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Noise-induced transition from superfluid to vortex state in two-dimensional

nonequilibrium polariton condensates – semi-analytical treatment

Vladimir N. Gladilin and Michiel Wouters
TQC, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen, Belgium

(Dated: September 20, 2023)

We develop a semi-analytical description for the Berezinskii-Kosterlitz-Thouless (BKT) like phase
transition in nonequilibrium Bose-Einstein condensates. Our theoretical analysis is based on a noisy
generalized Gross-Pitaevskii equation. Above a critical strength of the noise, spontaneous vortex-
antivortex pairs are generated. We provide a semi-analytical determination of the transition point
based on a linearized Bogoliubov analysis, to which some nonlinear corrections are added. We
present two different approaches that are in agreement with our numerical calculations in a wide
range of system parameters. We find that for small losses and not too small energy relaxation, the
critical point approaches that of the equilibrium BKT transition. Furthermore, we find that losses
tend to stabilize the ordered phase: keeping the other parameters constant and increasing the losses
leads to a higher critical noise strength for the spontaneous generation of vortex-antivortex pairs.
Our theoretical analysis is relevant for experiments on microcavity polaritons.

I. INTRODUCTION

The interest in nonequilibrium phase transitions of
quantum many body systems has witnessed a rapid
growth over the last decade thanks to the developments
in Bose-Einstein condensation in optical systems (micro-
cavity polaritons and photons in dye filled cavities) [1],
circuit QED [2] and ultracold atomic gases [3]. One of
the most elementary phase transitions in these systems
is the onset of Bose-Einstein condensation, defined as
the emergence of spontaneous long range phase coher-
ence. Where at thermal equilibrium, long range phase co-
herence appears when the temperature is lowered below
a density-dependent critical temperature, in nonequilib-
rium systems, the phase coherence is determined by the
interplay between the hamiltonian and dissipative parts
of the dynamics or even between competing dissipative
mechanisms [4, 5].
Since quantum fluids of light are only available in one

or two dimensions, true long range order is actually ab-
sent. In one-dimensional bose gases, both at thermal
equilibrium and out of equilibrium, the spatial decay of
the first order coherence function is always exponential
[6, 7]. In two dimensions and at equilibrium there is the
celebrated Berezinskii-Kosterlitz-Thouless phase transi-
tion [8, 9] that separates the normal and the superfluid
state, with exponential and algebraic decay of the spatial
coherence respectively. In equilibrium, the phase dynam-
ics is in the XY universality class and the corresponding
universal jump in the superfluid stiffness has been ex-
perimentally observed in 4He [10]. More recently, the
flexibility of the platform of ultracold atoms allowed a di-
rect observation of the spontaneous formation of vortex-
antivortex pairs above the BKT transition [11]. The ul-
tracold atomic gases are in the weakly interacting regime,
for which the transition temperature was computed by
Prokof’ev and Svistunov by a clever combination of the
linear Bogoliubov approximation and numerical Monte
Carlo simulations [12].
For photonic systems out of equilibrium, the phase dy-

namics is actually in the Kardar-Parisi-Zhang universal-
ity class where a nonlinear term in the phase evolution is
essential [13, 14]. For one-dimensional polariton systems,
the spatial decay of the correlations remains qualitatively
unaffected by the nonlinearity in the phase dynamics [15],
but a specific spatiotemporal scaling emerges, that was
recently observed experimentally [16].

In two dimensions, the KPZ phase dynamics was pre-
dicted to make long range phase coherence impossible in
isotropic systems [13, 17]. Numerical studies on the other
hand have shown a transition toward a state with alge-
braic decay of the coherence [18] and an associated disap-
pearance of vortex-antivortex pairs [18–21] without the
formation of topological defects even when the spatiotem-
poral correlations feature KPZ scaling [22, 23]. Since
computational resources limit the system sizes for numer-
ical studies, the discrepancy between the renormalisation
group studies could be due to finite size effects, but at
present it does not seem that the issue is fully settled.
Even when the numerically observed BKT transition is
due to a limited system size, experimentally available sys-
tems necessarily also work with relatively small sizes, so
that there is a clear interest in the nonequilibrium BKT
transition. Compared to the equilibrium case, the cur-
rent understanding of the dependence of the BKT critical
point on the system parameters is much less mature. The
reason herefore is twofold. First, out of equilibrium the
standard Boltzmann-Gibbs ensemble can no longer be
used and the steady state has to be characterized by a
more involved simulation of the system dynamics. Sec-
ond, the nonequilibrium dynamics is governed by more
parameters: in addition to the system Hamiltonian and
environment temperature, also the details of the coupling
to the environment come into play in the non-equilibrium
situation.

In our previous work on photon condensation [24],
we have pinpointed the nonequilibrium BKT critical
point with numerical simulations and developed a semi-
analytical approach in order to get a better understand-
ing of the location of the critical point. In our nu-
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merical simulations, the transition was approached from
the ordered side with no vortices present in the initial
state. Above a critical value of the noise strength in
the stochastic classical field description of the dynamics,
vortex-antivortex pairs spontaneously appear, signalling
the BKT like transition to the disordered state. Our
work involved both numerical simulations and analytical
approximations that capture the dependences of the tran-
sition point on all the system parameters. The analytical
approximation for photon condensates was based on the
Bogoliubov approximation, combined with an infrared
cutoff set by the inverse vortex core size [25]. In our
previous study on the BKT transition for (interacting)
polaritons [20], no such analytical estimate was given.

In the present article, we wish to fill this gap. More-
over, we extend our previous results to the regime of van-
ishing interactions, so that we can elucidate the effect of
both the nonequilibrium condition and of interactions on
the BKT transition point. When the interactions become
small compared to the gain saturation nonlinearity, the
vortex core size can significantly deviate from the usual
healing length defined as ξ = ~/

√
mgn̄, where m is the

mass, g the interaction constant and n̄ the density of po-
laritons in the condensate. The vortex core size appears
in our treatment as a good proxy for the inverse of the
infrared cutoff that we have to introduce to avoid the di-
vergence of a momentum integral. We therefore carried
out a systematic analysis of the vortex size and structure
as a function of the strength of the interactions and of
the driving and dissipation.

The structure of this paper is as follows. In Sec. II, we
introduce our model for polariton condensates and derive
the density and phase flucutations within the linear (Bo-
goliubov) approximation. In Sec. III, we construct some
approximate formulae for the BKT critical point with a
few fitting parameters that are able to capture our nu-
merical simulations. We start with a simple approach
that is able to capture the main dependencies of the crit-
ical point on the system parameters and then present a
more refined approach that allows for a very good fitting
of the numerical results. Conclusions are drawn in Sec.
IV and the vortex structure is discussed in appendix A.

II. MODEL AND LINEARIZATION

We consider nonresonantly excited two-dimensional
polariton condensates. In the case of sufficiently fast re-
laxation in the exciton reservoir, this reservoir can be
adiabatically eliminated and the condensate is described
by the noisy generalized Gross-Pitaevskii equation [26–
29]

(i− κ)~
∂ψ

∂t
=

[

−~
2∇2

2m
+ g|ψ|2

+
i

2

(

P

1 + |ψ|2/ns
− γ

)]

ψ +
√
Dξ. (1)

Here m is the effective mass and the contact interac-
tion between polaritons is characterized by the strength
g. The imaginary term in the square brackets on the
right hand side describes the saturable pumping (with
strength P and saturation density ns) that compen-
sates for the losses (γ). We take into account the en-
ergy relaxation κ in the condensate [30]. The com-
plex stochastic increments have the correlation function
〈ξ∗(x, t)ξ(x′, t′)〉 = 2δ(r−r

′)δ(t−t′). Eq.(1) is a classical
stochastic field model that describes all the fluctuations
in the system as classical. This model is therefore only
valid in the weakly interacting regime gm/~2 ≪ 1, where
quantum fluctuations are small.

For κ = 0, the zero momentum steady state of Eq. (1)
is under homogeneous pumping ψ0(x, t) =

√
n0e

−ign0t,
with n0 = ns(P/γ−1). By expressing the particle density
|ψ|2 in units of n0, dividing time by ~(1+κ2)/n0, length
by ~/

√
2mn0, and noise intensity by ~

3n0/(2m), Eq. (1)
takes the form:

∂ψ

∂t
=(i+ κ)

[

∇2 − g|ψ|2 − iγ

2ns

1− |ψ|2
1 + ν|ψ|2

]

ψ

+
√
Dξ, (2)

where ν = n0/ns. The steady state density is then in the
absence of noise given by [20]

n̄ =

√

(

κ+ c

2κν

)2

+
c

κν
−
(

κ+ c

2κν

)

(3)

with c ≡ γ/(2gns).

In order to gain some insight in the physics of the fluc-
tuations induced by the noise in Eq. (2), one can consider
in first approximation the linearized equations for the
density and phase fluctuations around the steady state:

ψ(x, t) =
√

n̄+ δn(x, t)e−ign̄t+iδθ(x,t) (4)

After a spatial Fourier transform, these obey the lin-
earized equations of motion

∂

∂t
δθk = −κǫkδθk − ǫk

2n̄
δnk − (g − κγ̃)δnk

+

√

D

n̄
ξ
(θ)
k
, (5)

1

n̄

∂

∂t
δnk = −κǫk

δnk
n̄

+ 2ǫkδθk − 2(κg + γ̃)δnk

+ 2

√

D

n̄
ξ
(n)
k
, (6)

where

γ̃ =
γ(1 + ν)

2ns(1 + νn̄)2
. (7)
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Using the Ito formula [31], one can obtain from Eqs.
(5) and (6) a set of three equations:

D

n̄ǫk
= 2κ

〈

|δθk|2
〉

+

〈

δθ−kδnk
n̄

〉

+
2(g − κγ̃)n̄

ǫk

〈

δθ−kδnk
n̄

〉

, (8)

D

n̄ǫk
=

[

κ

2
+

(κg + γ̃)n̄

ǫk

]

〈

∣

∣

∣

∣

δnk
n̄

∣

∣

∣

∣

2
〉

−
〈

δθ−kδnk
n̄

〉

, (9)

[ǫk + 2(g − κγ̃)n̄]

〈

∣

∣

∣

∣

δnk
n̄

∣

∣

∣

∣

2
〉

= 4ǫk

〈

|δθk|2
〉

− 4 [κǫk + (κg + γ̃)n̄]

〈

δθ−kδnk
n̄

〉

, (10)

where

ǫk = k2. (11)

Eqs. (8)-(10) can be solved for the density and phase
fluctuations and are accurate when they are small. Close
to the BKT transition, this condition however breaks
down. In the following, we will outline how these equa-
tions can still be used in order to obtain an estimate for
the critical point, in analogy with our study of the BKT
transition in photon condensates [24].

III. APPROXIMATIONS FOR THE BKT

CRITICAL POINT

A. Heuristic estimate of density-phase correlator

In order to obtain our estimate of the critical point,
we start by integrating Eq. (8) over all momenta. In
the right hand side, we then use that for a homogeneous
system

∫

d2k〈|δθk|2〉 = 〈δθ(x) δθ(x)〉 ≡ 〈δθ2〉 (12)

∫

d2k〈δθ−kδnk〉 = 〈δθ(x) δn(x)〉 ≡ 〈δθδn〉 (13)

When integrating the left-hand side of Eq. (8) over k,
we assume the presence of a finite UV momentum (en-
ergy) cutoff k+ (ǫ+ = k2+). Our numerical simulations
are performed for a lattice with grid size h, for which
our UV cutoff equals k+ = π/h [i.e, ǫ+ = (π/h)2]. Fur-
thermore, one has to take into account that for the sys-
tems, described by nonlinear equations similar to Eq. (2),
the use of the linear approximation given by Eq. (11) is
physically meaningful [12, 24] only for k above a certain

IR momentum (energy) cutoff k− (ǫ− = k2
−
). Then the

Fourier transform of the left-hand side of Eq. (8) can be
represented asD[C1+ln(ǫ+/ǫ−)]/(4πn̄), where the fitting
constant C1 approximates the contribution of momenta
smaller than k−.
Physically, the correlator 〈δθδn〉 expresses correla-

tions between the density and current fluctuations (since
the velocity is the spatial derivative of the phase). In
nonequilibrium condensates, density and velocity fluctu-
ations are correlated because the particle balance equa-
tion: a local suppression of the density leads to local
reduction of particle losses, which is compensated by an
outward flow of particles. In the context of the BKT
transition, this physics plays an important role, because
the density in a vortex core is reduced so that vortices
are accompanied by outgoing radial currents. The mag-
nitude of the density-phase correlator was estimated in
Ref. [24] for nonequilibrium photon condensates. Fol-
lowing this approach, for the system under consideration
here, we obtain

〈δθ δn〉 = γ̃

n̄
〈δN2〉, (14)

where δN =
∫ x

0
δn(x′)dx′. In the case of a plane density

wave n = n̄(1− a cos kx) one has

〈δN2〉 = a2n̄2

2k2
. (15)

At the BKT transition, vortices have to nucleate, which
requires in a continuum model strong density fluctua-
tions with amplitude n̄ (i.e. a = 1) [24]. Those strong
fluctuations have appreciable probability only for rela-
tively large momenta k ∼ k+ as seen from the fact that
the best fitting in Ref. [24] corresponds to the effective
momentum value k ≈ 0.3k+ in Eq. (15). Therefore, we
approximate the correlator 〈δθδn〉 by C2n̄γ̃/ǫ+, where
C2 ∼ 1 is a fitting parameter.
Analogously, the Fourier transform of 〈δθ−kδnk〉 /ǫk

in the last term of Eq. (8) is approximated by C3n̄γ̃/ǫ
2
+

with a fitting constant C3. As a result, we obtain the
following approximate expression for the critical noise

dBKT =

{

2κ〈δθ2〉BKT +

[

C2 +
2C3(g − κγ̃)

ǫ+

]

γ̃

ǫ+

}

× 4π

C1 + ln(ǫ+/ǫ−)
, (16)

where dBKT ≡ (D/n̄)|BKT.
In line with Refs. [12, 24], we will assume that at the

transition 〈δθ2〉BKT = 1/2. In the equilibrium case (and
at κ2 ≪ 1) the IR momentum cutoff is inversely propor-
tional to the healing length, so that the corresponding
energy cutoff is ∼ gn̄. Since the healing length corre-
sponds at equilibrium to the vortex core size, a natural
generalization to the nonequilibrium situation is to take
a cutoff based on an estimate of the vortex core size. Our
estimation of the vortex core size, detailed in appendix
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A, leads to

ǫ− = n̄

[

g +B0γ̃

(

B0γ̃

g +B0γ̃

)3
]

, (17)

where B0 = 0.524. The average density n̄ in Eq. (17) will
be approximated by its steady-state value in the absence
of noise (3).
The results of fitting the numerical data for dBKT with

Eq. (16) are represented by the dashed lines in Figs. 1 and
2 where the determined fitting parameters are C1 = 8.87,
C2 = 1.64, and C3 = 5.92 × 10−5. The small numerical
value of C3 implies it can actually be set to zero with-
out affecting the quality of the fits. The numerical data
in Figs. 1(a) and 2(a) and the main panels in Figs. 1(b)
and 2(b) are taken from Ref. [20]. To numerically solve
Eq. (2), a finite-difference scheme was used. Specifically,
we use periodic boundary conditions for a square of size
Lx = Ly = 40 with grid step equal to 0.2. The loca-
tion of the critical point is determined in the following
way: after a long time evolution in the presence of noise,
the system was evolved without noise for a short time
(few our units of time) before checking for the presence
of vortices. This noiseless evolution gives the advantage
of cleaning up the density and phase fluctuations while
it is too short for the unbound vortex-antivortex pairs to
recombine. The propensity for their recombination is re-
duced [20] with respect to the equilibrium case thanks to
outgoing radial currents that provide an effective repul-
sion between vortices and antivortices. To determine the
critical noise for the BKT transition, DBKT, we use the
following criterion. If for a noise intensity D unbound
vortex pairs are present after a noise exposure time tD
(and hence D > DBKT), while for a certain noise inten-
sity D′ < D no vortex pairs appear even at noise expo-
sures few times longer then tD, then D′ lies either below
DBKT or above DBKT and closer to DBKT then to D.
Therefore, the critical noise intensity can be estimated
as DBKT = D′ ± (D −D′).
As seen from the comparison between the dashed lines

and the symbols in Figs. 1 and 2, Eq. (16) qualitatively
reproduces the main trends in the behavior of the numer-
ically determined dBKT(c, κ, ν, h) at relatively small grid
steps h, when ǫ+ is considerably larger than ǫ−. This
qualitative agreement is ensured, in particular, by taking
into account the contributions related to density-phase
correlation, which are zero in equilibrium systems but
play a crucial role for the BKT transition out of equi-
librium. At the same time, this simple and transparent
heuristic estimate of these contributions does not appear
sufficient for a good quantitative description of the nu-
merical results.

B. Bogoliubov theory with nonlinear correction

In order to obtain a better quantitative description of
the numerics for the nonequilibrium BKT transition, we

FIG. 1. Numerically (symbols) and semi-analyticaly (lines)
determined renormalized critical noise dBKT = DBKT/nBKT

as a function of c = γ/(2nsg) (a), κ (b), and ν (c). The insets
in panels (b) and (c) show the dependence of dBKT on κ and
ν, respectively, in the case of g = 0. The solid and dashed
lines correspond to Eqs. (26) and (16), respectively.
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(a)

(b)

FIG. 2. Numerically (symbols) and semi-analyticaly (lines)
determined renormalized critical noise dBKT as a function of
the grid step at κ ≥ 0.1 (a) and κ = 0 (b) for nonzero g. Inset
in panel (b): dBKT as a function of the grid step at g = 0.
The solid and dashed lines correspond to Eqs. (26) and (16),
respectively.

develop below a different approach that leads to a slightly
more involved expression. To this purpose, we start from
the linear approximation for the phase fluctuations in the
steady state, obtained by solving Eqs. (8)-(10). Inserting

D/n̄ from Eq. (8) and
〈

|δnk/n̄|2
〉

from Eq. (10) into

Eq. (9), we obtain the relation

[

ǫk + 3gn̄+ 2
(

g2 + γ̃2
) n̄2

ǫk

]〈

δθ−kδnk
n̄

〉

= 2γ̃n̄
〈

|δθk|2
〉

. (18)

Using Eq. (18), we express 〈δθ−kδnk/n̄〉 through 〈|δθk|2〉
and insert the result into Eq. (8). For the phase fluctua-
tions, this leads to the equation

〈

|δθk|2
〉

=
D

n̄
f(ǫk), (19)

where

f(ǫ) =
1

2κ

ǫ+ 3n̄g + 2
(

g2 + γ̃2
)

n̄2/ǫ

(ǫ+ ǫ1)(ǫ+ ǫ2)
. (20)

with

ǫ1 = n̄

(

g +
γ̃

κ

)

, ǫ2 = 2n̄g. (21)

From Eqs. (19) and (20), one sees that the phase fluctua-
tions are, as expected, proportional to the noise strength
D and decrease as a function of the density n̄ and energy
relaxation κ. For what concerns their energy dependence,
Eq. (20) shows a 1/ǫ behavior both at small and large en-
ergies. As a consequence, the Fourier transform of phase
fluctuations, needed to obtain their real space correla-
tions requires the introduction of an infrared cutoff ǫ−,
analogous to the treatment in Sec. IIIA. As a result of
Fourier transformation, the local phase variance becomes

〈

δθ2
〉

=
D

4πn̄
(F + F−) (22)

where

F =

ǫ+
∫

ǫ
−

f(ǫ)dǫ =
1

2

g2 + γ̃2

g(κg + γ̃)
ln

(

ǫ+
ǫ−

)

+
γ̃

γ̃ + κg

(

1

2κ
+

κγ̃

γ̃ − κg

)

ln

(

ǫ+ + ǫ1
ǫ− + ǫ1

)

− γ̃2

2g(γ̃ − κg)
ln

(

ǫ+ + ǫ2
ǫ− + ǫ2

)

, (23)

where the logarithmic dependence on the lower and upper
energy cutoffs is a consequence of the 1/ǫ behavior of f(ǫ)
at low and high energies. The term

F− = C−ǫ−f(ǫ−) (24)

in Eq. (22) approximates the contribution of the integral
over ǫ from 0 to ǫ−, where C− is a fitting parameter.
Expression (22), derived with the use of linearized

equations for the phase and density fluctuations, is ex-
pected to be applicable when these fluctuations are small.
As discussed above, at the BKT transition, where both
phase and density fluctuations are large, the real-space
correlator 〈δθδn〉 is mainly determined by the contri-
butions of k ∼ k+. According to Eq. (18), the quan-

tity 〈|δθk|2〉 contains a term that is exactly proportional
to 〈δθ−kδnk〉. This implies that at the BKT transition
the expression for the phase fluctuations 〈δθ2〉, derived
above, needs an additional “nonlinear correction”, which
would describe an enhanced contribution of large mo-
menta k ∼ k+ (large energies ǫ ∼ ǫ+). Here, we approxi-
mate this correction by adding to F the term

F+ = C+ǫ+ f(ǫ+), (25)
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FIG. 3. Renormalized critical noise dBKT/κ, given by
Eq. (26), as a function of γ̃/g and κ at three different val-
ues of ǫ+/ǫ−.

where C+ is a fitting parameter. Then at the BKT point
we have

dBKT = 〈δθ2〉BKT
4π

F + F− + F+
, (26)

where again we take 〈δθ2〉BKT = 1/2.
Applying Eq. (26) to fit the numerical data for dBKT,

we obtain for the two fitting parameters: C− = 2.24 and
C+ = 7.33. As compared to the results of the heuristic
approach described in the previous subsection (dashed
lines in Figs. 1 and 2), the results corresponding to more
involved and accurate Eq. (26), which are shown by the
solid lines in Figs. 1 and, demonstrate a much better
quantitative agreement with the numerically determined
dBKT.
The semi-analytical expression for dBKT, given by

Eq. (26) together with Eqs. (17), (20), (21), and (23)-
(25), can be considered as a function of three independent
parameters: γ̃/g, κ and ǫ+/ǫ−. In Fig. 3, the renormal-
ized critical noise dBKT/κ, corresponding to Eq. (26), is
plotted for a wide range of the parameters γ̃/g and κ at
three different values of the ratio ǫ+/ǫ−.

For small losses and not too small κ, the ratio dBKT/κ
is of order one, in line with the equilibrium BKT tran-
sition where according to fluctuation-dissipation relation
D = κT [32] and where the critical temperature scales

in first approximation as TBKT ∼ n. In line with our
previous studies for polariton condensates [20] and pho-
ton condensates [24], we see that the losses stabilize
the ordered phase: when γ̃ is increased at fixed κ, the
noise required to make the transition to the state with
free vortex-antivortex pairs increases. We explained this
trend by the reduction of the density fluctuations for in-
creased driving and dissipation [20], that manifests itself
through density-phase correlations [24] [see discussions
preceding Eq. (16) and Eq. (25)].
In the limit without losses (γ̃ = 0), our estimate for

the critical point reduces to

nBKT =
TBKT

2π

[

log

(

1

mh2gnBKT

)

+A1

]

. (27)

Here, we have used that TBKT = DBKT/κ, defined
A1 = C+ + C− + log(π2/2) ≈ 11.2 and restored physical
units. We can compare this expression with the equilib-
rium BKT transition for the weakly interacting lattice
Bose gas (Eq. (12) in [12])

nBKT =
mTBKT

2π
log

A

mh2gTBKT
, (28)

with A = 6080. This expression can be written as

nBKT =
mTBKT

2π

[

log

(

1

mh2gnBKT

)

+A2

]

, (29)

with

A2 = log

[

A

2π
log

(

A

m2h2gTBKT

)]

. (30)

Assuming here m2h2gTBKT ≈ 1, one obtains A2 ≈ 9.1,
which is reasonably close to our A1 ≈ 11.5 given the sim-
plicity of our approach and considering that the equilib-
rium case is actually a somewhat singular limiting case
of our model where the gain and losses simultaneously
tend to zero.

IV. CONCLUSIONS

In this paper, we have developed a semi-analytical ap-
proach to describe the BKT transition point for driven-
dissipative weakly interacting Bose gases. We start from
the linearized equations of motion for the density and
phase fluctuations and subsequently correct phenomen-
logically for nonlinearities that are important close to the
BKT transition. Our resulting analytical formulae con-
tain some fitting parameters that are fitted to a series
of numerical simulations in a wide parameter range. The
good fitting of our numerical results indicates the validity
of the physical intuition underlying our semi-analytical
approach and promotes our formulae to a concise sum-
mary of the numerical results.
Of course, our numerical results were obtained for a

finite size system and we can therefore not settle what
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will happen for much larger system sizes, where it re-
mains possible that the KPZ nonlinearity may destabi-
lize the algebraically ordered phase [13, 17], even though
recent numerical work has shown that KPZ scaling can
be witnessed in 2D nonequilibrium condensates without
the phase coherence being destabilized by the formation

of vortex antivortex pairs [22, 23].
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F. Marchetti, I. Carusotto, and M. Szymańska,
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Appendix A: Vortex density profile

The vortex core size plays an important role in the
BKT physics, because it provides the low energy cutoff
in our analytical treatment. In this appendix, we discuss
how the vortex core size depends on the system parame-
ters through an approximate solution of the gGPE, that
is shown to compare favorably with the exact numerical
solution.
We consider a single-quantum vortex in an infinite 2D

condensate. Assuming that the vortex-center position
is fixed, the density distribution is circularly symmetric
and the order parameter can be written in the cylindrical
coordinates ρ and φ as ψ = χ(ρ)e−iφ, so that the con-
densate density is given by n = |χ|2. Inserting this into
the noise-free form of Eq. (2), one has

∂χ

∂t
=(i+ κ)

[

∂2

∂ρ2
+

1

ρ

∂

∂ρ
− 1

ρ2
− g|χ|2

+
iγ

2ns

1− |χ|2
1 + ν|χ|2

]

χ. (A1)

For analytical estimates it is convenient to represent χ
as χ(ρ) =

√
n̄y(ρ)eiθ(ρ), where the real function y(ρ) is

normalized by 1. Then, taking into account that for a
steady state ∂y/∂t = 0, while ∂θ/∂t = −µ(1 + κ2) with
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µ, the chemical potential, one obtains from Eq. (A1) the
following two coupled stationary differential equations:

κµ =
γ

2ns

1− n̄y2

1 + νn̄y2
− 1

ρy2
∂

∂ρ

(

ρy2
∂θ

∂ρ

)

, (A2)

1

ρ2
− 1

ρy

(

ρ
∂y

∂ρ

)

=µ−
(

∂θ

∂ρ

)2

− gn̄y2. (A3)

In Eq. (A3), the first term corresponds to circulating vor-
tex flows, while the second term in the right-hand side is
due to outward radial flows from the vortex core [33].
Considering Eq. (A3) in the limit ρ→ ∞, one obtains

for the chemical potential

µ =

(

∂θ

∂ρ

)2
∣

∣

∣

∣

∣

ρ→∞

+ gn̄. (A4)

Note that in the equilibrium case, when ∂θ/∂ρ = 0, the
right hand side of Eq. (A3) is obviously positive. In order
to keep it positive also far from equilibrium, one has to

assume that (∂θ/∂ρ)
2
∣

∣

∣

ρ→∞

is nonzero. In other words,

in the presence of a vortex the chemical potential of a
nonequilibrium system should increase.
In the limit ρ → 0, when (∂θ/∂ρ)2 and y2 become

negligibly small, the general non-divergent solution of
the “reduced” equation, resulting from Eq. (A3), is sim-
ply CJ1(qρ), where J1(x) is the Bessel function and
q =

√
µ. Let us consider the “equilibrium-like” version

of Eq. (A3):

1

ρ2
− 1

ρy

(

ρ
∂y

∂ρ

)

=µ(1− y2). (A5)

Its solution can be approximated by the normalized by
one, non-oscillating function

y1(ρ) =
1

J1(x∗)
J1

(

x
√

1 + (x/x∗)2

)

, (A6)

where x = sqρ. The parameters s and x∗ are determined
from the following two requirements. (i) At small ρ, the
function y1(ρ) should coincide with CJ1(qρ) ≈ C[qρ/2−
(qρ)3/16]. This leads to s = (1 + 4/x2

∗
)−1/2. (ii) y1(ρ)

should satisfy Eq. (A5) in the limit ρ→ ∞. In this limit,
one has 1− y1(ρ) ∝ ρ−2 and Eq. (A5) becomes

1

ρ2
=µ

x3
∗
J ′

1(x∗)

(sqρ)2J1(x∗)
, (A7)

leading for x∗ to the equation J ′

1(x∗)
(

x3
∗
+ 4x∗

)

=
J1(x∗), which gives x∗ = 1.72 and, correspondingly,
s = 0.653. As we will see later, in the case of weak
non-equilibrium, the function

n1(ρ) = n̄y21(ρ) (A8)

describes almost perfectly the vortex density profiles,
found in numerical simulations. Moreover, close to the
vortex center, this function works quite well even at rela-
tively strong deviations from equilibrium. This is not sur-
prising: close to the vortex center, the vortex circulating-
current density, which is proportional to 1/ρ, is much
stronger than the radial-current density, so that just the
former governs the particle-density suppression.
Let us estimate ∂θ/∂ρ, which determines the radial

particle flow. At ρ → ∞, the last term of Eq. (A2)
(which is proportional to divjρ) vanishes, while y goes to
1, so that we have

κµ =
γ

2ns

1− n̄

1 + νn̄
. (A9)

Therefore, Eq. (A2) can be rewritten as

1

ρy2
∂

∂ρ

(

ρy2
∂θ

∂ρ

)

=γ̃n̄
1− y2

1− p(1− y2)
(A10)

with p = νn̄/(1 + νn̄). From Eq. (A10) one obtains

∂θ

∂ρ
=
γ̃n̄

sq
Qp(ρ), (A11)

where

Qp(ρ) =
sq

ρy2(ρ)

ρ
∫

0

dρ′ρ′
y2(ρ′)

[

1− y2(ρ′)
]

1− p[1− y2(ρ′)]
. (A12)

A finite nonzero value of ∂θ/∂ρ|ρ→∞
is possible only if

we assume that at ρ→ ∞

n(ρ) = n̄y2(ρ) ≈ n̄

(

1− R

ρ

)

. (A13)

Then we have from Eqs. (A11) and (A12)

∂θ

∂ρ

∣

∣

∣

∣

ρ→∞

= Rγ̃n̄. (A14)

At moderate distances from the vortex center, the ra-
dial current density increases with ρ. For sufficiently
large γ̃, the suppressive effect of redial currents on y2

becomes dominating above certain ρ, so that the behav-
ior described by Eq. (A13) emerges.
In order ro determine the parameter R, let us consider

the crossover between the two regimes, described by Eqs.
(A8) and (A13). Let us start with the case of noninter-
acting particles, g = 0. The suppressive effect of the
radial currents on the particle density is determined by
(∂θ/∂ρ)2. At ρ below the crossover point, y in Eq. (A12)
can be approximated by y1, so that Qp depends on ρ only
through x (see Fig. 4). It seems natural to expect that
the crossover occurs at a distance ρc, where the value of
Qp(x) is close to its maximum. For simplicity, we will as-
sume that the crossover point ρc(p) just corresponds to
the position of this maximum, xm(p), i.e ρc = xm/(sq).
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FIG. 4. Function Qp(x) with y = y1 for three different values
of p. Inset: parameter Bp as a function of p.

At the crossover point, the solution y1 for small ρ should
match the solution for large ρ, described by Eq. (A13).
This leads to

R =

√

Bp

γ̃n̄
(A15)

with

Bp =
xm
s

[

1− y21(ρc)
]

, (A16)

where, as seen from Eq. (A6), y1(ρc) is determined solely
by xm(p). The numerically determined dependence of Bp

on p is shown in the inset of Fig. A12.
We can expect that in the general case, where the inter-

particle interaction is non-negligible, the crossover occurs
when, with increasing ρ, the density of the radial current
becomes comparable with that of the circulating current,
so that [see Eq. (A11)],

(

γ̃n̄

sq

)

Qp(ρc) =
C

ρc
. (A17)

Obviously, with increasing g the suppressive effect of ra-
dial currents on the particle density becomes relatively
weaker. Therefore, R should decrease with increasing g
or decreasing γ (R = 0 at γ = 0). This means that at
non-negligible g the matching condition at the crossover
point, R/ρc = 1 − y21(xc), corresponds to a rather small
value of 1− y21(xc), which can be approximated [see Eqs.
Eq. (A6), (A7)] by 1/(qρc)

2. Then the matching condi-
tion becomes 1/ρc = Rq2. Inserting this into Eq. (A17),
we obtain

R =
Qp(ρc)

sC

(γ̃n̄)

q3
. (A18)

For simplicity, in the denominator q3 we approximate R
by the value given by Eq. (A15). The constant C is
determined by requiring that in the limit g → 0 the R,
given by Eq. (A18), fits Eq. (A15). Then for R we finally
have

R =

√

Bp

γ̃n̄

(

Bpγ̃

g +Bpγ̃

)3/2

. (A19)

From Eqs. (A4) and (A14) with (A19), we obtain the
relation

µ = n̄

[

g +Bpγ̃

(

Bpγ̃

g +Bpγ̃

)3
]

. (A20)

Equations (A20) and (A9) completely define the chem-
ical potential µ and average density n̄, which, together
with the parameter R given by Eq. (A19), enter the den-
sity distributions (A8) and (A13) at small and large ρ,
respectively. As a “smooth interpolation” between these
distributions, we introduce the function

n2(ρ) =
1

1 +R/ρ
n1(ρ). (A21)

Obviously, this function can somewhat underestimate
n at ρ ∼ R, close to the “bottom” of the vortex core.
Apart from this, as seen from Fig. 5a, at g = 0 the func-
tion n2(ρ) approximates rather well the vortex shape,
found by solving Eq. (A6) numerically, although the an-
alytical values of n̄ appears not quite accurate for (exper-
imentally less relevant) large κ (red curves) and large ν
(green curves). For strongly interacting particles and/or
for week deviations from equilibrium, when the parame-
ter c = γ/(2nsg) is smaller than 1, the numerical results
are almost perfectly described by the “equilibrium-like
profile” n1(ρ) (see the black and red curves in Fig. 5b).
For c > 1, the numerically determined n(ρ) at large ρ
is well approximated by n2(ρ) (see the green and blue
curves in Fig. 5b).

The obtained results show that the µ given by Eq.
(A20) (q−1 = 1/

√
µ) adequately describes the chemical

potential (vortex core size) in the systems under consider-
ation. This implies that Eq. (A20) can provide a suitable
estimate for the lower energy cutoff ǫ−. Since for exper-
imentally relevant p < 0.9 the parameter Bp relatively
weakly depends on p, in this estimate, for simplicity, we
replace Bp with B0 = 0.524.
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(a)

(b)

FIG. 5. Numerically (solid lines) and analytically (dotted
and dashed lines) calculated density profiles for noninter-
acting particles (a) and three finite values of the parameter
c = γ/(2nsg) (b) at different ν and κ.


