ 2))Cr(s0 +1) =0, (8.31)
which gives: ’

lim (dJUV + dois + dojer + dosga43 + dUIS—FS)

k+—0
d ki
= O:L_i(_)l X In —— k* (Sxx’ — SxzSzx’) (8.32)

min

><4oz5N/ (x—2z)A'(x —Z)—%Ai(X—Z)Ai(X—Z)—%Ai(X/—Z)Ai(XI—Z)).
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The final step is to recognize the integration over Weizséicker-Williams fields, in the last
line, as the BK kernel:

/z (Ai(x —2)Al(x —z) — %Ai(x —z)Al(x —z) — %Ai(x’ —z)AN(x' — z))

. -’ (8.33)
- 82 , (x—2)2(x' —2)?’
such that we recover the JIMWLK evolution of a dipole (8.8):
kljrilo (dUUV + dois + dojet + dospa+3 + dglsfFS)
do kf as N, (x —x')?
- Sxx’L—Sl X In krtfm X T o /z (x —2)%(x' —2)? (850 = Sxa52x') (8.34)

kT N
=In ka X Hynwrkdoro -
Hence, we have proven the validity of eq. (8.2), namely that all the rapidity-divergent
NLO contributions combine into the JIMWLK Hamiltonian acting on the LO cross section.
Therefore, they can be subtracted and absorbed into the JIMWLK evolution of the latter,
according to eq. (8.7).

Some subtleties. We have asserted in subsection 8.3 that only interferences between
initial- and final-state gluon emissions needed to be calculated, the other contributions to
JIMWLK from real NLO corrections already being accounted for in subsection 8.1. Let us
take a closer look at this statement.

First, the squared amplitudes |Mjg;|? and |Mpss|? cause collinear initial- and final
state divergences when integrating over the gluon momentum. Therefore, we have separately
analyzed them in sections 6 and 7 in the context of DGLAP and the jet definition, respectively,
and showed how these collinear poles cancel. The leftovers of these procedures still contain
rapidity divergences that are, indeed, taken into account via eq. (8.14).

More subtle, however, are the cases of squared amplitudes |[Mig3|? and |[Mrpg1|?, as
well as the interference terms 2ReM}LSl/\/l153 and 2ReM}SlMF53. They do not contribute
to DGLAP or to the jet function and hence are not taken into account in subsection 8.1.
Moreover, at first sight they seem to be missing from (8.34). To solve this puzzle, we should
revisit sections 6 and 7, where we were not able to evaluate the transverse integrations
in amplitudes Migs and Mpgs exactly and, instead, devised an approximation to extract
their collinear behavior. For definiteness, let us look again at amplitude /\;1?82 (the other
cases are similar):

p;,r pgR
_ 2
/ o p3 (¢ €+ pga)” — pipipd M?
2 2
e & pf (ate+pia)” + piatpdat® + pipd py M2

~ 1 _ ot +
M, = L (1 + po) Py

(8.35)

N / o~ il (x—2) ,~ik L X ,~ip3-z (UxUthcUz _ tc) .
X,z

)
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Clearly, this amplitude will not lead to rapidity divergences, since it disappears in the limit
pgr — 0. Introducing the transformation £ = p;{ / ¢t and only then taking the limit p{f —0
allows us to study the kinematics where all components of the gluon momentum tend to
zero simultaneously (the ‘genuine soft’” limit p5 — 0, see e.g., [50]):

- _ N\
lim MY, = lim e (1 + 27?) L

P3—0 p3 —0 Py ) Pon

~7 - 2
/ﬁ@ (pil+pia)” —pipsM* 0.36
204" (prl+pia)” + prpipinl’ fat + pips M2 (8.36)

7i17f32-(x7z) . .

X / e qF e~ L XeTPs % (U UTU, — t°) = 0.
X,Z

It follows that MY, cannot generate logarithmic divergences of the form In p*/k}. : neither

rapidity ones, nor genuine soft ones. However, in the approximation (6.3), we have set
£ — 0 inside the integrand to extract the collinear behavior:

2 2
~ 0n ‘ _ 120 i M o (4, 200 P
182]con. M pyq? +pf M2 5 ) pin

P3
4 —il-(x—2) —ik, -x _—ip3-z toc c (837)
X FB e 1 e P3 (UxUzt Uz —t ) ]
x,z J L

But the above expression does lead to a rapidity divergence, in particular, exactly the same
as the one from amplitude /\/l?g?):

lim M?SQ
+
p3 —0

= lim MY, .

coll.  pt o 1S3 (8.38)
Thus, the reason that, in section 8.3, we only need to consider the interference terms
M131+3MF81+3 +c.c., is because all the rapidity divergences from | Mgy 3|? and [Mpg1 3|2
are accounted for in eq. (8.14). The rapidity-divergent squared amplitudes |Mis;|? and
| Mps3|? contribute directly, while the contributions from the others, namely |Mjig3|?,
| Meps1|?, M}LSlMIS& and MTF81MF53 are mimicked by the artificially large logarithmic
terms in ‘MISZ‘Q‘ , ‘MFSQH , Mig Miss| , and MIT:SlMFsz‘

coll. coll. coll. coll.

9 Next-to-leading order cross section

We are now ready to present the full NLO cross section for our process. It is given by the
following sum of separately finite contributions:

do {éﬁ&}éjet” = doLo+DGLAP+IIMWLK + dojet + dots + dovirtual + dOreal - (9.1)
The first part of the cross section 9.1 is the leading-order one, eq. (2.46), where the quark
PDF is evolved at least one step with DGLAP (6.21), and where the target average of
the dipole is evolved at least one step with JIMWLK (8.6). For all the other terms, it
is understood that the subtraction of high-energy leading logarithms has been performed
according to (8.7) in the previous section.
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The term doje; (7.21), after performing the rapidity subtraction, reads:

2 +
>+f’—§+1n2{;1n2“’ . (9.2)

2mp (x—x)?

asCr
deet = dULO,jet T

3 1 e VB %
4 p; R?

As explained in section 7, all scenarios in which the quark and gluon are paired in the same
jet are taken into account by the above contribution. Therefore, in the remaining terms of
eq. (9.1) we should always identify the quark momentum with the one of the jet.

The contribution to dog is obtained after subtracting the large high-energy logarithm
from (6.23):

doyg = ﬁ/Ps(ﬁl,®%<|MLO|2>
% .| In B /1 dePO) (6)Z2 £(0) (‘TP>
e aq ¢Ja ¢ (9.3)

—-VE +
+Cr (an) (—g +2 lnz%) xpféo)(mp)]
P1=Dpj
The term doyirtual, the finite leftovers of the virtual diagrams are collected after cancelling
the UV divergences, and after absorbing the collinear divergences inside the jet definition and
the DGLAP evolution. Moreover, the rapidity subtraction procedure has been performed
explicitly, hence a residual dependence on the rapidity factorization scale k? is left. The

result reads, for the longitudinally polarized virtual photon:
L 0 21 o 1
doyirtual = JUpfé )(fﬂp)mps(]?la Cf)g

X TT<METO [MgEl,sub

0 0 0
. + Mggg sub + Msgs sub + MSE4 sub

finit finite

0 0 0 0
+ (MSEl,sub + MVl,sub)‘ + MVl,sub finit + MV2,sub

1/k+ nite finite

0 0 0 0
+ MV?),sub + MV4,sub + MAl,sub finite + MAQ,sub
+ (M1 qup + MY + (Mg gup + M3
V1,sub Al,sub . V2,sub A2 ;sub
spurious

0 0 0 0 0
+ MA3,sub + MA4,sub + MQl,sub + MQQ,sub + MQ3,sub

finite

spurious

0 0 0 0
+ M1 sub + Mz gub + Mz gup + MI4,sub} + C-C->

— —

P1=Pj
The explicit expressions for the different contributions are presented in subsection 9.1.1. In
the transversely polarized case, the ‘virtual’ cross section is given by:

2 . 1
deTirtual = :r:pféo) (xp)Q(T;:)zPS(pl» (Dg

X Tr<MﬁTo {Mé\ELsub i

A A 2
o MGE2 sub + MSE3 sub + MSE4 sub

ni finite

+ (Mg\El,sub + M{\/l,sub) ’ + M%/l,sub

et (9.5)

finite

A A A
+ Mgy + Mys + MGy sup g

A A A A
ite + MAl,sub + MA2 + MA3 + MA4,sub

ni

o )

P1=Dj

+ Mag + Mf\Q =+ Mf\3:| =+ C.C.>
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where the expressions for the various terms are listed in subsection 9.1.2.

The last term in eq. (9.1), doyea, collects those contributions from real radiative
corrections that were not yet absorbed into doje; or doyg, and has the same structure
irregardless of the photon polarization, which is why the polarization labels are omitted:

dp;' 1

47rp; 2

2 —
=5y ) S 0) |

X/ Tr<‘MiqSQ finite
P3 ’
2
;
+)M?s3+4‘ +2Re(MS; oMz y)
2 2 +
+}Mg82+3|outfsoft+!Mg81+4| +2Re(Mg‘SZ+3Mg81+4)

T T T I
+2Re(M?SlJrQMgSlH_'_M?S1+2Mg82+3+M?SB+4MgSI+4+M?SB%MgS%ri%)>

2
1 1
+2Re (M?SIM?SQ,ﬁnite) +2Re (M?SQ,COHM?SQ,ﬁnite)

P1=Dj -
(9.6)
The explicit expressions of the terms above are listed in subsections 9.2.1 and 9.2.2 for

the longitudinal resp. transversely polarized case. Note that, for the real radiative cor-
rections, the longitudinal momentum fraction of the incoming quark with respect to the
proton is z,r = (pf +q +p3)/ py - The requirement x,, < 1 leads to the upper bound
pg < p; — pf — ¢, which is implicit in all the gluon plus-momentum integrations in 9.2.1
and 9.2.2. Moreover, unless explicitly indicated, pg,f can be safely integrated over down

to zero.

In the following subsections, we present the results for the different terms in eqs. (9.4),
(9.5), and (9.6). It is interesting to remark that, despite the complexity of this calculation,
most of the result only depends on two simple sets of color operators, namely:

2
Sxx/ + 1 and &sxzszx/ — lsxxz + CpN. | . 9.7
2 2

The exceptions to this rule are egs. (9.34), (9.37), (9.61), and (9.63), due to the virtual
amplitudes M3 and Mqa, which also include a quadrupole:

N? 1
73x1xz3x;),x’ - §Qx1x’X3x2 +CpN,. | . (98)

Our result logarithmically depends on three factorization scales, 2, kT, and p2, which
should be chosen in such a way that leftover logarithms are small. The first scale, 2, stems
from the dimensional renormalization of the ultraviolet- and collinear divergences. The
standard approach is to choose it to be equal to the typical hard scale in the process, for
instance a combination of the virtuality M? of the photon and the transverse-momentum
vector Pi. The rapidity factorization scale k:;f should be independent of the center-of-mass
energy and of the target kinematics [84]. A sensible choice could be k;f = quJr / par . Finally,
©2 is an artificial scale associated with the quark field-strength renormalization, and can be
adjusted at will. A fine choice is p2 = p?/(4me77), which leads to some simplifications in
dojet and dois.
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9.1 Virtual contributions

9.1.1 Longitudinal polarization

Self-energy corrections. Diagrams /\;lgELsub (3.6) and MgE4,sub (3.24) can be split up
in a finite part and a part that is divergent for k™ — 0:

+ +
~0 0 asCr| [Po Lk —2pf Po dk* Ap
Msg1 sub = MLo1— /0 dk W R P R et
= M} M3 :
SE1,sub finite SE1,sub 1kt
~0 ~0 asCr 2 + kT —2pf Pkt Aq
Msgasub = MLo2— /o dk 2o T /H T Ay
= M(S)E4 b M(s],m b : (9.9)
SU fnite S 1/k+
Making use of the following identities (see [85]), valid for a > ¢ > 0:
C
/ dz In(z(a—z)) = —2c+alna—(a—c¢)In(a—¢c)+clne,
: (9.10)
1 2 2 2 2
/ dexln (z(a —x)) = 5(—0(&—}—0)—}—@ Ina+c*Inc+ (¢ —a )ln(a—c)),
0
the finite integrals over the gluon plus-momentum can be evaluated, yielding;:
- - Cr 3 ( . ot pi (pd P +pif M?)
M8 = MYy B w2 2In2e —241n :
SEl,sub finite LO1 ™7 4 T pf + p(J)rq+AUV <9 11)
~0 =0 asCr 3 (. pid’ +piM?
MSE4,sub finite - MLO2 ™ x 4 (1 gt Auv —2)-

Hence, we obtain the following virtual contributions to the cross section:

0 0 asC
Tr MM | = Tr (Mo Moy =
9.12)
EYe it o ot (pEPL+pi M) (
X 4< Z7T—|—21npl+ 2+1In R~ ,
and:
0f 4 40 _ 0t 140 asCr 3 pea® + p M?
Tr Myo MSE4,sun e — X (MipoMios) —— x =3 <1H W -2). (9.13)

nicely combine
1/k+

with similar contributions from the vertex corrections. First, let us write down the contri-

We will show below that the contributions M%El,sub

10
e and MSE4,sub

butions from the amplitude MgEQ,sub (3.14), which reads after subtracting the high-energy
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logarithms and multiplying with the leading-order amplitude:'°

0f 0

Tr My o MsE2 sun

_ gfmaSSerer <p3'Pi —pj‘M2 B pa-q2_pi*‘M2> +P2 _ M2
M2 TPLEO \ piP? +pf M2 pig? +pf M2 ) piP? +p+M2

+
—ik | -(x—x') Po dkt kT2 208 \ 2 1
X e Bl e (1-25)"+
xx! kmin Po

k+
i—k (x—z) 2
[/A’ 2)Ai(x — 2, Ap)e Pi (]g SxaSaxt — 35! + CFNC)
(9.14)
- AO(AUV)CFNC (Sxx’ + 1)
kY dk* i( ; N2 1
- / /A A ( ) (ZLszSzx’ - isxx’ + C’FJ\[c)
i
- A()(AU\/)CFNC(SXXI + 1) } .
Similarly, M%E&wb (3.20) leads to the contribution:
0
Tr MLTOMgEs,sub
_ GemQs g pg P —piM*  pia®—piM*\ [ piq® —piM?
mz SPLPo po+P3+p1M2 - pa? +pi M2 pya® +pf M2
. o P1 gkt k+2 29t .2
ik | (x—x") ar_ (k. _ 2P
[ [T (-
k‘+
7kL ( ) 2
l/AZ 2)Al(x —z,A q)e pf (]\; SxzSux! — %Sxx’ + CpN,)
(9.15)
- AD(AUV)CFNC(SXX/ + 1)]
kY dk+ i( ; N2 1
— /+ /A z)A'(x — z)(TsxstX/ — 58xx/ + CrN)

— AD(AU\/)CFNC(SXX/ + 1)1 } .

Vertex corrections. The parts from MY, sub (3.32) and MV4 sub (3.53) that contain
rapidity divergences are:

+
MO — 0 OésCF Py dk+ n AUV
V1,sub 1kt LO1 ot K+ Ap
min 9.16)
+ (
MO — 0 OésCF Py dk+ n AUV
V4,sub 1/k+ LO2 o i A,

1%Since the high-energy subtraction is explicitly carried out, k. can, in principle, be set to zero in the

result below.
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When combining them with their counterparts from diagrams SE1 and SE4 (9.9), and
multiplying with the leading-order amplitude, we obtain:

0
TI"A/ILTO (M(S)E4,sub + M(\)/4,sub) ‘1/k+ =0 )

(9.17)

+
asCr /pO dk™ Ap

- .
T k Auv

0
TrML];) (MgEl,sub + M[\)/'l,sub) ‘ I‘M MLOl

1 /k+ T
The plus-momentum integral in the latter expression can be evaluated explicitly, and yields:

TrMy, (MgELsub + M%l,sub) ’

1kt
aSCF v (. pi (pg P2+ pf M?)
= Tr./\/l LMD oy In = ( im + In e oy (9.18)
+
—|—lln2p° +In2 ln— L12 ,
2 pl 1 p

with Lip the dilogarithm, and where we used the identity (see [85]):
Cd—xln(x(a—x)) = im?e— b+ naln - LinS + Lip? (9.19)
p T 2 2 b 2a 20" ’
Two parts are left of M%l,sub after subtracting the rapidity-divergent part (9.16), namely:

TI"M MVl ,sub

finite

Cr ) 2p +pf [ . o P +piM?
- Tr/\/lo MLola CF{ Po t_pl (—m’—i—l pi (P PL 4+ pi M)

4pg pgatAuv

_3p) +p1 2 +2p11 po _ at (g +pi) g 0"
+
1

4 pg 4py pi ap pg p

_ﬂ/ﬁ det (D' ((opk 1) (9P0 _ 1) 41
poP3 —piM? Jo KT opg(p))? ket k+

kT
X 27TBl (O,AP, FPL) s
1

(9.20)

and:

asCr pg P1 +pf M?
= TrM M 2 b
spurious LOT ™y (TPQL _pl+ M2

+
PLodkt  (k1)%¢" i Po Avy
></o el 7 -k \\ 7R Zpr L)) Iy
(9.21)

This last contribution still contains an unphysical divergence for k™ — pf. We will show

0
TrMLJrC)M(\J/l,sub

in the next paragraph that it cancels with a similar spurious pole in /\;l(/)ﬂ sub- Also the
next vertex correction MY, . (3.41) contains both a finite and an unphysical divergent
contribution to the cross section, and also here it will cancel with a similar contribution
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from MOAz,sub- The finite and ‘spurious’ parts from M%Zsub result in:

0
TrM LTOM(\)/'Q,sub

_ GemOs g 4 4 (o P —pI M pya’ —p/M?
finite  M? UTEO\ P +pf M2 pra? +pf M2

+ .
" /pl dkt (k*)3q" S0’
0okt ()l - k)Y

. rt (x—2
A £n ez(eJrﬁPL)( )
X / iA (x—z)/f (9.22)

2 2
) et ('e‘i‘%PJ_) + Ap

y ((e ol —w)PL)Q IOl _k+)M2>

atpi
+7k+ k+
—z‘kl-(po

7+X+TZ) Ng 1
X e Po Po ( 26 SxzSzx! — isxx’ + CrN, ’

and:

Tt A0 _ Gewtts g (P PL - pi M poa” - pi M
LO V2,sub spurious M2 1 F0 P(TPi + pIer panQ + pILMQ

+
PUdkt — (k%)%¢" 28 28
X/o B o =k \\ZkF L) 2 ) A

X AO(AUV)/ e_ikl'(x_x,)CFNc(sxx/ + 1) .

x,x/

(9.23)
The last two vertex-correction amplitudes M%S,sub (3.47) and M(\],47sub (3.53) lead to the
following contributions to the cross section:

+p2 +a 2 42 a2
0t 0 _ 2 + +[(pPL—pi M Poq” —pi M 1
TrMLOMV?),sub - gemasgpl Py < -

pe P2 +pf M2 pia®+pf M2 ) M?

+
X/ e—ikL-(x—x’) /p1 dk™* (k+)3q+ Sﬁo"]/
X,/ o KT (@) (s — k)Y

)

. kT
o o el(prﬁq)‘(z*)c)
X /zA"(x—z)/—

2 2
z e (e+5a) +a,
1

Fokt \ f -kt -kt
x<<£+pq+ q)_(p (q)fﬁi >M2>

(9.24)

+

k
ijkj_-(xfz) N2 1
X e P1 TCSXZSZX/ — 55xx/ + CpN,

+ g-AO(AUV)CFNc(Sxx’ + 1)] :
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and:

s 2pd +py 1 tA
TI'M Mv4 sub — TrMLOML02 fF{ - Po t P (1 + Eln quV)

2pg g a?+ pi M2

-1 B qt (PT +2p3 Inpg /q* ) 2 " Ayy

X ¥ ¥ ¥ (P Oq +pM?*)In ¥ ¥
Py 9® — py M? 4p¥ pg (po 9% + py M?2)

+ q + + + +

q 3 pg . q Po Py 1. Po
—|—<—3—|— +ln(4l7r—3ln—ln>—6L12>]

6pg 2pf vy P pY pi Tt

— kT (pd + 7))

_/pi(w4(k+)2((k+)2 2pf
0

p 21272 kT
o o0 )2 qQ°M wBl(O,Aq,qu)}.

(9.25)

Antiquark vertex corrections. As already announced in the previous paragraph,
MY oo (3:59) can be split in both a finite and a divergent contribution to the cross section:

Te(M oM, ) 298 Pkt (o ) 27 1) (2% 1) 41
e~ T MEOMLO) T [ G T = =

o -1 M2pf [ (7o +pT)  2(pd +3p7]) npo ( )
p+P2 *pILMQ 2

FPI.M MAl ,sub

g gt pf
+6+2 +4p° “’1 In pg
Py
po +3p1 2 po
+2 ——1—1 —|—31 ln——i—ng +—|—L12
at pl 1 pq p

—2M2AP7T60(AP,M2 po Pl)

ktpl—k ~o pg —kt
= 0 (AP,M2,°q+PL)}. (9.26)
1
and:
asCr p() J_J’_pl M2
TrMj OMAl sub Spurious—TrM MLOl T piP2 _piar
+
X Po E(k+)2(pa—_k+) 27’1 2@_ 71 AUV
pt KT ()2 (0f —kT) k+ k* Ap
(9.27)

Combining eqgs. (9.27) and (9.21), we see that the pathological plus-momentum integrals
can be combined and evaluated with the help of the Sokhotski-Plemelj theorem:

R 7S Akt (k)2 (pg — k) 2 24
Vo ot T F e (2 (2 1)+

1

a @2ps —py)  a (3pd —p)) pd 2" Py dk* (9.28)
2 - +41n + T
(Po) (P )? p1 po Jo kT —pi +i0F
2" (1 . q+>
—qmmP 2 (1 L)
p1 P (2 P
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and:

it R @)

Py P K (pg — k)
(o) (1) o

pi)?

Part ot Pkt (k) — k)
l/o K (pg )pi (o — k) +/ ]

1 (9.29)
3q dpy po 1) — ()* 2 po po . at
= +71 + 0 In i 4+ 21n +4In % In
Po T T 25 pi PP
+ 2 + + +
—4Liy 1 — 21 <ln2q+Li (— 1) Li ( ) +imln q)
oy m 2 et 2\t T
We end up with the well-behaved result:
0 0 0
TrM, (MVLsub + MAl,sub) ,
spurious
asCr pg PL —&—prQ
= TrMP Mio, in piP? —pi M2
2q qt . pgat Auv
4In =% — ~~ +Z7T—|—h’l)) i+ In 9
[ ( o ( i pi (pg P2 +p1+M2) (9.30)
3q" —4pf po P> =), q" 2 po 7
———71 — 0 Ini- —2In —4InPo ln—
Py Py 2 pepi Py P i P
gt 2t 5 gt . »f q* ' q*
+ 4Li q—l—(ln =4+ Li (— — Li +imln ) |.
o5 ps pi et AT pf
Similarly, for amplitude MOAQ’Sub (3.65), we find the finite part
+p2 + 72 + 72
0f 4 40 _ 2 + o+ [ pPL —pfM? pig® —pfM? 1
TMioMaAssubg .\ = Jem@s8PI Py (pJPi +pi M>  pia+pi M2 | M?
+
« /po E (k+)2( )877077 / efikr(xfx’)
B Ty A
2
. Z"—&— P" (£+ p§1k+Pl> _
X /z’A”/(X—z)/e_w'(x_z) 7 A +q -
z ¢ +ar (£+””“ Pi) + 12
k’+
i—ky (x—2) N2 1
x e Po B > SxzSzx! — gsxx’ + CFNC) 5
(9.31)
while the term with the spurious singularity for k* — pi is
+ 12 2 + 2 + 2
0f A 40 2 v 4 (pgPL—piM®  pig® —piM*) 1
Tr = g8 —
MLOMAZsub spurious e @sOP1 Po (parPi +p1 M?2 parq2 er;rM2 M?

Po dkt (k)2 (pd — k1) Py P 9.32
% /ﬁ w5 k) ((% - ) (Zk* B )“) 92
x Ao (Ayy)

><\

ML) O N, (00 + 1) -

/
X
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Combining the above with (9.23) and applying (9.28):

ot 0 0
TrMpo (MVQ,sub + MA2,sub> spurious

_ GemQsg o+ +<po+Pi —p M p§q2pr2>

a PO\ e pie T gt 1 pf M2 (9-33)
+ . ’
( 41n =% — 2% <; —im+1n q_‘_)> Ao(AU\/)/ e—sz(x—x )CFNc(Sxx’ + 1) .
p1 Po Py x,x!

The next contribution is due to amplitude MOA&SUb (3.69):

+P2 _ + M2 + .2 +M2
@ Poa p
TrMLOMA3 b = _ Gems 8 pt ( 0 1 )

M2 110 +P2 Jrp+]\/[2 p0+q2+pILM2
o pO dk+ kT (ot =kt N N
x { SP / T 7@2 - ) 2M?K (x1 —%2, M?)
Pir 9" Pg X1,X2,X3

_ + =

/ kgl

X/ e—i£~x126—i82~xQ3% = PT 2
2.0 £ — pg —kt o 7p()+(p0+—k+)(pf—k+)£2
at Pl (aT)?2 2

(pa—ik-,— pi—ikﬁ— )

. —iq- X1 — X2 N2

—1p1-X + +

xe P1X3e q q < B Sxax/Sx1x9 Qxlx’X3xQ +CFNC>

<7p0 +P1 +2P0 ;‘3101 In ) AO(AUV)/ efikr(xfx’)CFNc (Sxx’ —|—1> } .
p x,x/

po
(9.34)
Finally, from eq. (3.75):
TI'M MA4 sub — TI'M MLOQ asfF
( +7+_ 2(pg +3p1) |\ Po )1 (¢H)?Auvy | 3pg +pf  Tpg ! In &
apg 4qt pT i pi a2 2pg 2pg '
p3+pt+(pg+3pl+)ln%1 py Py +3p) Li e\ 1
R e e CA G R
N
Po dkt (k)2 (pd —kH)? ([ pf 2 2 A2 pg —k*
'i‘/p;r FW 2k+ 2]67_ +1 q’]TBl(O,Q, e q) .
(9.35)

Instantaneous four-fermion interaction. We obtain the following finite cross-section
contributions from amplitudes (3.81), (3.86), and (3.92):

Tr MLOMQI sub — TTMLOMLm

OésOF M2 2[)1"_ ( + + + p+) ( AU\/)
P (ogt — In %o 1
mopp g g | \20 ~ (o FpD) I )i n S (9.36)

+ +
+2¢" + (p§ + 1Y) <1n +L12< 1 >—L12<q+)>],
p p1 Po
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and:

0
TI" ML%M((JQQ,Sub

_ 2 po Pl —piM?  piq® —pfM? 8t pt
em +Pi +p'1FM2 poqz +p+M2 10

4as + +€+
[/ 44 )2l +

ef (gt

71 2 €1 -x13 184 X35
/ / _ie. x12 24+ @2 M / et1-%13 ila-X23
of (gt —ef + 2 +pt T2
X1,X2,X3 02— <((¢11+) )MQ 01,64 (el 4 %&1) 4 Py by Po by
+

(gt =) +65)2

gt — o

4 ( o ) )
X eizq. q+ x2+q+x1 —ip1~x3/ eikL'X/ (Nc
</

2‘ Sxzx! — Qx1x Ix3xs T CFN)

+
+ (2 — 7@0 qtpl) pi) Ao(Auv) / P )CFN (Sxx’ + 1)1
1 x,x/

’

(9.37)
and finally:
TI‘M MQ3 sub — TI‘M MLOQ
Q’sCF po +p1 Pg pTAUV
X ——— [( 2+=—=In p1+>ln g
p+ + P p+ . + +
e (o) (m(2F) (reimemiizh) 1 () 1 () |
(9.38)

To obtain the expression in the last line of the above result, we made use of the identity:

— /1 dz m(l__ IQ) In (z(1 —x) —i0")
o (c—a) (9.39)
=-24(2c-1) [ln(c_l) (1—|—i7r—l—lnc(c—1)> ng( )+L12( Cl)}

for ¢ > 1.

Instantaneous gqvq interaction. Here, we list the four contributions to the cross
section due to the amplitudes (3.96), (3.101), (3.106), and (3.110) with an instantaneous
gqyq interaction. They are all finite. The first one is:

TI'M MH ,sub
gemNe o+ +(p3P3pTM2 pga’—pi M2>/ —ik, -(x=x')
= 8 e L S /—'I—l
Mz PEPO\ P L T piqr e M2 ) Sy (s 1) (9.40)
asCr gt g . pg Auv . pi . qt
— | (In*——i7 ) (¢7+In——"2—F— | —Lis [ ——= |+Lis | ——
T2 ( ri pPLpf M) et )T ]
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and the second:

TrMLOMIQ sub

P? —ptM? M2 ik (x—x!
gemgplpo (po 1-piM*  pia’—pi )/ e ik - (x—x')
X,X

3Pi+p1+M2 a2 +pi M2

+
o [ [ [y
s 0 k+ p pl —kt Zz

(9.41)
qTiA (x—z AP)Q& 2pT —kt ; 2p0 kTt
< pg —kt kT P 1R (x=2,Ap) 1+2 L=kt
k.Jr
ijkj_-(xfz) Nc2 1 2q+
x e Po TSXZSZX/_isxx’"i'OFNc +WAO(AUV)CFNC(SXX/+1) .
1
Moreover, we have:
TrMLOMI?) sub
gem 8p1 po <p0 Pi _pifM2 _p(TqQ—pILMZ)/ ef’ikj_-(xfx/)
Py PR +pi M2 pra?+pi M2 ) [y
+
P dk* kt(pt—kt .
xag [ = ®1 —K7); 4i(x—z)
0 Po —kt z (p7)?
(9.42)

1

2pf qhiA (x—2,Aq) | kT 2pg —k* 2p;
X<—k+pl+_k++p+q’C(X—Z’AP> )t

kj+
ijkj_-(xfz) Nz 1 9 +
xe P1 ( 2‘ SxzSzx! _§3xx’ +OFNC) - ;+ AO(AUV)CFNC(SXX/+1)
1
and finally:

2 2 + 2 + 2
_ GemNe + (p{PI —pfM _ pq —pi M
TIn'/\/lLO/\/tM sub = T pr2 8]9 Do ( arP2 + pr M2 pqu +p M2

g ( . ; AUVM ( +> ( ))
X === 1 ln—lni—Ll + L 9.43
T 2pf e pea+pi M2 2\nd 2\ (9-43)

x/ ek Gex) (g 4 1),
x,x’

)

9.1.2 Transverse polarization

Self-energy corrections. The contributions TYMEBM@EI sub| and TYMEBM@ELL sub| .

’ e ? nite
are the same as their counterparts (9.12) and (9.13) after changing the polarization of
the leading-order amplitudes which they are proportional to. A similar principle holds for

amplitudes and Mé\Elsub (3.15) and Mé\E&SUb (3.21), but here the LO amplitudes cannot
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be completely factorized out. We, therefore, present the expressions explicitly:

7"P) qtq* P}
paP? +p M2 pla2+pf M2 ) pi P2 +pf M2

+\ 2 ) Po gt +\2 + 2
2 —iky-(x=x) de™ (KT _ 2
x<<1+2q+> +1>/xx,e L {/k+ ik (pé 7)1

+
i— ki (x—z)

i . , 2
X [/6 Po AZ(sz)AZ(XinAP) <]\;CSXZSZX’;SXX’+CFN(;)

A
TrMLTOMé\EQ,sub = ggmaSSpfpar <

—Ao(Auv)CrNe(sxxr+1)

k+
_4A+ k-T [‘/ZA (X_Z)A (X_Z) (28xz5zx/ _2$XX/+CFN0>

min

_AO(AUV)CFNC (sxx’ +1)

} , (9.44)

and:

+pX +gX +gX
NV _ 2 +, + Py qtq qtq
TrMLOMSES,sub = Gem@s8P1 Do (

pg P2 +pf M2 pfa?+pi M2 ) p{a?+pf M?

+ 2 ) p?— + + 2 + 2
Py —ik, -(x—x") dk L _QA
X<<1+2q+> +1>/XX/€ {/m k+ (/Pir )
kt
2

iij_-(X*Z) , . N 1
X /6 P Al(X_Z)AZ(X_ZaAq) (;szszx’_25xx’+CFNc>

—Ao(AU\/)CFNC (Sxx/ + 1)

+
Fioakt

i i N2 1
_4/k+ e’ [/ZA (x—2) A (x—2) (2sxzszx,_25xx,+oFNc>

min

—Ao(Auv)CrNe(sxxr+1)

}. (9.45)

Vertex corrections. In an attempt to make the expressions below a bit more compact,
we introduce the following notation for the spinor trace over the Dirac structures, evaluated
with the help of identity (B.11)

_ f 2 + T B i
Tr (ug (pg )yt ™ (1 + fj) uc(p i (] )y ST ua ()

= —Sp[J{pf [5\/5’77’,5;\/\/ + Oveﬁ"/e;\)‘,} ,

= () R ) ) () (o) )

_ o8 +pf — k)

(9.46)

with:
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We can show that the UV-subtracted vertex corrections M{\,Lsub (3.33) and M{\/4,Sub (3.54)
contribute as follows to the cross section:

A
Tr MLTOM%/'I,sub

_ A oaa asCrl  (¢7)?
= TrMpoMior— 2 (pg)? + (p7)?

+ +
(rg)” + (p1)? /”1 dk* . Apy /”1 +kT =200 —q" ) Auy
X {20 1 —In—+2 dk In
{ (@) Jir kT Ar 0 (a")? Ar (9.48)
+ 2
P k+ kJr 9
- dk+< (> P
/o pi(ps — k) \pf =
0))? + (o — kH)? K% 5o Kt
4 A — | P Ap, —P
My PHpr) T 81 (0, Pt D
and:
A A\ _ A aqx asCrl  (¢F)?
Tr Mpo My sun = Tr Mo Mios— 2 )2+ (7 )?
+ +
(p)*+(@)* (Pt Akt Auy Pro 4k —pg—pi o Auy
X{Q ) = In A, +2 ; dk TE In Al
9.49
+4/Pfdk+ (pg +pi —k*)? (kJr)2q2 ( )
0 peat(py —kt) \pf
(w5 +(f k) ( o (k+)2 2\ |, 5 K
o) +pr =% ) K 0,A,, g V.
* atpg (pf —kT) at i) VT 10,24 pirq)

The second lines of the above two expressions contain the rapidity-divergent parts. These
terms nicely combine with the similar parts of Mé\El subl| . into completely finite expres-
Sy

sions that are independent of the rapidity factorization scale. Indeed, we have:

+
AT A o AT by asCp Py kor Auv
Tr Myo My su skt Tr Mo Mior— R R (9.50)
but also:
AT AN Moy asCr P0 dkt Ap
Tr Mo M3E sub Ukt Tr MpoMior— /k+ T B ALY (9.51)

min

Their sum is:

A
Tr ML]E) (MgEl,sub + Mi\/l,sub) ‘1/1@*

+
_ A oagx asCre [Po dkt . Ap
—TrMLOMLOl = /pJr kT HAUV,
1 9.52
At ax asCr ( )
=Tr Mo Mo

™

. oA + + + gt
X lnp—i im+In — fog . > —lnp—ilnqj—flnzp—i—i-hgqj ,
Py Py (po P3 +pi M ) P P 2 Py Py
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in which all dependence on the rapidity cutoff or the rapidity factorization scale has

disappeared. Likewise:

+
asCr Py dkt n Ayv
™ k+ k+ Aq ’

min

A A A A
Tr MLTOMV4,sub =Tr MLTOMLOZ

1/k+

cancels with:

+
_ M oagx asCr [PLodk™T Aq
ey 'I‘I.MLOMLOQ T /k+ k,‘+ AUV 3

min

AT A
Tr M7 o M52 sub

1/k+

A A
= -Tr MLTOMV4,sub

1kt

The completely finite leftovers of (9.48) and (9.49) are:

At A
Tr MLoM31 sub i
nite
M oaqx @Crl  (¢M)?
= Tr M7 M =
LOTILOL 2 (pd)2 + (p( )2
Fopt L) [ .t A
> _pl(p(lrtpl) irT +1n - fog PJr
(q+) P (pd P2 +pi M?)
+ +
3p7 (pd +p1) + ((p3)° — (p)?) In &= —pi (o +20)In %

D k+ k+ 2
(M a (e () p?
0 <p1+(p$ —kt) \pf =

) + (o} — k)? <k+)2 > Kt
+4 Ap+ (52) P2 ) )aBi(0,Ap, P ) Y,
piat(pd —k*) Pt L ) 1(0, Ap pi 1)
and:
A
TrMLTOM%M,sub )
finite
sCr 1 (q+)2
= Tr MM MDD, 2 =
LOTILOZ 2 (pi)2 + (py )2
o _piCes ) d"Auv  2p7(2p5 +pi)
(¢+)? pya® + pif M? (a+)?
+ 2
2 (F +pt — kT2 (k* )
+4/ diet|reth = J (2
0 piat i — k) \pi) 1

12 + _ )2 B\ 2 kY
+ (py )~ + (P ) (Aq 4 (p*) q2> ]W[ﬁ (0, Ag, ;ﬁq)} ‘
1

atpd (pi — k1) ;

(9.53)

(9.54)

(9.55)

(9.56)

The other contributions to the cross section stem from the vertex correction amplitudes (3.42)

and (3.48), which have never exhibited any divergence to begin with:

Tr MEBM{\/Q

I i +
— 2 a 8p+p+< g P a a’ )/pl dk™ gt (kh)?
- S
emTSCPO P\ pbp2 L pf M2 T piaq +pr M2 ) Jo kT pf(pd)2(p) — k)
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() () ) () () o

+ o+ 2 o, <
+4(po +pi — k) 67777’6/\)\’]

kgt
_ + =
01— EPT A k
x/ Z’A’?'(X—Z)/eie‘(X*Z) ot at
x,x’,z £ ( Hp )2 €+ ar
X', — =P
Py
il ! —ile (e ]\/'2 1
< e ik, -(x x)€ ik -(x—z) ( 5 SxzSzx! _stx’+CFNc) , (957)

and similarly:

TrMIAJToMﬁ\/:s

! !’ +
— 2 a 8p+p+( ¢"PY gta )/”1 dkt  gt(k)?
ew SO EL \ pe P2 +pf M2 T pfa2+pi M2 ) Jo kY pg(py)2(pg —kT)

(3 EERE ) ) () ) o

aPs +kp+1+q:k+)2 e E/\X] (9.58)

A

, by p+—k+
y / iA7(7—x) / emitx—n) & _CH T
xx! 2 ¢ © (e+5a) +a,
1

kJr

i—p1(x—z) ’ 2
xe Pi e~ HkL(x=x') <A;C —;sxx/—i-C'FNC) .

Antiquark vertex corrections. The contribution to the cross section coming from
the UV-subtracted amplitude M3}, sub (3.60) is given by the following, quite complicated,
formula:

TIM%I)MXI sub

1 + asC

_ThN&O”ﬁ01X2(+S @3) T

><{—q+@p§+q )+2(())*+(pd ))n@%/pi)(_ UV>
2(q%)? M?

)+ (ps)? <_ 218 < ) <+)>
+7(q+)2 +In —|—3lnp1 1np+—|—L12 e +Lis =

2p++q+ +

+
Do qkt k‘+p p D
+A_H%@ij AN oQAW&mEM2O "))

/po Akt KTpE kT —k) <2p1 (v — k*) kgt

P? +pf M?
bt KT pC (ol —kY) 2 (¢F)? o Py ( LT )
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N +_ Tt
+ ((paL —kNPL—(pf —k+)M2)> EvrBy(Ap, M2 = p )

) qu
k0 (e (K V) ourB, (Ap. a2, B p
+ - T gtk \CP M T e viBi(Ap, M*,=——P ) ¢.

q+

The contribution due to the, finite, diagram A2 (3.62) reads:

+pX + g
M oA 2 + + qg'Py q'q
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Amplitude /\/lﬁ3 (3.67), which did not exhibit any divergences either, yields the follow-
ing term:

+pN + N
M OAA 2 +, + P a'q
TrM; G Mas = Gay 58 9.61
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<
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Finally, the contribution due to the UV-subtracted amplitude Mgll’sub in eq. (3.76) is
given by:
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+ 2
Po dkt+ (k+)2 A9 (p0+ _kt ) k+(p+ _ k‘+) 9
_ - \vJ _ E M0 " V40
/PT E+ 2pd(p — kt) [ <Q e 1 v piat =y

+ +
no b — &
x 7B (0, Q% °q+q)} : (9.62)
Instantaneous interactions. We conclude this overview of virtual NLO contributions
to the cross section with those coming from instantaneous interactions. For a transversely
polarized photon, only a couple of them are nonzero: the first one is M)QQ (3.83) due to the
four-fermion vertex. We have:

+pi + i

NV N o+ q Py aq
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q* 4 +pt ot okt
+ Dy SR A
<[t ((1+q+)(q+ 1)+1)

X / iAi(Xlg,MQ)
X1,X2,X3,%’
ei£1~x13€ilg~x23 (963)

X / 2 + +
£1,£2 k+ ) py ktpg £
(el + kt4pT &) + (¢F —kT)(py +kT)2
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The non-vanishing contributions due to the instantaneous ggqyq vertex, eq. (3.98)
and (3.103), read:

+pt + o
A q q'q
TrMLgMggzwassm( L )

P P2 +pf M2 pla?+pf M?

/p(T = (H>2(p+_k+)pg((p1+)2+(p3)2)“’1+’“+(’“+PJPT)
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(9.64)
and:
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tMpoMis Jew¥s8P1 Do pi P2 4pf M2 pla?+pf M2
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9.2 Real NLO corrections
9.2.1 Longitudinal polarization

Initial-state radiation. During the analysis of initial-state radiation in section 6, we
have extracted the part of amplitude M?QQ (5.4) that, upon squaring or multiplying with
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amplitude ./\/l?g1 (5.2), leads to collinear divergences. The collinear-safe leftovers yield the
following finite contribution to the cross section:

0
/PS p3 TI‘ 2Re (MImLMIS2 ﬁnlte) +2Re (MIg; collMIS2 ﬁnlte ‘MISZ finite

)
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2
p3 (¢"e+pda)” —pipipg M>
2
s (a7 €+pia) +pf atpinl®+pdpipd M?
X( v3 (¢ e+pga)’ —pipip M _pia’-pi Mz)
+
v (a+ e+ a) +pt ¢t pin 2 +pdpipi M2 Py +pi M?
k+
g [T e (_2p§Pi—p1+M2 p3q2—p1+M2)p§q2—p1+M2
KEopy pe P2 +pi M2 " pla2+p M2/ pfq>+p) M?

Diagrams M%g (5.7) and M?& (5.9) never lead to collinear singularities. Their sum,

multiplied with its complex conjugate, traced and integrated over the gluon transverse
momentum, reads:

. 2 g2.a,CrN, —ik (x—x/
s s [

+
+
o dp;,r p; pOR p+p+q (x=x')
X e €
kr. D3 P1 tP3 po
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Pora’ —(pf +p3)M? 2p;
X 21 (ot M2 I+—) +1
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kb, Ps \po@?tpi M2 ) Jpo £

Note that the integrals that appear in the above formula have analytical solutions in
terms of Macdonald functions, which are easily obtained using the Schwinger trick together
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with formula (A.5):
K(x, A) = 5-Ko(VX2A),

/ ei[-x _ K QA
AGEYNE \/ i

/e(zf?i:()? :4WM(K1(\/TA)—*V ALK (VXPA) ~ 1V PAK(VXPA)) . (9.68)

Moreover, we have a contribution from the following interference term:
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Hll]’l

Final-state radiation. In section 7, we analyzed the collinear divergences in final-state

radiation, and noted that the amplitudes MF82 (5.17) and MFS3 (5.19) exhibit collinear-like
behavior even when the gluon and the quark are not grouped inside the same jet. Indeed,
even though the jet definition cuts off the collinear pole in this ‘outside-jet’ configuration, it
still leads to logarithms that combine with the ‘inside-jet’ contributions. We have extracted

the part of MOFEQ responsible for these ‘outside-jet’ logarithms. What is left after this

extraction, as well as its interference with M0F7é3, is completely finite. This results in the
following, finite, contribution to the cross section:

/PS(ﬁs)‘M(F)gzw‘ (1 = O (P1,73)) _hm/PS Ps ‘MFSQ+3
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+

T e )

~ 84 —



( atetpd (o] +pd )PJ_)2 2
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Moreover, we have the following finite contributions to the cross section stemming from

real final-state radiation amplitudes ./\/lFS1 (5.11) and MFS4 (5.28):
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Finally, in our calculation, the interference

Initial-final state radiation interference.
between initial- and final state radiation never leads to collinear divergences, although it

constitutes an important contribution to the high-energy resummation. We have:
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Furthermore:
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9.2.2 Transverse polarization

Initial-state radiation. Firstly, we have the finite leftovers of the initial-state diagrams

(egs. (5.3) and (5.5)) that constituted the real part of the DGLAP equations:
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where we used eq. (B.12). Similarly, we obtain for the contribution of amplitudes Mf\ég (5.8)
and MIS4 (5.10):
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Furthermore, the interference terms read, adapting identity (B.11)
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Using identity (B.12), what is left after the analysus in section 7

Final-state radiation.
of collinear final-state divergences from amplitudes MFSQ (5.18) and ./\/lFS3 (5.20) can be

cast in the following form:
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Likewise, one obtains for the amplitudes in egs. (5.20) and (5.25) that never contributed to
the jet function:

/ PS(73) | Mg, o = g2ncs8pi b / M) Op N, (sxx+1)

x,x’/

2 Py
+oo% ﬁ pa-R p—kl (x—x")
x + + e
k. Ps3 Po Po
2 2 . ’

+PJ— 2p0 2p1 e2ef7,£~(xfx )

% [( TP2 +pIrM2) <<1+ pi ) —H) <<1+ +1 o (£2+Apg)?

(pa_R)Q ((pl +p3 )2 ( +)2) / e—’iz‘(x—x/)
(P +p3)2(p)? o (2 +Aps)?

_9 Pard P Pie—it (x—x') (9.81)
Py P2 +pf M2 [ (£2+Aps)? ’

1 1 2p
x| (——+ 1+220) (14 1)1)
<<p1++p3+ po) (< > (
+(2p+_2p)( ! _1>
pi af pT+pd pt
_4/]{? % 1+2p1 2_|_1 qtP 2‘/e_“‘(x_xl)
Kt Py pyPR4piM2) [, £ '

+4

min

Next, we find the following result for the interference terms, using the trace identity (B.11):
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—92ms8py b 2Re/ e L G Op N (50 +1)

x,Xx',z
+ +
P3 P , ,
+°° dpd () 2py Tk (a) i ppia=x) gl it ax)
= i)t € 2 e 1 — e
mm Po )"P1 £
+p70p1 e PY

+
Xi

it q"a’ }
2w +p3 “pd PL) Y Ape  Por@H(PLApI)M?

P i pi +p3 2p;
+Pi+;f’M2ZAn(X_Z’AFS)<((1+21q+ 3 ) (1—1— L )—1—1)

-
() 3

X
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_ 4P Hp]) 6fo>
p3at

1 1 pf +ps 2p+> )
ST pt K A 41 1oPitPs \ (1201 _4
O ok (e, FS)((?HP?TJFP(T) (( T )( +p§
T pi+pt 1 1
w2 (520 ()]
P at pi+pi  po

+o0 5.+ N\ 2 5 ok it ()
dps. Dy qtq g Py e
+4/k+ p; ((1+2q+ +1 o q2+pIrM2 p+P2 +p{rM2 p lg . (982)

Initial-final state radiation interference. The last real NLO contributions are due to

the interference between initial- and final state radiation in the transversely polarized case:

[ PS(E)Tr2Re (M MG )

ik (x—x") [ N2 1
—gema58p1 Do 2Re/ e~k (x—x') < 5 sxxl+CFNc>
x,X',Z
p+
2 _
X{/-Foocm-gi—(pg—) . zpo k) (x— z)/ ze(xfz)E"
k;:]in pj p(j» £ £2
{ P (a")%p @* % ) ]
X +
i ¥
PePL+PI M pf (g e+p3q) +pf aF gl +pi pi o M2
+pA
q Py .
-+ AN (x—2z, A
{ pd P2 +py M? (=2 Ars)

=/ X\/ + = 1 Y\/
<<<1+2p1> +1> <<1+2”°> 1) o N g <1+2p1 ) (1+2;£> e EM>
3
" 1 1 2py 2P0)_ )
+0"T N pgRK(x—2 AFs)<(pl++p;+pg) ((1+ )(1+ o 1
(o)1)
ps ¢ ) \pi+prs p

kT n 2 ‘
+4/k+f C;;l;s <<1+ 2p; ) +1> (pS'P%_—i—F;)?'W) AZ(X/Z)AZ(XZ)}7 (9.83)

min

where, once again, we relied on (B.12). Moreover, using (B.11):
— A A
/PS(p:%)TrQRG(MIgf+2MFg2+3)

= —g2nas8pi p{ 2Re /

X,X’,Z

+00 3.4+ o+ o+ —igpy(x—z) n’ 7
% / dps 177317736 pf /eil (x'—z) €7 / 45 e~ iz (x—z)
Kb P3oPipo ¢ ¢ Jo, 68

min

3 3

4 (p(-)‘—R:_p-l‘—)2 65\)\’6177]’
p3 gt
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+P)\/ (q+) (l)\ q+q )

+

+ +
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and:

[ PS(E)Tr2Re (M Mi )

. , 2
ezkl.(x—x ) <]\; 1 Sxx/ +CFNC)
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The following monstrosity, obtained with the help of identity (B.12), concludes this section:

A
/PS p3)Tr 2RG(MISS+4MF7§2+3)
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ps pi py i +pd 0 6
b gt 6+ po plqtpg' 12 F X
75 + = : E +
o pi+ Py 13 s PL) 4 Aps PR+ (P74 p3)M?

)\ /
iAT (x' — 7, Arg
l PoRq2+ SR A1)

3
—4 (1 + 2pl+qfrp§r> (1 + 2p1 ) 6)\>\’67777/>
3
p+5ﬁ;\lC(x’ —z,Ag) L1 1+ 2p1 (1 + ZM -1
! ’ pi +ri | Py Py qt

_2< 1 _1> (pHpi_pT)

i +pi Py " Py

koo ¢ +\ 2 + 2

S dp P q'q j j

min

(9.86)

10 Conclusions

We have presented the first next-to-leading order calculation of the cross section for the
p+ A — ~4* 4 jet + X process within the hybrid dilute-dense formalism. Replacing the
electromagnetic coupling constant, the result can be carried over to the production of
a Z-boson. The Drell-Yan + jet cross section is obtained trivially by multiplying with
the v*/Z — ¢* + ¢~ branching ratio, unless angular correlations between both leptons
are measured. In that case, the leptons might be sensitive to the interference between
the production of a longitudinally or transversely polarized virtual boson, which is not
calculated explicitly in this work but can in principle be computed using the intermediate
results we have presented here.

It is straightforward to extend this calculation to the production of a Drell-Yan pair
in association with a hadron, instead of a jet. In this case, the final-state collinear poles
would cancel with the DGLAP evolution of the quark fragmentiation function, very similar
to the way the initial-state collinear divergences are absorbed into the DGLAP evolution of
the PDF.
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Furthermore, for phenomenological applications the gluon channel g+ A — v* + ¢+ ¢
should be included. The representative Feynman diagrams are depicted in figure 10.
Assuming the photon has nonvanishing plus-momentum and virtuality, the amplitudes
where the incoming gluon interacts with the shockwave are completely finite, as are the
amplitudes with instantaneous g — ~v*qq splittings. However, the remaining amplitudes,
corresponding to the diagrams where the quark-antiquark pair scatters off the shockwave
before or after emitting the photon, are not. Indeed, integrating over the momentum of
the antiquark (quark) will yield a singularity when this antiquark (quark) is collinear to its
parent gluon. These contributions are proportional to the leading-order amplitudes for the
quark (antiquark) channel, where the incoming quark (antiquark) comes from the g — qq
splitting in the DGLAP evolution of the PDF. Indeed, these terms were not taken into
account in our analysis in section 6. We leave the gluon channel for future work.

Our result encompasses the NLO cross section for prompt photon plus jet hadropro-
duction as an important by-product, easily obtained by taking the real photon limit. This
process has been studied quite extensively in the literature at leading order [86-91] and
is planned to be measured with the proposed forward calorimeter (FoCal) of the ALICE
experiment [92, 93]. The next-to-leading cross section we provide will greatly increase the
potential of this study.

One of the major motivations behind this work is the prospect of studying the region
where the virtual photon and the jet are back-to-back in the transverse plane [94], hence
Pi > kf_. In this regime, soft-collinear gluon radiation is expected to lead to large Sudakov
logarithms in the ratio Pi /k? | which need to be resummed. Indeed, in the HEF approach
of [66], incorporating Sudakov resummation was observed to be essential to be able to
describe LHCb data on Z + jet production.

It was observed in ref. [95] that in this regime the leading-order cross section factorizes
into a convolution of a hard part with the quark PDF and a (dipole-type) gluon transverse
momentum dependent (TMD) PDF [96]. Proving such a factorization at next-to-leading
order would be much more challenging, complicated amongst others by the emergence of large
Sudakov logarithms in the ratio P% /k%, which should be absorbed into the Collins-Soper-
Sterman [97] evolution of the gluon TMD. However, should the above nontrivial scenario
indeed take place, it would be a further confirmation of the CGC and TMD factorization
being compatible at one loop. First steps in this direction were taken in [98, 99]. In our
recent work [50], we calculated the cross section for dijet photoproduction at NLO in the
CGC, and provided the first proof that large Sudakov double logarithms can be extracted
in a way consistent with high-energy resummation, under the condition that the latter is
kinematically improved. In a series of papers [100-102], complete next-to-leading order
TMD factorization was then established for back-to-back dijet production in deep-inelastic
scattering in the CGC. We should remark that the study of combined low-x and Sudakov
resummation is a very active field, undertaken within several different formalisms, see
e.g., [67, 103-132].

Finally, another interesting future direction is the study of the inclusive Drell-Yan
process, obtained from our result by integrating the outgoing quark out. This integration,
albeit nontrivial, should not lead to new divergences. Experimental data on dilepton pro-
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Figure 10. The representative Feynman diagrams for the gluon channel, i.e. the partonic process
g+ A — "+ g+ g Only the second and third diagram (and their ¢ <> ¢ counterparts) contain
a singularity, namely when the antiquark (quark) is integrated out. These contributions can then
be viewed as the LO quark channel amplitudes, where the incoming quark is generated from the
g — qq splitting of the gluon PDF. Hence, these collinear divergences should be absorbed into the
DGLAP evolution of the LO cross section.

duction at low invariant mass is currently being analyzed by the ATLAS collaboration [133],
and at forward rapidities by the LHCb collaboration [134] Moreover, making use of the
intermediate results of our calculation, one could then extend to next-to-leading order the
higher-twist analysis of the Drell-Yan structure functions performed in [135-138].
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A Transverse integral identities

A standard tool for evaluating the different transverse integrals in our calculation is the
Schwinger trick:

Ffl(j) :/ dt te~te= At (A1)
0

using which we find, for instance, the following expressions for the Weizsicker-Williams
field (taking the derivative with respect to x):

. _ _ikx k' i b4 D D—4 —i x
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and its generalization:

i _ _ikx K
zA(X,A):/ke A
4-D D-2 i
=1 = D ( A) 2 );—ZKD—Q( X2A)7 (A3)
(2m) 2 x| 5
D24 ZiX N Fe (VXPA)
27 |x|

Note that the generalized Weizsdcker-Williams field satisfies the following identity, for a

constant x:
iA (xx, A) = 3 PiAl(x, x2A) . (A.4)
A second very useful identity is:
v
/ dssvle Blse=Cs = 9 (g) 2K_,(2VBC), (A.5)
0
which we can use to solve, e.g.,
4—-D
_ eie-x - ,LL47D £2 4 3 A 6

2
The above integral is finite when A # 0, since A acts as an infrared regulator, while the
phase cuts off ultraviolet divergences. We can, therefore, set D = 4 and take the derivative
with respect to x to obtain:

. 2
/E LR = —2AK(x, ), (A7)

The following UV-divergent loop integral is omnipresent in our calculation, and is very
straightforward to solve (see e.g., [139]) using dimensional regularization with D = 4 — 2eyy:

D-4
Ao(A) E/zeziA = =0 (57) <4$2> o (A.8)

1 1 A
_47T<—"YE+1II7ZL)+O(€U\/).

€uv

Likewise:

D -2
22 pt=P 4—-D —_—
— 2
/[£2+A (4W)¥F( 2 )A ’
A 1 Ay
= —47T<—"YE+1II7ZL>+O(€U\/),

(S 6avs
= — AAy(A).

In the virtual amplitudes, we encounter many transverse loop integrals that require a bit

(A.9)

more of machinery to tackle them. This machinery is provided by the Passarino-Veltman
reduction procedure (ref. [140], see also [33] for a clear outline), using which we obtain the
following identities:

1 1
— By(LAK),
/M%r@ (e+k)7+A 0(A.k)
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4 1 ;
— KB (O, A k),
/ef2+ﬂ (e+k)*+A 1 )

= e (Ao~ Ao (8) + (- A 12)By(2,AK))

0 1 k'k? 1 D—4
/MQ*Q (erk)°+a K D3< 7 Ao(8)+2Bo( A k)
D 54

T RN kQ)Bl(QAk)) o 3( Ao(A)

—QBO(Q,A,k)—;(Q—A—kZ)Bl(Q,A,k)> :

[ 1 k'

BO(Aak) = BO(O7A7k) = BO(Aaoak)a

Bo(A) EB{)(O,A,O) :Bo(A,0,0). (A.IO)

All the above integrals are reduced to combinations of the simple scalar integrals A4y(A)
and By(2, A, k). As already explained above, Ag(A) is divergent in the ultraviolet. In
the limit A — 0, a second, infrared divergence appears, which exactly cancels the UV
one, at least within dimensional regularization. Another way to see this is that A (0) is a
scaleless integral:

A0y = [ L = i(i—i) —0. (A.11)

e &®  Am \evv  ear

The above property plays a central role in the analysis of field-strength renormalization
amplitudes in section 3.6.

From simple power counting it follows that the integral By(Q2, A, k), defined in the first
line of eq. (A.10), is divergent in the infrared when one of its first two arguments tends to
zero. Indeed, introducing Feynman parameters (see e.g., [139]):

1 /1 {L'ml 1 (L‘m2 1 m;nnfl
mi A ma ma dl‘ldx (S x;—1 1 2 po—— pouy
Al A2 AT 0 n (Z ¢ ) (x1A1+:r2A2+.,,+ann)( 1+met...+mn) (A]_2)
% L(mi+ma+...4+my)
T(m1)l(mz2)...T'(my)’
and writing D = 4 — 2eR, we obtain in the MS scheme (where p? — p2e® /47):
D -2
BO(OaA7k) = 4 D< ) 6 D / dx ! 6-D >
x)k2+A)T
_ 1 -1 (1 A+k? (0,0,1,0) k?
_47l'k2+A<EIR_1n R (0.1, 1’k2+A) (A.13)
0,1,0,0 Kk? 1,0,0,0 Kk?
+ o000 1 1, k2+A) ZF000 09 1, k2+A)> +O(em) s
= BO(Av 0, k) )
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(0.0.1,0) ig the derivative of the third argument of the hypergeometric function oF.

where o F}
The above calculation serves to prove that all the other expressions in (A.10) are finite

when either A or 2 is zero. For example:

lim B1(2,Ak) = 55 (Ao( ) — Ao(A) + (—A — kQ)BO(O,A,k)),

=5 (Ao( ) — Ao(A )+77> + finite, (A.14)
1 1 1 1 1
= sir(aoy ~am T o)+ finite.

A second useful set of integrals is:

1 1 1
1 1 i
/£2 £2+A (£+k 2+H —kCl(A,H,k),
ki
= iz (Bo(&) = Bo(A, TLK) — (K +TCo(A, TLK) ), (A 15)
j[ee 1 1 _ K 2
W s T (BAL G (ALK,
e 1 1

=CY(AILk) =K'k Cor (A, TL k) +67Con (A TL ),

e CHA (p1k) 4T

with:
Can(A, T K) = %3 (5B1(A LK) + 5 (k2 + IC (A, T K) + Bo(A, TLK))
1 1
Co1(A,IL k) = k(BO(A IL k) (A.16)

“2B(A LK) + 222 (12 + e (A, TT k))

Explicitly, we find that:

Co(A, k) = Co(A,0,k) = Co(0, A, k) ,
ﬂ4—D / /1 y 1
= D—2 dy 5-D >
(4m) 2 k2+zA) = (A'17)

o 1 A 1 0
=~ TkA (1 T e +A) Iran T O(elR)'

We conclude this section with a list of the divergent (either ultraviolet or infrared)

parts of transverse integrals commonly encountered in the calculation, in particular in the

evaluation of the virtual vertex corrections in section 3.2:

1 1 1
Ad) = [ iz = o + O,

47 eyv

1 1 1 1
BO(A7k)_ \/e(£+k)2£2+A__k2+A47TEIR

+0(e"),
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1  kK?+2A 0
KP E—l—k €2+A K2A BO(Avk)+O(€)a

i £ K
kCi (A k) = JQ Hk e2+A —1aBo(A,k) + O(),
C(A, k) = ‘ L _ KB (AK) +O(D). (A.18)

£+k 2PFA T K

B Dirac algebra

In this section, we remind the reader of some key gamma matrix identities in transverse
D — 2-dimensional Euclidean space.
First, it follows from the definition {*,~v"} = 2¢**14 that:

{77} = —20"1y, (B.1)

with the trivial corollary:
Yy ly= — (D -2)1y. (B.2)

Repeated application of (B.1) brings us to the following important identity:
Yiyinkyl = yFylyind 4 261 ykyT — 25tk ylyd 4 250lyiak — 25Tkt (B.3)

The Dirac sigma in D — 2 dimensions: 0% = (i/2)[v%,47], can then be shown to satisfy the
following commutation relation:

[0, ™) = 2i6 "I — 216 a1 4 2i69 6™ — 2i57F o | (B.4)
while contracting two Dirac sigmas gives:
= (D —3)6""1y +i(D — 4)o7". (B.5)
The following identities will be useful as well:
oM MG = 2(D — 3)§M§"N — 2(D — 4)§Ma" N — 2ig™ g™ — 2i(D — 3)5M51 >
+2(D — 4)8MaT — 2i6™ oM 4 (D — 3)57 6™ +i(D — 4)0" oM |

and:
"Moo = [(D = 3)(D - 2) = 8(D — 4)| ™. (B.7)

Dirac traces can be often simplified using the fact that v and v~ commute with the trans-
verse gamma matrices and thus also with ¢*, and then applying the completeness relation

ug(gh)ug (gt =2¢"Pe, (B.8)

with Pg = v~ 1 /2 the projector on good spinors.
Using the above definitions, together with the cyclic permutation property of the spinor
trace and the fact that one can reverse the order of gamma matrices inside a trace:

Tr(y#y"yP..) = Tr(...P9"9") (B.9)
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v
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Figure 11. Feynman diagram for the production of a virtual photon and a quark via a gluon-quark-
antiquark loop. The virtual gluon and quark scatter off the shockwave.

it is straightforward to establish the identities:
Tr(Pa) =2,
Tr(Pao) =0, (B.10)
Tr(Pgootl) = 2(5% 67 — §%57%) D24 g¢ii ekl
Moreover, using the above relations as well as the commutation relation (B.4), it is
straightforward to prove the following relations:

Tr{Pe(ad™ +io™) (b7 — io™) (e6* — io™) (d5" — io™) }
= 2|(ac+ D - 3)(bd — (D - 3))6™ 5™ (B.11)
+((@+ )b —d)+ (D= 4)(c—a—b—d) + (D —4?)em ],

and:

Tr{Pe (6™ + o™ ) (b5 +io™) (6™ — io™) (6" — io™) |
- I (B.12)
=2[(ad+D~3) (be+D~3)8" 3™ — (a+d+D—4) (b+c— (D—4)) ™ ] .

C Example calculation

In this section, we describe in full detail the calculation of the amplitude corresponding
to the diagram A2, depicted in figure 11. We follow the Bjorken-Kogut-Soper formulation
of light-cone perturbation theory [77], and approach the CGC in the spirit of the dipole
approach [74, 75]. In particular, we draw heavily from the excellent introduction to LCPT
applied to the CGC in the appendix of ref. [33].

We remind the reader that the shockwave is treated as an external static potential. In
this background field, we then perturbatively calculate the projectile dynamics, which take
place on a much shorter timescale than those of the ‘frozen’ target. The leading-order and
virtual amplitudes M in our calculation are defined as:

Ha@)Y (D|F — 1a(@)), = 27(pf —pi — ¢ IM, (C.1)

where F' — 1 is the external potential evaluated between the Fock states of the incoming
quark and outgoing quark with a virtual photon or vector boson.
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The Fock states appearing in eq. (C.1) are obtained from the perturbative evolution of
the asymptotic eigenstates of the free Hamiltonian Hy:
[a(#0)), = U(0, —o0) |a(@)) ,
HaE)y (@] = (a(@)y*(@)|U(+00,0),

where 7 = 0 is the space-time position of the shockwave. Next, remember from
eq. (2.9) that:

(C.2)

(0, —o0) = Texp ( / daFi(x ) (C.3)
where the Hamiltonian has the usual time dependence of the interaction picture:
H(zT) = giflor™ \g=ifloat (C.4)
We now obtain:
U(0,~00)|a(pv)) = |a(pv))
—i/PS(E,El)/O d$+<q([1)g(gl)|€i(€f+kf)z+ve—ipo_x+|q(ﬁo)>
x|a(fn)g(k1))+0(g2),

VI W)g(k)|V]a(po
I+ [ RIS

(C.5)

la(f)g (k1)) +0(g2).

Likewise, being careful with the time-ordering operator T

—

(@)Y (@(+50,0) = Q)Y (@] + [ PS(E B a@)alach)|
< ary @lee(—i [ arAE)la@a@ad) + ().
— @)y (@] + [ PS(Fe. o, ) aEo)g ()|
< alyy @lew(-i [ dwmx*)) laa@)ad)) (C.6)
x (a(p)a(2)a ()| exp(~ / dy* ) la@)gR) + (...

= (q(p1)7" (| -I-/PS (Ko, £, £3) ){al (l2)g k2)|

{a@E)Y @]V |a@)a®)als)) (a@)all)als)|v]al)gk:))

X
q— — by — b5 +i0+ pf 4+ q — 0y — Ky +i0+ ()

where (...) stands for all other possible diagrams, generated by inserting different interme-
diate Fock states. Combining (C.1) with (C.5) and (C.6), we obtain:

Ha@) Y (@|F = a(@)); = (@) (@) F — 1a(p))

L Q@ @)V a@)ad)
+/PS(k’1,k2,€1,£2,£3) q*—€;—€§+i0+
<q (P1)a ([2 q [3 W|q ZQ k > <Q(Zl)g(E1)’V‘Q(ﬁo)>

p1 +q =4y —ky +ZO+ po — 4y — k= +1i0F

X <q(€2 kz |F — 1‘q fl k1)> ( ) .

(C.7)
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Neglecting the leading-order part, there are three different numerators to evaluate. The
interaction terms of the light-cone Hamiltonian for QCD and QED of interest are:

V= [ AP0 5 gunb@AE) @) + gt DDA () : (C.8)
We then obtain
(a(f)g(k)|V]a(p)) = (0lbg, ag, Vbl [0),
= gut° [ AP0 E0lby ag, : DDA : Bl [0). (C.9)
= (2m)P716P=Y (py — £y — k) gt“u(0y)¢* (k2 )u(po) -
Likewise, the other numerators give:
(am)a(f2)a(l)|V]a(la)g(ka)) = (2m) P~ 16N (54l — ko) gst“u(pn )¢ (ka)v (£3),
(aE)y @V |a@)al@)als) = —@mP 6P (G4 s~ ) geunt ()¢ (Du(n)

The minus sign in the last line comes from the anticommutation of the fermion field operators.
Note that one should be careful to make sure that (q(p1)a(¢2)a(¢s)| and |q(p1)a(f2)a(¢s))
are indeed each other’s conjugate.'!

(C.10)

We will shortly discuss the evaluation of the Dirac algebra, but let us first turn to the
interaction of the projectile with the shockwave, encoded in the last line of (C.7). With
the help of the (anti-)commutation relations (2.18) we derive the normalization of the
Fock states:

(q(l2)g(k2)|a(f1)g(kr)) =2k 2m) P16V (k) — ko) 26f (2m)P 6P (0~ ). (C.11)

Moreover, the CGC dictates that, in the eikonal approximation, the shockwave is built from
Wilson lines, and, therefore, the action of the external potential becomes:

(a(f2)g (k)| Fla(fy)g (k1)) = 2k 2md (ki — ki )20 2m8 (6 — £5)
x/ ¢~ (la=t1) —in (o) 7 ypre

)

(C.12)

where U and W are Wilson lines and the fundamental and adjoint representation, respectively.
Filling in the implicit color factors and using the Fierz identity:

tiwde = Utteu , (C.13)
equations (C.11) and (C.12) can be conveniently combined into:
(a(f2)g(ka)|F = 1]a(f)g(k1)) = 2k{2md (k) — k)26 2m8 (67 — £5)

% / e—z’x'(b—el)e—iz'(k?_kl)(tCUxUZTtCUz - CF) )
, (C.14)

1T am grateful to Guillaume Beuf for pointing me to this possible source of error, which allowed me to
identify and correct a sign mistake.
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We are now in a position to extract from definition (C.1) the expression for the amplitude
M s, by plugging the above equation together with (C.9) and (C.10) into (C.7), and using
the delta functions to eliminate as many intermediate momenta as possible

4 - R

Po dk‘Jr 1 ﬁ(ﬁi)#(k‘g)ﬂ(ﬂg)

Ma2 = = gemd: / / S
emYs vt 22kt 205 205 ki ko 47 — 45 — 43 +10%

0(03)¢* (@u(pr) (fr)¢" (F2)u(po) (C.15)
pEHam —ly —ky +i0% py — b — Kk~ +i0*

% / efix-(ith)e*iz'(l@*kl)(tCUXUZTtCUZ - CF) )

)

X

where it is understood that

—

l3=Fky — 1, by =G+ P — ks,

B i (C.16)
0 = po — k1, kY =k = k]

Note that the Heaviside theta functions hidden in the phase-space integrations of (C.7)
result in upper and lower limits for the integration over the gluon plus momentum.

The above expression can be simplified further by exploiting the properties of the
projectors Pg g, such as ug = Pgug, ugPp =0, v Pg = Peyt = 0, and the fact that
they commute with the transverse gamma matrices: [Pg, B,7!] = 0. A generic spinor
product then further simplifies into:

- - - - - +

() Ra)u() = i (k) [ () ~ket e y-e(o) —y-e(hs) Jrkary

+ +
- k.
gy gk e (R)uaky),

_ 7 el (k: U (ks)k} = kik) O\
=tk )y [ () + (g4 S0 — e (R gt )y Jua (k)

(C.17)
Finally, introducing ¥ = (i/2)[v%,47] which allows us to write vy = —§ — ic¥, we
obtain the expression:
4L . i i (T LV Y KK g
) s Julha) = i (6 )yt | (€ (ky) — ML) = SIS vy L) g
2k 2k 2k kS
(C.18)

i (ki€ (ks)  €(k3)K] - KkiK)
ij 1 2 + 182 +
—1 + k ug(ky ).

With a suitable choice of polarization vectors, and taking the relation between the different
momenta into account, the above formula gives rise to remarkably compact expressions.
For instance, returning to amplitude (C.15), we have the numerator:

u(ly = po — ko) (k)u(po) , (C.19)

where n = 1,2 is the (transverse) polarization of the gluon. Choosing the polarization
vectors for the gluon to be linearly polarized: ef? = 6", we have:

- k- K"
en(k) = (0,2, €n) = (0,15, 6™) (C.20)
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applying (C.18) to the spinor product (C.19) gives:
a0y ZﬁO*El)ff;(El)U(ﬁo)

et (K o=k)" o8\ e (PR (Po—ki)” +
“retin K’“ 2k 27 )0 \ g 2k ) | W0

Ck! —k*py - (C.21)
_ Pk —KTPG oyt | (9P0 1) s g +
2t (pg — k) uG(EI )y 2k:+ 1)6 10 uG(pO ),
+1.1 +.n +
_ Pkl —kTPg oty o’ [9P0 n
() (6 )y 8™ 25 —1 Jua(pg) -
Likewise:
— = g i ! _ _ D
u(ph)gn(k2)v(l3) = — W’:kﬂuG(pir),ﬁgnn (1 - ) va(ly) (C.22)
where, for later convenience, we introduced the momentum combination:
k+
L=ky — k. (C.23)
)

The last spinor product in (C.15) involves the external virtual photon. When the latter is
transversely polarized, we obtain a similar expression to the ones with a gluon:

. Loqt (li - p;rq_+w Pi)
vella)ADuet) = g e =

(C.24)
_ X 2(pf — k*
< ao(e)r M (14 22 (e
However, in the longitudinal case, the spinor product looks quite different:
_ F F q"
Ve ba)fo(Dua(le) = g e —rar (C.25)

+ Lt 2 ~ B
X [(e_po pes P) —MQ} v (t3)y ua(ls)

where M? is defined in (3.27).

Finally, it is convenient to cast the energy denominators in a form dictated by the
momentum structure of the spinor products (C.21), (C.22), and (C.24), yielding after
some algebra:

1 _ 2% (pf —KY)
po — ki — 47 po k7 ’
1 ~ 2(pf — kD) (pg — K1) 1
-6 6 g o N2 (C.26)
(z - 0(17+PJ_) e
1 =2kt (pf —kT) 1
g +pr — Ll —ky Py £+ Ap’

where Ap was defined in equation (3.4).
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Gathering our expressions (C.21), (C.22), (C.24), and (C.25) for the numerators,
together with the calculation (C.26) of the denominators, using (C.16) and (C.23) to rewrite
the phases, we ﬁnally obtain:

dk™ (k)2 (pd — kT) s’
M Pt 27r2k+ (P2 —kt) "V

+_ .+ 2
O+ 5P (04 8P ) - ar
/ / 2 —zkl (x— z)/ —il-(x—2z) . ( + J_) (C27)
kK Fra (z+ *“PL) e

+ _ Lt Lkt
fikj_-(po X+ 72
0

Po P ) (tUxUt°U, — CF),

for the longitudinal polarization, and

+
A /Po dk* (k) (0 — k) gndy
A2 i 272k (p])2(pf — k) TV

5 | piokt
a . o + Pn o+ +k P)l
X/ /k %e—zky(x—z)/[e—z@(x—) ( ? Z ) (028)
x,z J ki

E +Ap (£+ k+PL> —|—M2

X e

+ _ ket kt
_ikL'<p0 s

X+—F2z
Po Po ) (tULUStU, — CF),

X e

in the transverse case.

D Ultraviolet behavior of amplitude My

To investigate whether the transverse integral in (3.42) exhibits an UV divergence in the
z — x limit, we set z = x in the last line, after which z can be integrated over in the second
line. We obtain:

lim Mgy, = a;Cr

+
Pr o dkt (k7)°q" g
Z—X

Kt KT T ()2 (e — k)Y

kb5

/gn 00— P P pX
>< R

et (z-%m)Q £+ A

Py

X / e LX)

.-
The integral over £, which we denote I\T}Qn’\, contains three open transverse indices. How-

ever, when multiplying (3.38) with ./\/lﬁ,oT to obtain the cross section, the trace of the
Dirac structures SI:\SS@)‘",WHI yield only the Lorentz structures 6™ and €™ . We will use
this knowledge and only calculate the projections 5’7’7/1{7,,277)‘ and 677"/1(7,/277)‘, dramatically
simplifying the evaluation. Using the identities (A.10) and (A.15), one finds:

an’ 7' IA _
0T Ly
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L1 pg(pi =K\ K" 5X
— 5 <2 —+ gt EPL
k kT
X BO(AP)"‘BO(AP,erPJ_) T P CQ(AP, 7LPJ_) s (DQ)
1 1
and
' 0 TA nﬂ'/ﬂ I e
o 22 24+ A
gy T
ET s 731 1 kT
= EPZG” §D73 BI(O’AP’EPJ—) (D?))

1 1 Kt 1 (k)2 )t
- iBO(AP) - 530 (AP, EPL) + 3 (PT) PiCO(AB EPL)

Neither of the above results contain an UV divergence. Moreover the infrared poles
+

contained in the structures By(Ap), Bo(Ap, §+ P,), and Cy (Ap, oF PL) all cancel (see

eq. (A.18)). Expressions (D.2) and (D.3) are, therefore, finite.

E Quark field-strength renormalization

We consider a dressed quark Fock state, and expand it perturbatively to first order:

la(po)) =V Z|a(po)) o+/PS (1, k (ﬁ) (k)‘wq,(ﬁ‘)””|q(ﬁ1),g(12)>o+0(g§). (E.1)

o —k——p;

The interaction Hamiltonian sandwiched between the bare Fock states yields:

E.2
x (<7 O)nsnﬁ 2P0 1 o
2(pg — k) Kt ’
while the energy denominator gives:
1 _ 2kT (pf — k™)
po — k= —py Pt (k _ %po)z (E.3)

Combining the above results, we obtain the following result for the first-order expansion of
the dressed quark state, temporarily indicating all the spin- and color indices

la(po, 5,4)) = VZ|a(Po, 5, 1))o
— Z /PS o1,k 27r)D 15(D= 1)(p0 — k- 5)
Jiihie (E.4)

7

c k* (k_jp) nmn _ =~ 7

ngtzj ¥ S 1 |q(p1,s,]),g(l€,h,6)>0.
7 (s
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Per definition, we require the Fock states to be normalized in the sense of a distribution:

(a(ph, s, 3 a(Bo, 5,7)) = 2pg 8501 (2m)P~16P=D (55 — fh) (E.5)

or:

2N, Z/PS a(po, s',1)la(po, s, 1)) = 1. (E.6)

Since the above is supposed to hold to any order of perturbation theory, we can write:

1_Z+—/PS (B, 70, K. 5, K (27)P= 160D (g — i — )

 (2m)P 60D gy — = )2 Te(ae)
k- pT PO K — /+ Po !
Xgﬁ 32(@/ ))237771T<£9+ >S7m(k+_1)
x o(a(p)), g(K)|a(p ) g(k))o (E.7)

+ (
=Z+ a,C / /Odk

(G ORILE

:Z—i—aSCF [ 3+41np0]
o asCr 1 1
=Z+ or (a—?) <—+2lnk$m> +O(€Uv),
and finally:
_ . asCr L - L po Py
Z = |} o (EUV EIR) ( 3+ 21nk;rlm +2In krflm)] ) (E.8)
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