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Abstract 15 

Concentrations of selected toxic metals were investigated in roots, stems, leaves and sediments 16 

from mangrove forests situated along the coast of the Oman Sea, Iran. Results showed that the 17 

overall average concentrations of lead, nickel, copper, and zinc in sediments were 47.90, 54.12, 18 

42.13 and 44 µg/g dry weight (dw) and 3.81, 16.41, 29.23 and 25 µg/g dw in plant tissues, 19 

respectively. In addition, the bioconcentration factors (BCFs) of root, stem and leaf ranged from 20 

0.5 to 1.7, 0.2 to 1.5, and 0.4 to 1.3, respectively. Calculated bioconcentration factors showed that 21 

all plant tissues were able to uptake copper from the sediments, making them suitable biological 22 

indicators for this metal. Similarly, the roots were found a suitable indicator for nickel and lead, 23 

while leaves and stems were better indicators for zinc contamination. Pollution indices showed 24 

that the sediments of mangrove forests along the coast of the Oman Sea were in the low ecological 25 

risk category (risk index < 150), and that all investigated sites were in the category of low to 26 

moderate pollution (pollution load index: 1.5-0.11), with a 21% probability of biological toxicity.  27 

 28 

Key words: Mangrove ecosystem, Toxic metals, geochemical indicators, bioavailability, Iran 29 

 30 
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1. Introduction 39 

Toxic metals are natural earth elements; in trace amounts, certain metals are necessary to support 40 

life but in larger amounts they may build up in biological systems and become a significant health 41 

hazard. As non-degradable and widespread contaminants, toxic metals can enter water bodies and 42 

consequently the food web, causing adverse effects on the aquatic environment and finally human 43 

health (Das et al., 2014; Shah, 2021).  44 

Mangroves are plants or shrubs typically growing on low-sloping banks with fine-grained 45 

sediments. Mangrove trees have been shown to be able, to some extent, to accumulate certain 46 

(toxic) metals. This was evidenced in a previous study on toxic metals in the mangrove trees of 47 

Gowater bay, Chabahar, southeastern coast of Iran, where nickel was found in mangrove plant 48 

roots, likely resulting from the accumulation of this metal naturally present in ophiolite stones in 49 

the beach bed. Conversely, the presence of other toxic metals, like cadmium, copper and zinc, in 50 

other plant tissues was the result of accumulation from anthropogenic sources like upstream runoff 51 

(Einollahipeer, 2012). Due to this accumulation potential, mangrove forests play an important role 52 

in aquatic ecosystems, making them suitable to be used as biological indicators (Smical et al., 53 

2008). To a certain extent, mangroves can tolerate an uptake of metals. This is because they possess 54 

aerial roots (i.e. pneumatophores), which allow for gas exchange in soggy soils, and facilitate the 55 

uptake of oxygen, helping to alleviate potential negative effects of metal toxicity. In addition, 56 

mangroves can sequester and store metals within certain tissues (e.g. roots) which helps protecting 57 

the vital metabolic processes and physiological functions of the trees. Mangroves also possess 58 

several detoxification mechanisms to mitigate the harmful effects of metals, e.g. by producing 59 

metal-binding ligands or through their enzymatic system (Kumari& Rathore, 2021;  Alongi, 2021; 60 

Sruthi et al., 2017), and are known to benefit from symbiotic associations with microorganisms in 61 

the root systems which contribute to metal tolerance and detoxification by facilitating metal 62 

immobilization, precipitation, or transformation into less toxic forms (Harguinteguy et al., 2014; 63 

Sawidis et al., 2011; Sarwar et al., 2017; Salam et al., 2016). Finally, the mangrove physiological 64 

adaptations which allow them to maintain water and ion balance in saline environments can help 65 

mitigate the toxic effects of metals. 66 

Studies conducted on marine ecosystems by Arumugam et al (2018) show that the concentrations 67 

of toxic metals in the sediments of mangrove forests were 3 to 5 times higher than in the 68 

surrounding water, and that the sediments of mangrove forests in tropical and subtropical regions 69 

https://scholar.google.com/citations?user=S7KsmlMAAAAJ&hl=en&oi=sra
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have a high potential to store toxic metals (Shi et al., 2019). This shows the importance of such 70 

ecosystem in maintaining and possibly restoring the environmental quality of the coastline 71 

(Baharvand et al., 2022). For these reasons, monitoring the concentrations of metals in coastal and 72 

mangrove forests and evaluating their environmental quality can be considered an essential 73 

management tool to protect these ecosystems (Zhang et al., 2022). 74 

Due to their richness in biodiversity, strategic location at the threshold of the ecological range of 75 

environmental conditions, and sensitivity to pollution, Iranian mangrove forests are highly 76 

environmentally relevant study habitats (Meena, 2018). Among them, the mangrove forest of the 77 

Oman Sea, located between latitude 25° 11’ N and 27° 52’ N, is considered a special ecosystem 78 

due to its a rich diversity of plant and animal life. Unfortunately, in the last few decades, it has 79 

been exposed to several anthropogenic stressors, including oil extraction and refinery and urban 80 

sewage discharge, which threaten its biodiversity (Ghayoumi et al., 2019). Because of this, this 81 

area has been the object of a few studies monitoring the metal contamination, but the quality and 82 

quantitative assessment of its ecological status has been so far poorly researched (Einollahipeer et 83 

al., 2012; Pakzadtoochaei et al., 2013). 84 

This study aimed at investigating the presence and concentrations of trace metals, including 85 

copper, zinc, nickel, and lead, in several mangrove plant tissues and relative surface sediments 86 

collected from this Iranian area. The ability of mangroves to uptake metals from the sediments and 87 

transfer them to different plant tissues was also explored. Finally, various ecological risk 88 

assessment indicators were used to investigate the current environmental quality of the study area.  89 

 90 

2. Materials and methods 91 

2.1 Sampling area 92 

Gowater protected area is located on the northern shores of the Oman Sea, in the Sistan and 93 

Baluchestan province, Iran (Zahed et al., 2010). The sampling area included five sites in the 94 

mangrove forests between the port city of Chabahar and the protected area of Gowater, which has 95 

the highest density of mangrove trees and is representative of all mangrove forests in this area (Fig. 96 

1). This area is characterized by a dry and desertic climate, with average annual rainfall below 150 97 

mm, an average monthly temperature of 27.5 °C (which fluctuates from a minimum of 21.2 °C in 98 

January to a maximum of 32.6°C in June), a monthly average relative humidity of 70%, and a 99 

https://girs.bushehr.iau.ir/?_action=article&au=2581504&_au=Raziyeh++Ghayoumi&lang=en


5 

 

prevalent wind direction from the southwest. The mangrove forests in the southeast of Iran extend 100 

from the Sarbaz River and continue to the coasts of the Oman Sea (Dahmardeh bBhrooz, 2022). 101 

Sampling points were chosen to represent the entire region and different habitat conditions, 102 

spanning from inland to coastal ecosystems.  103 

 104 

Fig 1. Location of sampling stations in the mangrove forests of Gowater Bay in the Oman Sea, 105 

Iran 106 

 107 

2.2 Sample collection  108 

Only "true mangroves" were considered for inclusion, defined by their adaptation to intertidal 109 

environments, salt regulation mechanisms, and taxonomic separation from terrestrial elements 110 

(Tomlinson, 1986). Samples of sediment (n=15), roots (n=15), stems (n=15) and leaves (n=300) 111 

of Avicennia marina were collected in triplicate from the above-mentioned five sites in spring 112 

2022. At each sampling site, the surface sediment layer (about 500 g) was collected with a plastic 113 

shovel at 10 cm depth. For root tissue sampling according to the method of Lawton et al. (1981), 114 

sampling was done from the nutritious roots of the mangrove plant, and the harvesting of larger 115 

respiratory roots was avoided (Lawton et al., 1981). Following the methods of Lindsey et al. (2005) 116 

and MacFarlane et al. (2003), 20 leaves were collected from each plant and with three replicates 117 

at each site, carefully separating them from the petiole by horticultural scissors (Lindsey et al., 118 

2005; MacFarlane et al., 2003). These samples were selected from 5 to 10 trees taller than 3 meters 119 

and in such a way to cover the whole tree crown. Finally, the stem samples were obtained from the 120 

(
c

Oman 
Sea 

Oman 
Sea 
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transverse and thin sections of the stem tissue with a diameter of 4 millimeters by pruning shears 121 

(Davari et al., 2010).  122 

All plant tissues were collected from trees having a healthy appearance, with no signs of disease 123 

or pest activity on the leaves. Sediment and roots were collected in the vicinity of the same marked 124 

tree. After collection, all samples were placed in zip-lock polyethylene plastic bags, transported to 125 

the laboratory, and kept at -20°C. 126 

 127 

2.3 Sample preparation and analysis 128 

Once at the laboratory, sediment samples were dried in an oven at 80 °C for 3 days, pulverized, 129 

sieved with a 63 µm mesh steel sieve to separate waste materials and coarser particles, transferred 130 

in pre-coded zip-lock bags and stored in the dark at room temperature until analysis (Hashim & 131 

Nazli, 2010). Plant tissues, including root, stem, and leaf samples, were carefully rinsed with 132 

distilled water, dried in an oven at 60 °C for 24 hours until the weight of the samples reached a 133 

constant value, pulverized, and finally stored in the dark at room temperature until analysis. 134 

Sediment samples (1 g) were extracted by acid digestion through addition of a mixture of 65% 135 

nitric acid and concentrated perchloric acid (4:1, v/v), and kept at a temperature of 140 °C for 2 136 

hours and then repeated for 3 hours. After digestion, the samples were filtered by Whatman 42 µm 137 

filter paper and finally diluted with double distilled water to a volume of 50 mL (Abdul-Wahab 138 

and Jupp, 2009). Plant tissues (1 g) were digested with 10 mL of 65% nitric acid and hydrogen 139 

peroxide  (4:1, v/v) at 90 °C for 2 hours on a hot plate. After cooling at laboratory temperature, the 140 

digested samples were filtered with 0.45 µ filter paper and diluted with double distilled water to a 141 

volume of 20 mL (MacFarlane et al., 2007).  142 

The concentrations of copper, nickel, lead and zinc in sediment and plant samples were measured 143 

using a Konic atomic absorption device model NOVAA 300 and expressed in μg/g dry weight 144 

(dw).  145 

The sediment physicochemical properties of the study sites are presented in Table 1. The texture 146 

of the sediment samples among different sites was sandy clay loam (sites 2, 4 and 5), clay loam 147 

(site 1), and loam (site 3), with pH varying between 2.45 and 3.25 in all sites. Sediment acidity 148 

may also have resulted from decomposition of mangrove litter.  All sediment samples had medium 149 

cation exchange capacity (CEC). The lowest and highest average content of organic matter in the 150 
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samples was 4.76 and 11.10%, respectively. The values of organic carbon ranged from 1.07 to 151 

6.43% with the lowest and the highest values recorded at sediments of study area. 152 

 153 

Table 1: Physiochemical characteristics in mangrove sediments at the surface soil. 154 

Sites pH OM           OC 

(%) 

CEC % Soil composition Soil Texture 

(cmol/kg) Sand Silt Clay 

S1 3.15 9.20 5.38 24.15 34.08 36.50 29.57 clay loam 

S2 3.25 8.12 4.35 9.19 58.05 15.96 26.05 sandy clay loam 

S3 2.97 9.37 5.96 20.27 43.58 27.80 28.61 loam 

S4 2.45 11.10 6.43 18.76 52.90 17.40 29.65 sandy clay loam 

S5 2.97 4.76 1.07 9.69 64.95 8.35 26.82 sandy clay loam 
 OM: organic matter; OC: organic carbon 155 

  156 

Three measures of metal uptake were used for interspecific and intraspecific comparisons: root 157 

bioconcentration factor (BCF), leaf BCF, and transfer factor (TF). However, when combining data 158 

from different studies, validity issues arise. Metal uptake may vary due to sediment conditions 159 

such as anoxic sediments with high sulfur and organic content, which can reduce metal 160 

bioavailability (Harbison, 1986). Metal availability is influenced by sediment factors like cation 161 

exchange capacity, pH, redox status, metal speciation, nutrient availability, and salinity. Limited 162 

data availability for highly contaminated areas can skew observed patterns (Greger, 2004). 163 

Varying sample sizes within and across studies can also impact interpretation by potentially 164 

including anomalous data.  165 

 166 

2.4 Quality Control 167 

Instrument calibration was performed with a NIST-traceable std solution (AccuTrace Single 168 

Element Standard; AccuStandard Inc., New Haven, CT, USA). The precision and accuracy of the 169 

applied analytical method were determined by means of seven replicate analyses of standard 170 

reference materials SRM 1633b (constituent elements in coal fly ash), SRM 2709 (San Joaquin 171 

soil baseline trace element concentrations), and SRM 2711 (Montana II soil). Blank samples were 172 

prepared as the samples but without matrix and average blank levels per batch were subtracted 173 

from the sample results, and a value equal to 3 times the standard deviation of the blank 174 

measurement was used as the limit of quantification (LOQ). For compounds absent in the blanks, 175 

LOQs were based on a signal/noise ratio of 10 (S/N = 10). LOQs were 0.09, 0.06, 0.05, and 0.10 176 

μg/g dw in Cu, Ni, Pb, and Zn respectively. In each sample batch, procedural blanks and SRMs 177 
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were included. The certified values for the reference materials amounted to Zn = 86 ± 2.5, Pb = 178 

0.23 ± 0.3, Cu = 21.8 ± 5, and Ni = 1.6 ± 0.12, and the certified values for the used material 179 

amounted to Zn = 89 ± 60, Pb = 0.24 ± 0.4, Cd = 22.58 ± 3, and Ni = 1.7 ± 0.13 (6 replicates with 180 

recoveries between 88 and 105% and a relative standard deviation (RSD) of 6%).  181 

 182 

2.5 Statistical Analysis 183 

In this study, SPSS version 19 software was used for statistical analysis. At first, the normality of 184 

the data was checked using the Kolmogorov Smironov test, and after confirmation, one way 185 

ANOVA and Tukey statistical tests were used to compare the mean and differences between 186 

selected metal concentrations.  187 

 188 

2.6 Indices 189 

The following indices were used to assess the environmental quality and metal pollution status of 190 

the investigated ecosystem. 191 

The bioconcentration factor (BCF) is the ratio between the concentration of a toxic metal in a 192 

living organism and in a non-living environment (water and sediment). Species with BCF > 1 can 193 

be considered as element-stabilizing species (Almahasheer, 2019).  194 

The metal transfer factor (TF) is used to evaluate the ability of the mangrove plant to transfer 195 

metals from the underground tissues (roots and rhizomes) to the upper ones (stems and leaves) via 196 

the ratio between metal concentration in aerial tissues and in the roots (Hilmi et al., 2023). The 197 

higher the rate of TF, the faster the ecosystem purification process happens and the coastal and 198 

marine micro-ecosystems are less exposed to pollution (ELTurk et al., 2018).  199 

The geochemical accumulation index (Igeo), introduced by (Muller, 1969), is a common method 200 

for estimating the intensity of contamination of sediments with toxic metals and is calculated based 201 

on equation 1. 202 Igeo = 𝐿𝑜𝑔2  𝐶𝑛1.5×𝐵𝑛                                                                                                                 (1) 203 

Where Cn is the measured concentration of a toxic metal in the sediments and Bn is the 204 

concentration of the same element in the earth's crust (background concentration, or element 205 

concentration in shale). The index goes from class 0 (unpolluted) to class 6 (strongly polluted, 206 

where the values of the elements are at least 100 times the reference values) (Table S1).  207 
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The contamination factor (CF) provides a description of the pollution related to the investigated 208 

toxic elements and the pollution of the sediment environment (Hakanson, 1980). More specifically, 209 

the CF is derived using equation 2:  210 CF = CiCn                                      (2)                                                                                                                      211 

Where Ci is the concentration of the element in the sediments and Cn is the concentration of the 212 

same element in shale sample (Table S2), (Hakanson, 1980). 213 

The comprehensive ecological risk assessment of selected toxic metals in sediments is determined 214 

using the potential ecological risk index (Ei
r) (Hakanson, 1980) and it is calculated according to 215 

equation 3.  216 𝐸𝑖𝑟 = 𝑇𝑟 × 𝐶𝑓                                                                                                                          (3)               217 

Where Cf is the contamination factor and Tr is the toxicity coefficient, whose values are 1, 5, 5, 218 

and 5 for zinc, lead, copper, and nickel metals, respectively (Table S3). 219 

Further, the risk index (RI) is determined as the sum of Eri (equation 4) and generally indicates the 220 

sensitivity of living organisms to toxic metals and the environmental risks associated with toxic 221 

metal pollution (Kusin et al., 2018).  222 𝑅𝐼 = ∑ 𝐸𝑟ni=1                                                                                                                             (4)  223 

The sediment quality is also calculated through the pollution load index (PLI) based on equation 224 

5 (Tomlinson et al., 2014). 225 PLI = [CF1 × 𝐶𝐹2 × 𝐶𝐹3 × … … × 𝐶𝐹𝑛] 1𝑛                                                                          (5) 226 

Where n is the number of metals (=4, i.e. lead, nickel, copper and zinc), CFn is the contamination 227 

factor of a metal (see equation 2). PLI indicates how many times the metal content in sediments 228 

exceeds the natural background concentration of metals and is a cumulative indication of the 229 

overall level of toxicity of a sample. The classification of the PLI index is as follows: PLI<1: 230 

uncontaminated; PLI≥1: contaminated. 231 

Finally, the mean probable effect level quotient index (mPELq) is used to measure the biological 232 

effect of toxic metals on mangrove shrubs (Long et al., 2006) (equation 6). 233 

 mPELq = ∑ 𝑛=1(𝑛𝑚 𝑐𝑚𝑃𝐸𝐿𝑚)𝑛                                                                                                     (6)  234 

Where cm is the metal concentration in the sediments, PELm values for zinc, lead, copper and 235 

nickel metals are 270, 110, 110 and 50, respectively, and n is the number of metals (Table S4).    236 
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 237 

3. Results and Discussion 238 

3.1 Concentrations of metals in sediments 239 

The content of trace metals in the sediment samples collected in 5 sites of the Oman Sea mangrove 240 

forests are showed in Table 2, together with a comparison of concentrations measured in this study 241 

and in other studies worldwide. 242 

 243 

Table 2. Content of trace metals in the sediments from the Oman Sea mangrove forests ((μg/g) (mean±SD) 244 

and in other studies worldwide and in international standards  245 

Ref Cu Ni Pb Zn Sites 
 

49.10±0.95 60.20±0.95 52.25±1.95 47.45±19.45 S1 (n=3) 

 
49.90±3.60 49.15±0.95 26.30±3.70 30.80 ±3.90 S2 (n=3) 

 
44.50±8.75 59.30±3.95 57.10±1.70 58.35±1.95 S3 (n=3) 

 
36.90±2.35 54.20±14.60 54.50±2.95 38.60±11.20 S4 (n=3) 

 
37.60±0.70 58.30±0.80 54.20±2.95 47.80±7.00 S5 (n=3) 

Prsesent Study 43.60±6.25 56.20±24.65 48.90±3.85 44.60±12.65 Total 

Puthusseri et 

al., 2021 
33.70 41.34 27.91 139.15 

Mangalavanam, 

India 
Wang et al., 

2013  
29.40 14.90 40.30 32.80 

Futian, South 

China 
Zarezadeh & 

Rezaee, 2016 

 

- 86.53 67.63 69.63 
Gabrik Creek 

(Jask), Iran 

Yap& Al-

Mutairi, 2022 
38.24 18.22 46.94 163.60 Klang, Malaysia 

Cheraghi et al., 

2015 25.13 100.96 15.02 75.98 Mahshahr, Iran 

Zarezadeh et 

al., 2014 - 132.70 99.40 109.05 
Sirik, Azini 

Creek, Iran 

ERL (Effect 

Range Low)  
34 20.90 46.70 150 American 

Sediment Quality 

Guidelines 

(NOAA) 

ERM (Effect 

Range 

Medium)  

270 51.60 218 410 

LEL (Lowest 

Effect level)  
16 31 16 120 

Canadian 

Sediment Quality 

https://scholar.google.com/citations?user=77l81h4AAAAJ&hl=en&oi=sra
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SEL (Severe 

Effect level)  
110 250 75 820 

Guidelines 

(SQGs) 

LEL (Lowest 

Effect level)  
16 16 32 120 New York 

Sediment Quality 

Guidelines 
SEL (Severe 

Effect level) 
110 50 110 270 

 246 

Among all analyzed samples, sediments were the most contaminated with toxic metals, with the 247 

following pattern: nickel (56.22 μg/g dw), lead (48.86 μg/g dw), zinc (45 μg/g dw), copper (43.62 248 

μg/g dw). The slightly higher concentration of nickel in sediments compared with the other metals 249 

was likely caused by anthropogenic sources represented by traffic of ships, boats and tankers, crude 250 

oil, and urban and industrial wastewater (Vieira et al., 2008), and by runoff from the upstream 251 

rivers of this area. In addition, the presence of nickel in sediments can be directly related to the 252 

type of bed and the prevailing morphological conditions, like the proximity of the estuary and its 253 

shallow depth (Zarezadeh et al., 2017). Similarly, lead contamination in the analyzed sediments 254 

might have derived from its presence in gasoline of ships and boats, and from runoff of inland car 255 

traffic (El Tokhi et al., 2008). 256 

The solubility and accumulation of metals in mangrove sediments and tissues are influenced by 257 

various factors, and caution should be exercised when comparing findings to other studies. Oxygen 258 

exuded by roots fixes iron (Fe) and co-precipitates metals as oxyhydroxides in the rhizosphere, 259 

reducing trace metal availability and mobility (de Lacerda et al., 2022). Natural processes, like sea 260 

level rise, erosion, saline intrusion, tidal forcing, sediment remobilization, porewater salinization, 261 

sulfide oxidation, and metal release affect metal dynamics. (Aragon and Miguens, 2001; Lacerda 262 

et al., 1988; Nguyen et al., 2020). Metal-chloride complex formation, sulfate reduction, and 263 

changes in rainfall and environmental stress can increase metal bioavailability and toxicity 264 

(Lacerda et al., 1988). Suspended particles and particulate metals are transported by floods to the 265 

continental shelf, decreasing metal bioavailability in sediments (Nguyen et al., 2020). 266 

Acidification increases the solubility of trace metals by dissolving carbonates. These factors 267 

influence the solubility, availability, and toxic effects of metals in mangrove ecosystems.  268 

Previous studies have shown that mud sediments can be good accumulators for both organic and 269 

inorganic pollutants due to the larger ratio between surface and volume of the particles. Because 270 

most sediments of mangrove forests are made of silt and clay, which are very small in size, their 271 

relatively high concentration of metals is justified (Zahed et al., 2010). Still, such concentrations 272 
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were in the same order of magnitude as measured in India (Puthusseri et al., 2021), lower than in 273 

other Iranian locations (Zarezadeh et al., 2014; Zarezadeh & Rezaee, 2016), and higher than in 274 

China (Wang et al., 2013). In addition, to determine the degree of metal contamination of the 275 

surface sediments of the studied area, their average concentrations were compared with 276 

international sediment quality standards including the American Sediment Quality guidelines 277 

(NOAA), the Canadian Sediment Quality guidelines (SQGs), and the New York Sediment Quality 278 

guidelines, which can be used to classify polluted sediments and predict the possibility of adverse 279 

biological effects in aquatic organisms that are in contact with these sediments (Table 1). The 280 

NOAA categorizes the level of pollution in effect range low (ERL) and effect range medium 281 

(ERM), the Canadian SQGs and the New York sediment quality standard express the pollution 282 

levels as lowest effect level (LEL) and severe effect level (SEL) (Yazdan Panah et al., 2019) (Long 283 

et al., 1995). The average concentration of nickel in the sediments from the Coasts of the Oman 284 

Sea mangroves (56.22 μg/g) resulted slightly above the ERM limit for this element (51.60 μg/g) 285 

and the SEL according to the New York sediment quality standard (50 μg/g), but lower than the 286 

SEL based on the Canadian SGQ (250 μg/g). Also the average concentrations of lead (48.86 μg/g) 287 

and copper (43.62 μg/g) were higher than ERL and LEL levels but lower than SEL. Finally, the 288 

average concentration of zinc (44.60 μg/g) was lower than all standards levels.  289 

 290 

3.2 Concentrations of metals in plant tissues 291 

The concentrations of lead, nickel, copper, and zinc in plant tissues (root, stem and leaf) are 292 

presented in Table 3.  293 

Table 3. Content of trace metals in tissues of stem, root and leaf of A. marina  (μg/g) Mean±SD and in 294 

other studies worldwide. 295 

 296 

 Root Sites 
 Cu Ni Pb Zn  
 26.37±4.39 40.22±0.97 10.31±1.16 26.xx±2.44 S1 (n=3) 

 27.94±3.50 38.52±0.94 11.28±3.62 28.xx±3.87 S2 (n=3) 

 24.71±1.39 39.00±1.74 9.20±0.27 9.xx±4.54 S3 (n=3) 

 26.37±0.64 40.27±3.47 10.17±0.74 11.xx±3.90 S4 (n=3) 

 27.53±1.14 42.78±0.21 11.70±1.28 26.00±0.63 S5 (n=3) 

Prsesent Study 26.58±2.59 40.15±4.30 10.53±1.84 20.xx±7.35 Total 

   Stem  

 28.20±0.92 7.88±0.97 1.12±0.36 43.xx±7.99 S1 (n=3) 

 25.65±0.94 8.85±0.97 1.66±0.16 18.xx±1.84 S2 (n=3) 
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 24.50±0.85 9.91±0.89 1.34±0.16 16.xx±2.21 S3 (n=3) 

 24.25±0.91 5.67±0.82 0.83±0.11 23.xx±3.90 S4 (n=3) 

 25.20±1.17 3.44±1.36 1.38±0.42 14.xx±2.51 S5 (n=3) 

Prsesent Study 25.56±1.74 7.15±2.67 1.17±0.43 23.xx±11.58 Total 

   Leaf   

 33.57±7.67 2.60±0.68 0.99±0.24 31.xx±4.72 S1 (n=20) 

 39.93±22.91 2.69±0.77 0.97±0.12 21.xx±3.97 S2 (n=20) 

 35.94±21.80 2.27±0.69 0.93±0.12 24.xx±4.60 S3 (n=20) 

 60.43±6.01 1.98±0.94 0.91±0.17 51.xx±9.44 S4 (n=20) 

 24.18±1.33 3.17±0.68 0.91±0.18 49.xx±6.49 S5 (n=20) 

Prsesent Study 38.81±17.69 2.54±0.81 0.94±0.17 35.xx±13.90 Total 

     Root   

Ubong et al., 

2018 

4.82 1.76 3.28 6.52 Port 

Harcourt, 

Nigeria 

(A.marina) 

 
 

Siddiqui & 

Saher, 2015 

5.25 - - 23.34 Hawks Bay 

Karachi, 

Pakistan 

(A.marina) 

Vardanyan and 

Ingole,2004 

25.68 0.68 6.71 307.8  

Carambolim, 

India 

(Macrophyte) 

 Stem 

Machado et al., 

2002 

- - 3.38 26.70 Guanabara 

Bay, SE 

Brazil 

(L.racemosa)  
Silva et al., 

2006 

0.31 4.43 - 1.36 Natal, Brazil 

(R. mangle) 

 

Qiu et al., 2011 2.90 - - 6.20 Hainan 

Island, China 

(Rhizophora 

apiculata)  
Zheng et al., 

1998 

1.33 2.17 - 6.48 Guangdong, 

Province of 

China 

(A.marina) 

 Leaf 

Silva et al., 

2006 

0.94 2.04  - 0.46 Natal, Brazil 

(R. mangle) 

Nazli and 

Hashim, 2010 

26.80  - 35.5 5.90 Peninsular 

Malaysia 

(Sonneratia 

caseolaris)  
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Agoramoorthy 

et al., 2008 

14.78  - 23.21 107.80 Tamil Nadu, 

India 

(A. indicum) 

  297 

The trend of accumulation of toxic metals in the plant roots was Ni (40.15 μg/g) > Cu (26.58 μg/g) 298 

> Zn (19.82 μg/g) > Pb (10.53 μg/g), different from the other plant tissues, where the trend Cu 299 

(25.56 and 38.81 μg/g), Zn (22.73 and 34.93 μg/g) > Ni (7.15 and 2.54 μg/g) > Pb (1.17 and 0.94 300 

μg/g) could be observed for stems and leaves, respectively.  301 

From this, it appears that essential metals have higher concentrations in aerial tissues, while non-302 

essential metals have higher concentrations in root tissues. Also, our study results showed that 303 

concentrations of lead and nickel in the roots were significantly higher than in the other plant 304 

tissues, while this was not observed for the other metals. This difference can be due to the fact that 305 

the roots are in direct contact with the sediments and thus can directly accumulate the metals. Due 306 

to the presence of reduction conditions, frequent tide-related floodings, high levels of organic 307 

materials and sulfides, and the fine-grained texture of mangrove sediments wetlands, sediments in 308 

particular are considered sink areas for toxic metals (Alharbi et al., 2019). From here, metals can 309 

be absorbed by the roots and stored in their tissue or be absorbed and then transferred to aerial 310 

tissues. The surface absorption of elements by the root epidermis, the presence of root Casparian 311 

bands and the impenetrability of the wall of the wood vessels in the root may be among the factors 312 

influencing the elements’ fate (Baharvand et al., 2022). In addition, differences in metal 313 

concentrations in root and aerial parts of the plants may be due to differences in the physiological 314 

structure of the tissues (Zheng et al. (1998)). Roots are perennial and permanent plant organs and 315 

have a longer time to accumulate metals, while leaves are subject to seasonal fall (Zheng et al., 316 

1998) (Kabata-Pendias and Pendias in 2001). For example, the slight increase in average 317 

concentrations of zinc and copper from roots to leaves, as opposed to the higher concentrations of 318 

lead and nickel in the roots than in the stems and leaves, might be because copper and zinc are 319 

essential trace elements, necessary to the correct functioning of the plant. This is in accordance 320 

with the study by Ingole and Vardanyan (2004) who showed that the concentrations of toxic metals 321 

in the tissues of saline plants in Sevan, Armenia and Carambolim, India, were higher in plant root 322 

and stem tissues  and that the lowest concentrations of metals corresponded to non-essential 323 

elements (Ingole & Vardanyan, 2004). This was confirmed by other studies on mangrove forests 324 

showing that copper and zinc had the highest concentrations in the root and leaf tissues and that 325 
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they are both essential elements for plants (Shete et al., 2007) (Victorio et al., 2020) (Wozny and 326 

Krzeslowska (1993).  327 

Eynollahipeer et al. (2012) studies looked at toxic metal accumulation in mangrove sediments and 328 

tissues in Goater Bay of Chabahar city. The general trend in metal accumulation patterns in 329 

sediments and plant tissues were somewhat similar in the study of Eynollahipeer et al. (2012) and 330 

the present study. In sediments, Ni showed the highest accumulation in both cases. In plant tissues, 331 

Cu and Zn levels tended to be higher in leaves and stems, while Ni and Pb were higher in roots. 332 

This suggests mangrove roots take up and concentrate certain metals like Ni and Pb from sediments 333 

more readily. In the study of Eynollahipeer et al. (2012), Cd accumulated more readily in plant 334 

tissues based on higher BCF values. In this study, we found higher transfer factors for Cu and Zn 335 

from roots to shoots. Both studies showed low ecological risk from metal pollution based on risk 336 

indices. However, in this research, a have higher potential toxicity based on a 21% probability was 337 

estimated (Einollahipeer, 2012).  338 

A comparison of selected metal concentrations in the roots, stems and leaves from mangrove 339 

forests in the present study with results obtained from other similar studies worldwide is showed 340 

in Table 2. The levels of copper from this study were generally higher than in Brazil (Silva et al., 341 

2006; Machado et al., 2002), China (Qiu et al., 2011; Zheng et al., 1998), Pakistan (Siddiqui & 342 

Saher, 2015), and Nigeria (Ubong et al., 2018), but comparable to the concentrations measured in 343 

India (Vardanyan and Ingole, 2004) and Malaysia (Nazli and Hashim, 2010). Concentrations of 344 

nickel in the roots from this study were higher than in all other selected locations, but the levels of 345 

nickel in the other tissues were comparable with results obtained worldwide. Conversely, 346 

concentrations of lead were generally similar to or lower than average levels from other locations. 347 

Finally, levels of zinc in the mangrove forests from the Oman Sea were lower than measured in 348 

India (Vardanyan and Ingole, 2004; Agoramoorthy et al., 2008), comparable with levels in Brazil 349 

(Machado et al., 2002) and Pakistan (Siddiqui & Saher, 2015) and higher than Nigeria (Ubong et 350 

al., 2018), Brazil (Silva et al., 2006) and China (Qiu et al., 2011; Zheng et al., 1998).Glasby et al. 351 

(2019) examined the impact of bushfires on estuarine wetlands, while the current study focuses on 352 

toxic metals in mangrove forests. Both studies investigate how toxic metals or bushfires affect the 353 

health, organisms, habitats, and overall ecological dynamics of their respective ecosystems. 354 

However, they differ in their specific areas of focus. The present study concentrates on mangrove 355 

forests, which are coastal wetland habitats dominated by mangrove trees, while Glasby et al. 356 
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(2019) examines estuarine wetlands, which are transitional zones between rivers and the sea. The 357 

present research emphasizes toxic metals from various sources, while Glasby et al. (2019) 358 

highlights bushfires caused by natural or human-induced factors (Glasby et al., 2023).  359 

TM Glasby, PT Gibson, R Laird, D S Swadling, G West. 2023. Black summer bushfires caused 360 

extensive damage to estuarine wetlands in New South Wales, Australia. Ecological 361 

Management&Restoration.  24(1): 27-35. 362 

 363 

3.3 Environmental quality assessment 364 

Results of the calculations of the geochemical accumulation (Igeo), Contamination factor (CF), 365 

potential ecological risk factor (Ei
r), and the potential ecological risk index (RI) are reported in 366 

Table 4. The analysis of metals in sediment varies across studies due to different digestion methods 367 

and acids used. HF, which extracts metals from the silicate matrix, was not employed in any of the 368 

studies. Various extraction methods were used, including H2O2 + HCl + HNO3 + HClO4 (Silva 369 

et al., 1990), microwave digestion in HNO3 + HCl, and hotplate digestion in HNO3 + H2O2, as 370 

well as other acids such as HNO3 + HClO3, HNO3 + HSO3, (Che, 1999) and weakly bound 371 

fraction examinations with 0.1 N HCl (Chiu and Chou, 1991)or 0.1 M HCl (Lacerda, 1997). 372 

Recovery rates varied among metals when comparing different extraction methods. The choice of 373 

extraction method can impact estimates of sediment metal loadings, particularly affecting 374 

bioconcentration factors (BCFs) more than transfer factors (TFs). Caution is necessary when 375 

interpreting the data due to potential biases and variations caused by sampling protocols for 376 

vegetation collection and environmental factors like temperature, light, and inundation frequency, 377 

which influence metal uptake patterns (Greger, 2004).  378 

 379 

Table 4. Averages of geo-accumulation (Igeo), Contamination factor (CF), potential ecological risk factor (Eir) 380 

and potential ecological risk (RI) indexes of the measured toxic metals A. marina sediments.  381 

 382 

  ) Indexgeo(I    

 Cu  Ni  Pb  Zn  Sites 

2.89 3.63 2.93 2.77 1 
2.96 2.85 3.52 2.01 2 
3.07 3.61 2.98 3.20 3 
2.67 3 2.60 2.86 4 
2.88 3.4 2.91 3.08 5 
   (CF) index   

 Cu Ni  Pb  Zn  Sites 
1.88 2.98 2.21 1.40 1 
2.02 2.78 2.80 1.23 2 

https://scholar.google.com/citations?user=xWGxU5YAAAAJ&hl=en&oi=sra
https://onlinelibrary.wiley.com/authored-by/Swadling/Daniel+S.
https://onlinelibrary.wiley.com/authored-by/West/Gregory
https://onlinelibrary.wiley.com/doi/abs/10.1111/emr.12572
https://onlinelibrary.wiley.com/doi/abs/10.1111/emr.12572
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 (PLI) and (𝐦𝐏𝐄𝐋𝐪) indexes  

mPELq PLI         Sites       
0.87 0.45             1 

0.74 0.55             2 

0.63 0.37             3 

0.45 0.42             4 

0.42 0.40             5 

 383 

According to the calculated geo-accumulation index, sediments from the studied mangrove forest 384 

could be classified as moderately to highly polluted. The intensity of contamination with these 385 

metals followed the order: nickel (3.2) > lead, copper and zinc (2.98, 2.89 and 2.78, respectively). 386 

A similar pattern of metal pollution was obtained based on the contamination factor (CF) for the 387 

investigated metals in the region, for which the average values were between 1 and 3, classified as 388 

low to moderate pollution status.     389 

The results of the evaluation of the potential ecological risk factor (Ei
r) for Pb, Zn, Ni, and Cu were 390 

low (Ei
r < 40) and exhibited a low risk. This was confirmed by the calculated ecological risk index 391 

(143.5), representing a low ecological risk. Copper had the greatest influence on the value of the 392 

index, and zinc had the least influence. This is generally in accordance with the results of another 393 

study on toxic metal contamination in coastal sediments from the South Pars Special Economic 394 

Zone where most of the investigated sites were classified in the low to medium risk category in 395 

terms of ecological risk due to metal contamination (Haghshenas et al., 2017).   Fu et al. (2014) 396 

evaluated the concentration and ecological risk of mercury, arsenic, chromium, lead, zinc and 397 

copper in the sediments of the Jialu river in China. The analysis of the Ei
r showed that, except for 398 

cadmium, classified as high-risk, other metals were in low risk status (Fu et al., 2014). Liu et al. 399 

(2014), investigated the Ei
r of chromium, copper, zinc, cadmium, arsenic, mercury and lead in 400 

mangrove ecosystem sediments in south China and found that the sediments were in a relatively 401 

severe ecological risk, especially due to the presence of mercury and cadmium (Liu et al. , 2014). 402 

2.24 2.95 2.10 2.40 3 
1.60 2.20 2.40 1.79 4 
1.81 2.50 2.05 2.30 5 
  ) indexr

i(E   

RI Cu Ni Pb Zn    Sites 

26.33 7.27 2.89 4.18 1.28   1 

30.22 6.85 2.76 3.37 1.90  2 

28.35 6.64 2.10 3.83 1.79  3 

31.11 7.57 2.05 4.26 1.30  4 

27.55 6.89 2.91 3.43 1.55  5 

143.56 35.22 12.71 19.07 7.82 Total 
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The pollution load index (PLI) of the selected metals was below 1 in all analyzed sample sites 403 

(Table 3), suggesting that the region can be classified as non-polluted. This is consistent with the 404 

results of Yu et al. (2011) and Suresh et al. (2012). Islam et al. (2015) investigated the PLI in urban 405 

river sediments in Bangladesh, and found it was > 1, indicating a reduction of sediment quality 406 

and the contamination of the studied river sediments with toxic metals. This was likely attributed 407 

to the discharge in the river of a urban sewage. This difference with the current study shows that, 408 

although human activities and industrialization are spreading in this area, their effects are still not 409 

critical on sediment quality. However, due to the growing urban population and industrialization 410 

of the region, constant monitoring of the area is highly recommended.  411 

Finally, to determine the possible biological effects of toxic metals in sediments, the mean probable 412 

effect level quotient index (mPELq) was calculated between 0.42 and 0.87, classified as low to 413 

moderately polluted with a 21% probability of biological toxicity (Table S4). The same index was 414 

calculated by Aljahdali and Alhassan (2020) to evaluate the possible biological effects of copper, 415 

zinc, cadmium, chromium, lead, nickel and cobalt in the coastal sediments of the Kaduna River, 416 

Nigeria. Their results showed that the studied area was in the high pollution class with 94% 417 

probability of biological toxicity. The elevated mPELq was attributed to the impact of human 418 

intervention in the catchment area caused by industrial activities and atmospheric depositions 419 

(Aljahdali, 2020 & Alhassan). Also Rastegari Mehr et al. (2020) investigated the mPELq index to 420 

evaluate the possible biological effects of mercury, nickel, zinc, copper, lead and chromium on the 421 

coastal sediments of the Musa estuary and found the mPELq index between 0.5-1.51, with a 422 

probability of biological toxicity of 49% (Rastegari Mehr et al., 2020).  423 

Finally, the BCF and TF were calculated based on the concentrations of metals in the sediments 424 

and in the plant tissues (Table 5).  425 

 426 

Table 5. Bioconcentration Factor (BCF) and Transfer Factor (TF) of toxic metal in A. marina. 427 

Cu Ni Pb Zn  Tissue 
1.05 0.77 0.75 0.88 in Root BCF  
1.03 0.43 0.52 0.95 BCF in Stem   
1.02 0.65 0.68 0.93 BCF in Leaf   
1.04 0.47 0.40 1.15 TF in Stem   
1.20 0.45 0.58 1.50 TF in Leaf   

 428 
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To be biological indicators, tissue accumulation of metals should be sediment-dose dependent. Otherwise, 429 

BCFs and TFs have very limited utility concluding biological indicator potential.. For zinc, leaf and stem 430 

tissues are the best biological indicators, with BCF values higher than in roots. The TF results for 431 

lead and nickel were < 1, indicating that the state of accumulation and accessibility in the plant is 432 

average. For zinc and copper, the calculated TF was > 1, indicating that, after their absorption from 433 

the environment by the roots, the metals were transported to the aerial parts of the plant. 434 

MacFarlane et al. (2007) calculated the BCF for copper, lead and zinc in the same mangrove plant 435 

species (A. marina), obtaining values > 1, and concluded that the root tissue is a suitable 436 

bioindicator for these metals. In the same study, the TF was determined for copper and zinc as 1.52 437 

and 1.53. They considered the reduction of the metal transfer factor from the root to the plant as a 438 

result of the type of metal consumption for the plant (MacFarlane et al., 2007).   439 

Conclusion 440 

This study found that the concentrations of nickel in sediments was slightly higher compared to 441 

other metals, and this was likely due to anthropogenic sources such as ship traffic, crude oil, urban 442 

and industrial wastewater, and runoff from upstream rivers. Lead contamination in sediments was 443 

likely derived from ships, boats, inland car traffic, and gasoline. The accumulation of toxic metals 444 

in plant tissues varied, with nickel having the highest concentration in roots, followed by copper, 445 

zinc, and lead. Essential metals tended to have higher concentrations in aerial tissues, while non-446 

essential metals had higher concentrations in root tissues. The roots, being in direct contact with 447 

sediments, accumulated higher levels of lead and nickel compared to other plant tissues. Mangrove 448 

sediments were considered sink areas for toxic metals due to reduction conditions, frequent 449 

floodings, high organic material and sulfide levels, and fine-grained texture. The concentrations of 450 

nickel in the roots were higher in the studied area compared to other locations, but levels in other 451 

tissues were comparable worldwide. The sediments in the studied mangrove forest were classified 452 

as moderately to highly polluted based on the geo-accumulation index. The intensity of 453 

contamination followed the order: nickel > lead, copper, and zinc. The contamination factor 454 

indicated low to moderate pollution status. The potential ecological risk factor and ecological risk 455 

index suggested low ecological risk, with copper having the greatest influence on the index value 456 

and zinc having the least. Other studies on metal contamination in coastal sediments have also 457 

indicated low to medium ecological risk. The pollution load index indicated that the region can be 458 
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classified as non-polluted. The mean probable effect level quotient index indicated low to moderate 459 

pollution with a 21% probability of biological toxicity. Plant tissues, especially roots, were 460 

identified as good biological indicators for lead, nickel, and copper accumulation. Zinc 461 

accumulation was higher in leaf and stem tissues. The transportation factor indicated that lead and 462 

nickel had average accumulation and accessibility in plants, while zinc and copper had higher 463 

accumulation and transportation to aerial parts after absorption by the roots. Overall, the study 464 

highlights the presence of toxic metals, their sources, and their accumulation patterns in sediments 465 

and plant tissues in the studied mangrove forest. The findings provide valuable information for 466 

assessing the ecological risk and potential biological effects of these metals in the ecosystem. 467 
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