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Abstract
We introduce a Bi-level OPTimization (BiOPT) framework for minimizing the sum of
two convex functions, where one of them is smooth enough. The BiOPT framework
offers three levels of freedom: (i) choosing the order p of the proximal term; (ii)
designing an inexact pth-order proximal-point method in the upper level; (iii) solving
the auxiliary problem with a lower-level non-Euclidean method in the lower level. We
here regularize the objective by a (p+ 1)th-order proximal term (for arbitrary integer
p ≥ 1) and then develop the generic inexact high-order proximal-point scheme and
its acceleration using the standard estimating sequence technique at the upper level.
This follows at the lower level with solving the corresponding pth-order proximal
auxiliary problem inexactly either by one iteration of the pth-order tensormethod or by
a lower-order non-Euclidean composite gradient scheme. Ultimately, it is shown that
applying the accelerated inexact pth-order proximal-point method at the upper level
and handling the auxiliary problem by the non-Euclidean composite gradient scheme
lead to a 2q-order method with the convergence rate O(k−(p+1)) (for q = �p/2� and
the iteration counter k), which can result to a superfast method for some specific class
of problems.
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1 Introduction

Motivation Central to the entire discipline of convex optimization is the concept of
complexity analysis for evaluating the efficiency of a wide spectrum of algorithms
dealing with such problems; see [21, 26]. For example, under the Lipschitz continuity
of the gradient of the objective function, the fastest convergence rate for first-order
methods is ofO(k−2) for the iteration counter k; cf. [22, 24]. Likewise, if the objective
is twice differentiable with Lipschitz continuous Hessian, the best complexity for
second-ordermethods is ofO(k−7/2); see [7]. In the recent years, there is an increasing
interest to applying high-order methods for both convex and nonconvex problems;
see, e.g., [1, 7, 10, 12, 17]. If the objective is p-times differentiable with Lipschitz
continuous pth derivatives, then the fastest convergence rate for pth-order methods is
of O(k−(3p+1)/2); cf. [7].

In general, for convex problems, the classical setting involves a one-to-one cor-
respondence between the methods and problem classes. In other words, there exists
and unimprovable complexity bound for a class of methods applied to a class of
problems under specific assumptions. In fact, under the Lipschitz continuity of the
pth derivatives, the pth-order methods is called optimal if it attains the convergence
rate O(k−(3p+1)/2), and if a method attains a faster convergence rate (under stronger
assumptions than the optimal methods), we call it superfast. For example, first-order
methods with the convergence rate O(k−2) and second-order methods with the con-
vergence rateO(k−7/2) are optimal under the Lipschitz continuity of the first and the
second derivatives, respectively. Recently, in [30], a superfast second-order method
with the convergence rate O(k−4) has been presented, which is faster than the clas-
sical lower bound O(k−7/2). The latter method consists of an implementation of a
third-order tensor method where its auxiliary problem is handled by a Bregman gra-
dient method requiring second-order oracles, i.e., this scheme is implemented as a
second-order method. We note that this method assumes the Lipschitz continuity of
third derivatives while the classical second-order methods apply to problems with Lip-
schitz continuous Hessian. This clearly explains that the convergence rateO(k−4) for
this method is not a contradiction with classical complexity theory for second-order
methods.

One of the classical methods for solving optimization problems is the proximal-
point method that is given by

xk+1 = argmin
x∈E

{
h(x) + 1

2λ‖x − xk‖2
}

, (1.1)
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for the function h(·), a given point xk , and λ > 0. The first appearance of this algorithm
dated back to 1970 in the works of Martinet [19, 20], which is further studied by
Rockafellar [32] when λ is replaced by a sequence of positive numbers {λk}k≥0. Since
its first presentation, this algorithm has been subject of great interest in both Euclidean
and non-Euclidean settings, and many extensions has been proposed; for example see
[5, 9, 11, 15, 16, 33].

Recently,Nesterov in [29] proposed a bi-level unconstrainedminimization (BLUM)
framework by defining a novel high-order proximal-point operator using a pth-order
regularization term

proxph/H (x̄) = argmin
x∈E

{
h(x) + H

p+1‖x − x̄‖p+1
}

,

see Sect. 2 for more details. This framework consists of two levels, where the upper
level involves a scheme using the high-order proximal-point operator, and the lower-
level is a scheme for solving the corresponding proximal-pointminimization inexactly.
Therefore, one has a freedom of choosing the order p of the proximal-point operator
and can also choose a proper method to approximate the solution of the proximal-point
auxiliary problem. Applying this framework to twice smooth unconstrained problems
with p = 3, using an accelerated third-order method at the upper level, and solving the
auxiliary problem by a Bregman gradient method lead to a second-order method with
the convergence rateO(k−4). The main goals of this paper are to extend the results of
[29] onto the composite case (i.e., for nonsmooth and constrained problems) and to
provide a non-Euclidean method for solving the auxiliary pth-order proximal-point
problem with an arbitrary p ≥ 1.

1.1 Content

In this paper, we introduce a Bi-level OPTimization (BiOPT) framework that is an
extension of the BLUM framework (see [29]) for the convex composite minimization.
In our setting, the objective function is the sum of two convex functions, where one
of them is smooth enough. At the first step, we regularize the objective function
by a power of the Euclidean norm ‖ · ‖p+1 with p ≥ 1, following the same vein
as (1.1). The resulted mapping is called high-order proximal-point operator, which is
assumed to beminimized approximately at a reasonable cost. If the first function in our
composite objective is smooth enough, in Sect. 2, we show that this auxiliary problem
can be inexactly solved by one step of the pth-order tensor method (see Sect. 2.1).
Afterwards, we show that the basic proximal-point method attains the convergence
rateO(k−p) (see Sect. 2.2), while its accelerated counterpart obtains the convergence
rate O(k−(p+1)) (see Sect. 2.3).

We next present our bi-level optimization framework in Sect. 3, which opens up
entirely new ground for developing highly efficient algorithms for simple constrained
and composite minimization problems. In the upper level, we can choose the order
p of the proximal-point operator and apply both basic and accelerated proximal-
point schemes using the estimation sequence technique. We then assume that the
differentiable part of the proximal-point objective is smooth relative to some scaling
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function (see [9, 18]) and then design a non-Euclidean composite gradient algorithm
using a Bregman distance to solve this auxiliary problem inexactly. It is shown that the
latter algorithmwill be stopped afterO(log 1

ε
) of iterations (for the accuracy parameter

ε > 0) if the underlying cost function is relatively strongly convex. Hence, choosing
a lower-order scaling function for the Bregman distance, there is a possibility to apply
lower-order schemes for solving the auxiliary problem that will lead to lower-order
methods in our convex composite setting.

Following our BiOPT framework, we finally pick a constant p for the pth-order
proximal-point operator and apply the accelerated method to the composite problem
at the upper level. Then, we introduce a high-order scaling function and show that the
differentiable part of the proximal-point objective is L-smooth relative to this scaling
function, for L > 0. We consequently apply the non-Euclidean composite gradient
method to the auxiliary problem, which only needs the pth-order oracle for even p
and the (p − 1)th-order oracle for odd p. Therefore, we end up with a high-order
method with the convergence rate of O(k−(p+1)) under some suitable assumptions.
We emphasize while this convergence rate is faster than the classical lower bound
O(k−(3p−2)/2) for p = 3, it is sub-optimal for other choices of p. However, we show
that our method can overpass the classical optimal rates for some class of structured
problems. We finally deliver some conclusion in Sect. 4.

1.2 Notation and generalities

In what follows, we denote by E a finite-dimensional real vector space and by E
∗ its

dual spaced composed by linear functions onE. For such a function s ∈ E
∗, we denote

by 〈s, x〉 its value at x ∈ E.
Let us measure distances in E and E

∗ in a Euclidean norm. For that, using a self-
adjoint positive-definite operator B : E → E

∗ (notation B = B∗ � 0), we define

‖x‖ = 〈Bx, x〉1/2 , x ∈ E, ‖g‖∗ =
〈
g, B−1g

〉1/2
, g ∈ E

∗.

Sometimes, it will be convenient to treat x ∈ E as a linear operator from R to E, and
x∗ as a linear operator from E

∗ to R. In this case, xx∗ is a linear operator from E
∗ to

E, acting as follows:

(xx∗)g = 〈g, x〉 x ∈ E, g ∈ E
∗.

For a smooth function f : E → R denote by ∇ f (x) its gradient, and by ∇2 f (x) its
Hessian evaluated at the point x ∈ E. Note that

∇ f (x) ∈ E
∗, ∇2 f (x)h ∈ E

∗, x, h ∈ E.

We denote by �x̄ (·) the linear model of convex function f (·) at point x̄ ∈ E given by

�x̄ (x) = f (x̄) + 〈∇ f (x̄), x − x̄〉 , x ∈ E. (1.2)
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Using the above norm, we can define the standard Euclidean prox-functions

dp+1(x) = 1
p+1‖x‖p+1, x ∈ E.

where p ≥ 1 is an integer parameter. These functions have the following derivatives:

∇dp+1(x) = ‖x‖p−1Bx, x ∈ E,

∇2dp+1(x) = ‖x‖p−1B + (p − 1)‖x‖p−3Bxx∗B 
 ‖x‖p−1B. (1.3)

Note that function dp+1(·) is uniformly convex (see, for example, [26, Lemma 4.2.3]):

dp+1(y) ≥ dp+1(x) + 〈∇dp+1(x), y − x
〉+ 1

p+1

( 1
2

)p−1 ‖y − x‖p+1, x, y ∈ E.

(1.4)
In what follows, we often work with directional derivatives. For p ≥ 1, denote by

Dp f (x)[h1, . . . , h p]

the directional derivative of function f at x along directions hi ∈ E, i = 1, . . . , p.
Note that Dp f (x)[·] is a symmetric p-linear form. Its norm is defined in a standard
way:

‖Dp f (x)‖ = max
h1,...,h p

{ ∣∣Dp f (x)[h1, . . . , h p]
∣∣ : ‖hi‖ ≤ 1, i = 1, . . . , p

}
. (1.5)

If all directions h1, . . . , h p are the same, we apply the notation

Dp f (x)[h]p, h ∈ E.

Note that, in general, we have (see, for example, [31, Appendix 1])

‖Dp f (x)‖ = max
h

{ ∣∣Dp f (x)[h]p∣∣ : ‖h‖ ≤ 1
}
. (1.6)

In this paper, we work with functions from the problem classes Fp, which are convex
and p times continuously differentiable on E. Denote by Mp( f ) its uniform upper
bound for its pth derivative:

Mp( f ) = sup
x∈E

‖Dp f (x)‖. (1.7)

2 Inexact high-order proximal-point methods

Let function f : E → R be closed convex and smooth enough and let ψ : E → R be
a simple closed convex function such that domψ ⊆ int(dom f ). We now consider the
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convex composite minimization problem

min
x∈domψ

{F(x) = f (x) + ψ(x)} , (2.1)

where it is assumed that (2.1) has at least one optimal solution x∗ ∈ domψ and
F∗ = F(x∗). This class of problems is general enough to encompass many practical
problems from many application fields such as signal and image processing, machine
learning, statistics, and so on. In particular, for the simple closed convex set Q ⊆ E,
the simple constrained problem

min f (x)
s.t. x ∈ Q

(2.2)

can be rewritten in the form (2.1), i.e.,

min
x∈domψ

f (x) + δQ(x), (2.3)

where δQ(·) is the indicator function of the set Q given by

δQ(x) =
{
0 if x ∈ Q,

+∞ if x /∈ Q.

Let us define the pth-order composite proximal-point operator

proxpF/H (x̄) = argmin
x∈domψ

{
f (x) + ψ(x) + Hdp+1(x − x̄)

}
, (2.4)

for H > 0 and p ≥ 1, which is an extension of the pth-order proximal-point operator
given in [29]. Moreover, if p = 1, it reduces to the classical proximal operator

proxF/H (x̄) = argmin
x∈domψ

{
f (x) + ψ(x) + H

2 ‖x − x̄‖2
}

.

Our main objective is to investigate the global rate of convergence of high-
order proximal-point methods in accelerated and non-accelerated forms, where we
approximate the proximal-point operator (2.4) and study the complexity of such
approximation. To this end, let us introduce the set of acceptable solutions of (2.4) by

AH
p (x̄, β) = {(x, g) ∈ domψ × E

∗ : g ∈ ∂ψ(x), ‖∇ f Hx̄,p(x) + g‖∗
≤ β‖∇ f (x) + g‖∗

}
, (2.5)

where
f Hx̄,p(x) = f (x) + Hdp+1(x − x̄), (2.6)

where β ∈ [0, 1) is the tolerance parameter. Note that ifψ ≡ 0, then the setAH
p (x̄, β)

leads to inexact acceptable solutions for the problem (2.4), which was recently studied
for smooth convex problems in [29]. Let us emphasize that extending the definition
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of inexact acceptable solutions from [29] for nonsmooth functions is not a trivial task
because not all subgradients g ∈ ∂ψ(x) satisfy the inequality (2.5). In themore general
setting of the composite minimization, we address this issue in Sect. 3.1 using a non-
Euclidean composite gradient scheme that suggestswhich subgradient g ∈ ∂ψ(x) �= ∅
can be explicitly used in (2.5).

Since function F(·) is convex and dp+1(·) is uniformly convex, the minimization
problem (2.4) has a unique solution that we assume to be computable at reasonable
cost. Let us first see how the exact solution of (2.4) satisfies (2.5). The first-order
optimality conditions for (2.4) ensure that

H‖T − x̄‖p−1B(x̄ − T ) − ∇ f (T ) ∈ ∂ψ(T ).

Thus, for g = H‖T − x̄‖p−1B(x̄ − T ) − ∇ f (T ), the inequality in (2.5) holds with
any β ∈ [0, 1), i.e., (proxpF/H (x̄), g) ∈ AH

p (x̄, β). Furthermore, since ∇ f Hx̄,p(x̄) =
∇ f (x̄), we have (x̄, g) /∈ AH

p (x̄, β) except if x̄ = x∗. In the next subsection, we show
that an acceptable approximation of the operator (2.4) can be computed by applying
one step of the pth-order tensor method (see [27]) satisfying (2.5), while a lower-order
method will be presented in Sect. 3.1. Let us highlight here that we are not able to find
an inexact solution in the sense of (2.5) for all points x̄ in a neighbourhood of the
solution x∗; however its exact solution always satisfies this inequality. We study this
in the following example.

Example 2.1 Let us consider the minimization of function f : R → R given by
f (x) = x over the set Q = {x ∈ R : x ≥ 0}, where x∗ = 0 is its unique solution. The
indicator function of the set Q is given by ψ : R → R that is

ψ(x) = δQ(x) =
{
0 if x ≥ 0,
+∞ if x < 0,

where its subdifferential is given by

∂ψ(x) =
⎧
⎨
⎩

(−∞, 0] if x = 0,
{0} if x > 0,
∅ if x < 0.

Let us set H = 1, B = 1, p = 3, x̄ �= 0.Hence, f 3x̄,H (x) = x+ 1
4 |x−x̄ |4 that for x ≥ 0

and g ∈ ∂ψ(x) yield ‖∇ f 3x̄,H (x)+g‖∗ = |1+g+(x− x̄)3|, ‖∇ f (x)+g‖∗ = |1+g|.
Therefore, for β ∈ [0, 1), the inequality ‖∇ f 3x̄,H (T ) + g‖∗ ≤ β‖∇ f (T ) + g‖∗ leads
to |1 + g + (T − x̄)3| ≤ β|1 + g|, i.e.,

x̄ − 3
√
1 + g + β|1 + g| ≤ T ≤ x̄ − 3

√
1 + g − β|1 + g|, T ≥ 0.

It is clear that there is no T > 0 (i.e., g = 0) such that the right-hand side inequality
holds if we have x̄ < 3

√
1 − β [see Subfigure (a) of Fig. 1]. In this case, only the

exact solution T = 0 of the auxiliary problem satisfies the inequality (2.5). Indeed,
(T , g) ∈ AH

p (x̄, β) if we have
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Fig. 1 Subfigure (a) shows that for x̄ < 3√1 − β, only the exact solution of the auxiliary problem satisfies
(2.5), and Subfigure (b) illustrates the set of solutions for x̄ = 1.4 and β = 0.85 satisfying x̄ ≥ 3√1 + β

T ∈
{ [

x̄ − 3√1 + g + β|1 + g|, x̄ − 3√1 + g − β|1 + g|] if x̄ − 3√1 + g + β|1 + g| ≥ 0,[
0, x̄ − 3√1 + g − β|1 + g|] if x̄ − 3√1 + g + β|1 + g| < 0,

which we illustrate in Subfigure (b) of Fig. 1 for some special choices of β and x̄ .

Wefirst present the following lemma,which is a direct consequence of the definition
of acceptable solutions (2.5).

Lemma 2.2 (Properties of acceptable solutions) Let (T , g) ∈ AH
p (x̄, β) for some

g ∈ ∂ψ(T ). Then, we have

(1 − β)‖∇ f (T ) + g‖∗ ≤ H‖T − x̄‖p ≤ (1 + β)‖∇ f (T ) + g‖∗, (2.7)

〈∇ f (T ) + g, x̄ − T 〉 ≥ H
1+β

‖T − x̄‖p+1. (2.8)

If additionally β ≤ 1
p , then

〈∇ f (T ) + g, x̄ − T 〉 ≥
(
1−β
H

)1/p ‖∇ f (T ) + g‖
p+1
p∗ . (2.9)

Proof From (2.5) and the reverse triangle inequality, we obtain

∣∣H‖T − x̄‖p − ‖∇ f (T ) + g‖∗
∣∣ ≤ ‖∇ f (T ) + H‖T − x̄‖p−1B(T − x̄)

+ g‖∗ ≤ β‖∇ f (T ) + g‖∗,

i.e., the inequality (2.7) holds. Squaring both sides of the inequality in (2.5), we come
to

‖∇ f (T ) + g‖2∗ + 2H‖T − x̄‖p−1 〈∇ f (T ) + g, B(T − x̄)〉
+ H2‖T − x̄‖2p ≤ β2‖∇ f (x) + g‖2∗,
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leading to

〈∇ f (T ) + g, B(x̄ − T )〉 ≥ 1−β2

2H‖T−x̄‖p−1 ‖∇ f (T ) + g‖2∗ + H
2 ‖T − x̄‖p+1

≥ H(1−β2)

2(1+β)2
‖T − x̄‖p+1 + H

2 ‖T − x̄‖p+1

= H
(1+β)

‖T − x̄‖p+1, (2.10)

giving (2.8). Let us consider the function ζ : R+ → Rwith ζ(r) = 1−β2

2Hr p−1 ‖∇ f (T )+
g‖2∗ + H

2 r
p+1, which is the right-hand side of the inequality (2.10) with r = ‖T − x̄‖.

From the inequality (2.7), we obtain r ≥ r̂ =
(
1−β
H ‖∇ f (T ) + g‖∗

)1/p
. Taking the

derivative of ζ at r̂ and β ≤ 1
p , we get

ζ ′(̂r) =
(

(1−p)(1+β)
2 + (p+1)(1−β)

2

)
‖∇ f (T ) + g‖∗

= (1 − β p)‖∇ f (T ) + g‖∗ ≥ 0.

Together with (2.10), this implies (2.9). ��

2.1 Solving (2.4) with pth-order tensor methods

In this section, we assume that f (·) is pth-order differentiabe with Mp+1( f ) < +∞
and show that an acceptable solution satisfying the inequality (2.5) can be obtained
by applying one step of the tensor method given in [27].

The Taylor expansion of the function f (·) at x ∈ E is denoted by

Ωx,p(y) = f (x) +
p∑

k=1

1
k! D

k f (x)[y − x]k, y ∈ E,

and it holds that

‖∇ f (y) − ∇Ωx,p(y)‖∗ ≤ Mp+1( f )
p! ‖y − x‖p. (2.11)

For M > 0, let us define the augmented Taylor approximation as

Ω̂x,p(y) = Ωx,p(y) + M
(p+1)! ‖y − x‖p+1.

Note that if M ≥ Mp+1( f ), then F(y) ≤ Ω̂x,p(y) + ψ(y), which is a uniform upper
bound for F(·). In the case M ≥ pMp+1( f ), the function Ω̂x,p(y) + ψ(y) is convex,
as confirmed by [27, Theorem 1], which implies that one will be able to minimize the
problem (2.1) by the tensor step, i.e.,

T f ,g
p,M (x) = argmin

y∈domψ

Ω̂x,p(y) + ψ(y). (2.12)
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Wenext show that an approximate solution of (2.12) can be employed as an acceptable
solution of the proximal-point operator (2.4) by the inexact pth-order tensor method
proposed in [14, 27].

Lemma 2.3 (Acceptable solutions by the tensor method (2.12)) Let (1 − γ )M >

Mp+1( f ) and the approximate solution T of (2.12) satisfies

‖∇Ω̂x,p(T ) + g‖∗ ≤ γ
1+γ

‖∇Ωx,p(T ) + g‖∗, (2.13)

for some g ∈ ∂ψ(T ) and γ ∈
[
0, β

1+β

)
. Then, for point T = T f ,g

p,M (x), it holds

‖∇ f (T ) + M
p! ∇dp+1(T − x) + g‖∗ ≤ Mp+1( f )+γ M

(1−γ )M−Mp+1( f )
‖∇ f (T ) + g‖∗. (2.14)

Proof It follows from (2.13) that

γ
1+γ

‖∇Ωx,p(T ) + g‖∗ ≥ ‖∇Ω̂x,p(T ) + g‖∗ ≥ ‖∇Ωx,p(T ) + g‖∗ − M
p! ‖T − x‖p,

which consequently implies

‖∇Ωx,p(T ) + g‖∗ ≤ (1 + γ )Mp! ‖T − x‖p,

for some g ∈ ∂ψ(T ). Together with (1.3), (2.11), and (2.13), this yields

Mp+1( f )
p! ‖T − x‖p ≥ ‖∇ f (T ) − ∇Ωx,p(T )‖∗

= ‖∇ f (T ) − ∇Ω̂x,p(T ) + M
p! ∇dp+1(T − x)‖∗

= ‖∇ f (T ) + M
p! ∇dp+1(T − x) + g − (∇Ω̂x,p(T ) + g)‖∗

≥ ‖∇ f (T ) + M
p! ∇dp+1(T − x) + g‖∗ − ‖∇Ω̂x,p(T ) + g‖∗

≥ ‖∇ f (T ) + M
p! ∇dp+1(T − x) + g‖∗ − γ M

p! ‖T − x‖p

≥ ‖M
p! ∇dp+1(T − x)‖∗ − ‖∇ f (T ) + g‖∗ − γ M

p! ‖T − x‖p,

implying 1
p! ‖T − x‖p ≤ 1

(1−γ )M−Mp+1( f )
‖∇ f (T ) + g‖∗. This and the inequality

‖∇ f (T ) + M
p! ∇dp+1(T − x) + g‖∗ ≤ Mp+1( f )+γ M

p! ‖T − x‖p,

obtained in the above chain lead to the desired result (2.14). ��
We note that setting M = 1+β

β(1−γ )−γ
Mp+1( f ) and H = M

p! , the inequality (2.14)
can be rewritten in the form

‖∇ f (T ) + H∇dp+1(T − x) + g‖∗ ≤ β‖∇ f (T ) + g‖∗,

which implies (T , g) ∈ AH
p (x, β). In order to illustrate the results of Lemma 2.3, we

study the following one-dimensional example.
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Fig. 2 Subfigure (a) stands for the set of points y satisfying the inequality |Ω̂ ′
x,3,M (y)| ≤ γ

1+γ
|Ω ′

x,3(y)|
with x = 0.8, γ = 8/19, and β = 0.9, and Subfigure (b) illustrates the set of acceptable solutions for
x = 0.8 and β = 0.9

Example 2.4 Let us consider the minimization of the one-dimensional function F :
R → R given by F(x) = x4 + |x |, where x∗ = 0 is its unique solution. In the setting
of the problem (2.1), we have f (x) = x4 and ψ(x) = |x |. Let us set p = 3, i.e., we
have M4( f ) = 24 and

Ωx,3(y) = x4 + 4x3(y − x) + 6x2(y − x)2 + 4x(y − x)3,

Ω̂x,3,M (y) = Ωx,3(y) + M
24 (y − x)4,

where M = 1.9M4( f ). Thus,

Ω ′
x,3(y) = 4x3 +12x2(y− x)+12x(y− x)2, Ω̂ ′

x,3,M (y) = Ω ′
x,3(y)+ M

6 (y− x)3.

Setting γ = 8
19 ∈ [0, 9

19 ) and x = 0.8, we illustrate the feasible area of |Ω̂ ′
x,3,M (y)| ≤

γ
1+γ

|Ω ′
x,3(y)| and acceptable solutions in Subfigures (a) and (b) of Fig. 2, respectively.

We note that with our choice of γ and M , we have (1−γ )M > M4( f ), which implies
that all assumptions of Lemma 2.3 are valid.

In Sect. 3, we further extend our discussion concerning the computation of an
acceptable solution AH

p (x̄, β) for the pth-order proximal-point problem (2.4) by the
lower-level methods.

2.2 Inexact high-order proximal-point method

In this section, we introduce our inexact high-order proximal-point method for the
composite minimization (2.1) and verify its rate of convergence.

We now consider our first inexact high-order proximal-point scheme that generates
a sequence of iterations satisfying

(Tk, gk+1) ∈ AH
p (xk, β), (2.15)
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for gk+1 ∈ ∂ψ(Tk) which we summarize in Algorithm 1.

Algorithm 1: Inexact High-Order Proximal-Point Algorithm
Input: x0 ∈ domψ , β ∈ [0, 1/p], H > 0, ε > 0, k = 0;

1 begin
2 while F(xk ) − F∗ > ε do
3 Find (Tk , gk+1) ∈ AH

p (xk , β) with gk+1 ∈ ∂ψ(Tk ) and set xk+1 = Tk ; k = k + 1;

4 end
5 end

In order to verify the the convergence rate of Algorithm 1, we need the next lemma,
which was proved in [28, Lemma 11].

Lemma 2.5 [28, Lemma 11] Let {ξk}k≥0 be a sequence of positive numbers satisfying

ξk − ξk+1 ≥ ξ1+α
k+1 , k ≥ 0, (2.16)

for α ∈ (0, 1]. Then, for k ≥ 0, the following holds

ξk ≤ ξ0(
1+ αk

1+α
log(1+ξα

0 )
)1/α ≤ ((1 + 1

α

)
(1 + ξα

0 ) · 1
k

)1/α
. (2.17)

Let us investigate the rate of convergence of Algorithm 1. Let us first define the
radius of the initial level set of the function ψ in (2.1) as
D0 = maxx∈domψ {‖x − x∗‖ : F(x) ≤ F(x0)} < +∞.

Theorem 2.6 (Convergence rate of Algorithm 1) Let the sequence {xk}k≥0 be gener-
ated by the inexact high-order proximal-point method (2.15) with β ∈ [0, 1/p]. Then,
for k ≥ 0, we have

F(xk) − F∗ ≤ 1
2

(
1

1−β
HDp+1

0 + F(x0) − F∗) ( 2p+2
k

)p
. (2.18)

Proof From the convexity of ψ(·) and (2.9), we obtain

F(xk) − F(xk+1) ≥ 〈∇ f (xk+1) + gk+1, xk+1 − xk〉

≥
(
1−β
H

)1/p ‖∇ f (xk+1) + gk+1‖
p+1
p∗ ,

with gk+1 ∈ ∂ψ(xk+1) and (xk+1, gk+1) ∈ AH
p (xk, β). ByCauchy–Schwartz inequal-

itiy, we get

F(xk+1) − F∗ ≤ 〈∇ f (xk+1) + gk+1, xk+1 − x∗〉

≤ ‖∇ f (xk+1) + gk+1‖∗‖xk+1 − x∗‖
≤ D0‖∇ f (xk+1) + gk+1‖∗.
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It follow from the last two inequalities, that

F(xk) − F(xk+1) ≥
(

1−β

HDp+1
0

)1/p (
F(xk+1) − F∗) p+1

p .

Setting ξk = 1−β

HDp+1
0

(F(xk) − F∗) and α = 1/p, we see that the condition (2.16) is

satisfied for all k ≥ 0. Therefore, from Lemma 2.5, we have

ξk ≤ ((1 + 1
α

)
(1 + ξα

0 ) · 1
k

) 1
α ≤ (1 + 1

α

) 1
α 2

1−α
α (1 + ξ0)

( 1
k

) 1
α ,

adjusting (2.18). ��

2.3 Accelerated inexact high-order proximal-point method

In this section, we accelerate the scheme (2.15) by applying a variant of the standard
estimating sequences technique, which has been used as a standard tool for accelerating
first- and second-order methods; see, e.g., [2, 8, 22–26].

Let {Ak}k≥0 be a sequence of positive numbers generated by Ak+1 = Ak + ak+1
for ak > 0. The idea of the estimating sequences techniques is to generate a sequence
of estimating functions {Ψk(x)}k≥0 of F(·) in such a way that, at each iteration k ≥ 0,
the inequality

Ak F(xk) ≤ Ψ ∗
k ≡ min

x∈domψ
Ψk(x), k ≥ 0 (2.19)

holds true. Let us set cp =
(
1−β
H

)1/p
. Following [29, 30], we set

Ak = ( cp2
)p ( k

p+1

)p+1
, ak+1 = Ak+1 − Ak, k ≥ 0. (2.20)

For x0, yk ∈ E and (Tk, gk+1) ∈ AH
p (yk, β), let us define the estimating sequence

Ψk+1(x) =
{
dp+1(x − x0) if k = 0,
Ψk(x) + ak+1[�Tk (x) + ψ(x)] if k ≥ 1.

(2.21)

Lemma 2.7 Let the sequence {Ψk(x)}k≥0 be generated by (2.21) and υk =
argminx∈E Ψk(x). Then, it holds that

Ak F(x) + dp+1(x − x0) ≥ Ψk(x)

≥ Ψ ∗
k + 1

p+1

( 1
2

)p−1 ‖x − υk‖p+1, ∀x ∈ domψ, k ≥ 0.

(2.22)

Proof The proof is given by induction on k. For k = 0, Ψ0 = dp+1(x − x0) and so
(2.22) holds. We now assume that (2.22) holds for k and show it for k + 1. Then, it
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follows from (2.21) and the subgradient inequality that

Ψk+1(x) = Ψk(x) + ak+1[�xk+1(x) + ψ(x)]
≤ Ak F(x) + dp+1(x − x0) + ak+1[�xk+1(x) + ψ(x)]
≤ Ak F(x) + dp+1(x − x0) + ak+1F(x),

leading to (2.22) for k + 1. The right-hand side inequality in (2.22) is a direct conse-
quence of the definition of Ψk(·) and (1.4). ��

We next present an accelerated version of the scheme (2.5).

Algorithm 2: Accelerated Inexact High-Order Proximal-Point Algorithm
Input: x0 ∈ domψ , β ∈ [0, 1/p], H > 0, y0 = υ0 = x0, Ψ0(x) = dp+1(x − x0), ε > 0, k = 0;

1 begin
2 while F(xk ) − F∗ > ε do
3 Compute υk = argminx∈E Ψk (x) and compute Ak+1 and ak+1 by (2.20);

4 Set yk = Ak
Ak+1

xk + ak+1
Ak+1

υk and compute (Tk , gk+1) ∈ AH
p (yk , β);

5 Find xk+1 such that F(xk+1) ≤ F(Tk );
6 Update Ψk+1(x) by (2.21) and set k = k + 1;
7 end
8 end

In the subsequent result, we investigate the convergence rate of the sequence gen-
erated by the accelerated inexact high-order proximal-point method (Algorithm 2).

Theorem 2.8 (Convergence rate of Algorithm 2) Let the sequence {xk}k≥0 be gener-
ated by Algorithm 2 with β ∈ [0, 1/p]. Then, the following statements hold:

(i) for all k ≥ 0, the inequality (2.19) holds;
(ii) for all k ≥ 0,

F(xk) − F∗ ≤ H
2(1−β)

dp+1(x0 − x∗)
(
2p+2
k

)p+1 ; (2.23)

(iii) dp+1(υk − x∗) ≤ 2p−1dp+1(x0 − x∗), for all k ≥ 0.

Proof We first show by induction that (2.19) holds. Since A0 = 0 andΨ0 = dp+1(x−
x0), it clearly holds for k = 0. We now assume that inequality (2.19) holds for k ≥ 0
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and prove it for k+1. From (2.22), the induction assumption Ψ ∗
k ≥ Ak F(xk), and the

subgradient inequality, we obtain

Ψ ∗
k+1 = min

x∈domψ

{
Ψk(x) + ak+1[�Tk (x) + ψ(x)]}

≥ min
x∈domψ

{
Ψ ∗
k + σp‖x − υk‖p+1 + ak+1[�Tk (x) + ψ(x)]

}

≥ min
x∈domψ

{
Ak F(xk) + ak+1[�Tk (x) + ψ(x)] + σp‖x − υk‖p+1

}

≥ min
x∈domψ

{Ak F(xk) + ak+1[ f (Tk) + 〈∇ f (Tk) + gk+1, x − Tk〉 + ψ(Tk)]

+σp‖x − υk‖p+1
}

= min
x∈domψ

{Ak+1F(Tk) + 〈∇ f (Tk) + gk+1, ak+1(x − Tk) + Ak(xk − Tk)〉

+σp‖x − υk‖p+1
}

≥ min
x∈domψ

{Ak+1F(Tk) + 〈∇ f (Tk) + gk+1, ak+1(x − υk) + Ak+1(yk − Tk)〉

+σp‖x − υk‖p+1
}

,

with σp = 1
p+1

( 1
2

)p−1
. For all x ∈ domψ , we have

ak+1 〈∇ f (Tk) + gk+1, x − υk〉 + 1
p+1

( 1
2

)p−1 ‖x − υk‖p+1

≥ − p
p+12

p−1
p (ak+1‖∇ f (Tk) + gk+1‖∗)

p+1
p .

It follows from (2.9) and (Tk, gk+1) ∈ AH
p (yk, β) that

〈∇ f (Tk) + gk+1, yk − Tk〉 ≥ cp‖∇ f (Tk) + gk+1‖
p+1
p∗ .

Combining the last three inequalities yields

Ψ ∗
k+1 ≥ Ak+1F(Tk) + cp Ak+1‖∇ f (Tk) + gk+1‖

p+1
p∗

− p
p+12

p−1
p (ak+1‖∇ f (Tk) + gk+1‖∗)

p+1
p

= Ak+1F(Tk) +
(
cp Ak+1 − p

p+12
p−1
p a

p+1
p

k+1

)
‖∇ f (Tk) + gk+1‖

p+1
p∗

≥ Ak+1F(Tk) +
(
cp Ak+1 − 2a

p+1
p

k+1

)
‖∇ f (Tk) + gk+1‖

p+1
p∗ . (2.24)

123



M. Ahookhosh, Y. Nesterov

On the other hand, from (2.20), it can be deduced

(Ak+1 − Ak)
p+1
p

Ak+1
= cp

2

((
k+1
p+1

)p+1 −
(

k
p+1

)p+1
) p+1

p

(
k+1
p+1

)p+1

= cp
2

(
k+1
p+1 − k

p+1

(
1 − 1

k+1

)p) p+1
p ≤ cp

2
,

leading to

a
p+1
p

k ≤ cp
2 Ak+1, k ≥ 0.

Together with (2.24) and f (Tk) ≥ F(xk+1), this ensures Ψ ∗
k+1 ≥ Ak+1F(xk+1), i.e.,

the assertion (i) holds. Invoking the inequalities (2.19) and (2.22), we come to

F(xk) − F∗ ≤ 1
Ak
dp+1(x0 − x∗) =

(
2
cp

)p ( p+1
k

)p+1
dp+1(x0 − x∗),

adjusting the inequality (2.23).
It follows from (2.19), (2.22), F(xk) − F∗ ≥ 0, and x = x∗ that

dp+1(x0 − x∗) ≥ −Ak F
∗ + Ψ ∗

k + ( 12
)p−1

dp+1(υk − x∗)

≥ (F(xk) − F∗) + ( 12
)p−1

dp+1(υk − x∗),

which leads to the assertion (iii). ��

3 BiOPT: Bi-level OPTimization framework

As we have seen in the previous sections, solving the convex composite problem (2.1)
by an inexact high-order proximal-point method involves two steps: (i) choosing a
pth-order proximal-point method as an upper-level scheme; (ii) choosing a lower-
level method for computing a point (T , g) ∈ AH

p (x̄, β). This gives us two degrees
of freedom in the strategy of finding a solution to the problem (2.1), which is why
we call this framework Bi-level OPTimization (BiOPT). At the upper level, we do not
need to impose any assumption on the objective F(·) apart from its convexity. At the
lower-level method, we need some additional assumption on this objective function.
Moreover, in the BiOPT setting, the complexity of a scheme leans on the complexity
of both upper- and lower-level methods.

On the basis of the results of Sect. 2.1, the auxiliary problem (2.4) can be solved
by applying one step of the pth-order tensor method. This demands the computation
of i th (i = 1, . . . , p) directional derivatives of function f (·) and the condition (2.13),
which might not be practical in general. Therefore, we could try to apply a lower-order
method to the auxiliary problem (2.4), which leads to an efficient implementation of
the BiOPT framework. This is the main motivation of the following sections.
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3.1 Non-Euclidean composite gradient method

Let us assume that k is a fixed iteration of either Algorithm 1 or Algorithm 2, and
we need to compute an acceptable solution zk of (2.4) satisfying (2.5). To do so, we
introduce a non-Euclidean composite gradient method and analyze the convergence
properties of the sequence {zi }i≥0 generated by this scheme, which satisfies in the
limit inequality (2.5). Our main tool for such developments is the relative smoothness
condition (see [9, 18] for more details and examples).

Notice that an acceptable solution of the auxiliary problem (2.4) requires that the
function ϕk : E → R given by

ϕk(z) = f Hyk ,p(z) + ψ(z), ∀k ≥ 0, z ∈ domψ (3.1)

be minimized approximately, delivering a point yk ∈ domψ , satisfying the inequality
(2.5). We here define z∗k = argminz∈domψ ϕk(z). Let us consider a simple example
in which f : R → R with f ≡ 0 and yk = 0. Then, the function f 20,H : R → R

defined as f 20,H (z) = 1
3 |z|3 with ∇ f 20,H (z) = |z|z, which is not Lipschitz continuous.

This shows that one cannot expect the Lipschitz smoothness of f Hyk ,p(·) for p ≥ 2.
However, it can be shown that this function belongs to a wider class of functions called
relatively smooth, which we describe next.

Let function ρ : E → R be closed, convex, and differentiable. We call it a scaling
function. Now, the non-symmetric Bregman distance function βρ : E × E → R with
respect to ρ is given by

βρ(x, y) = ρ(y) − ρ(x) − 〈∇ρ(x), y − x〉 . (3.2)

For x, y, z ∈ E, it is easy to see (e.g., the proof of Lemma 3 in [28]) that

βρ(x, z) − βρ(y, z) + βρ(y, x) = 〈∇ρ(y) − ∇ρ(x), z − x〉 . (3.3)

For a convex function h : E → R, we say that h(·) is L-smooth relative to ρ(·) if there
exists a constant L > 0 such that (Lρ − h)(·) is convex, and we call it μ-strongly
convex relative to ρ(·) if there existsμ > 0 such that (h−μρ)(·) is convex; cf. [9, 18].
The constant κ = μ/L is called the condition number of h(·) relative to the scaling
function ρ(·).

In the following lemma, we characterize the latter two conditions.

Lemma 3.1 [18, Proposition 1.1] The following assertions are equivalent:

(i) h(·) is L-smooth and μ-strongly convex relative to the scaling function ρ(·);
(ii) μβρ(x, y) ≤ h(x) − h(y) − 〈∇h(y), x − y〉 ≤ Lβρ(x, y);
(iii) μ 〈∇ρ(y) − ∇ρ(x), y − x〉 ≤ 〈∇h(y) − ∇h(x), y − x〉

≤ L〈∇ρ(y) − ∇ρ(x), y − x〉;
(iv) μ∇2ρ(x) � ∇2h(x) � L∇2ρ(x).

Let us introduce the following assumptions on the minimization problem (3.1):
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(H1) ρ(·) is uniformly convex of degree p+1 and parameter σ > 0, i.e., βρ(x, y) ≥
σ

p+1‖y − x‖p+1;

(H2) there exist constants μ, L > 0 such that the function f Hyk ,p(·) is L-smooth and
μ-strongly convex relative to the scaling function ρ(·).

Note that in (H2) we could introduce the parameters μ f Hyk ,p
, L f Hyk ,p

> 0; however, for

sake of simplicity we use μ, L > 0. In this subsection, for the sake of generality,
we assume the existence of the scaling function ρ(·) such that the conditions (H1)–
(H2) hold; however, in Sect. 3.2 we introduce a specific scaling function satisfying
(H1)–(H2).

We are in position now to develop a non-Euclidean composite gradient scheme for
minimizing (3.1) based on the assumptions (H1)–(H2). For given yk, zi ∈ domψ and
H , L > 0, we introduce the non-Euclidean composite gradient scheme

zi+1 = argmin
z∈E

{ 〈
∇ f Hyk ,p(zi ), z − zi

〉
+ ψ(z) + 2Lβρ(zi , z)

}
, z0 = yk, (3.4)

which is afirst-ordermethodand thepoint z∗k denotes theoptimal solutionof (3.4).Note
that the first-order optimality conditions for (3.4) leads to the following variational
principle

〈
∇ f Hyk ,p(zi ) + 2L(∇ρ(zi+1) − ∇ρ(zi )), z − zi+1

〉
+ ψ(z) ≥ ψ(zi+1). (3.5)

For the sequence {zi }i≥0 generated by the scheme (3.4), we next show the mono-
tonicity of the sequence {ϕk(zi )}i≥0.

Lemma 3.2 (Non-Euclidean composite gradient inequalities) Let {zi }i≥0 be generated
by the scheme (3.4). Then, for z0 = yk , it holds that

ϕk(zi+1) ≤ ϕk(zi ) − Lβρ(zi , zi+1). (3.6)

Moreover, we have

βρ(zi+1, z) ≤ ϑ i+1βρ(yk, z) + 1

2L

(
1 − ϑ i+1

1 − ϑ

)
(ϕk(z) − ϕk(zi+1)) , (3.7)

where ϑ = 1 − κ
2 .

Proof Since zi+1 is a solution of (3.4), it holds

〈
∇ f Hyk ,p(zi ), zi+1 − zi

〉
+ ψ(zi+1) + 2Lβρ(zi , zi+1) ≤ ψ(zi ).

Together with the L-smoothness of f Hyk ,p(·) relative to ρ(·), this implies

f Hyk ,p(zi+1) ≤ f Hyk ,p(zi ) +
〈
∇ f Hyk ,p(zi ), zi+1 − zi

〉
+ Lβρ(zi , zi+1)

≤ f Hyk ,p(zi ) + ψ(zi ) − ψ(zi+1) − Lβρ(zi , zi+1),
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giving (3.6).
Setting x = zi+1 and y = zi in the three point identity (3.3), applying the inequality

(3.5), and using Lemma 3.1(b) it can be concluded that

βρ(zi+1, z) − βρ(zi , z) = 〈∇ρ(zi ) − ∇ρ(zi+1), z − zi+1〉 − βρ(zi , zi+1)

≤ 1
2L

[〈
∇ f Hyk ,p(zi ), z − zi+1

〉
+ ψ(z) − ψ(zi+1)

]

− βρ(zi , zi+1)

= 1
2L

[
f Hyk ,p(zi ) +

〈
∇ f Hyk ,p(zi ), z − zi

〉
+ ψ(z)

]

− 1
2L

[
f Hyk ,p(zi ) +

〈
∇ f Hyk ,p(zi ), zi+1 − zi

〉
+ ψ(zi+1)

]

− βρ(zi , zi+1)

≤ 1
2L

[
f Hyk ,p(zi ) +

〈
∇ f Hyk ,p(zi ), z − zi

〉
+ ψ(z) − ϕk(zi+1)

]

≤ 1
2L

[
ϕk(z) − ϕk(zi+1) − μβρ(zi , z)

]
. (3.8)

Accordingly, since ϕk(zi+1) ≤ ϕk(zi ) for i ∈ N, we get

βρ(zi+1, z) ≤ ϑβρ(zi , z) + 1
2L (ϕk(z) − ϕk(zi+1))

≤ ϑ2βρ(zi−1, z) + 1
2L (1 + ϑ) (ϕk(z) − ϕk(zi+1))

≤ · · · ≤ ϑ i+1βρ(yk, z) + 1
2L

⎛
⎝

i∑
j=0

ϑ j

⎞
⎠ (ϕk(z) − ϕk(zi+1)) ,

justifying the inequality (3.7). ��
In summary,we come to the followingnon-Euclidean composite gradient algorithm.

Algorithm 3: Non-Euclidean Composite Gradient Algorithm
Input: z0 = yk ∈ domψ , β ∈ [0, 1/p], L > 0, i = 0;

1 begin
2 repeat
3 Compute zi+1 by (3.4);

4 Set gi+1 = L(∇ρ(zi ) − ∇ρ(zi+1)) − ∇ f Hyk ,p(zi ) ∈ ∂ψ(zi+1) and i = i + 1;

5 until ‖∇ f pyk ,H
(zi+1) + gi+1‖∗ ≤ β‖∇ f (zi+1) + gi+1‖∗

6 i∗k = i ;
7 end
Output: Tk = zi∗k and gk+1 = L(∇ρ(zi∗k −1) − ∇ρ(zi∗k )) − ∇ f Hyk ,p(zi∗k −1) ∈ ∂ψ(Tk ).

We now assume that the auxiliary problem (3.4) can be solved exactly. For the
sequence {zi }i≥0 given by (3.4), we will stop the scheme as soon as ‖∇ f pyk ,H (zi+1) +
gi+1‖∗ ≤ β‖∇ f (zi+1) + gi+1‖∗ holds, and then we set zk = zi+1. In the remainder
of this section, we show that this stopping criterion holds for i large enough.
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Setting z = yk in the inequality (3.7), it follows the (p + 1)-uniform convexity of
ρ(·) with parameter σ > 0 and ϑ = 1 − κ

2 ∈ (0, 1) that

‖yk − zi+1‖p+1 ≤ p+1
σ

βρ(zi+1, yk) ≤ p+1
2σ L

(
1 − ϑ i+1

1 − ϑ

)
(ϕk(yk) − ϕk(zi+1))

≤ p+1
2σ L

(
1 − ϑ i+1

1 − ϑ

)
(ϕk(yk) − inf ϕk) ≤ p+1

σμ

(
F(yk) − F∗)

< +∞, ∀i ∈ N,

Let us define the bounded convex set

Lk(yk,Δk) = {z ∈ E : ‖yk − z‖ ≤ Δk, ϕk(z) ≤ ϕk(yk)} ,

Δk =
(
p+1
σμ

(
F(yk) − F∗))1/(p+1)

, (3.9)

i.e., {zi }i≥0 ⊆ Lk(yk,Δk).
The next results shows that the sequence {dist(0, ∂ϕk(zi ))}i≥0 vanishes, for {zi }i≥0

generated by Algorithm 3. For doing so, we also require that

(H3) ‖∇2ρ(·)‖ ≤ L on the set Lk(yk,Δk) with L > 0.

Lemma 3.3 (Subsequential convergence) Let {zi }i≥0 be generated by Algorithm 3. If
(H1)–(H3) hold, then

ϕk(zi ) − ϕk(zi+1) ≥ C‖Gi+1‖p+1∗ , C = Lσ

(p+1)(L−μ)p+1L
p+1 , (3.10)

where

Gi+1 = ∇ f Hyk ,p(zi+1) + gi+1,

gi+1 = L(∇ρ(zi ) − ∇ρ(zi+1)) − ∇ f Hyk ,p(zi ) ∈ ∂ψ(zi+1). (3.11)

This consequently implies

lim
i→+∞ dist(0, ∂ϕk(zi+1)) = 0. (3.12)

Proof Writing the first-order optimality conditions for theminimization problem (3.4),
there exists gi+1 ∈ ∂ψ(zi+1) such that

∇ f Hyk ,p(zi ) + gi+1 + L(∇ρ(zi+1) − ∇ρ(zi )) = 0,

leading to

gi+1 = L(∇ρ(zi ) − ∇ρ(zi+1)) − ∇ f Hyk ,p(zi ).
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In light of the convexity of f Hyk ,p(·) and ψ(·), we obtain ∂ϕk(·) = ∇ f Hyk ,p(·) + ∂ψ(·),
i.e.,

Gi+1 = ∇ f Hyk ,p(zi+1) + gi+1 ∈ ∂ϕk(zi+1).

On the bounded set Lk(yk,Δk), it holds that

−Gi+1 = L(∇ρ(zi+1) − ∇ρ(zi )) − (∇ f Hyk ,p(zi+1) − ∇ f Hyk ,p(zi ))

=
∫ 1

0
[(L∇2ρ − ∇2 f Hyk ,p)(zi + τ(zi+1 − zi ))](zi+1 − zi )dτ.

Let us define

B =
(
L∇2ρ(z)

)− 1
2 ∇2 f Hyk ,p(z)

(
L∇2ρ(z)

)− 1
2

,

z = zi + τ(zi+1 − zi ), τ ∈ [0, 1],

which clearly implies

(
L∇2ρ(z) − ∇2 f Hyk ,p(z)

)2 =
((

L∇2ρ(z)
) 1
2

(I − B)
(
L∇2ρ(z)

) 1
2

)2

=
(
L∇2ρ(z)

) 1
2

(I − B)
(
L∇2ρ(z)

)
(I − B)

(
L∇2ρ(z)

) 1
2

.

Together with (H2), (H3), and Lemma 3.1(iv), this leads to

‖(L∇2ρ(z) − ∇2 f Hyk ,p(z))h‖2

=
〈
[L∇2ρ(z) − ∇2 f Hyk ,p(z)]2h, h

〉

=
〈 (

L∇2ρ(z)
) 1
2

(I − B)
(
L∇2ρ(z)

)
(I − B)

(
L∇2ρ(z)

) 1
2 h, h

〉

=
〈
(I − B)

(
L∇2ρ(z)

) 1
2 h,

(
L∇2ρ(z)

)
(I − B)

(
L∇2ρ(z)

) 1
2 h

〉

≤ LL

〈
(I − B)2

(
L∇2ρ(z)

) 1
2 h,

(
L∇2ρ(z)

) 1
2 h

〉

≤ LL
(
1 − μ

L

)2
〈 (

L∇2ρ(z)
) 1
2 h,

(
L∇2ρ(z)

) 1
2 h

〉

≤ L2L
2 (

1 − μ
L

)2 ‖h‖2. (3.13)
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This and (H1) yield

‖Gi+1‖∗ ≤ ‖(L∇2ρ − ∇2 f Hyk ,p)(z)‖‖zi+1 − zi‖
≤ (L − μ)L‖zi+1 − zi‖ ≤ (L − μ)L

(
p+1
σ

βρ(zi , zi+1)
)1/(p+1)

.

Thus, it can be concluded from (3.6) that

ϕk(zi ) − ϕk(zi+1) ≥ Lβρ(zi , zi+1) ≥ Lσ

(p+1)(L−μ)p+1L
p+1 ‖Gi+1‖p+1∗ ,

giving (3.10). Thus, C
∑ ‖Gi+1‖p+1∗ ≤ ϕk(yk) − inf ϕk ≤ F(yk) − F∗ < +∞, i.e.,

limi→∞ ‖Gi+1‖ = 0. Together with the inequality dist(0, ∂ϕk(zi+1)) ≤ ‖Gi+1‖, this
implies (3.12). ��

Wenowshow thewell-definedness and complexity ofAlgorithm3 in the subsequent
result.

Theorem 3.4 (Well-definedness of Algorithm 3) Let us assume that all conditions of
Lemma 3.3 hold, let {zi }i≥0 be a sequence generated by Algorithm 3, and let

F(zi ) − F(x∗) ≥ ε, ∀i ≥ 0, (3.14)

where x∗ is a minimizer of F(·) and ε > 0 is the accuracy parameter. Moreover,
assume that there exists a constant D > 0 such that ‖zi − x∗‖ ≤ D for all i ≥ 0.
Then, for the subgradients

Gi∗k = ∇ f Hyk ,p(zi∗k ) + gk+1 ∈ ∂ϕk(zi∗k ), gk+1

= L(∇ρ(zi∗k −1) − ∇ρ(zi∗k )) − ∇ f Hyk ,p(zi∗k −1) ∈ ∂ψ(zi∗k ),

and zi∗k ∈ domψ , the maximum number of iterations i∗k needed to guarantee the
inequality

‖Gi∗k ‖∗ ≤ β‖∇ f (zi∗k ) + gk+1‖∗ (3.15)

satisfies

i∗k ≤ 1 + 2(p+1)
κ

log

⎛
⎝

D
β

(
2L
C βρ(yk ,z∗k )

)1/(p+1)

ε

⎞
⎠ , (3.16)

where C is defined in (3.10) and ε > 0 is the accuracy parameter.

Proof Combining the subgradient andCauchy–Schwartz inequalitieswith ‖zi−x∗‖ ≤
D, it can be deduced that

‖∇ f (zi ) + gi‖∗ ≥ F(zi )−F∗
‖zi−x∗‖ ≥ F(zi )−F∗

D ≥ ε
D , (3.17)
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for any gi ∈ ∂ψ(zi ). From (3.10), there exists C > 0 such that

ϕk(zi∗k −1) − ϕk(z
∗
k ) ≥ ϕk(zi∗k −1) − ϕk(zi∗k ) ≥ C‖Gi∗k ‖

p+1∗ ,

for Gi∗k = ∇ f Hyk ,p(zi∗k ) + gk+1 ∈ ∂ϕk(zi∗k ) and gk+1 ∈ ∂ψ(zi∗k ). Together with (3.7),
this implies

‖Gi∗k ‖∗ ≤ C−1/(p+1)
(
ϕk(zi∗k −1) − ϕk(z

∗
k )
)1/(p+1)

≤ ( 2LC
)1/(p+1)

((
1 − κ

2

)i∗k −1
βρ(yk, z

∗
k ) − βρ(zi∗k −1, z

∗
k )
)1/(p+1)

≤ ( 2LC βρ(yk, z
∗
k )
)1/(p+1) (

1 − κ
2

)(i∗k −1)/(p+1)
.

Since 1 − κ
2 ∈ (0, 1), for large enough i∗k ,

we have βε
D ≤ ( 2 LC βρ(yk, z∗k )

)1/(p+1) (
1 − κ

2

)(i∗k −1)/(p+1), i.e., the bound (3.16) is
valid by (3.17) with i = i∗k . ��

3.2 Bi-level high-order methods

In the BiOPT framework, we here consider Algorithm 2 using the pth-order proximal-
point operator in the upper-level, and in the lower-level we solve the auxiliary problem
by the high-order non-Euclidean composite gradientmethod described inAlgorithm 3.
As such, our proposed algorithm only needs the pth-order oracle for even p and the
(p − 1)th-order oracle for odd p, which attains the complexity of O(ε−1/(p+1)).

In the remainder of this section, we set p ≥ 2 and q = �p/2�. For ξ > 1, let us
define the function ρH

yk ,p : E → R given by

ρH
yk ,p(x) =

q∑
j=1

2
(2 j)! D

2 j f (yk)[x − yk]2 j + 3H

2
dp+1(x − yk), (3.18)

which we will remarkably show to be uniformly convex with degree p + 1
and parameter σρH

yk ,p
= 21−pH . For p = 3, the scaling function ρk(z) =

1
2

〈∇2 f (yk)(z − yk), z − yk
〉+ 3M4( f )d4(z − yk) has been suggested in [29], which

is slightly different than ours for p = 3. Owing to this foundation, we can show that
the function f Hyk ,p(·) is L-smooth relative to the scaling function ρH

yk ,p(·), which paws
the way toward algorithmic developments. We begin next with showing the uniform
convexity of ρH

yk ,p(·). To this end, we need the pth-order Taylor expansion of the
function f (·) around y ∈ dom f given by

f (x) = Ωy,p(x) + 1
p!
∫ 1

0
(1 − ξ)pDp+1 f (y + ξ(x − y))[x − y]p+1dξ, (3.19)
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for x ∈ dom f andΩy,p(x) = f (y)+∑p
k=1

1
k! D

k f (y)[x − y]k . It is not hard to show
that

∇2 f (x) � ∇2Ωy,p(x) + Mp+1( f )
(p−1)! ‖x − y‖p−1B, (3.20)

see [27, Theorem 1].

Theorem 3.5 (Uniform convexity and smoothness of ρH
yk ,p(·)) For any x − yk ∈ E

and ξ > 1, if p ≥ 2 and q = �p/2�, then

− Myk ,p(x) �
q∑
j=1

1
(2 j−1)! D

2 j+1 f (yk)[x − yk]2 j−1 � Myk ,p(x), (3.21)

where

Myk ,p(x) =
q∑
j=1

1
(2 j−2)! D

2 j f (yk)[x − yk]2 j−2 + Mp+1( f )
(p−1)! ‖x − yk‖p−1B.

Moreover, for

H = 4Mp+1( f )
(p−1)! , (3.22)

ρH
yk ,p(·) given in (3.18) is uniformly convex with degree p+1 and parameter σρH

yk ,p
=

21−pH.

Proof Let us fix arbitrary directions u, h = x − yk ∈ E. Setting y = yk , it follows
from (3.20) that

0 ≤
〈
∇2 f (x)u, u

〉
≤
〈
∇2Ωyk ,p(x)u, u

〉
+ Mp+1( f )

(p−1)! ‖h‖p−1‖u‖2

=
〈 p∑

i=2

1
(i−2)! D

i f (yk)[h]i−2u, u

〉
+ Mp+1( f )

(p−1)! ‖h‖p−1‖u‖2.

Hence, splitting the sum into the odd and even terms, we come to

−
〈 q∑

j=1

1
(2 j−2)! D

2 j f (yk)[h]2 j−2u, u

〉
− Mp+1( f )

(p−1)! ‖h‖p−1‖u‖2

≤
〈 q∑

j=1

1
(2 j−1)! D

2 j+1 f (yk)[h]2 j−1u, u

〉
,

leading to the left hand side of (3.21). Replacing h by −h, it holds that

〈 q∑
j=1

1
(2 j−1)! D

2 j+1 f (yk)[h]2 j−1u, u

〉
≤
〈 q∑

j=1

1
(2 j−2)! D

2 j f (yk)[h]2 j−2u, u

〉

+ Mp+1( f )
(p−1)! ‖h‖p−1‖u‖2,
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giving the right-hand side of (3.21).
From the pth-order Taylor expansion of the function f at yk , (3.20), (3.21), and

(1.3), we obtain

0 � ∇2 f (x) �
p∑

i=2

1
(i−2)! D

i f (yk)[h]i−2 + 1
(p−1)!Mp+1( f )‖h‖p−1B

�
q∑
j=1

2
(2 j−2)! D

2 j f (yk)[h]2 j−2 + 2
(p−1)!Mp+1( f )‖h‖p−1B

�
q∑
j=1

2
(2 j−2)! D

2 j f (yk)[h]2 j−2 + 2
(p−1)!Mp+1( f )∇2dp+1(h)

�
q∑
j=1

2
(2 j−2)! D

2 j f (yk)[h]2 j−2 + H

2
∇2dp+1(h), (3.23)

which implies the convexity of the term
∑q

j=1
2

(2 j)! D
2 j f (yk)[h]2 j + H

2 dp+1(h).
Together with the uniform convexity of dp+1(·) with degree p + 1 and parameter
21−p, this implies the uniform convexity of ρyk ,H (·) with degree p+ 1 and parameter
σρH

yk ,p
= 21−pH . ��

Theorem 3.5 is clearly implies that the assumption (H1) is satisfied for the scaling
function ρH

yk ,p(·) (3.18). We next show that f pyk ,H (·) is smooth and strongly convex
relative this scaling function for p = 3, which is inspired by [27].

Theorem 3.6 (Relative smoothness and strong convexity of f pyk ,H (·) for p = 3) For
p = 3 and ξ > 1, it holds

max
{
1
2

(
1 + 1

ξ

)
,
5+ξ
6

}
∇2ρyk ,H (x) 
 ∇2 f 3yk ,H (x)


 min
{
1
2

(
1 − 1

ξ

)
,
5−ξ
6

}
∇2ρyk ,H (x), (3.24)

In particular, for ξ = 2, function f 3yk ,H : E → R is 3
4 -smooth and 1

4 -strongly convex

relative to ρH
yk ,p(·) defined in (3.18).

Proof Following the proof of Theorem 3.5 for p = 3, it is not hard to show that (3.21)
is satisfied with

Myk ,3(x) = 1
ξ

〈
∇2 f (yk)h, h

〉
+ ξM4( f )

2 ‖h‖2B, h = x − yk, ξ > 1.
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From the third-order Taylor expansion of the function f at yk , (3.20), (3.21), and (1.3),
we obtain

∇2 f (x) �
3∑

k=2

1
(k−2)! D

k f (yk)[h]k−2 + 1
2M4( f )‖h‖2B

�
(
1 + 1

ξ

)
∇2 f (yk) + (1+ξ)

2 M4( f )‖h‖2B
�
(
1 + 1

ξ

)
∇2 f (yk) + (1+ξ)

2 M4( f )∇2d4(h).

In light of f 3yk ,H (·) = f (·) + Hd4(· − yk), H = 2M4( f ), and (3.22), we can write

∇2 f 3yk ,H (x) �
(
1 + 1

ξ

)
∇2 f (yk) +

[
2M4( f ) + (1+ξ)

2 M4( f )
]
∇2d4(x − yk)

� max
{
1
2

(
1 + 1

ξ

)
,
5+ξ
6

}
∇2ρyk ,H (x).

On the other hand, applying the third-order Taylor expansion (3.19) and (3.21) yield

∇2 f (x) 

3∑

k=2

1
(k−2)! D

k f (yk) − 1
2M4( f )‖x − yk‖2B



(
1 − 1

ξ

)
∇2 f (yk) − (1−ξ)

2 M4( f )‖h‖2B


(
1 − 1

ξ

)
∇2 f (yk) − (1−ξ)

2 M4( f )∇2d4(h).

We therefore have

∇2 f 3yk ,H (x) 

(
1 − 1

ξ

)
∇2 f (yk) +

[
2M4( f ) + (1−ξ)

2 M4( f )
]
∇2d4(x − yk)


 min
{
1
2

(
1 − 1

ξ

)
,
5−ξ
6

}
∇2ρyk ,H (x),

giving (3.24). Setting ξ = 2 in (3.24) and invoking Lemma 3.1(iv), the claims are
valid. ��

While Theorem 3.6 establishes the smoothness and strong convexity of f pyk ,H (·)
relative to ρH

yk ,p(·) for p = 3, the relative strong convexity is not true for other p ≥ 2.
As such, in the subsequent result for arbitrary p ≥ 2, we show that f pyk ,H (·) is 1-

smooth relative to ρH
yk ,p(·) and f pyk ,H (·) is uniformly convex with degree p + 1 and

parameter σ f pyk ,H
= 21−pH .

Theorem 3.7 (Relative smoothness of f pyk ,H (·)) Let H ≥ Mp+1( f ) and let p ≥ 2 and

q = �p/2�. Then, the function f pyk ,H : E → R is 1-smooth relative to ρH
yk ,p(·) defined

in (3.18). Moreover, the function f pyk ,H (·) is uniformly convex with degree p + 1 and

parameter σ f pyk ,H
= 21−pH.
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Proof In light of f Hyk ,p(·) = f (·) + Hdp+1(· − yk) and (3.23), we can write

∇2 f Hyk ,p(x) �
q∑
j=1

2
(2 j−2)! D

2 j f (yk)[h]2 j−2 + 3H

2
∇2dp+1(h) = ∇2ρyk ,H (x),

implying 1-smooth of f pyk ,H (·) relative to ρH
yk ,p(·).

It follows from the convexity of f and the uniform convexity of dp+1(·)with degree
p + 1 and parameter σdp+1 = 21−p that

f pyk ,H (z) ≥ f (x) + 〈∇ f (x), x − x〉
+ H

(
dp+1(x) + 〈∇dp+1(x), z − x

〉+ 1
p+12

1−p‖z − x‖p+1
)

= f pyk ,H (x) +
〈
∇ f pyk ,H (x), z − x

〉
+ H

p+12
1−p‖z − x‖p+1,

implying the uniform convexity of f pyk ,H (·)with degree p+1 and parameter σ f pyk ,H
=

21−pH . ��

Since ψ(·) is convex and f pyk ,H (·) is uniformly convex with degree p + 1 and

parameter σ f pyk ,H
= 21−pH , it is clear that ϕk(·) is uniformly convex with degree

p + 1 and parameter σϕk = 21−pH . This and Lemma 3.6 yield

ϕk(yk) ≥ · · · ≥ ϕk(zi ) ≥ ϕk(zi+1) ≥ ϕk(z
∗
k ) + σϕk

p+1‖zi+1 − z∗k‖p+1,

leading to

‖zi+1 − z∗k‖ ≤
(

(p+1)!2p−3

pMp+1( f )

(
ϕk(yk) − ϕk(z

∗
k )
)) 1

p+1

≤
(

(p+1)!2p−3

pMp+1( f )

(
F(yk) − F∗)) 1

p+1
.

In the same way, we have

ϕk(yk) ≥ ϕk(z
∗
k ) + σϕk

p+1‖yk − z∗k‖p+1,

leading to

‖yk − z∗k‖ ≤
(

(p+1)!2p−3

pMp+1( f )

(
ϕk(yk) − ϕk(z

∗
k )
)) 1

p+1

≤
(

(p+1)!2p−3

pMp+1( f )

(
F(yk) − F∗)) 1

p+1
.
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Hence, we come to the inequality

‖zi+1 − yk‖ ≤ ‖zi+1 − z∗k‖ + ‖z∗k − yk‖ ≤ Δk,

Δk =
(

(p+1)!22p−2

pMp+1( f )

(
F(yk) − F∗)) 1

p+1 ∀i ∈ N. (3.25)

Next, we define the bounded convex set

Lk(yk,Δk) = {z ∈ E : ‖yk − z‖ ≤ Δk, ϕk(z) ≤ ϕk(yk)
}
, (3.26)

i.e., {zi }i≥0 ⊆ Lk(yk,Δk). We next show that the scaling function ρH
yk ,p(·) satisfies

(H3).

Lemma 3.8 For any x ∈ Lk(yk,Δk) and ξ > 1, if p ≥ 2 and q = �p/2�, then

‖∇2ρH
yk ,p(·)‖ ≤ L, L = M4( f )Δ

2
k + 2M2( f ) +

(
2Mp+1
(p−1)! + 3pH

2

)
Δ

p−1
k , (3.27)

where M2( f ) < +∞, M4( f ) < +∞, and Mp+1( f ) < +∞ and on the set
Lk(yk,Δk) with

Δk =
(

(p+1)!22p−2

pMp+1( f )

(
F(yk) − F∗)) 1

p+1
.

Proof It follows from (3.19) that

∇2 f (yk + h) = ∇2 f (yk) +
p∑

i=3

1
(i−2)! D

i f (yk)[h]i−2 + rp+1(h),

∇2 f (yk − h) = ∇2 f (yk) +
p∑

i=3

(−1)i−2

(i−2)! D
i f (yk)[h]i−2 + rp+1(−h),

where

rp+1(h) = p+1
(p−1)!

∫ 1

0
(1 − ξ)pDp+1 f (yk + ξh)[h]p−1dξ, ‖rp+1(±h)‖

≤ Mp+1( f )
(p−1)! ‖h‖p−1.

Summing up the latter identities, we come to

∇2 f (yk+h)+∇2 f (yk−h)−(rp+1(h)+rp+1(−h)) =
q∑
j=1

2
(2 j−2)! D

2 j f (yk)[h]2 j−2.

(3.28)
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Moreover, it holds that

∇2 f (yk + h) = ∇2 f (yk) + D3 f (yk)[h] + r4(h),

∇2 f (yk − h) = ∇2 f (yk) − D3 f (yk)[h] + r4(−h),

leading to

‖∇2 f (yk + h) + ∇2 f (yk − h) − 2∇2 f (yk)‖ ≤ r4(h) + r4(−h) ≤ M4( f )‖h‖2.
(3.29)

In light of (1.3), we have

‖∇2ρyk ,H (x)‖ ≤
∥∥∥∥∥

q∑
k=1

2
(2k−2)! D

2k f (yk)[h]2k−2

∥∥∥∥∥+ 3pH
2 ‖h‖p−1

≤
∥∥∥∇2 f (yk + h) + ∇2 f (yk − h) − (rp+1(h) + rp+1(−h))

∥∥∥
+ 3pH

2 ‖h‖p−1

≤ ‖∇2 f (yk + h) + ∇2 f (yk − h) − 2∇2 f (yk)‖
+ 2‖∇2 f (yk)‖ + 2Mp+1

(p−1)! ‖h‖p−1 + 3pH
2 ‖h‖p−1

≤ M4( f )‖h‖2 + 2M2( f ) + 2Mp+1
(p−1)! ‖h‖p−1 + 3pH

2 ‖h‖p−1.

For x ∈ Lk(yk,Δk) and h = x − yk , we come to

‖∇2ρyk ,H (x)‖ ≤ M4( f )Δ
2
k + 2M2( f ) +

(
2Mp+1
(p−1)! + 3pH

2

)
Δ

p−1
k ,

establishing (3.27). ��
From now on and for sake of simplicity, we denote ρH

yk ,p(·) and σ f pyk ,H
by ρk(·) and

σk , respectively. In order to upper bound the Bregman term βρk (·, ·), we next define
the norm-dominated scaling function inspiring by [30, Definition 2], which will be
needed in the remainder of this section.

Definition 3.9 The scaling function ρ(·) is called norm-dominated on the set S ⊆ E

by some function θS : R+ → R+ if θS(·) is convex with θS(0) = 0 such that

βρ(x, y) ≤ θS(‖x − y‖), (3.30)

for all x ∈ S and y ∈ E.

We first verify the norm-dominatedness of the function dp+1(·) over the set

BR = {x ∈ E|‖x‖ ≤ R} ,

for R > 0.
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Lemma 3.10 (Norm-dominatedness of the scaling function dp+1(·)) Let p ≥ 2 and
q = �p/2�. Then, the scaling function dp+1(·) is norm-dominated on BR by the
function

θ̃Lk (τ ) = p2p−2Rp−1τ 2 + 2p−1

p + 1
τ p+1. (3.31)

Proof From (1.3), it is cear that

‖∇2dp+1(x)‖ = ‖‖x‖p−1B + (p − 1)‖x‖p−3‖ ≤ p‖x‖p−1B.

Together with the definition of Bregman distances, the inequality

(
a
1
θ + a

1
θ

)θ

≤
2θ−1(a + b) for a, b ≥ 0 and θ ≥ 1, and τ = ‖y − x‖, this implies

βdp+1(x, y) = dp+1(y) − dp+1(x) − 〈∇dp+1(x), y − x
〉

=
∫ 1

0
(1 − t)∇2dp+1(x + t(y − x))[y − x]2dt

≤ p
∫ 1

0
(1 − t)‖y − x‖2‖x + t(y − x)‖p−1dt

≤ p
∫ 1

0
(1 − t)‖y − x‖2(‖x‖ + t‖y − x‖)p−1dt

≤ p2p−1τ 2
∫ 1

0
(1 − t)(Rp−1 + t p−1τ p−1)dt

= p2p−2Rp−1τ 2 + 2p−1

p+1 τ p+1,

giving (3.31). ��
In order to show the norm-dominatedness of the scaling function ρk(·), we also

need the following technical lemma.

Lemma 3.11 Let p ≥ 2 and q = �p/2�, and let the function ρ̂k : E → R be defined
by

ρ̂k(x) =
q∑
j=1

2
(2 j)! D

2 j f (yk)[x − yk]2 j ,

then ρ̂k(x) is L̂-smooth over

BΔk
= {z ∈ E : ‖yk − z‖ ≤ Δk

}
,

with L̂ = M4( f )Δ
2
k + 2M2( f ) + 2Mp+1( f )

(p−1)! Δ
p−1
k and Δk =

(
(p+1)!22p−2

pMp+1( f )

(
F(yk) −

F∗)) 1
p+1 .
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Proof Setting h = x − yk and using x ∈ BΔk
, (3.28) and (3.29), we come to

‖∇2ρyk ,H (x)‖ ≤
∥∥∥∥∥

q∑
k=1

2
(2k−2)! D

2k f (yk)[h]2k−2

∥∥∥∥∥

≤
∥∥∥∇2 f (yk + h) + ∇2 f (yk − h) − (rp+1(h) + rp+1(−h))

∥∥∥
≤ ‖∇2 f (yk + h) + ∇2 f (yk − h) − 2∇2 f (yk)‖ + 2‖∇2 f (yk)‖

+ 2Mp+1( f )
(p−1)! ‖h‖p−1

≤ M4( f )‖h‖2 + 2M2( f ) + 2Mp+1( f )
(p−1)! ‖h‖p−1

≤ M4( f )Δ
2
k + 2M2( f ) + 2Mp+1( f )

(p−1)! Δ
p−1
k ,

which guarantees L̂-smoothness of ρ̂k(x) on BΔk
. ��

Invoking Lemma 3.11, we next show that the norm-dominatedness of ρk(·) on BΔk
.

Lemma 3.12 (Norm-dominatedness of the scaling function ρk(·)) Let p ≥ 2 and
q = �p/2�. Then, the function ρk(·) is norm-dominated over BΔk

with Δk =
(

(p+1)!22p−2

pMp+1( f )
(F(yk) − F∗)

) 1
p+1 by the function

θLk (τ ) = L̂ + 3p2p−2Δ
p−1
k H

2
τ 2 + 3H2p−2

p + 1
τ p+1, (3.32)

where τ ≥ 0.

Proof In light of the definition of ρk(·) and the L̂-smoothness of ρ̂k(·), it can be
concluded that

βρk (x, y) = ρ̂k(y) − ρ̂k(x) − 〈∇ρ̂k(x), y − x〉
+ 3

2H
(
dp+1(y − yk) − dp+1(x − yk) − 〈∇dp+1(x − yk), y − x

〉)

≤ L̂
2 ‖x − y‖2 + 3

2Hβdp+1(x − yk, y − yk). (3.33)

Invoking Lemmas 3.10 and 3.11, we come to

βρk (x, y) ≤ L̂

2
‖x − y‖2 + 3

2
Hβdp+1(x − yk, y − yk)

≤ L̂

2
‖x − y‖2 + 3

2
H

[
p2p−2Δ

p−1
k ‖x − y‖2 + 2p−1

p + 1
‖x − y‖p+1

]
,

adjusting (3.32) for τ = ‖x − y‖. ��
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Motivated by the identity (3.22), in the remainder of this section, we have

σk = σρk = 23−pMp+1( f )
(p−1)! . (3.34)

Additionally, in view of (2.20), we consider

β = 1
p , Ak = (p−1)(p−1)!

p2p+2Mp+1( f )

(
k

p+1

)p+1
, ak+1 = Ak+1−Ak, for k ≥ 0. (3.35)

We now present our accelerated high-ordermethod by combining all above-mentioned
facts into Algorithm 2 leading to the following algorithm.

Algorithm 4: (Bi-Level High-Order Algorithm)

Input: x0 ∈ domψ , β ∈ [0, 1/p], H = 4
(p−1)! Mp+1( f ), A0 = 0, Ψ0(x) = dp+1(x − x0), k = 0;

1 begin
2 while F(xk ) − F∗ > ε do
3 Compute υk = argminx∈E Ψk (x) and compute Ak+1 and ak+1 by (2.20);

4 Set yk = Ak
Ak+1

xk + ak+1
Ak+1

υk and consider the scaling function (3.18);

5 Find (Tk , gk+1) ∈ AH
p (yk , β) with gk+1 ∈ ∂ψ(Tk ) by Algorithm 3;

6 Find xk+1 such that F(xk+1) ≤ F(Tk );
7 Update Ψk+1(x) by (2.21) and set k = k + 1;
8 end
9 end

Since L = 1 in our setting, the optimality conditions for the auxiliary problem (3.4)
for the pth-order proximal-point operator is given by

∇ f pyk ,H (zi ) + ∂ψ(zi+1) + 2 (∇ρk(zi+1) − ∇ρk(zi )) � 0,

which should be solved exactly.We next translate this inclusion for convex constrained
problem (2.2).

Example 3.13 We here revisit the convex constrained problem (2.2) and its uncon-
strained version (2.3) withψ(·) = δQ(·). For zi ∈ E and L = 1, writing the first-order
optimality conditions leads to

NQ(zi+1) � 2 (∇ρk(zi ) − ∇ρk(zi+1)) − ∇ f pyk ,H (zi ), (3.36)

where ∂ψ(zi+1) = NQ(zi+1) and therefore the normal cone

NQ(x) =
{ {u ∈ E : 〈u, y − x〉 ≤ 0, ∀y ∈ Q} if x ∈ Q,

∅ if x /∈ Q
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plays a crucial role for finding a solution of the auxiliary problem (3.4). As an example,
let us consider the Euclidean ball Q = {x ∈ R

n : ‖x‖ ≤ δ} for which we have

NQ(x) =
{ {αx : α > 0} if ‖x‖ = δ,

{0} if ‖x‖ < δ.

For p = 3, our scaling function is given by

ρk(z) =
〈
∇2 f (yk)(z − yk), z − yk

〉
+ 3H

8 ‖z − yk‖4.

We now consider two cases: (i) ‖zi+1‖ < δ; (ii) ‖zi+1‖ = δ. In Case (i), we have

(
4∇2 f (yk)(zi+1 − zi ) + 3H‖zi+1 − yk‖2B(zi+1 − yk) − 3H‖zi − yk‖2B(zi − yk)

)

− ∇ f 3yk ,H (zi ) = 0,

with ∇ f 3yk ,H (zi ) = ∇ f (zi ) + H‖zi − yk‖2(zi − yk), i.e.,

[
4∇2 f (yk) + 3H‖zi+1 − yk‖2B

]
(zi+1 − yk) = bi ,

for bi = [
4∇2 f (yk) + H‖zi − yk‖2B

]
(zi − yk) + ∇ f 3yk ,H (zi ). This consequently

implies

zi+1 = yk +
[
4∇2 f (yk) + 3Hr2B

]−1
bi ,

where r = ‖zi+1 − yk‖ can be computed by solving the one-dimensional equation

r =
∥∥∥∥
[
4∇2 f (yk) + 3Hr2B

]−1
bi

∥∥∥∥ .

In Case (ii) (‖zi+1‖ = δ), there exists α > 0 such that

[
4∇2 f (yk) + 3H‖zi+1 − yk‖2B

]
(zi+1 − yk) − bi = αzi+1,

leading to

zi+1 = yk +
[
4∇2 f (yk) + (3Hr2 − α)B

]−1
(bi + αyk),

where r = ‖zi+1 − yk‖ and α are obtained by solving the system

⎧
⎨
⎩
r =

∥∥∥[4∇2 f (yk) + (3Hr2 − α)B
]−1

(bi + αyk)
∥∥∥ ,

δ =
∥∥∥yk + [4∇2 f (yk) + (3Hr2 − α)B

]−1
(bi + αyk)

∥∥∥ .
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Finally, we come to the solution

zi+1 =
{
yk + [4∇2 f (yk) + 3Hr2B

]−1
bi if

∥∥∥yk + [4∇2 f (yk) + 3Hr2B
]−1

bi
∥∥∥ < δ,

yk + [4∇2 f (yk) + (3Hr2 − α)B
]−1

(bi + αyk) otherwise,

for the r and α computed by solving the above-mentioned nonlinear systems. ��
We now have all the ingredients to address the complexities of the upper and lower

levels of Algorithm 4, which is the main result of this section. To this end, for the
auxiliary minimization problem (3.4), we assume

R0 = ‖x0 − x∗‖, D0 = max
z∈domψ

{‖z − x∗‖ : F(z) ≤ F(x0)
}

< +∞. (3.37)

Let us set S = {z ∈ domψ : ‖z − x∗‖ ≤ 2R0} and assume

FS = sup
z∈S

F(z) < +∞. (3.38)

Let us note that the function f Hyk ,p(·) is not strongly convex relative to the scaling
function (3.18) for an arbitrary p ≥ 2 (except for p = 3, i.e., q = 1), which implies
that the results of Theorem 3.4 cannot be applied here. As such, for arbitrary p, we
present the following result thanks to the uniform convexity of f Hyk ,p(·) and ρk(·), for
which we need the next technical lemma.

Lemma 3.14 Let � > 1, and let

δi − δi+1 ≥ δ
�

i (3.39)

for some integer i ≥ m ≥ 0. Then, δi < 1 and

δi ≤ δm

[1 + (� − 1)(i − m)δ
�−1
m ]

1
�−1

≤ 1

[(� − 1)(i − m)]
1

�−1

. (3.40)

Proof The proof is a simple generalization of [13, Lemma 1.1]. ��
Theorem 3.15 (Complexity of Algorithm 4) Let us assume that all conditions of The-
orem 3.4 hold, let p ≥ 2 and q = �p/2�, let M2( f ) < +∞, M4( f ) < +∞, and
Mp+1( f ) < +∞. Then,

(i) Algorithm 4 attains an ε-solution of the problem (2.1) in

(2p + 2)
(

3pMp+1( f )
(p−1)(p+1)(p−1)!ε

) 1
p+1 R0

iterations, for the accuracy parameter ε > 0.
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(ii) For p = 3, the auxiliary problem (3.4) is approximately solved by Algorithm 3
in at most

1 + 24 log

⎛
⎜⎜⎝

DL
β

(
θBD1

(D1)

M4( f )

)1/(p+1)

ε

⎞
⎟⎟⎠ (3.41)

iterations with D = D1 +max {D0, 2R0}, BD1 = {z ∈ E : ‖yk − z‖ ≤ D1} and

D1 =
(

4
(1−ϑ)M4( f )

(max {F(x0), FS} − F∗)
) 1
4

, L = 2M4( f )D
2
1 + 2M2( f ).

(iii) For arbitrary p, the auxiliary problem (3.4) is approximately solved by Algo-
rithm 3 in at most

m + 1 +
6L
p−1β

1−pσ
− 2

p+1
k D

p−1
C

− p−1
p+1 (p + 1)

p+3
p+1

ε p−1 (3.42)

iterations, where ϕk(zi )−ϕk(z∗k ) < σ
− 2

p−1
k (p+ 1)

2
p−1 (3L)

p+1
p−1 for i ≥ m and

D =
(

(p+1)!22p−2

pMp+1( f )
(max {F(x0), FS})

) 1
p+1 + max {D0, 2R0} .

Proof Assertion (i) follows directly from the inequality (2.23). To show (3.41) for
p = 3, we apply the results of Theorem 2.8. From Algorithm 4, we obtain

yk = Ak−1
Ak

xk + ak
Ak

υk, ‖υk − x∗‖ ≤ 2
1
2 ‖x0 − x∗‖,

leading to

‖yk − x∗‖ ≤ Ak
Ak+1

‖xk − x∗‖ + ak+1
Ak+1

‖υk − x∗‖
≤ Ak+ak+1

Ak+1
max

{‖xk − x∗‖, ‖υk − x∗‖}

≤ max

{
D0, 2

1
2 R0

}

≤ max {D0, 2R0} . (3.43)

Invoking Theorem 2.8(iii), it holds that

‖υk − x∗‖ ≤ 2
1
2 ‖x0 − x∗‖ ≤ 2R0,
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i.e., υk ∈ S. Together with the convexity ofψ(·) and the monotonicity of the sequence
{F(xk)}k≥0, this implies

F(yk) ≤ Ak
Ak+1

F(xk) + ak+1
Ak+1

F(υk) ≤ Ak
Ak+1

F(x0) + ak+1
Ak+1

FS ≤ max {F(x0), FS} .

(3.44)
It follows from (3.6) that F(zi ) ≤ ϕk(zi ) ≤ ϕk(zi−1) ≤ · · · ≤ ϕk(yk) = F(yk).
Setting z = yk in (3.7) and using and the latter inequality, we come to

(1−ϑ)M4( f )
4 ‖zi − yk‖4 ≤ F(yk) − F(zi ) ≤ max {F(x0), FS} − F∗,

leading to ‖zi − yk‖ ≤
(

4
(1−ϑ)M4( f )

(max {F(x0), FS} − F∗)
) 1
4 = D1. Hence, these

inequalities lead to

‖zi − x∗‖ ≤ ‖zi − yk‖ + ‖yk − x∗‖ ≤ D1 + max {D0, 2R0} = D.

For p = 3, it is clear that all conditions of Theorem 3.4 are satisfied. On the other
hand, from the definition θBD1

(·) given in (3.31), we obtain

θR(‖z∗k − yk‖) ≤ θBD1
(D1).

Then, from L = 3
4 , μ = 1

4 , κ = 1
3 , the uniform convexity of ρk(·) with degree η = 4

and parameter σρk = 1
2M4( f ), C = 3M4( f )

2L
4 , (3.31), L = 2M4( f )D2

1 + 2M2( f ) (see

Lemma 3.11), and the proof of Theorem 3.4, we come to

i∗k ≤ 1 + 4

− log
(
1− 1

6

) log

⎛
⎜⎜⎜⎜⎝

D
β

(
L
4

M4( f )
θBD1

(D1)

) 1
4

ε

⎞
⎟⎟⎟⎟⎠

,

which leads to (3.41) for p = 3.

By Lemma 3.8, ρk(·) is L̂-smooth on BΔk
with L̂ = M4( f )Δ

2
k + 2M2( f ) +(

2Mp+1( f )
(p−1)! + 3pH

2

)
Δ

p−1
k . Hence, from the convexity of (ρk + f Hyk ,p)(·), and the uni-

form convexity of ϕk(·) with degree p + 1 and parameter σk = 21−pH , we obtain
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ϕk (zi+1) = min
z∈E

{
f Hyk ,p(zi ) +

〈
∇ f Hyk ,p(zi ), z − zi

〉
+ ψ(z) + 2βρk (zi , z)

}

≤ min
z∈E

{
f Hyk ,p(z) + βρk (zi , z) + ψ(z) + 2βρk (zi , z)

}

≤ min
α∈[0,1]

{
ϕk (z) + 3βρk (zi , z) : z = zi + α(z∗k − zi )

}

≤ min
α∈[0,1]

{
ϕk (z) + 3L

2 ‖z − zi‖2 : z = zi + α(z∗k − zi )
}

≤ min
α∈[0,1]

{
ϕk (zi ) − (ϕk (zi ) − ϕk (z

∗
k ))α + 3L

2 ‖z∗k − zi‖2α2
}

≤ min
α∈[0,1]

{
ϕk (zi ) − (ϕk (zi ) − ϕk (z

∗
k ))α + 3L

2

[
p+1
σk

(ϕk (zi ) − ϕk (z
∗
k ))
] 2
p+1 α2

}
.

Minimizing the right hand-side of the last inequality with respect to α leads to the
minimizer

α∗ = min

{
1
3L

(
σk
p+1

) 2
p+1

(ϕk(zi ) − ϕk(z
∗
k ))

p−1
p+1 , 1

}

= min

{
σk

(p+1)(3L)

p+1
2

(ϕk(zi ) − ϕk(z
∗
k ))

p−1
2 , 1

} 2
p+1

= min
{
αk,i , 1

} 2
p+1 ,

where αk,i = σk/[(p+ 1)(3L)
p+1
2 ](ϕk(zi )−ϕk(z∗k ))

p−1
2 . Let us consider two cases:

(i) αk,i < 1; (ii) αk,i ≥ 1. In Case (i), we have α∗ = α

2
p+1
k,i , i.e.,

ϕk (zi+1) ≤ ϕk (zi ) −
(

(ϕk (zi ) − ϕk (z
∗
k )) − 3L

2

[
p+1
σk

(ϕk (zi ) − ϕk (z
∗
k ))
] 2
p+1 α

2
p+1
k,i

)
α

2
p+1
k,i

= ϕk (zi ) −
(
(ϕk (zi ) − ϕk (z

∗
k )) − 1

2 (ϕk (zi ) − ϕk (z
∗
k ))
)

α

2
p+1
k,i

= ϕk (zi ) − 1
2α

2
p+1
k,i (ϕk (zi ) − ϕk (z

∗
k )).

In Case (ii), we have αi,k ≥ 1, i.e., α∗ = 1 resulting to

ϕk(zi+1) ≤ ϕk(zi ) −
(

(ϕk(zi ) − ϕk(z
∗
k )) − 3L

2

[
p+1
σk

(ϕk(zi ) − ϕk(z
∗
k ))
] 2
p+1

)

= ϕk(zi ) −
(
1 − 1

2

[(
(p+1)(3L)

p+1
2

σk

)
(ϕk(zi ) − ϕk(z

∗
k ))

1−p
2

])

× (ϕk(zi ) − ϕk(z
∗
k ))

= ϕk(zi ) −
(
1 − 1

2α
−1
k,i

)
(ϕk(zi ) − ϕk(z

∗
k ))

= ϕk(zi ) − 1
2 (ϕk(zi ) − ϕk(z

∗
k )).
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Combining the both cases, we come to

ϕk(zi+1) ≤ ϕk(zi ) − 1
2 min

{
αk,i , 1

} 2
p+1 (ϕk(zi ) − ϕk(z

∗
k )).

Since {ϕk(zi )}k≥0 is decreasing, there exists m ∈ N such that αk,i < 1 for all i ≥ m,
i.e., the latter inequality is translated to

ϕk(zi+1) − ϕk(z
∗
k ) ≤ ϕk(zi ) − ϕk(z

∗
k )

−
[(

1
6L

) p+1
p−1

(
σk
p+1

) 2
p−1

(ϕk(zi ) − ϕk(z
∗
k ))

] p−1
p+1

(ϕk(zi ) − ϕk(z
∗
k )),

for i ≥ m. Setting δk =
(

1
6L

) p+1
p−1

(
σk
p+1

) 2
p−1

(ϕk(zi ) − ϕk(z∗k )), it holds that

δi − δi+1 ≥ δ

2p
p+1
i ,

i.e., the inequality (3.39) is satisfied with � = 2p
p+1 . Together with Lemma 3.14, this

implies

ϕk(zi )−ϕk(z
∗
k ) ≤ σ

− 2
p−1

k (p−1)
− p+1

p−1 (6L)
p+1
p−1 (p+1)

p+3
p−1

(
1

i − m

) p+1
p−1

. (3.45)

On the other hand, following the proof of Lemma 3.3 and using 1-smoothness relative
to ρk(·), (3.13), and the uniform convexity of ρk with degree p+1 and parameter σρk ,
we come to

‖Gi+1‖∗ ≤ ‖(∇2ρk − ∇2 f Hyk ,p)(z)‖‖zi+1 − zi‖ ≤ L
(
p+1
σρk

βρk (zi , zi+1)
)1/(p+1)

,

Together with (3.6), this implies

ϕk(zi ) − ϕk(zi+1) ≥ βρk (zi , zi+1) ≥ σρk

(p+1)L
p+1 ‖Gi+1‖p+1∗ = C‖Gi+1‖p+1∗ ,

C = σρk

(p+1)L
p+1 ,

which consequently leads to

C
− 1

p+1
(
ϕk(zi∗k −1) − ϕk(z

∗
k )
) 1
p+1 ≥ C

− 1
p+1

(
ϕk(zi∗k −1) − ϕk(zi∗k )

) 1
p+1 ≥ ‖Gi∗k ‖∗,
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with Gi∗k = ∇ f Hyk ,p(zi∗k )−∇ f Hyk ,p(zi∗k −1)+∇ρk(zi∗k −1)−∇ρk(zi∗k ) ∈ ∂ϕk(zi∗k ). More-
over, combining (3.25), (3.43), and (3.44) yields

‖zi − x∗‖ ≤ ‖zi − yk‖ + ‖yk − x∗‖

≤
(

(p+1)!22p−2

pMp+1( f )
(max {F(x0), FS})

) 1
p+1 + max {D0, 2R0} = D.

It follows from (3.45) that

‖Gi∗k ‖∗ ≤ C
− 1

p+1
(
ϕk(zi∗k −1) − ϕk(z

∗
k )
) 1
p+1

≤ σ
− 2

p2−1
k (p − 1)

− 1
p−1C

− 1
p+1 (6L)

1
p−1 (p + 1)

p+3
p2−1

(
1

i∗k − m − 1

) 1
p−1

.

Then, the inequality

σ
− 2

p2−1
k (p − 1)

− 1
p−1C

− 1
p+1 (6L)

1
p−1 (p + 1)

p+3
p2−1

(
1

i∗k − m − 1

) 1
p−1 ≥ βε

D

gives (3.42). ��
Let us fix q ≥ 1. Then, the function f Hyk ,p(·) is L-smooth relative to the scaling

function ρk(·) (3.18), which is the same for both p = 2q and p = 2q + 1. If p is even
(i.e., p = 2q), then Algorithm 4 is a 2q-order method (requiring the 2q-order oracle)
and attains the complexity ofO(ε−1/(2q+1)), whichworse than the optimal complexity
O(ε−2/(6q+1)). On the other hand, if p is odd (p = 2q + 1), then Algorithm 4 is
again a 2q-order method (requiring the 2q-order oracle) obtaining the complexity
of O(ε−1/(2q+2)), which is also worse than the optimal complexity O(ε−2/(6q+1))

except for p = 3 that leads to the complexity O(ε−(1/4)) overpassing the optimal
complexity bound of second-order methods, i.e., O(ε−(2/7)), as was known from in
[29]. However, in the following example, we show that the complexity of our method
can overpass the classical bounds for some structured class of problems. It is arguable
that one may come up with algorithms with better complexity than (3.42) for finding
the acceptable solution satisfying (2.5) for general p (e.g., with a more sophisticated
methods or stronger assumptions); however, this out of scope of the current study and
will be further investigated in our future work.

Example 3.16 Let us consider the vector b ∈ R
N , the vectors ai ∈ R

n and the uni-
variate functions fi : R → R that are four times continuously differentiable, for
i = 1, . . . , N . Then, we define the function f : Rn → R as

f (x) =
N∑
i=1

fi (〈ai , x〉 − bi ). (3.46)
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We are interested to apply Algorithm 4 with p = 4 and p = 5 to the problem (2.1)
with this function f (·). In case of p = 5, q = �5/2� = 2 and we need to handle the
subproblem

zi+1 = argmin
z∈E

{ 〈
∇ f 5yk ,H (zi ), z − zi

〉
+ ψ(z) + 2Lβρk (zi , z)

}
,

with

ρk(x) =
〈
∇2 f (yk)(x − yk), x − yk

〉
+ 1

12D
4 f (yk)[x − yk]4 + 3

2Hd6(x − yk),

which readily implies that our method requires fourth-order oracle of fi (·), for i =
1, . . . , N . Let us emphsize that Theorem 3.5 implies that the sacling function ρk(·) is
convex, which is an interesting result even in one dimension and with N = 1, i.e.,

2 f ′′(yk) + f iv(yk)h
2 + 15

2 H |x − yk |4 
 0.

In the same way, for p = 4, we need fourth-order oracle of fi (·), for i = 1, . . . , N .
Moreover, Theorem 3.15 ensures that the sequence generated by Algorithm 4 attains
the complexity O(ε−1/5) for p = 4 and O(ε−1/6) for p = 5, which are worse that
the optimal complexity O(ε−2/13), for the accuracy parameter ε. On the other hand,
setting h = x − yk , it holds that

〈
∇2 f (yk)h, h

〉
=

N∑
i=1

∇2 fi (〈ai , yk〉 − bi ) 〈ai , h〉2 ,

D4 f (yk)[h]4 =
N∑
i=1

∇4 fi (〈ai , yk〉 − bi ) 〈ai , h〉4 .

Let us particularly verify these terms for fi (x) = − log(x) (i = 1, . . . , N ) for x ∈
(0,+∞), which consequently leads to

∇2 fi (x) = 1

x2
, ∇4 fi (x) = 6

x4
= 6

(
∇2 fi (x)

)2
,

i.e.,

D4 f (yk)[h]4 = 6
N∑
i=1

(
∇2 fi (〈ai , yk〉 − bi )

)2 〈ai , h〉4 .

Thus, in this case, the implementation of Algorithm 4 with p = 4 and p = 5 only
requires the second-order oracle of fi (·) (i = 1, . . . , N ) and the first-order oracle
of ψ(·). Therefore, we end up with a second-order method with the complexity of
O(ε−1/5) for p = 4 and O(ε−1/6) for p = 5, which are much faster than the second-
order methods optimal bound O(ε−2/7); however, choosing the odd order p = 5,
Algorithm 4 attains the better complexity. ��
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4 Conclusion

In this paper, we suggest a bi-level optimization (BiOPT), a novel framework for
solving convex composite minimization problems, which is a generalization of the
BLUMframework given in [29] and involves two levels ofmethodologies. In the upper
level, we only assume the convexity of the objective function and design some upper-
level scheme using a high-order proximal-point iterations with arbitrary order. On the
other hand, in the lower level, we need to solve the proximal-point auxiliary problem
inexactly by some lower-level scheme. In this step, we require some more properties
of the objective function for developing efficient algorithms providing acceptable
solutions for this auxiliary problem at a reasonable computational cost. The overall
complexity of the method will be the product of the complexities in both levels.

We here develop the basic pth-order inexact proximal-point method and its
acceleration using the estimation sequence technique that, respectively, achieve the
convergence rate O(k−p) and O(k−(p+1)) for the iteration counter k. Assuming the
L-smoothness and μ-strong convexity of the differentiable part of the proximal-point
objective relative to some scaling function (for L, μ > 0), we design a non-Euclidean
composite gradient method to inexactly solve the proximal-point problem. It turns out
that this method attains the complexity O(log 1

ε
), for the accuracy parameter ε > 0.

In the BiOPT framework, we apply the accelerated pth-order proximal-point algo-
rithm in the upper level, introduce a new high-order scaling function and show that
the differentiable part of the auxiliary objective is smooth relative to this function,
and solve the auxiliary problem by a non-Euclidean composite gradient method in
the lower level with the complexity ofO (log 1

ε

)
. We consequently come to a bi-level

high-order method with the complexity ofO(ε−1/(p+1)), which overpasses the classi-
cal complexity bound of second-order methods for p = 3, as was known from [29]. In
general, for p = 2 and p ≥ 3, the complexity of our bi-level method is sub-optimal;
however, we showed that for some class of structured problems it can overpass the
optimal complexity bound O(ε−2/(3p+1)). Overall, the BiOPT framework paves the
way toward methodologies using the pth-order proximal-point operator in the upper
level and requiring lower-order oracle than p in the lower level. Therefore, owing to
this framework, we can design lower-order methods with convergence rates overpass-
ing the classical complexity bounds for convex composite problems. Hence, this will
open up an entirely new ground for developing novel efficient algorithms for convex
composite optimization that was not possible in the classical complexity theory.

Several extensions of our framework are possible. As an example, we will present
some extension of our framework using a segment search in the upcoming article [3].
Moreover, the proximal-point auxiliary problem can be solved by some more efficient
method such as the non-Euclidean line searchmethod [5] with second-order directions
[4, 6, 34]. In addition, the introduced high-order scaling function can be employed to
extend the second-order methods presented in [27–30] to higher-order methods.
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