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A Query Language Perspective on Graph Learning∗

Floris Geerts

Abstract

A key component of graph and relational learning methods is the computation of
vector representations of the input graphs or relations. The starting point of this tutorial
is that we model this computation as queries, mapping relational objects into the realm
of real vector spaces. We then revisit recent works in the machine learning community
on the expressive power of graph learning methods from this unifying query language
perspective. Here, we consider the expressive power related to the discrimination of
inputs and to the approximation power of functions. Finally, we argue that the bridge
between graph learning and query languages opens many interesting avenues for further
research.

1 Introduction

In recent years, the development of machine learning methods for graph (and relational)
data has gained considerable attention. See e.g., the recent graph learning books (Hamilton,
2020; Ma and Tang, 2021; Wu et al., 2022). Underlying most graph learning methods is the
computation of graph, vertex or – more generally – p-vertex embeddings in some real vector
space. The rationale behind this is that by mapping discrete graph objects to vectors in
some continuous space, the whole arsenal of continuous optimization and learning techniques
becomes available.

Crucial is that the embedding methods are graph isomorphism invariant, hereby ensuring
that the methods only rely on intrinsic graph properties and not on the chosen graph repre-
sentation. It is precisely this invariance requirement that prevents the use of classical machine
learning methods and has led, for example, to the development of graph neural networks.

We define embeddings more formally, as follows. Let G be the set of all graphs and V be
the set of all vertices. Furthermore, let the output space Y be a real vector space. Then,
graph embeddings are functions of the form ξ : G → Y, vertex embeddings are of the form
ξ : G → (V → Y) and p-vertex embeddings are of the form ξ : G → (Vp → Y). Graph
and vertex embeddings are thus 0-vertex and 1-vertex embeddings, respectively. In what
follows, for a graph G in G and a p-vertex tuple v in G, we write ξ(G,v) rather than ξ(G)(v).
Invariance of embeddings requires that for any graphs G and H in G and any isomorphism
π from G to H, and all p-vertex tuples v in G, ξ(G,v) = ξ

(

π(G), π(v)
)

holds. Invariance of
p-vertex embeddings, for p ≥ 1, is often called equivariance instead.

To get a more concrete idea of how graph learning works, we next describe the simple,
yet popular, empirical risk minimization (ERM) approach (see e.g., Shalev-Shwartz and Ben-
David (2014); Mohri et al. (2018) for more background). Following the exposition in Jegelka
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(2022), graph learning can be seen to correspond to learning a partially known target embed-
ding Ξ : G → (Vp → Y). Here, the partial knowledge is typically given in the form of some
training data T :=

{

(G1,v1, y1), . . . , (Gm,vm, ym)
}

consisting of graphs Gi in G, p-vertex
tuples vi in Gi and their correct values yi = Ξ(Gi,vi) in Y, for i = 1, . . . ,m. The training
data is assumed to be a representative sample. Finally, in the ERM approach, learning the
embedding Ξ given training data T is achieved by approximating Ξ using p-vertex embeddings
from some “hypothesis” class L. In particular “learning” Ξ is achieved by returning

ξ̂ ∈ argmin
ξ∈L

1

m

m
∑

i=1

ℓ
(

Gi,vi, yi, ξ(Gi,vi)
)

≡ argmin
ξ∈L

R̂T (ξ),

where ℓ : G ×Vp×Y ×Y → R is a loss or risk function and the (Gi,vi, yi)’s are the examples
in the training data T . The function R̂T (ξ) is called the empirical risk of ξ (relative to T ).
Machine learning systems solve the ERM problem for various loss functions and classes of
embeddings.

Many different classes of embedding methods have been proposed, using handcrafted
graph features, graph kernel methods, spectral graph information, and graph neural networks
architectures. In the graph learning community, the emphasis is primarily on experimentally
comparing and validating embedding methods.

Here, we want to theoretically analyze classes of embeddings and show how database
theoreticians can contribute to this area. We first define the notion of discriminative power
as a tool for doing so. We then provide a unifying embedding language – inspired by relational
aggregate query languages – which allows to (i) classify embedding methods in fragments of
the embedding language; and to (ii) derive insights on the discriminative power of the methods
based on the power of the corresponding embedding language fragments. The tutorial is
largely based on the ICLR’22 paper (Geerts and Reutter, 2022).

2 Discriminative Power

A natural way of measuring what classes L of embeddings can do is based on their ability
to assign different vectors to different inputs. For example, if L solely consists of constant
embeddings, then all inputs will be embedded in the same way by embeddings in L. The
class L has thus no discriminative power. Hence, unless the target embedding Ξ to be learned
is constant as well, the ERM approach will provide a bad approximation of Ξ based on
embeddings in L.

At the other end of the spectrum, if L can assign different vectors to any pair of non-
isomorphic inputs, then L has maximal discriminative power due to the invariance assumption
on embeddings. This necessarily implies that L is powerful enough to solve the graph iso-
morphism problem. When the target embedding Ξ to be learned, however, embeds certain
non-isomorphic inputs in the same way, the use of such complex L for learning Ξ may be too
excessive. And indeed, most practical classes of embeddings will have a discriminative power
in between these two extremes.

Let L be a class of p-vertex embeddings. The discriminative power of L is formally defined
using the equivalence relation

ϱp(L) :=
{

(G,v, H,w) ∈ (G × Vp)× (G × Vp)
∣

∣ ∀ξ ∈ L : ξ(G,v) = ξ(H,w)
}

.
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In other words, ϱp(L) reflects which inputs cannot be discriminated by embeddings in L. For
the constant embedding class L mentioned above, ϱp(L) consists of all possible input pairs.
For L of maximal discriminative power, ϱp(L) only contains pairs of isomorphic inputs. In a
nutshell, the larger ϱp(L) the weaker the class L is in discriminating different inputs.

It is now easy to compare entirely different classes L and L′ of embeddings by simply
comparing how ϱp(L) and ϱp(L

′) relate. Indeed, if ϱp(L) ⊆ ϱp(L
′) then L is at least as powerful

as L′, or equivalently, the power of L′ is bounded by that of L. Similarly, ϱp(L) ⊊ ϱp(L
′)

implies that L has more power than L′, and ϱp(L) = ϱp(L
′) implies that both classes have

the same power.
Not only does the notion of discriminative power provide the means of comparing differ-

ent classes of embeddings, it also arises in the context of approximation and generalization
properties.

2.1 Approximation Properties

One the pillars of deep learning is the Universality Theorem of neural networks (Cybenko,
1989; Hornik, 1991; Leshno et al., 1993). Roughly stated, it says that the class of functions
represented by neural networks is dense in the class of all continuous functions. Density
implies that any continuous function can be approximated to arbitrary precision by a neural
network (on compact domains). This property is sometimes used as a theoretical justification
for using neural networks.

A similar question can be posed in the context of classes L of embeddings. That is,
which target embeddings Ξ can be approximated to arbitrary precision by embeddings in
L? Clearly, understanding the approximation capabilities and limitations of embeddings in
L gives insight in what target embeddings Ξ could in principle be learned by ERM.

Various works have addressed this question in the graph context (Abboud et al., 2021;
Azizian and Lelarge, 2021; Chen et al., 2019; Dasoulas et al., 2020; Geerts and Reutter, 2022;
Keriven and Peyré, 2019; Maehara and NT, 2019; Maron et al., 2019b). We here focus on
the connection between the discriminative power and approximation properties of classes of
embeddings. For more details we refer to Azizian and Lelarge (2021); Geerts and Reutter
(2022).

For simplicity, we focus on graph embeddings of the form G → R but everything can
be generalized to p-vertex embeddings and arbitrary target spaces Y = Rd for some d ∈ N

(Azizian and Lelarge, 2021; Geerts and Reutter, 2022). To define a sound notion of approxi-
mation we assume in this subsection that G is turned into a topological space Ĝ and that the
target embedding Ξ : Ĝ → R to be learned is continuous. There are various ways of endowing
the graph space G with a topology. For example, in the absence of real-valued features one
can use the discrete topology. Alternatively, one can use the adjacency matrix (or tensor)
representation of graphs and use standard topologies on such matrix spaces. Or, one can use
any distance function between graphs to define a topology. We fix any such topology.

Let us denote by C(Ĝ,R) the class of all continuous graph embeddings ξ : Ĝ → R. The
space C(Ĝ,R) is a real vector space since it is closed under linear combinations. If Ĝ is
moreover assumed to be compact, C(Ĝ,R) can be turned into a normed space. The typical
norm used is the so-called sup norm defined by ξ → ∥ξ∥ := sup

{

|ξ(G)| ∈ R
∣

∣ G ∈ Ĝ
}

.
This norm basically measures the maximum value attained by ξ(G) when G ranges over the
compact space Ĝ. When Ĝ is compact, this norm is indeed well-defined.

We can finally define which graph embeddings can be approximated by a class L of graph
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embeddings. More precisely, we define the (uniform) closure of L, denoted by L, as follows

L :=
{

Ξ ∈ C(Ĝ,R)
∣

∣ ∀ϵ > 0, ∃ξϵ ∈ L : ∥Ξ− ξϵ∥ < ϵ
}

.

Intuitively, L contains all graph embeddings that can be approximated by embeddings in L.
Clearly, linking back to the problem of learning an unknown target embedding Ξ : G → R,
it is desirable that Ξ ∈ L. The following is a restatement of a generalized Stone-Weierstrass
Theorem (Prolla, 1994; Timofte, 2005) in the context of graph embeddings.

Theorem 1. If the class L ⊆ C(Ĝ,R) of graph embeddings is closed under linear combinations
and products, and contains a non-zero constant embedding, then

L =
{

Ξ ∈ C(Ĝ;R)
∣

∣ ϱ0(L) ⊆ ϱ0(Ξ)
}

.

In other words, if L satisfies the conditions of the theorem, then only target embeddings Ξ
can be approximated whose discriminative power is as most that of the class L. Furthermore,
to achieve universality L should have maximum discriminative power. Indeed, in that case
L consists precisely of all invariant continuous functions in C(Ĝ,R). We also remark that the
discriminative power of L does not change when closing it under linear combinations and
products. Hence, knowing ϱ0(L) provides all necessary information to understand what kind
of target functions can be approximated.

2.2 Generalization Properties

Another motivation for studying the discriminative power of classes L of embeddings stems
from its relationship to generalization properties of embeddings. Let us first recall what
generalization means.

As can be found in any machine learning textbook (see e.g., Shalev-Shwartz and Ben-
David (2014); Mohri et al. (2018)), instead of ERM one actually wants to learn p-vertex
embeddings that minimize the generalization error (rather than empirical risk). The idea
is that, intuitively, good embeddings in L are those that perform well relative to the loss
function on expectation over all examples.

That is, one considers a probability distribution P over the examples (G,v, y) in G×Vp×Y
and one would like to find elements ξ⋆ in L satisfying

ξ⋆ ∈ argmin
ξ∈L

E(G,v,y)∼P

[

ℓ
(

G,v, y, ξ(G,v)
)]

≡ argmin
ξ∈L

R(ξ),

where R(ξ) denotes the generalization error or risk of ξ. The problem is that P is unknown
or not available. Hence, as mentioned, in practice learners only can measure the empirical
risk R̂T (ξ) based on some sample training data T and perform ERM. It is of great interest
to bound the difference between risk and empirical risk.

In the context of graph embeddings (and graph neural networks in particular) recent
works considered bounding the generalization error using Rademacher complexity, the Vapnik-
Chervonenkis (VC) dimension and Graph Neural Tangent Kernels (GNTK) (Esser et al., 2021;
Garg et al., 2020; Liao et al., 2021; Maskey et al., 2022; Morris et al., 2023; Scarselli et al.,
2018; Verma and Zhang, 2019; Du et al., 2019). We here describe the approach using VC
dimension and its relation to the discriminative power (Morris et al., 2023). The starting
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point is the classical result (Shalev-Shwartz and Ben-David, 2014; Mohri et al., 2018) which
tells that for any ξ ∈ L, with high probability

R(ξ)− R̂T (ξ) ≤ O

(
√

log(m/VC(L))

m/VC(L)

)

, (1)

where m is the training data size and VC(L) is the VC dimension of L (Vapnik, 1995). For
completeness, let us recall the notion of VC dimension. We assume for simplicity that the
embeddings in L map inputs to {0, 1} ⊂ R. Furthermore, let G′ be a subset of G. Then, a
collection (G1,v1), . . . , (Gs,vs) of inputs in G′ × Vp is said to be shattered by L if, for any
boolean vector τττ ∈ {0, 1}s, there exists an embedding ξτττ in L such that ξτττ (Gi,vi) = τi for all
i = 1, . . . , s. The VC dimension of L on G′ is then defined as

VCG′(L) := max
{

s
∣

∣ ∃(G1,v1), . . . , (Gs,vs) ∈ G′ × Vp which can be shattered by L
}

.

Hence, when the VC dimension of L is finite, the equation (1) allows to relate the size of the
training set with generalization bounds.

We next relate the VC dimension of L on G′ to the discriminative power of L on G′.
Suppose that L can shatter (G1,v1), . . . , (Gs,vs). This implies that any pair of inputs (Gi,vi)
and (Gj ,vj) can be discriminated by L, or in other words that (Gi,vi, Gj ,vj) ̸∈ ϱp(L). Let
us consider the number of equivalence classes in the quotient (G′ × Vp)/ϱp(L). Then clearly,
this forms an upper bound on the number of inputs in G′×Vp that can be shattered. In other
words:

Proposition 1 (Morris et al. (2023)). VCG′(L) ≤ |(G′ × Vp)/ϱp(L)|.

Hence, understanding ϱp(L) provides insights into the VC dimension of L which in turn
can be used to relate training data sizes m to good generalization properties.

2.3 Looking Ahead

We have seen that understanding the discriminative power ϱp(L) is important for graph
learning. So far, however, ϱp(L) is nothing else but a definition. We will see shortly, however,
that we can often relate ϱp(L) to other well-studied equivalence relations. In particular, we will
tie ϱp(L) to distinguishability by Weisfeiler-Leman algorithms and finite variable fragments
of first-order logic with counting quantifiers.

3 Embedding Methods

Those readers looking for some specific examples of embedding methods will be disappointed
by now. And despite the title of this section, we also do not give concrete examples here.
Instead, we will mention different methods without giving any details. The aim is to just
show that there are many different methods out there.

For example, “early” methods in graph learning consist of kernel methods. For our pur-
poses, a graph kernel is defined in terms of the inner product of graph embeddings. A
plethora of graph kernels exist, e.g., based on shortest-paths (Borgwardt et al., 2005), ran-
dom walks (Gärtner et al., 2003; Kang et al., 2012; Kashima et al., 2003; Sugiyama and
Borgwardt, 2015), small subgraphs (Shervashidze et al., 2009; Kriege and Mutzel, 2012), lo-
cal neighborhood information (Costa and Grave, 2010; Morris et al., 2017; Shervashidze et al.,
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2011), Laplacian information (Kondor and Pan, 2016), and matchings (Fröhlich et al., 2005;
Kriege et al., 2016; Nikolentzos et al., 2017). We refer to Borgwardt et al. (2020) and Kriege
et al. (2020) for thorough surveys.

Another important class of embedding methods consists of so-called graph neural networks
(GNNs) (Gilmer et al., 2017; Scarselli et al., 2009). Most GNNs compute 1-vertex embeddings
and graph embeddings. Notable examples of GNNs include those based on message-passing
(Gilmer et al., 2017) such as e.g., (Duvenaud et al., 2015; Hamilton et al., 2017; Veličković
et al., 2018; Xu et al., 2019; Morris et al., 2019). One also has GNNs based on spectral graph
information such as, e.g., (Bruna et al., 2014; Defferrard et al., 2016; Gama et al., 2019; Kipf
and Welling, 2017; Levie et al., 2019; Monti et al., 2017; Balcilar et al., 2021b). Some GNN
architectures can employ vertex identifiers (Murphy et al., 2019; Vignac et al., 2020), use
random features (Abboud et al., 2021; Dasoulas et al., 2020; Sato et al., 2021), equivariant
graph polynomials (Puny et al., 2023), homomorphism and subgraph counts (Barceló et al.,
2021; Bouritsas et al., 2020; Nguyen and Maehara, 2020), simplicial (Bodnar et al., 2021b)
and cellular complexes (Bodnar et al., 2021a), persistent homology (Horn et al., 2022), ran-
dom walks (Tönshoff et al., 2021; Martinkus et al., 2022), graph decompositions (Talak et al.,
2021), relational (Barceló et al., 2022), distance (Li et al., 2020) and directional informa-
tion (Beaini et al., 2021), subgraph information (Bevilacqua et al., 2022; Cotta et al., 2021;
Feng et al., 2022; Frasca et al., 2022; Huang et al., 2023; Morris et al., 2021; Papp et al.,
2021; Papp and Wattenhofer, 2022; Qian et al., 2022; Thiede et al., 2021; Wijesinghe and
Wang, 2022; You et al., 2021; Zhang and Li, 2021; Zhao et al., 2022; Zhang et al., 2023a), and
biconnectivity (Zhang et al., 2023b). Examples of graph neural network architectures using
higher-order p-vertex embeddings for p ≥ 2 are e.g., (Azizian and Lelarge, 2021; Geerts and
Reutter, 2022; Maron et al., 2019a; Morris et al., 2019, 2020, 2022).

4 Weisfeiler-Leman and Logic

What kick-started the exploration of the discriminative power of embeddings were the two
seminal papers (Morris et al., 2019; Xu et al., 2019). In those papers, the power of so-
called Message-Passing Neural Networks (MPNN) (Gilmer et al., 2017) and that of the one-
dimensional Weisfeiler-Leman algorithm (1-WL) were shown to be the same. That is, they
showed

ϱ0/1(MPNN) = ϱ0/1(1-WL),

where ϱ0/1(1-WL) indicates which graphs cannot be discriminated by 1-WL. This connection
is important because ϱ0/1(1-WL) is studied extensively in the theoretical computer science
community. In particular, ϱ0(1-WL) is known to coincide with ϱ0(C2), with C2 the two-variable
fragment of first-order logic with counting quantifiers (Cai et al., 1992). Also, ϱ1(1-WL) =
ϱ1(GC2), where GC2 is the guarded fragment of C2 (Grohe, 2021). Inspired by this connection,
more expressive higher-order GNNs (k-GNN) were proposed (Morris et al., 2019) satisfying

ϱ0/1(k-GNN) = ϱ0/1(k-WL),

where ϱ0/1(k-WL) refers to the discriminative power of the k-dimensional Weisfeiler-Leman
algorithm. This in turn is equal to ϱ0/1(Ck+1) with Ck+1 the (k + 1)-variable fragment of
first-order logic with counting quantifiers (Grohe, 2021). The use of k-WL and logic to assess
the discriminative power of embedding methods has by now become standard (Barceló et al.,
2020b; Bevilacqua et al., 2022; Geerts et al., 2021a; Azizian and Lelarge, 2021; Maron et al.,

6



2019a; Morris et al., 2019, 2020, 2022; Qian et al., 2022; Aamand et al., 2022). We refer to
the surveys (Grohe, 2020, 2021; Morris et al., 2021) for details. In all these works, however,
the analysis of the discriminative power of embedding methods requires proofs, geared at the
specifics of the architecture. We next show that a unified, query language-based approach
comes in handy.

5 Graph Embedding Language (GEL)

When inspecting the different embedding methods listed in Section 3 it is not always imme-
diately clear how they compare to each other and what their discriminative power is. One of
the main reasons is the lack of a unifying language to describe the methods. When looking
at those methods from a database perspective, we feel the urge to create a formal specifica-
tion language for graph embedding methods. Of course, the fact that embedding methods
operate on real numbers and perform linear algebra and other continuous operations scares
off database theoreticians. There is, however, nothing to be afraid off.

Indeed, query languages for linear algebra have been considered before (Khamis et al.,
2016; Brijder et al., 2019, 2018; Geerts, 2019, 2021; Geerts et al., 2021b,c; Barceló et al., 2022;
Hutchison et al., 2017; Khamis et al., 2020). Their expressive power was studied precisely for
understanding machine learning processes. Furthermore, the discriminative power of some of
these languages is also related to 1-WL and 2-WL (Geerts, 2019, 2021). And these insights
have been use to analyze the discriminative power of simple GNNs (Balcilar et al., 2021a).
We here present a more general approach, proposed in Geerts and Reutter (2022).

More precisely, we define a general graph embedding language, referred to as gel,1 in
which graph neural networks (and other graph learning methods) can be expressed. The lan-
guage is very similar to the aggregate query languages considered for studying the expressive
power of SQL (Libkin, 2003; Hella et al., 2001). This comes at no surprise since many of the
linear algebra query languages have close ties to aggregate query languages (Brijder et al.,
2019; Geerts et al., 2021b; Barceló et al., 2022), as also observed in Geerts et al. (2021c).

The syntax of gel We necessarily will need to support computations over real vectors. To
this aim we parameterize gel with a set Ω consisting of

• functions of the form F : Rd → Rd′ for some d, d′ ∈ N; and

• aggregate functions of the form Θ : (2R
d
→ N) → Rd′ for some d, d′ ∈ N, taking as input

a multiset of vectors in Rd and returning a vector in Rd′ .

We inductively define expressions in gel(Ω) and associate with each gel(Ω) expression
e its dimension dim(e) and its set fv(e) of free variables. Intuitively, an expression of dimension
d generates a vector embedding in Rd. As set of variables we take X := {x1, x2, x3, . . .}. We
first treat the inductive cases corresponding to function and aggregation application. Let
e1 . . . , eℓ be gel(Ω) expressions of respective dimensions d1, . . . , dℓ.

function application: If F : Rd → Rd′ is a function in Ω and d = d1 + · · ·+ dℓ, then

F (e1, . . . , eℓ)

1The language does not have a well-established name. It is related to sumMATLANG Geerts et al. (2021b)
and was called Tensor Language (or higher-order MPNNs) in Geerts and Reutter (2022).
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is a gel(Ω) expression of dimension d′ and fv
(

F (e1, . . . , eℓ)
)

is fv(e1) ∪ · · · ∪ fv(eℓ).

aggregation: If Θ : (2R
d
→ N) → Rd′ is an aggregate function in Ω and d = d1, then

Θx̄[e1|e2],

where x̄ = (x1, . . . , xk) is a tuple of variables such that {x1, . . . , xk} ⊆ fv(e1)∪ fv(e2), is
a gel(Ω) expression of dimension d′ and fv

(

Θx̄[e1|e2]
)

is
(

fv(e1)∪ fv(e2)
)

\{x1, . . . , xk}.

The role of expression e2 in Θx̄[e1|e2] as a multiset selector will become clear when defining
the semantics. Having dealt with the inductive cases, it remains to kick-start the creation of
gel(Ω) expressions. Therefore we consider base cases corresponding to graph information
and equality constraints between variables:

vertex label: Lf (xi) is a gel(Ω) expression with fv
(

Lf (xi)
)

being {xi}, for f ∈ N.

edge: E(xi, xj) is a gel(Ω) expression with fv
(

E(xi, xj)
)

being {xi, xj}.

dis/equality: ✶[xi opxj ] with op ∈ {=, ̸=} is a gel(Ω) expression with fv
(

✶[xi opxj ]
)

being
{xi, xj}.

All these base cases have dimension one. This concludes the definition of gel(Ω). We can
extend this definition to accommodate for additional edge labels, if desired.

The semantics of gel In this section we let G consist of graphs specified by G =
(

[n],A,F
)

with [n] := {1, 2, . . . , n}, for some n ∈ N, the set of vertices, A ∈ Rn×n an adjacency matrix,
and F ∈ Rn×d0 a matrix representing d0-dimensional vertex features.

Let e be a gel(Ω) expression of dimension d and free variables fv(e) = {xi | i ∈ I}
for some (finite) index set I ⊆ N. We define max(e) as the maximal index in I. We next
give gel(Ω) expressions e a semantics in terms of the embedding ξe that they compute.
That is, given input graph G and a p-vertex tuple v ∈ [n]p with p ≥ max(e), we define for
f = 1, . . . , d0,

ξLf (xi)(G,v) := Fvi,f ∈ R

ξE(xi,xj)(G,v) := Avi,vj ∈ R

ξ✶[xi opxj ](G,v) :=

{

1 if vi op vj

0 otherwise
∈ R

ξF (e1,...,eℓ)(G,v) := F
(

ξe1(G,v), . . . , ξeℓ(G,v)
)

∈ Rd′ ,

for e1, . . . , eℓ of dimensions d1, . . . , dℓ such that d = d1 + · · · + dℓ and F : Rd → Rd′ in Ω.
Finally, let Θ : (2R

d1 → N) → Rd′ in Ω. We define ξΘx̄[e1|e2](G,v) as

Θ
(

{{

ξe1(G,u)
∣

∣ ξe2(G,u) ̸=0,v extends u
}}

)

∈ Rd′ ,

where we use {{ }} to denote multisets.
Perhaps only the semantics of aggregation deserves a bit more explanation. We are given

G and v. First, we minimally extend v into a tuple u such that ξe1(G,u) and ξe2(G,u) are
defined. Then, for all such extensions u for which ξe2(G,u) does not evaluate to the zero
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vector 0 ∈ Rd2 , we put the vector ξe1(G,u) ∈ Rd1 in a multiset and then apply Θ, to finally
obtain a vector in Rd′ . Intuitively, we perform some conditional aggregation.

As shown in Geerts and Reutter (2022), the gel(Ω) language is sufficiently powerful to
encode many of the embedding methods listed in Section 3. Furthermore, whereas in the
graph learning community it sometimes regarded challenging to define invariant embedding
methods, every embedding expressible in gel(Ω) is automatically invariant. Clearly, the
language is closely related to aggregate query languages. We will next use proof techniques
developed for analyzing aggregate query languages (Libkin, 2003, 2004; Hella et al., 2001) to
assess the discriminative power of classes of embeddings, hereby reaching our goal.

6 Climax

We now reach our climax since we have a general recipe at hand for assessing the discriminative
power of classes L of embedding methods:

1. Show that every p-vertex embedding in L can be expressed in some fragment E of
gel(Ω) for some Ω.

2. Figure out the discriminative power of ϱp(E), i.e., all pairs of inputs that cannot be
discriminated by a p-vertex embedding ξe for expressions e ∈ E .

Of particular interest are the following fragments of gel(Ω):

gelk(Ω): The fragment of gel(Ω) in which only k variables X = {x1, . . . , xk} can be used;
and

ggel2(Ω): the guarded fragment of gel2(Ω) in which aggregation is of a restricted form.
Intuitively, in ggel2(Ω) only aggregation over neighbors is allowed. This can be
enforced by only allowing Θx2

[e1|E(x1, x2)] in the gel2(Ω) expressions. See Geerts
and Reutter (2022) for details.

We have the following characterization of the discriminative power of the embedding language
fragments ggel2(Ω) and gelk(Ω).

Theorem 2 ((Geerts and Reutter, 2022)). For any Ω containing addition and multiplication,
and summation as aggregation function, we have:

• ϱ0(gel2(Ω)) = ϱ0(1-WL);

• ϱ1(ggel2(Ω)) = ϱ1(1-WL); and finally

• ϱp(gelk+1(Ω)) = ϱp(k-WL).

This result can be strengthened by bringing in the number of iterations of k-WL and
connect this number to the aggregation depth of gel expressions (Geerts and Reutter,
2022).

So what do we learn from this? Well, take any embedding method listed in Section 3 or
take your own newly designed embedding method. The theorem implies that it suffices to
“implement” your method in gel(Ω) using the smallest possible number of variables, say k.
Then, you automatically obtain a k-WL bound on the discriminative power. As illustrated in
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Geerts and Reutter (2022), casting methods in gelk(Ω) is often a very simple task. Using
this approach, many existing results can be easily recovered and new results can be obtained
(Geerts and Reutter, 2022).

In summary, the use of the embedding language provides a simple way of obtaining up-
per bounds on the discriminative power of embedding methods. Interestingly, it allows to
reason over embedding methods using query language techniques. We believe that thinking
of embedding methods as queries makes it is easier to understand what graph learning is all
about.

7 Open Problems

Clearly, there are many interesting problems associated with the embedding languagegel(Ω)
itself. For example, the impact on the discriminative power of the choice of aggregation func-
tions in Ω is rather unexplored. Exceptions are Brijder et al. (2019); Geerts (2021) in which
aggregation is fixed to be summation and functions correspond to specific linear algebra op-
erators. In the context of graph embeddings (Corso et al., 2020; Rosenbluth et al., 2023)
investigate the impact of the choice of aggregation functions for message-passing neural net-
works. Having a more detailed picture of the discriminative power of gelk(Ω) in terms of Ω
would be of direct use to analyze embedding methods with restricted forms of aggregation.

Theorem 2 provides upper bounds on the discriminative power of embedding methods.
To obtain the best possible bound, however, the minimal number of variables needs to be
used. How to tell whether a given gel(Ω) expressions is equivalent to one using k variables?
In Geerts and Reutter (2022) a rudimentary notion of treewidth was introduced to this aim,
inspired by the work on FAQs (Khamis et al., 2016). That is,gel(Ω) expressions of treewidth
k + 1 are shown to be equivalent to expressions in gelk(Ω). A more principled and fine-
grained analysis would be of interest, however. Also related, can lower bounds be established
in some principled way, e.g., using a notion of reduction as is done in complexity theory?

More research is needed to understand how properties of gel(Ω) fragments affect gen-
eralization properties. For example, a detailed analysis of the VC dimension of gel(Ω)
fragments could be carried out (Morris et al., 2023). Alternatively, one can try to derive
Graph Neural Tangent Kernels of fragments of gel(Ω) using techniques from Yang and
Littwin (2021).

Inspired by new embedding methods, Qian et al. (2022); Morris et al. (2020, 2022) identify
hierarchies, different from the k-WL hierarchy. To what gel(Ω) fragments do these new
hierarchies correspond? And are there other hierarchies of interest than those based on
k-WL?

Beyond discriminative power and approximation properties, one can consider uniform ex-
pressiveness (Geerts et al., 2022). That is, which target functions can be uniformly expressed
by fragments of gel(Ω), and this without making compactness assumptions. This is the
notion of expressiveness that we normally consider in query language research. We refer to
Barceló et al. (2020b,a) in which the logical expressiveness of MPNNs (part of gel2(Ω)) was
studied. More recently, Grohe (2023) showed tight connections between GNNs’ expressiveness
and circuit complexity. Whether and how these results can be generalized to richer gel(Ω)
fragments is wide open.

Not all methods from Section 3 have been analyzed yet and new methods are proposed in
every machine learning conference. It may be that gel(Ω) needs to be revised or updated
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with new functionalities to stay relevant for new and upcoming methods.
There are many more problems one could consider. We hope that by viewing embedding

methods as queries in gel(Ω) or some other formalism, an additional bridge has been made
between graph learning and database research. We look forward to new insights in graph
learning originating from database theory!
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Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and
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