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A B S T R A C T

A myriad of techniques regarding renewable energy forecasting have been proposed in recent literature,
commonly classified as physical, statistical, machine learning based or a hybrid form thereof. The renewable
energy forecasting process is however elaborate and consists of multiple stages, where different approaches
from these four categories apply variably, complicating a holistic classification of the process. This paper
resolves this by utilizing the fundamental difference between direct and indirect forecasting in terms of model
complexity, data availability, spatial and time horizons as the backbone to structure this intricate forecasting
process. As such, a significant step towards a generalized framework for renewable energy forecasting is
presented. Additionally, a most promising recommendation emerges: leveraging physics-based knowledge from
indirect models to enhance training of direct methods.
1. Introduction

1.1. Relevance and background

The gradual replacement of fossil fuels by their renewable coun-
terparts is an essential strategy to pursue when aiming at mitigating
the detrimental consequences of human-induced climate change (Mo-
riarty and Honnery, 2012). Renewable energy will undoubtedly play
a major role in the transition towards a carbon neutral society. Wind
and solar power are at the centre of this shift, accounting for almost
90% of the worldwide growth in renewable electricity generation in
2021 (IEA, 2022). Contrary to fossil fuels, however, renewable energy
brings volatility and uncertainty due to its direct dependence on the
condition of the weather (Wang et al., 2019a). Accurate forecasts of
the weather and by extent the available Renewable Energy Sources
(RES) are therefore vital and are only gaining in importance. These
forecasts are already being used in all segments of the energy and
power industry (Feng, 2020). Reliable renewable energy forecasts are
essential for transmission grid operators in order to ensure appropriate
electricity grid management (Elia, 2019). As such, they are crucial
for guaranteeing stable electricity provision, i.e. balancing supply and
demand Goodarzi et al. (2019). Inaccuracies in renewable energy fore-
casting can result in significant disruptions and economic losses (Ziel,
2017). In Belgium, for example, wind power forecast errors lead to bal-
ancing costs of which the lower bounds vary between 4.3 and 6.7 Euros
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per MWh (Bruninx et al., 2014). Next, the uncertainty associated with
wind power forecasts brings an imbalance which sometimes requires
adjustments from fossil powered sources. Consequently, this source
of renewable energy does not always deliver the reduction in carbon
emissions expected from the installed power capacity (Forbes and
Zampelli, 2020, 2019). Next to reducing balancing costs, minimizing
forecast errors therefore also leads to significant decreases in carbon
emissions. As such, realizing high-performing RES forecasting models
is motivated by both economic and environmental incentives.

1.2. Literature review

The literature on solar and wind energy forecasting is extensive
and a myriad of various different methods to go through (parts of)
the RES forecasting process have already been proposed. Similarly,
various comprehensive review papers approaching renewable energy
forecasting from different angles have been published recently. A re-
view discussing the most influential papers along with recent research
trends and data sources can be found in Hong et al. (2020). The future
of RES forecasting is addressed by Sweeney et al. (2019) based on
the distinction between physical and statistical forecasting methods.
In Tawn and Browell (2022), on the other hand, the focus of the review
lies on very short timescales. Next, the applications of Artificial Intel-
ligence (AI) in RES forecasting are presented in a bibliometric analysis
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by Zhang et al. (2022b). Similarly, in Lai et al. (2020), Machine Learn-
ing (ML) methods are discussed together with preprocessing steps and
performance metrics. Literature statistics concerning Deep Learning
(DL) approaches in RES forecasting are presented in a literature review
by Ying et al. (2023). Analogously, while distinguishing between prob-
abilistic and deterministic forecasting, Wang et al. (2019a) published a
comprehensive survey paper on DL forecasting methods. An overview
of the taxonomy concerning the RES forecasting process as a whole
is presented in a survey paper by Alkhayat and Mehmood (2021). In
this work, the difference between direct forecasting based on historical
power data and its indirect counterpart employing weather forecasts
is briefly emphasized. Although essential, the distinction between di-
rect and indirect forecasting is seldom comprehensively discussed in
the literature. Both approaches are considered and compared in the
research papers of Yakoub et al. (2023) and Dione and Matzner-Løber
(2019) concerning wind power forecasting, where the latter prefers the
direct approach while the former is inconclusive. The direct approach
is favored by Shi et al. (2011) in their work on wind power forecasting
based on statistical methods. The systematic literature review on solar
power forecasting by Başaran et al. (2020) is among the few to rec-
ognize the fundamental difference between direct and indirect power
forecasting as a criterion to categorize existing methods. The focus of
the work lies on type of solar panels, data sets and ML based forecasting
methods. Despite sporadic mentions in research and survey papers,
a significant gap remains when it comes to studying the differences
between direct and indirect renewable energy forecasting methods.
They are yet to be thoroughly compared based on variations in model
complexity, from a temporal and spatial perspective or from a data
point of view. Moreover, the distinction between the direct and indirect
pathways has never served as the foundation for dissecting the RES
forecasting process, although leveraging these differences could lead
to useful results.

Beyond the necessity of discussing the distinctions and applications
of direct and indirect forecasting methods, it is crucial to meticulously
examine each stage of the renewable energy forecasting process. How-
ever, these stages have seldom been considered collectively. Therefore,
there is need for a structured and accessible review which probes
the various steps in a chronological manner. Additionally, given the
diversity in RES forecasting methods, a clear and unambiguous classi-
fication framework is necessary. Review papers until now have mainly
focused on the division between physics-based, statistical, ML based
and hybrid methods. This distinction lacks absoluteness and does not
distinctly apply for models describing the whole forecasting chain.
Similarly, methods are often categorized based on the timescale of
the forecast. This is, however, not a fundamental property inherent
to a forecasting model, and as such not an appropriate discriminator.
A last common practice is distinguishing between deterministic and
probabilistic methods, arguably one of the most important character-
istics of a forecast. This attribute is however alterable by the choice of
postprocessing step (Yang and van der Meer, 2021) and as such does
not represent a property inherent to the model. Given the shortcomings
of current classification methods and scarcity of complete step-by-step
descriptions of the RES forecasting process, there is a critical imperative
to establish a simple but fundamental framework to address these
issues.

1.3. Contribution of this work

This work aims at providing a general overview of the different
stages which accumulate to RES forecasting, while focusing on wind
and solar energy, listing the various approaches to tackle at each step
and mentioning the state-of-the-art best performing methods, without
going into detail. Where needed, concepts are defined and provided
with the appropriate context. As such, a clear and holistic framework
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for the complete renewable energy forecasting process emerges, as
depicted schematically in Fig. 1. Outlining the intricate RES forecast-
ing process step-by-step, while providing definitions for widely used
concepts, brings clarity in a process which is too often presented as a
confusing sequence of algorithms. Additionally, breaking a model down
to parts allows others to straightforwardly optimize and apply each
element.

The core distinction between direct and indirect forecasting is used
as a foundation to carefully analyze the complete process, as shown in
Fig. 1. Studying the differences between these two pathways in terms
of data, spatial and temporal scopes and model complexity can help
in identifying ideal approaches for future forecasting tasks. This ap-
proach allows for a comprehensive understanding of forecasting models
that goes beyond the mere comparison of evaluation metrics between
different methods. A more complete understanding of the differences
between direct and indirect methods could lead to a generalized frame-
work presenting tailored renewable energy forecasting models suitable
to the particular forecasting task at hand. In order to maintain a bird’s
eye view, the RES forecasting model is envisioned here as consisting
of several (chronological) steps, at each of which a certain approach
should be taken (e.g. statistical, physical, ML or hybrid). The term
hybrid model is, despite being frequently used, rarely defined in the
literature. Here, it is envisioned to mean the following:
A hybrid RES model is a model for forecasting renewable energy sources
where at least two methods with different natures are used at a different or
equal chronological point in the forecasting proces.

In essence, a RES forecasting model takes meteorological observa-
tions (e.g. wind speed) as input in order to provide an educated guess
regarding the matching power output (e.g. wind power). Fig. 2 depicts
all steps of the RES process, together with the most important classes
of possible techniques to carry out the task at hand. This diagram
essentially entails the structure of this paper. The following section lists
the various types of possible input data for the RES forecasting process,
while Section 3 discusses the most widely employed preprocessing
techniques. Section 4 discusses the core of the RES forecasting process,
namely the actual power forecasting, where the distinction between
direct and indirect forecasting is made. The latter is represented by the
bottom pathway in Fig. 1, while the former corresponds to the upper
path. Next, a discussion of possible postprocessing techniques follows in
Section 5. Finally, the most significant evaluation methods are assessed
in Section 6 before ending with a discussion, concluding remarks and
possible future prospects in Section 7.

2. Data for RES forecasting

The data supplied as input to a model directly impacts its per-
formance and consequently is of vital importance (Yoosefdoost et al.,
2022). Careless input selection can lead to forecast errors and jeopar-
dizes the model’s overall performance (Ahmed et al., 2020). To avoid
any confusion regarding the operation of the model, it is imperative
to clarify not only the different types of input used but also to state
their origin. In the context of RES forecasting, various kinds of input
are commonly used. They can roughly be divided into four categories:
observations, modeled data, geographical info and energy infrastruc-
ture. A non-exhaustive list of features belonging to these categories
as input for a RES model is given in Table 1. The first and most
obvious kind are observations of meteorological variables and related
parameters. To forecast future wind and solar power, time series of past
wind power and photovoltaic (PV) power output, typically originating
from renewable power plants, are often used as input (Hu et al., 2018;
Zhang et al., 2020; Akhter et al., 2022; Rafati et al., 2021; Ahmad
et al., 2018). These historical power series form the basis for direct
forecasting methods, while they can serve as supplementary input
for their indirect counterparts. Next, a whole range of meteorological
variables directly influence renewable energy output such as solar
irradiance, temperature and humidity for PV output (Lateko et al.,

2022) or wind speed, sea level pressure and dew point for wind power
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Fig. 1. A complete overview of the RES forecasting scheme, including all potential stages of a forecasting model, presented chronologically from left to right. Two distinct
approaches are evident: direct forecasting is represented by the uppermost pathway, while indirect forecasting is illustrated by the lower counterpart. Colored arrows indicate the
direction of the RES forecasting process.
Fig. 2. A complete, schematic depiction of the RES forecasting process. The same elements of the process as in Fig. 1 are presented where additionally categories of approaches
for the various stages in the RES forecasting scheme are provided.
Table 1
Various types of input that can be supplied to a RES model. Possible examples of each type are presented.

Observations Modeled data Geographical info Infrastructure

Temperature, humidity,
pressure, irradiance,
wind speed,
measured wind and
solar power, . . .

Past or future
NWP output:
wind speed,
solar irradiation,
air temperature,
humidity,..

Topographic terrain
features, altitude,
longitude, . . .

Type of PV cell,
hub height,
PV cell inclination, . . .
output (Ouyang et al., 2017; Vladislavleva et al., 2013). Observations
of these variables from difference sources such as weather stations,
satellites, radiosondes are commonly used to predict renewable energy
power (Lateko et al., 2022; Ahmad et al., 2018; Zjavka, 2020; Ouyang
et al., 2017; Vladislavleva et al., 2013). Observations are, however,
not always readily available for certain locations at certain times, and
they can be costly or incomplete. To overcome these shortcomings,
the output of Numerical Weather Prediction (NWP) models, such as
the worldwide renowned integrated forecasting system (IFS) devel-
oped by the European Centre for Medium-range Weather Forecasts
(ECMWF) (ECMWF, 2021), can be used as input for RES models (Böök
and Lindfors, 2020; Al-Yahyai et al., 2010). NWP modeled values, both
for the past and future, for solar irradiance and temperature can for
example be employed to forecast PV power (Böök and Lindfors, 2020;
Bacher et al., 2009), while correspondingly modeled values for wind
speed and temperature offer the means to predict wind power (Zhang
et al., 2020; Mujeeb et al., 2019a; Xu et al., 2015; Vaccaro et al.,
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2011). As explained in Section 4.2.2, these NWP models form the
backbone of indirect forecasting but are absent in direct methods. Next
to meteorological variables, geographical properties of the location
where the wind turbines and PV cells are installed have an effect on
energy output. Complex terrain properties of wind or solar farms can be
taken into account when predicting renewable energy production (Qian
and Ishihara, 2022; Lurwan et al., 2014). Lastly, the properties of the
PV cells and wind turbines producing the energy in question must be
considered. The type or orientation of a PV cell plays a role in the
amount of energy it produces (Mubarak et al., 2023; Hossain et al.,
2017; Böök and Lindfors, 2020), whereas the rotor swept area and hub
height influence the ultimate energy output of a wind turbine (Ge et al.,
2020).

3. Preprocessing

As the input data is selected, the individual datasets need to be
modified prior to the actual forecasting. This process is called data
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preprocessing and it encompasses a wide range of techniques, ranging
from trivial feature selection to rather complex data transformations.
The following broad definition for preprocessing inspired by Mishra
et al. (2020) and Rabier (2011) is provided:
Data Preprocessing refers to the modification of raw data in order to sim-
plify the data, complete it or remove unwanted variability and irregularities
with the goal of preparing the data for assimilation or forecasting.

The first crucial preprocessing step in the RES forecasting process
involves data cleaning, of which the removal of outliers from the
input data is a first important example. This can be achieved by
various techniques like e.g. Gaussian fitting (Wang et al., 2020a).
Outliers may occur due to different reasons, turbine failure can, for
instance, lead to outliers in wind power data. In contrast to removing
faulty or misleading data, there is the process of data completion,
which involves adding essential but missing data. The absence of
data can be explained by equipment failure or temporal site closure,
among other reasons (Ghimire et al., 2019). Examples of techniques
applied in the literature to tackle the issue of missing data are linear
interpolation (Peng et al., 2020), particular functions in statistical
software (Atique et al., 2019) or filling data gaps with the mean values
of previous data points (Ghimire et al., 2019).

Next, data transformation encompasses another wide range of im-
portant preprocessing techniques. First, normalization of the data is
imperative to ensure a similar scale for all input features, given that
the RES forecasting process often relies on different meteorological
variables as input which often have dissimilar scales (Alkhayat and
Mehmood, 2021). This step is necessary to avoid computationally ill-
conditioned calculations, particularly if machine learning techniques
are employed later in the process (Sharifzadeh et al., 2019). A myr-
iad of normalization methods exists, where the most prominent ex-
amples are min–max normalization (Mujeeb et al., 2019b) and z-
standardization (Manero et al., 2019). Sometimes more advanced data
transformations can be applied in order to ensure the input data has
the desired properties, such as a certain degree of symmetry, variance
stability or normality which is a precondition for particular statistical
forecasting methods (Alghamdi et al., 2019). A Box–Cox transformation
can, for example, be applied to obtain Gaussianity (Voyant et al., 2020)
while a logarithmic transformation can reduce skewness (Incremona
and De Nicolao, 2022). Changing the temporal or spatial resolution is
a last important subclass of data transformation (Rabier, 2011). This
is particularly relevant for indirect RES forecasting processes involving
NWP, since these models operate on a grid of certain spatial resolution,
where observations used often need to be spatially averaged to comply
with the grid. Similarly, to match with the fixed time step of the model,
data might need to be averaged in the time domain Rabier (2011). Next
to averaging, interpolation or downscaling of data might be necessary
to acquire the desired resolution.

Dimensionality reduction covers another important class of data
preprocessing techniques for the RES forecasting process. These meth-
ods are most relevant since the values of numerous meteorological
variables over a long period of time can be of interest when forecasting
solar and wind power, resulting in tremendous amounts of data. In
order to minimize necessary computational resources and avoid loss of
generality, dimensionality reduction is necessary, which can be done
both by feature reduction or feature extraction (García-Cuesta et al.,
2023). Additionally, Since the correlation between power output and
all sorts of meteorological variables is case-specific, i.e. depends on
the location and local climate, researchers should carefully perform
feature selection methods (Alkhayat and Mehmood, 2021). Commonly
used methods to perform dimensionality reduction can mainly be found
in the domain of machine learning, where some important algorithms
are the Auto-Encoder (AE) (Zhang et al., 2019), Principal Component
Analysis (PCA) (Wang and Chen, 2020) and the K-means clustering
algorithm (Ayodele et al., 2019).

Lastly, decomposition techniques are by far the most employed
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preprocessing methods for RES forecasting (Wang et al., 2019a; Lai
et al., 2020). The general idea is to decompose a complex, noisy time
series into various, more understandable frequencies using an iterative
process. These signal processing techniques serve to extract meaningful
features from complex data. In the context of RES forecasting, popu-
lar decomposition techniques are Discrete Wavelet Transform (DWT),
Empirical Mode Decomposition (EMD) or Wavelet Packet Transform
(WPT). The latter has proven to be the most accurate (Mujeeb et al.,
2019a). This iterative process decomposes the signal in a high and
low frequency component at each iteration. The decomposition into
wavelets provides useful information in both the time and frequency
domain for non-stationary signals such as wind speed and power time
series (Yang et al., 2017). Wavelet decomposition is indispensable when
it comes to enhancing the prediction accuracy of wind speed and power
time series (Meng et al., 2016). Wavelet packet transform is often
used in combination with a deep learning technique, where often a
variation of deep neural networks is chosen to forecast RES later in the
process (Mujeeb et al., 2019a; Meng et al., 2016; Wang et al., 2018c;
Azimi et al., 2016; Nguyen Trong et al., 2023).

4. Forecasting power

Once input data is gathered and preprocessed, one arrives at the
core of the process, i.e. the actual power forecasting. The first es-
sential feature concerns the prediction horizon, i.e. at what point in
the future does the power value need to be calculated? As many
different interpretations of short and long time horizons exist in the
literature, it is advisable to explicitly define the intended meaning of
these terms. In the remainder of this paper five different prediction
horizons are distinguished: now (0–5 min), very short (5–30 min), short
(30 min to 6 h), medium (6 h to 1 day) and long (more than one
day) (Hossain et al., 2017). Table 2 lists this classification together with
their individual applications (Alkhayat and Mehmood, 2021; Hossain
et al., 2017; Ahmadi et al., 2020) .

Next, the appropriate algorithm should be selected to forecast
the power output. The common division between hybrid, physics-,
statistics- and ML-based RES models often employed in the literature
and mentioned in Section 1 is usually based on the choice of technique
in the actual forecasting step of the RES process. A vast amount of
forecasting methods exist in each of these classes, where the usefulness
of each method highly depends on time horizon, location and feature
selection, among others (Alkhayat and Mehmood, 2021; Gupta and
Singh, 2021). It is therefore not particularly insightful to study power
forecasting by attempting to list every possible forecasting technique,
given their abundance and sporadic effectiveness. A more fundamental
characteristic of a particular RES forecasting process is whether the
solar and wind power data is estimated directly from input data or
rather indirectly, by first forecasting solar radiation and wind speed.

4.1. Direct forecasting

Before delving into the methods used for direct forecasting in more
detail, it is advisable to explicitly define the concept (Gupta and Singh,
2021; Başaran et al., 2020; Yakoub et al., 2023):
Direct forecasting of renewable energy sources refers to the forecasting of
renewable power production directly from available historical data, without
first forecasting other meteorological variables.

In recent years, direct forecasting has been applied more widely
in solar and wind power forecasting as compared to the indirect
method (Başaran et al., 2020; Piotrowski et al., 2022b), due to the
increased adoption of renewable energy sources and the growing
availability of power data measurements. Most of the papers concerning
direct RES forecasting supply historical power data with additional
meteorological input such as temperature, humidity, wind direction
among other, with the goal of improving the forecasting accuracy. The
correlation between various input variables and the eventual forecast

accuracy is however location dependent (Alkhayat and Mehmood,
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Table 2
Different prediction horizons together with their possible applications.

Prediction horizon Time ahead Applications

Now 0 to 5 min Managing ramp rates and smart grids, ensuring grid stability
Very short 5 to 30 min Electricity pricing, control strategies
Short 30 min to 6 h Economic load dispatching, power scheduling
Medium 6 h to 1 day Unit commitment, energy storage dispatching
Long More than one day Maintenance planning, long-term feasibility
2021) and inclusion of additional features does not always guarantee
improved performance (Jebli et al., 2021) and can even lead to de-
creased accuracy (He et al., 2022). As direct forecasting exploits the
relationship of the power variable to be forecasted with its past values,
it tends to be more accurate on rather short prediction horizons (Son
and Jung, 2020). As such, most direct wind and solar power forecasting
research is concerned with short or medium forecasting horizons,
where long-term predictions are rarely investigated (Ahmed et al.,
2020; Ahmadi et al., 2020; Piotrowski et al., 2022b).

4.1.1. Direct forecasting techniques
The lionshare of direct RES forecasting techniques are data-driven.

Among these methods, linear statistical time series techniques are
commonly used in direct power forecasting. These models typically
require less data than deep learning models and outperform physical
methods on very-short to short timescales (Ahmed et al., 2020; Zhou
et al., 2020). Another clear advantage of time series models is their
simplicity, given that they are relatively easy to understand and imple-
ment. As time series models typically extrapolate historical time series
to points in the near future, as depicted in Fig. 3(a), one only needs
observations of the variable in question (Khashei and Bijari, 2011).
One widely applied example of such methods is the AutoRegressive-
Moving-Average (ARMA), which combines two polynomials: one for
the AutoRegression (AR) and one for the Moving Average (MA). ARMA
exhibits high accuracy for power forecasting on very short time scales
but experiences a decline in performance as the prediction horizon
increases (Wang et al., 2018). The AMRA model, however, lacks the ca-
pability to deal with non-stationary time series (Sharadga et al., 2020),
a characteristic frequently observed in both wind and solar power time
series (Tian, 2023; Cheng et al., 2023). Non-stationarity, due to e.g. sea-
sonality (Sangwan and Herrmann, 2020), can be removed from a
time series by applying the AutoRegressive Integrated Moving Average
(ARIMA) model. Consequently, ARIMA has been commonly employed
to directly forecast power production based on non-stationary historical
power time series, see e.g. Atique et al. (2019).

Nevertheless, when a certain degree of randomness and uncertainty
is present in the time series, which is often the case for weather-
related variables, the linear models discussed above fail to achieve
the required accuracy. When it comes to time series predictions that
involve non-linearity, ML algorithms outperform the traditional, linear
statistical models (Chen et al., 2022). The significance of artificial
intelligence, and ML in particular, grows in every sector (Aggarwal
et al., 2022), so to do these ML-methods nowadays outperform other
direct forecasting methods on short-term forecasting horizons (Wang
et al., 2019a). Interest in the RES forecasting literature shifts away from
more classic shallow machine learning algorithms, meaning algorithms
with one or no hidden layer(s), towards DL methods, given their
promising potential regarding unraveling non-linear features and high-
level invariant structures in data (Wang et al., 2019a; Alkhayat and
Mehmood, 2021). Classical ML algorithms have, however, been widely
applied in the RES forecasting literature in recent years, either as sole
forecasting technique or combined with other ML or DL algorithms in
a hybrid format. Artificial Neural Networks (ANNs), Support Vector
Machine (SVM) and Random Forest (RF) are three frequently applied
ML algorithms in the context of renewable energy forecasting. They
are readily employed, do not require vast computational resources and
can be highly interpretable (Xu et al., 2021). As such, these models
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are often used for direct PV and wind power forecasting on the short
to medium-term, where historical power data is almost always supple-
mented with additional meteorological data (Khandakar et al., 2019;
Li et al., 2020a; Pan et al., 2020; Lahouar and Ben Hadj Slama, 2017;
Huertas Tato and Centeno Brito, 2018; Ledmaoui et al., 2023).

In recent years, research into DL applications for renewable energy
forecasting has flourished, as various novel methods recently have
been proposed (Alkhayat and Mehmood, 2021; Ying et al., 2023). As
compared to the more classic ML models discussed above, DL networks
can readily learn from large, possible imbalanced and heterogeneous
datasets and unravel complex non-linear relationships between the
predictors and the power output (Ying et al., 2023; Verma et al., 2023;
Pramono et al., 2019). As such, these methods tend to outperform
other data-driven methods on solar and wind power forecasting (Gupta
and Singh, 2021; Hossain et al., 2021). In both solar and wind power
forecasting, convolutional neural networks (CNNs) and long short-term
memory networks (LSTMs) are the two most prominent deep learning
algorithms in the current literature (Ying et al., 2023) and are often
employed in combination. CNNs are capable of extracting the most
relevant features of meteorological data due to their convolutional
layers, while a pooling layer reduces data quantity by removing redun-
dant characteristics. This way, CNNs achieve high accuracy in weather
pattern classification and can learn complex relations between the input
features and the power output (He et al., 2022; Li et al., 2022). This
last capability results in a high accuracy for wind and solar power
forecasting on short to medium prediction horizons, outperforming
classical ML algorithms such as SVM and RF (Yu et al., 2019; Huang
and Kuo, 2019). LSTMs, on the other hand, are capable of detecting
long-term dependencies in a time series in addition to discovering
hidden, non-linear relationships between variables, resulting in more
accurate forecasts as compared to classical ML algorithms (Li et al.,
2020b; Tarek et al., 2023). Their capacity to memorize the relationships
between input and output makes them more accurate than CNNs on the
medium prediction horizon (He et al., 2022). Both LSTMs and CNNs
are frequently used for RES forecasting on the very short to medium
prediction horizons, where historical power output is usually supplied
with additional meteorological input variables (Li et al., 2020b; Tarek
et al., 2023). Lastly, deep belief networks (DBN), which are generative
probabilistic models which learn the distribution of the input data in
order to realize more accurate output, are commonly used in the RES
forecasting literature (Chang and Lu, 2020). The main advantage of
this algorithm is its capability to handle strongly irregular data and
computational efficiency (Ying et al., 2023; Chang and Lu, 2020).

To take the advantage of multiple methods, recent research of-
ten combines two (or more) complementary forecasting models. This
approach often proves useful given that power output series can be
decomposed in different frequencies, contain residuals and possibly
exhibit various characteristics, such as seasonality or trend. Particular
algorithms can be more fit to tackle the direct forecasting of high
frequency components while others can be used for lower frequen-
cies (Han et al., 2022). This approach requires the application of a
decomposition technique in the preprocessing step, as discussed in Sec-
tion 3. Similarly, different algorithms can be applied for the forecasting
of seasonality and residuals (Zhang et al., 2022a), or for extracting
temporal as opposed to spatial characteristics from the data (Zhao et al.,
2023). Hybrid models in general outperform classical, single ML or
DL models in terms of accuracy and speed and as such represent a
promising path towards effective renewable energy forecasting (Mosavi

et al., 2019).
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Fig. 3. (a) General graph depicting time series forecasting. (b) Assimilation of observations and forecasts in the context of forecasting a meteorological variable. Figure inspired
by an article on data assimilation by the ECMWF (ECMWF, 2017).
4.2. Indirect forecasting

In contrast to direct RES forecasting, the indirect forecasting route
involves a preceding step of weather forecasting, primarily focusing on
variables such as wind speed and solar radiation for the prediction of
wind power and solar energy, respectively. As such, indirect forecasting
is defined as follows:
Indirect forecasting of renewable energy sources entails all methods in
which meteorological variables rather than power data are forecasted prior
to and in function of the power forecast.

Indirect forecasting, and therefore weather forecasting, becomes
necessary in cases when historical meteorological data is unavailable,
e.g. when assessing the viability of a location for a new wind farm
or PV plant, and when making forecasts on medium and long-term
horizons (Gupta and Singh, 2021; Piotrowski et al., 2022b; Bouche
et al., 2023; Jimenez et al., 2016). Weather forecasting constitutes an
autonomous field on its own, which will only be broadly discussed here.
Numerical weather prediction models, which are physics-based model-
ing techniques, are the operational tools for weather forecasting in me-
teorological services worldwide, although progress is also being made
on the machine learning front concerning weather forecasting (Schultz
et al., 2021). When applying NWP models, data assimilation precedes
weather forecasting. The latter is discussed in Section 4.2.2, while the
former is the subject of the next subsection.

4.2.1. Data assimilation
NWP models are essentially mathematical tools serving to solve

initial value problems, where the initial condition of the atmosphere
serves as starting condition from where the time-dependent phys-
ical equations describing the evolution of the atmosphere can be
solved (Ghil et al., 1981). The initial values for meteorological variables
supplied to the NWP model will contain a certain degree of error, which
will quickly enlarge in time due to the chaotic nature of the atmo-
sphere (Reichle, 2008). Consequently, the accuracy of NWP models
diminishes as the error enlarges as it propagates through time due to
the imperfectness of both the model and the initial conditions. This can
be overcome by repeatedly generating new initial conditions, the main
origin of NWP model errors, using observations, through the process
known as data assimilation. In this process, the model is initiated
using the available initial conditions, and as it runs, observations are
continuously collected (Fig. 3(b)). These observations and the current
model are then assimilated to generate new initial conditions used
to run a new, adjusted model (ECMWF, 2017). Data assimilation is
regarded as the techniques used to combine mathematical models with
observations (Kalnay, 2003) and called the art of combining model and
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observations (Rabier, 2011). Therefore, data assimilation in the context
of RES forecasting is defined as follows:
Data assimilation encompasses the mathematical techniques used to com-
bine datasets of observations with the output of theoretical models in order
to improve RES forecasting.

Operational data assimilation techniques can be divided into two
main categories, being ensemble methods and variational methods,
together with hybrid forms thereof Gustafsson et al. (2018). Variational
methods fall within the category of optimization problems, since the
goal is to minimize a cost function in order to fit the model in question
to the observations and find a single optimal state (Bannister, 2017).
Ensemble methods, on the other hand, generate an ensemble of fore-
casts and as such estimate the true state of e.g. the atmosphere with a
probability distribution (Mandel et al., 2011). In the class of ensemble
methods, the Ensemble Kalman Filter (EnKF) (Evensen, 1994) is one of
the most commonly used methods which exists in a myriad of different
forms (Houtekamer and Zhang, 2016). The original Kalman filter (KF)
is a linear, recursive filtering algorithm aimed at optimal fusion be-
tween a model’s estimates and measurements (Kalman, 1960). It aimes
at forecasting uncertainty reduction by making a weighted correction
to the model’s estimate using measurements, where the weight is based
on both the model’s and measurement’s errors which are assumed to
be Gaussian (Bishop et al., 2001). Contrary to KF, a general EnKF
can handle non-normal error distributions and non-linearity between
consequent states. After generating an ensemble of possible plausible
states obtained by perturbing a best-guess estimate, the numerical
model is applied to this ensemble of states (Evensen, 2003). Next, the
measurements are assimilated to the ensemble, i.e. the true state is
approximated by correcting the estimates using weights based on the
measurements. The EnKF is widely applied, e.g. for the forecasting of
wind speed (Wei and Weimin, 2010), wind power (Chainok et al., 2020)
or solar insolation (Ray et al., 2022).

Variational methods are the second class among the most widely
used data assimilation methods. As opposed to the ensemble of states
generated when using the EnKF, variational methods aim at estimat-
ing a single optimal evolving state by minimizing the cost function
representing the mismatch between model and observations (Bannis-
ter, 2017). The most widely used variational method is the four-
dimensional variational data assimilation method (4D-Var) developed
by the ECMWF (Courtier et al., 1994), which added a time dimen-
sion to the already existing 3D-Var method (ECMWF, 2017). Among
many other things, 4D-var can be used in the process of solar ir-
radiance forecasting (Huva et al., 2020) or estimating wind energy

potential (Nino-Ruiz et al., 2020).
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4.2.2. Weather forecasting
Once observations are assimilated with the initial conditions, within

NWP models, the differential equations can be solved to provide
forecasts of meteorological variables, of which, with regards to RES,
wind speed and solar irradiation are the most important variables. As
generating these dynamical forecasts requires extensive atmospherical
knowledge and considerable computational resources, the task is usu-
ally carried out by (inter)national weather agencies, after which the
output can be used by researchers to perform RES forecasting (Wang
et al., 2022a). Examples of widely used, state-of-the-art global NWP
models are the IFS of the ECMWF (ECMWF, 2023), the Global Forecast
System (GFS) developed by the National Oceanic and Atmospheric
Administration (NCEP) (NCEP, 2023) and the Unified Model (UM)
maintained by the Met Office (Met Office, 2023). The Weather Research
& Forecasting Model (WRF) developed by the National Center for
Atmospheric Research (NCAR), on the other hand, is a state-of-the-
art mesocale NWP model (NCAR, 2023). In addition to the dynamic
equations incorporated in NWP models, Computational Fluid Dynam-
ics (CFD) can be incorporated in NWP models in order to improve
accuracy (Wang et al., 2018a).

4.2.3. Indirect forecasting techniques
After forecasting meteorological variables, the actual power conver-

sion can be carried out in a similar fashion as for direct forecasting.
A myriad of various forecasting techniques exist for indirect forecast-
ing, which take predictions of weather variables as input in order
to calculate the estimated power output. Physics-based forecasting is
frequently considered to be identical to indirect forecasting in the
literature (Alkhayat and Mehmood, 2021; Markovics and Mayer, 2022),
as in the latter NWPs are often employed for the forecasting of meteo-
rological variables. However, if one dissects the RES forecasting process
as depicted in Fig. 1, indirect forecasting can be carried out by utilizing
NWP output as input for a data-driven algorithm which calculates the
power forecast (Wang et al., 2018b), resulting in a hybrid method
rather than one that is purely physics-based.

When it comes to physics-based models for power forecasting, fewer
methods exists as compared to the wide variety available in the data-
driven catalogue, which are discussed later in this section. One example
can be the power curve, which, in the most broad sense, relates input
variables, e.g. wind speed and solar irradiance, to power output. For
wind power, the power curve quantifies the relationship between wind
speed at hub height and power output (Yan et al., 2019), while a
similar definition exists for irradiance and solar power (Yang et al.,
2023). Many examples of physics-based, deterministic mathematical
relationships between wind speed and the capacity factor for power
generation; given by e.g. a polynomial (Diaf et al., 2007) or a logistic
function (Villanueva and Feijóo, 2018) can be found in the literature.
Similarly, deterministic polynomial models (Samy et al., 2021) or
logaritmic relations (Nyenah et al., 2022) exist for solar power output.
Recently, more advanced physical model chain approaches have been
proposed, which combine a series of models each performing a task
in the power conversion process, taking both meteorological input and
physical properties of the power conversion tool into account (Wang
et al., 2022a; Yang et al., 2023).

In addition to physics-based models, data-driven models are fre-
quently combined with forecasted meteorological variables to estimate
power output. Next to the usage of a single NWP model, such as
the IFS of the ECMWF, multiple NWP models can be combined in
order to improve forecasting accuracy (Jimenez et al., 2016). Generally,
the prediction horizon typically ranges from medium to long, with
forecasting horizons of less than 6 h being the exception rather than
the rule (Jimenez et al., 2016; Wang et al., 2018b; Cervone et al., 2017;
Eseye et al., 2017). Although classical ML algorithms such as ANNs
and regression trees have been widely applied for indirect forecast-
ing (Jimenez et al., 2016; Cervone et al., 2017; Eseye et al., 2017),
the literature on indirect forecasting is shifting towards DL algorithms
such as LSTMs and DBNs (Wang et al., 2018b, 2022b; Peng et al., 2021)
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given their improved accuracy (Hossain et al., 2017).
4.3. Comparing direct and indirect forecasting

Although rarely thoroughly explored in the literature, there are
some significant differences in the application fields of direct and
indirect forecasting. The largest differences are related to required
prediction time horizon, data availability and the granularity of the
location for which the forecasts are calculated. These factors play
a central role in choosing between indirect and direct methods and
subsequently in selecting the appropriate forecasting technique.

First, the prediction horizon is an important discriminating factor
between direct and indirect forecasting, and has already been touched
upon in Section 4.1.1, where a possible categorization of time horizons
was presented in Table 2. In general, direct forecasting is more applica-
ble for shorter time horizons while indirect forecasting performs better
on longer horizons, where the boundary is situated between a few hours
and a day ahead (Bouche et al., 2023; Jimenez et al., 2016; Wang
et al., 2022b; Simeunović et al., 2022). NWP models typically used
in indirect forecasting methods are not suited on shorter timescales
given the time necessary for computation and data assimilation (Tawn
and Browell, 2022). Direct data-driven methods, on the other hand,
are more appropriate for shorter forecasting horizons. On scales from
nowcasting to very-short-term forecasting, linear statistical time series
methods have the advantage of simplicity and yet achieving a high
accuracy, although errors accumulate as the time horizon grows (Pi-
otrowski et al., 2022b; Son and Jung, 2020; Wang et al., 2018; Jimenez
et al., 2016). On the short-term, direct ML, and especially DL, tech-
niques can outperform indirect methods (Simeunović et al., 2022).
These techniques are suitable to model complex systems and unravel
non-trivial relationship between the input meteorological variables and
power output (Piotrowski et al., 2022b), especially on a timescale of a
few hours. For medium and long-term forecasting, indirect forecasting,
and NWP models more specifically, become the indispensable back-
bone of RES forecasting (Piotrowski et al., 2022a). One reason for
this is that purely data-driven direct methods are incapable of ex-
trapolating non-linear features this far into the future (Wang et al.,
2022a), consequently accurate weather forecasting becomes vital on
longer time horizons. Forecasts on horizons much longer than a day
are rare, given the difficulty to obtain NWP models for these timescales
and the associated loss of quality which increases in conjunction with
growing prediction horizon (Piotrowski et al., 2022b). Accordingly, the
bulk of the literature is concerned with now, very-short and short-term
forecasting, while a very limited number of papers investigate long-
term RES forecasting (Ahmadi et al., 2020). The black curve in Fig. 4(a)
shows the increasing complexity of forecasting models with increasing
time horizon.

Next, spatial granularity, i.e. the spatial resolution, is an important
discriminator between direct and indirect forecasting. When highly
localized predictions are necessary, for example a single PV panel or a
few wind turbines (Pan et al., 2020; Han et al., 2022), direct forecasting
has advantages over its indirect counterpart. Using a direct data-driven
method based on historical data of that specific site allows for local
characteristics to be taken into account (Poolla and Ishihara, 2018).
Weather variables forecasted by means of NWP, on the other hand,
often have a limited resolution and are therefore less fit to serve for
the estimation of local energy processes (Bouche et al., 2023). However,
combining these forecasted variables with local data, if available, could
be a solution to this problem for site-specific modeling (Kay, 2016). As
the spatial scale increases, so does the need for broadly spaced weather
forecasts (Ye et al., 2022), given that capturing large scale phenomena
requires more global weather data (Poolla and Ishihara, 2018). A larger
spatial resolution results in more complex models, as the blue curve in
Fig. 4(a) indicates. This figure also indicate that for small spatial and
time horizons, direct forecasting is advised while the indirect method
is suited for longer prediction horizons.

Lastly, given the inherently data-driven nature of direct forecasting,

its dependence on qualitative, historical data is obvious. In the absence
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Fig. 4. (a) Model complexity increases for growing time horizon, while the opposite relation holds for the spatial horizon. The shaded regions depict when direct and indirect
forecasting are advised, as a function of temporal and spatial granularity. The color gradient illustrates the lack of absolute boundary between the two forecasting methods. (b)
Possible complexity of RES forecasting models related to the amount of available data.
of historical data, which can occur when assessing new power plant
locations, in case of sensor malfunctioning or when forecasting in
remote areas, one is reliant on indirect forecasting (Yang et al., 2023) or
transfer learning. The former does not require abundant historical data
and can therefore be conducted in the case of data scarcity. However,
accurate forecasting of weather variables also relies on substantial
amounts of data in the form of initial and boundary conditions (Son
and Jung, 2020). Transfer learning, on the other hand, can be em-
ployed to transfer knowledge from a model trained priorly on adequate
data, which performed a similar RES forecasting task, to the current
model experiencing data unavailability. As such, direct forecasting can
be employed without vast amounts of historical data and without
weather forecasting being necessary, although much further research
is required (Sarmas et al., 2022). In the case historical data is present,
direct forecasting can be applied. Most studies applying a direct method
supply historical power data with additional meteorological data such
as temperature or humidity (Alkhayat and Mehmood, 2021). Direct
data-driven methods require a rich supply of historical data (Ying et al.,
2023) and to be able to catch seasonal patterns, RES forecasting models
need at least one calendar year of training data (Piotrowski et al.,
2022b; Sarmas et al., 2022). Therefore, sufficient data is indispensable
in order to train sophisticated models and accurately regress the com-
plex relationships between input variables and power output. When
historical data is scarce, simple, linear statistical time series models can
be a solution to directly forecast on (very) short time horizons since
only observations of the variable in question are necessary (Khashei
and Bijari, 2011). Fig. 4(b) indicates in a schematic way the amount
of data needed in order to construct a forecasting model of a certain
complexity. With a small amount of data simple direct forecasting
models can be realized. While large amounts of data, on the other
hand, allow for a more complex RES forecasting model. Indirect RES
forecasting models are more complex as compared to their direct
counterparts based on the same amount of data due to the weather
forecasting component. Building complex models based on very limited
data is virtually impossible, as indicated by the red zone in Fig. 4(b).

5. Postprocessing

As the name suggest, postprocessing takes place after the forecasting
of the variable in question and aims at maximizing forecasting accu-
racy. A multitude of postprocessing methods exists, ranging from basic
techniques like adjusting for measurement device bias by subtracting
a term to more complex approaches involving ML or statistics, such as
the member-by-member approach (Van Schaeybroeck and Vannitsem,
2015). Postprocessing should not be confused with model evaluation,
551
which is the subject of the next section, where the goal is to simply mea-
sure the skill of the model, not improve it. Additionally, postprocessing
is vital both for weather forecasts and the eventual power forecasts. The
methods discussed below can be applied to postprocess both the power
forecasts themselves or the weather variable forecasts in an earlier
stage of the RES forecasting scheme. The following definition is adopted
here (Yang and van der Meer, 2021):
Postprocessing refers to all techniques applied to initial weather or RES
forecasts in order to improve the goodness of fit of the forecast.

A first, straightforward category of postprocessing techniques is that
of the data transformations. In many cases, it reverses a transformation
done before the forecasting, i.e. during the preprocessing step (see
Section 3). Typical transformations are denormalization (Zhang et al.,
2022a), inverse wavelet transforms (Almaghrabi et al., 2022) or resolu-
tion changes. The latter might be necessary when the forecast does not
attain the required temporal (or spatial) resolution. Downscaling (re-
quiring a lower resolution) can be done by aggregating data before the
forecast, while upscaling (requiring a higher resolution) is performed
on the initial low-resolution forecast (Yang and van der Meer, 2021).
The latter can be done, for example, by replacing the forecast with
similar historical data of higher resolution (Yang et al., 2019). Next,
filtering is a popular, sequential postprocessing category which aims at
finding the true state of the predictand by stabilizing and denoising the
forecasted time series based on recent observations (Yang and van der
Meer, 2021; Pereira et al., 2019). The most prominent example is the
Kalman Filter (Zhang et al., 2022c), as discussed in Section 4.2.1.

Weather forecasts are often accompanied by systematic model-
led biases and are therefore in strong need of effective postprocess-
ing techniques (Yang, 2019). The most popular class of techniques
for postprocessing weather forecasts, and NWP models in particular,
is model output statistics (MOS) (Zhang et al., 2022d). The MOS
techniques essentially involves representing the bias in NWP model
output as a regression formula that is a function of relevant parame-
ters (e.g. zenith angle) (Yang and van der Meer, 2021). The function
fitted can then be used to calculate the expected bias of a new fore-
cast (Yang, 2019). This can essentially be done using any regression
form and as such an endless number of techniques exist (Yang and
van der Meer, 2021). Possible examples are a simple linear regression
model (Lazić et al., 2014; Theocharides et al., 2020), fourth grade
polynomials (Lorenz et al., 2009d) and neural networks (Pereira et al.,
2019). MOS techniques specifically developed for the postprocessing of
ensemble weather forecasts are called ensemble MOS (EMOS) (Baran
and Lerch, 2016). Various other ensemble postprocessing methods
exist, similar to the methods discussed for ensemble forecasts in Sec-
tion 4.2.1 regarding data assimilation, which are capable of correcting
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for biases while producing probabilistic information regarding the fore-
cast uncertainty (Vannitsem et al., 2020). These techniques are called
ensemble methods, which produce various outcomes for the same
forecasts using different data or models, by for example perturbing the
initial conditions or by combining the results of different models (Yang
and van der Meer, 2021). As such, postprocessing forecasts with an
ensemble method does not result in one deterministic forecast value,
but rather in an ensemble of forecasts. An important subcategory in
these ensemble methods is the Analog Ensemble (AnEn), which is in-
spired by the frequent repetition of weather patterns (Yang and van der
Meer, 2021). This method matches the forecast with historical, near-
identical forecasts and uses the corresponding historical observations
to create an ensemble of forecasts. This essentially provides a proba-
bility distribution, from which the mean or median can be calculated
to obtain a deterministic forecast (Davò et al., 2016). For example,
solar power ensembles can be generated by combining past power
production observations, where this power data is linked to historical
NWP forecasts similar to the current weather forecast (Alessandrini
et al., 2015). Another statistical technique, the member-by-member
approach, is developed specifically to postprocess ensemble weather
forecasts (Van Schaeybroeck and Vannitsem, 2015) and is used to
process ECMWF forecast by the Belgian met service (Demaeyer et al.,
2021). This approach corrects each member of the ensemble indi-
vidually by means of a linear map, retaining correlations present in
the data (Van Schaeybroeck and Vannitsem, 2015). Lastly, very re-
cently, a promising new ensemble method was proposed making use
of hierarchical transformers, a natural language processing technique
based on neural networks, and applied in order to improve ECMWF
forecasts (Ben-Bouallegue et al., 2023).

6. Model evaluation

The last and crucial step in the process, before the model can be
used for inference, comes down to the evaluation of the RES forecasting
model. In the end, after going through all steps depicted in Fig. 1 pass-
ing data through various algorithms, what matters most is the quality of
the final forecast. To assess this quality, answers to the following three
questions should be formulated: (1) How well do the forecasts compare
to actual observations, (2) How well does the model perform compared
to other models and (3) How user-friendly is the model? Answering
the first question essentially involves evaluating the model’s accuracy,
which can be quantified by using metrics such as the Root Mean Square
Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage
Error (MAPE) and the coefficient of determination 𝑅2 (Aslam et al.,
021). Many other metrics exist (Alkhayat and Mehmood, 2021) and
iven that these metrics each have certain limitations, as for example
escribed in Willmott and Matsuura (2005) for the RMSE, the use of
arious different metrics is advised (Ding et al., 2022; Qi et al., 2023).
lternatively, the use of performance metrics that integrate multiple
easures, such as the Kling-Gupta Efficiency (KGE), commonly used in
ydrology, can provide a more balanced evaluation by combining three
etrics: correlation, bias, and the ratio of variances or coefficients of

ariation (Gupta et al., 2009).
A new model can perform excellent with regards to the accuracy

etrics described above, but if the lionshare of similar models in the
iterature perform better, the model is not that much of an innovation.
s such, it is necessary to benchmark the models performance against

he state-of-the art, or at least verify that the model performs better
han the persistence model (Abedinia et al., 2020). The persistence
odel is a trivial method often applied in the literature, which assumes

he state of a variable (e.g. solar power) at time 𝑡 + 1 is the same as at
ime 𝑡. It is imperative to know if a new proposed model performs at
east better then this trivial method (Yahyaoui, 2018).

Next, the characteristics of the model are an important evaluation
actor. A trade-off between computational complexity and model accu-
acy can be made by using the training and running time as evaluation
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indices for a forecasting model (Alkhayat and Mehmood, 2021). The
former is one of the most important indicators for the evaluation of PV
power forecasting models (Jailani et al., 2023), especially as short-term
RES forecasting is becoming increasingly important (Woo et al., 2020).

Another important characteristic of a RES forecasting model con-
cerns its robustness, which refers to the consistency of a models perfor-
mance under varying or unusual conditions. In the context of RES time
series forecasting, such conditions could take the form of outliers, data
gaps, seasonality, unusual weather patterns or perturbations in the time
domain Alkhayat and Mehmood (2021), Yoon et al. (2022). Testing a
proposed forecasting method on multiple or all of these factors is imper-
ative, as robust models are more reliable in applications, and it is vital
to understand the circumstances under which the model may fall short.
Lastly, extreme weather events are often lacking from training datasets,
resulting in models not being able to accurately predict the occurrence
of these events. This problem can be overcome by using generative ML
algorithms to augment the dataset with artificially generated extreme
events (Wang et al., 2019b).

7. Concluding remarks

7.1. Discussion

As solar and wind power become evermore present in the global
energy landscape, our dependence on these renewable energy sources
grows and the energy sector consequently exhibits a pressing need
for accurate RES forecasts. Inaccurate forecasts have, furthermore,
grave environmental and economical consequences, as they lead to
imbalances and consequently an increase in carbon emissions due to
the utilization of fossil reserves (Bruninx et al., 2014; Forbes and
Zampelli, 2020, 2019). Accurate RES forecasts as such become vital
for the operational management of our power grids (Elia, 2019), but
remain a challenging endeavor due to the intermittent nature of solar
and wind power. Realizing these accurate forecasts requires traversing
several important stages, of which some have already been thoroughly
reviewed in the literature. This paper, however, provided a clear de-
scription of all stages, studied in chronological order. As such, the
complete process was presented in a comprehensive way, facilitating
the study and optimization of each individual stage. Every step was
concisely described while the state-of-the-art methods were presented.
It is common practice in the literature to classify RES forecasting mod-
els into physical, statistical, machine learning-based or hybrid methods
solely based on their use of algorithm in the forecasting step (Wang
et al., 2019a, 2020b; Jiang et al., 2019; Meenal et al., 2022; Hodge
et al., 2018; Hu et al., 2018). This approach is, however, too limited,
since this work has made clear that at every point in the process,
several possible techniques can be employed, belonging to the realm
of either physics-based or data-driven methods. Instead, a holistic view
on the RES forecasting process was presented, proposing a generalized
framework based on the fundamental difference between direct and
indirect forecasting, a characteristic inherent to the model as a whole.
Moving beyond merely classifying methods based on their forecasting
algorithm or performance regarding simple evaluation metrics, this
paper sought to unravel why direct or indirect methods might be more
suitable in particular applications. Each of these methods is expected
to excel within dissimilar spatial and temporal scales, the reasons
for which lie in their inherent differences in model complexity and
data requirements. The latter issue of data requirement, and more
specifically data availability, is a most relevant matter, rarely touched
upon in the literature, given that the performance of a model is directly
linked to the knowledge contained in the data it is trained on Jain
et al. (2020), Gupta et al. (2021). Consequently, this work distinguished
between direct and indirect forecasting from a data perspective, next
to the more common discussion regarding the temporal and spatial ap-
plication field of forecasting methods. Considering these factors when
assessing the performance of RES forecasting models contributes to a
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more comprehensive understanding of the subject. Given the complete
overview of the RES forecasting process and building on the distinctions
between direct and indirect forecasting, a significant step towards a
generalized framework is realized. This is, however, merely a rough
first indication and considerable research still needs to be carried out
to bring further clarity on the differences between direct and indirect
forecasting.

7.2. Recommendations for future research directions

In depth research into the difference in application fields of direct
and indirect forecasting constitutes a promising avenue for future
work. Conducting profound research that compares indirect and direct
forecasting could reveal more clear differences between these methods
in terms of spatial, temporal and data aspects, beyond the indicative
results presented here in Fig. 4. This could be realized, for example,
by carrying out several studies employing various indirect and direct
forecasting models on one or several widely used, benchmarked re-
newable energy datasets, such as the recently published dataset for
statistical postprocessing (Demaeyer et al., 2023). This would allow
for fair, quantitative comparisons between methods instead of isolated
studies which differ too much for reliable comparison (Dueben et al.,
2022). Systematic research conducted in this way could lead to the
development of a generalized framework for renewable energy forecast-
ing, offering tailored RES models for various application domains based
on available data, required prediction horizon and spatial granularity .

Currently, direct forecasting models need vast amounts of data and
are impractical in data-scarce environments. Investigating the feasibil-
ity of training models using physics-based knowledge, thus adopting
an indirect approach, and subsequently applying these trained mod-
els directly warrants further investigation. Incorporating physics-based
knowledge as we know it form indirect models into direct models will
enhance performance on longer time horizons while reducing the need
for data. An interesting approach could be to study the so-called black
box of deep learning algorithms of well-performing, direct forecasting
models to unravel the useful relations they contain regarding input data
and power output, as all the mathematical relations contained in these
models are known and can be studied (Maier et al., 2023). Similarly,
transfer learning might constitute a potential means of circumventing
the need for large amounts of data. Traditional DL models rely on
extensive amounts of data to be build from scratch, whereas knowledge
regarding parameter weight initialization and feature extracting can
be transferred from already well performing forecasting models (Sar-
mas et al., 2022; Schreiber, 2019). Consequently, both the amount of
required training data and time would be greatly reduced. Although
promising results have been reported in this regard (Sarmas et al.,
2022), further exploration in the literature remains necessary.

Lastly, given that the forecasting accuracy of both direct and indi-
rect RES forecasting approaches depends on the performance of each
individual stage as depicted in Fig. 1, their impact on the overall
process requires more extensive research. While the importance of
studying the impact of data availability has already been highlighted,
and several studies regarding the accuracy of various forecasting tech-
niques exist, it is equally important to pay similar attention to the
other stages of the forecasting process. Preprocessing, for example, is a
crucial aspect of the RES forecasting scheme that can have a substantial
impact on prediction performance but has not yet been extensively
explored (Lai et al., 2020).
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