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We investigate the coupling factor φµ that quantifies the magnetic flux Φ per magnetic moment
µ of a point-like magnetic dipole that couples to a superconducting quantum interference device
(SQUID). Representing the dipole by a tiny current-carrying (Amperian) loop, the reciprocity of
mutual inductances of SQUID and Amperian loop provides an elegant way of calculating φµ(r, êµ)
vs. position r and orientation êµ of the dipole anywhere in space from the magnetic field B(r)
produced by a supercurrent circulating in the SQUID loop. We use numerical simulations based on
London and Ginzburg-Landau theory to calculate φµ from the supercurrent density distributions in
various superconducting loop geometries. We treat the far-field regime (r ≳ a = inner size of the
SQUID loop) with the dipole placed on (oriented along) the symmetry axis of circular or square
shaped loops. We compare expressions for φµ from simple filamentary loop models with simulation
results for loops with finite width w (outer size A > a), thickness d and London penetration depth
λL and show that for thin (d ≪ a) and narrow (w < a) loops the introduction of an effective loop
size aeff in the filamentary loop-model expressions results in good agreement with simulations. For
a dipole placed right in the center of the loop, simulations provide an expression φµ(a,A, d, λL) that
covers a wide parameter range. In the near-field regime (dipole centered at small distance z above
one SQUID arm) only coupling to a single strip representing the SQUID arm has to be considered.
For this case, we compare simulations with an analytical expression derived for a homogeneous
current density distribution, which yields excellent agreement for λL > w, d. Moreover, we analyze
the improvement of φµ provided by the introduction of a narrow constriction in the SQUID arm
below the magnetic dipole.

I. INTRODUCTION

Magnetic properties of micro- and nanoscale objects,
are a topic of intensive research[1, 2]. Their investiga-
tion requires the development of appropriate tools, e.g.
for detection of the magnetization reversal of individ-
ual magnetic nanoparticles (MNPs) or for imaging mag-
netic field profiles on the nanoscale [3–6]. Promising
candidates for this task are nanoSQUIDs, i.e., strongly
miniaturized superconducting quantum interference de-
vices [7–10]. A SQUID consists of a superconducting
loop, intersected by one or two weak links (Josephson
junctions). SQUIDs are extremely sensitive detectors
for magnetic flux, and their intrinsic thermal flux noise
improves with shrinking size (inductance of the SQUID
loop) [11, 12]. As they enable direct detection of mag-
netization changes in small spin systems, that are placed
close to the SQUID loop, nanoSQUIDs are very promis-
ing sensors for nanoscale applications [13, 14]. Moreover,
if miniaturized SQUIDs can be brought in close vicinity
to sample surfaces, they enable magnetic scanning probe
microscopy on the nanoscale [15–18].
For the application of nanoSQUIDs to the investigation

of magnetic nanoparticles, the figure of merit is the spin

sensitivity S
1/2
µ = S

1/2
Φ /φµ, which describes the smallest
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magnetic moment µ of a point-like magnetic nanopar-
ticle (MNP) that can be detected with a certain device

at a certain distance. Here, S
1/2
Φ is the rms flux noise

of the SQUID, i.e. the square root of the spectral den-
sity of equivalent flux noise power SΦ, which can deter-
mined experimentally, and φµ = Φ/µ is the coupling fac-
tor, expressing how much magnetic flux Φ per magnetic
moment µ = |µ| is coupled to the SQUID loop by a
MNP which is placed at position r. φµ(r, êµ) depends
on the orientation êµ = µ/µ and position r (with re-
spect to the nanoSQUID) of the MNP and is usually es-
timated either via magnetostatic considerations[19–21] or
numerical methods [22–24]. However, these methods do
not incorporate the finite size of the superconductor and
the spatial variation of the supercurrent density across
the width of the superconducting structure forming the
SQUID loop, which particularly influences the coupling
when optimizing φµ by minimizing the distance between
MNP and SQUID loop [23]. In order to overcome this
drawback, one can perform numerical simulations taking
into account the precise superconducting loop geometry
and supercurrent distribution within the loop, as done in
Refs. [25–34]. The downside of this brute-force approach
is its complex and time-consuming nature.

In this work, we present a detailed analysis of the de-
pendence of the coupling factor φµ on various geometrical
parameters of the SQUID loop, on the London penetra-
tion depth λL and on the MNP-to-SQUID distance. This
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analysis is based on numerical simulations, as mentioned
above. From the results of these simulations we derive
then generalized fit functions for the dependence of φµ

on all relevant parameters. The purpose of this work is
to provide such generalized fit functions that can then
be used as a straightforward and easy-to-use alternative
for estimates of the coupling factor for realistic SQUID
geometries.
We will treat two different regimes, which have been

already introduced in Ref. [23]: (i) In the far-field regime,
the distance of an MNP to the superconductor is com-
parable to or larger than the inner size of the SQUID
loop. For this case, we consider two commonly used sim-
ple SQUID geometries, circular and square shaped loops
in the (x, y) plane. We first discuss the dependence φµ(z)
on the position z of a MNP along the z symmetry axis
of the SQUID (with the magnetic moment pointing in
z-direction, i.e., êµ = êz). Then, we fix that position to
z = 0 (MNP in the center of the loop) and derive expres-
sions for the dependence of φµ on the inner and outer
loop size, and on the finite thickness d and London pen-
etration depth λL of the superconducting film forming
the loop. (ii) In the near-field regime, we consider the
situation when an MNP is placed in close vicinity to one
arm of the SQUID loop, which can contain a constriction.
This arrangement typically yields larger values for φµ, as
compared to placing an MNP in the center of the SQUID
loop. Here, we derive an expression for the dependence
of φµ on the distance z of a MNP centered above one
arm of the SQUID and on the width w, thickness d and
the length l of the arm.

II. METHODS

Our method of numerically calculating φµ is described
and applied in Refs. [26–34] (the most detailed descrip-
tion can be found in Ref. [30]). Due to the central impor-
tance for this work we give a brief summary and present
an alternative derivation of this method.
The coupling factor φµ(r, êµ) for a point-like MNP

with its magnetic moment oriented along êµ at position
r can be calculated as

φµ(r, êµ) = êµ ·BJ(r)/J , (1)

whereBJ(r) is the magnetic field that is produced by the
current J which is circulating in the SQUID loop [26]. We
show here, that Eq. (1) can also be obtained by employing
the Amperian loop model for a magnetic moment placed
in the vicinity of the SQUID loop (cf. Fig. 1) and by
using the symmetry of the mutual inductances between
the two loops.
Within the Amperian loop model the magnetic dipole

moment is given as µ = IµAµ, with the current Iµ flow-
ing through an infinitesimally thin loop, surrounding the
oriented flat area Aµ = Aµêµ; accordingly, µ = IµAµ.
The mutual inductance Ms = Φ/Iµ describes the flux Φ
coupled to the SQUID by the current Iµ flowing through

X X

J

Φ

Iµ

Ms

Φµ

Mµ

êµ

SQUID

Amperian

loop

FIG. 1. Illustration of the definition of mutual inductances
Ms and Mµ between a SQUID and an Amperian loop (with
area Aµ and normal unit vector êµ), representing a point-like
magnetic dipole moment in the limit Aµ → 0

.

the Amperian loop. Conversely, the mutual inductance
Mµ = Φµ/J describes the flux Φµ coupled to the Am-
perian loop by the current J circulating in the SQUID
loop. From the identity Ms = Mµ, and with Iµ = µ/Aµ,
we obtain

Φ

µ
=

Φµ

JAµ
=

1

JAµ

∫

Aµ

êµ ·BJ(r) dAµ . (2)

This equals Eq. (1) for an arbitrarily small area Aµ (i.e.,
for the Amperian loop describing a point-like elementary
magnetic dipole), where a constant magnetic field BJ(r)
across the loop area at position r can be assumed.
Equation (1) provides an elegant way of calculating the

coupling factor for a magnetic moment placed at any po-
sition r with any orientation êµ. This approach requires
the calculation of the supercurrent density distribution
j(rs) in the SQUID loop for a given SQUID geometry.
We denote here the spatial coordinates inside the vol-
ume of the SQUID loop as rs, to discriminate this from
the position r of the magnetic dipole. In the following,
we present two different methods for calculating j(rs),
which are either based on solving the London equations
or the Ginzburg-Landau equations. We note that in our
simulations of current density distributions, SQUIDs are
represented by fully superconducting structures, i.e., ne-
glecting the presence of the Josephson junctions.
We use the finite element software package 3D-MLSI

based on London theory [35–37] to calculate j(rs) for a
given current J . In the 3D-MLSI simulations of full loops,
we use for the circulating current J the current which
flows when one magnetic flux quantum Φ0 is trapped in
the loop. In case of single strip conductors, edges can be
defined as terminals, serving as current sources or drains
for a given current. In these simulations, terminals in-
troduce a homogeneous current density at the defined
edges, which changes to the correct current density over
a short length scale. 3D-MLSI calculates discrete sheet
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current densities j2D,n(xs, ys, zs,n) in 2-dimensional cur-
rent sheets configured as triangular meshes. The sheets
are parallel to the (x, y)-plane and spread over the film
thickness d. One can use an arbitrary number N of
current sheets distributed throughout the film thickness,
where n is the index number and zs,n the position of
the current sheet along the z-axis. In our simulations
the current sheets are distributed equidistantly. The re-
sulting j(rs) depends on the thin film geometry and on
λL. When simulating a superconducting thin film struc-
ture in 3D-MLSI, without an external source of magnetic
field (e.g., due to induced currents in a nearby conducting
structure), all current sheets carry the same sheet current
density distribution, i.e., j(rs) contains no z dependence.
We note that this is a good approximation when λL > d,
which is often the case in realizations of nanoSQUIDs.
From the simulated supercurrent distribution, we extract
the magnetic field BJ(r) at any position r by summation
of the fields calculated via the Biot-Savart law

BJ(r) =

N
∑

n=1

µ0

4π

∫

A

j2D,n (rs)×
r − rs

|r − rs|3
dAs (3)

from the individual current sheets. Here r = (x, y, z)
and rs = (xs, ys, zn) are vectors pointing at the mag-
netic moment and at the surface elements dAs of the
superconducting sheets of area As, respectively.
We also use numerical simulations based on Ginzburg-

Landau (GL) theory to calculate j(rs). The behav-
ior of the superconducting condensate is described by a
complex-valued order parameter Ψ, which is allowed to
vary in space. The first GL equation [38] for the order
parameter reads

(−i∇−A)2Ψ = Ψ(1− |Ψ|2) . (4)

Here A is the vector potential, for which the second GL
equation is solved:

−κ2∆A =
1

2i
(Ψ∗

∇Ψ−Ψ∇Ψ∗)− |Ψ|2 A , (5)

where κ is the Ginzburg-Landau parameter given as the
ratio of the London penetration depth λL and the co-
herence length ξ. The London gauge (∇ · A = 0) has
been used. The GL equations are written in dimension-
less form, i.e., all quantities are measured in their natural
units: distances are measured in ξ, the vector potential
A in cℏ/2eξ, the magnetic field B in the upper critical
field Bc2 and the order parameter in its bulk value Ψ0 in
the absence of field and current.
Equations (4) and (5) are solved self-consistently in an

iterative manner. Equation (4) is discretized on a Carte-
sian grid in real space, with grid spacing below 0.2 ξ. We
define Ψ on the nodes and A on the links of the grid
(link variable approach). The Neumann boundary con-
dition imposed at the superconductor-vacuum interfaces
reads

n · (−i∇−A)Ψ

∣

∣

∣

∣

boundary

= 0 , (6)

allowing us to simulate arbitrary geometries. Equation
(5) is solved in the Fourier space with periodic bound-
ary conditions (and a sufficient margin of vacuum taken
around the superconducting sample so that resultant su-
percurrent distributions are not affected by boundary ef-
fects). The supercurrent density is the right-hand side of
Eq. (5) and can be written as

j =
1

2

[

Ψ∗ (−i∇−A)Ψ + Ψ (−i∇−A)
∗

Ψ∗
]

. (7)

In the GL calculations, we simulated fully three-
dimensional loops (both circular and rectangular), where
we used different ways to induce the circulating current J
within the SQUID loop. We either induced J by storing
a single flux quantum Φ0 in the loop (as in 3D-MLSI sim-
ulations), or we induced a screening current J by plac-
ing a magnetic dipole with magnetic moment µ, typi-
cally of the order of 107µB (µB being the Bohr magne-
ton), at a fixed position r0 close to the superconduct-
ing loop. Those different ways to induce J may result in
slightly different supercurrent density distributions j(rs)
and therefore slightly different coupling factors as the
physics differs in both cases. Another reason for slight
discrepancies with respect to simulations based on Lon-
don theory is the finite coherence length ξ.
In either case, the Biot-Savart equation was solved for

the magnetic field in free space given the supercurrent
distribution calculated from Eq. (7), as a volume integral:

BJ(r) =
1

c

∫

V

j(rs)×
r − rs

|r − rs|3
d3rs ,

which in turn allowed for obtaining the coupling factors
of interest.

III. RESULTS

A. Far-field regime: coupling of out-of-plane

moments centered on circular and square loops

For the far-field regime we consider the coupling
for two simple SQUID geometries, circular and square
shaped loops in the (x, y)-plane, to the magnetic moment
of a MNP oriented along êz and placed on the z symme-
try axis. In this case the origin of the coordinate system
is placed in the center of the loop. As êµ = êz, only the
z component BJ,z of BJ needs to be considered, i.e. we
calculate the coupling factor given as φµ,z = BJ,z/J .
We first discuss the coupling factor φµ,z,◦ for circular

loops with inner radius a and outer radius A, as shown
scematically in Fig. 2. For this geometry, Ketchen et
al. [19] derived a very simple expression for φµ(a) for the
moment of a MNP oriented along êz and placed in the
center (at z = 0) of an infinitely thin (d = 0) and narrow
(A = a), circular SQUID loop:

φµ,K,◦(a) =
re
a

Φ0

µB

=
r0
a

nΦ0

µB

≈ 2.818µm

a

nΦ0

µB

. (8)
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x y

z

𝜇𝑧
a

A

d/2
d/2

FIG. 2. Far-field regime: circular superconducting loop (inner
radius a, outer radius A, film thickness d) with the magnetic
moment µ of a MNP on the z-axis above the origin pointing
along êz. The origin is centered in the loop.

Here, re = µ0

2
µB

Φ0

≈ 2.818× 10−15m denotes the classical

electron radius. Moreover, we introduce r0 = 109re ≈
2.818µm, which shows that values for a on the µm scale
produce coupling factors in the range of 1 nΦ0

µB

. The case

treated in Ref. [19] has been extended by Tilbrook [21]
to arbitrary positions r of MNPs, which yields for MNPs
placed along the z symmetry axis

φµ,T,◦(a, z) =
r0
a

1

(1 + z2

a2 )3/2
nΦ0

µB

, (9)

which has been also found in [23].
For an infinitely thin and narrow square shaped

SQUID loop with hole size 2a, the coupling factor for
arbitrary position z of an MNP along the z symmetry
axis can be deduced from Eq. (1) by calculating the z-
component of the magnetic field [39] by the Biot-Savart
law from a current J flowing through the loop as

φµ,□(a, z) =
r0

∆ · a
1

(1 + z2

a2 )3/2

√

2(z2 + a2)

z2 + 2a2
nΦ0

µB

. (10)

For z = 0, Eq. (10) simplifies to an equivalent “Ketchen
expression” for an infinitely thin and narrow square loop

φµ,K,□(a) =
r0

∆ · a
nΦ0

µB

(11)

with the geometric scaling factor ∆ = π/
√
8 ≈ 1.11 [40].

In our simulations, we calculate the coupling factor
φµ,z,◦ for the situation described by Eq. (9) , i.e. for
variable a and variable z along the symmetry axis of the
SQUID loop; in addition, we consider a finite width of
the loop with outer radius A > a and finite film thick-
ness d and London penetration depth λL. In case of the
far-field regime, fine details on the current density dis-
tribution are less important, due to the large distance
between the magnetic moment and the superconducting
structure. Therefore all 3D-MLSI simulations for the far-
field regime have been carried out with only 11 current
sheets distributed equidistantly over the film thickness d.
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FIG. 3. Simulated coupling factor φµ,z,◦ vs z position of a
MNP placed on the z symmetry axis of a circular supercon-
ducting loop with a = 200 nm, A = 300 nm, d = 50nm and
λL = 200 nm. The inset shows a zoom close to z = 0. Cou-
pling factors are calculated for three different situations: (i)
Screening currents are induced by trapping one flux quantum
in the SQUID loop: 3D-MLSI simulations (dashed pink line)
coincide with GL simulations (black solid line; ξ = 20nm).
(ii) Screening currents (from GL simulations for different ξ)
are induced by placing a magnetic dipole (µ ≈ 35.5 · 106µB)
at z0 = 0 (red lines) and z0 = 500 nm (blue lines).

To start this analysis we compare coupling factors ob-
tained from both simulation tools and from different sce-
narios of inducing screening currents in a small loop, with
a = 200 nm, A = 300 nm, d = 50nm and λL = 200 nm.
The different scenarious produce differences in the in-
duced supercurrent density distributions, and we want to
see how strongly those affect the resulting coupling fac-
tors. The results are shown in Fig. 3. There, we consider
(i) screening currents which are induced by trapping one
flux quantum in the loop. In this case, 3D-MLSI and GL
simulations (with ξ = 20nm) coincide. (ii) Coupling fac-
tors are obtained from GL simulations where the screen-
ing currents are induced by a magnetic dipole placed at
the origin z0 = 0 and at z0 = 500 nm. These simulations
have been carried out for variable coherence length ξ, to
check the influence on the coupling factor. The simula-
tion results for fixed z0 (red and blue curves respectively)
coincide for all ξ, suggesting a negligible effect of ξ on the
coupling factor.

One might expect that (ii) provides correct values for
the coupling factor only at the position z = z0. However,
Fig. 3 clearly shows that the coupling factors φµ,z,◦(z)
calculated with the two very different values of z0 coin-
cide very well over the entire z range shown here. Only
for z < 100 nm slight deviations can be seen (c.f. inset
of Fig. 3), where φµ,z,◦ calculated with the current den-
sity inducded by a dipole placed at z0 = 0 is highest.
Compared to the current density distribution resulting
from one flux quantum trapped in the loop, the current
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is more concentrated at the inner circumference, result-
ing in a stronger magnetic field along the symmetry axis.
The current density distribution induced by a dipole at
z0 = 500 nm is more homogeneous resulting in smaller
coupling factors. Still, maximum differences in coupling
factors (obtained at z = 0) are only a few percent. The
current density distributions calculated with 3D-MLSI
and from GL simulations with ξ = 20nm for the differ-
ent cases, can be found in the supplementary material
(figures S9-S12).

Altogether, we find that φµ,z,◦(z) calculated by GL
simulations with different values of ξ and z0 has an al-
most negligible effect on the coupling factor in case of
a loop with small line width, and that GL simulations
and 3D-MLSI provide consistent results for the coupling
factor. In the supplement a similar comparison of cou-
pling factors (Fig. S1) obtained by 3D-MLSI simulations
and GL simulations can be found for a loop with the
same inner radius (a = 200 nm) but a larger line width
(A = 1.5µm). For the larger line width, differences in
the coupling factor for the different methods of induc-
ing screening currents (yielding different current density
distributions) become significant (up to about 30% at
z = 0).

In the following, only data obtained from 3D-MLSI
simulations are shown, where the current density origi-
nates from trapped flux in the loop. Figure 4 shows sim-
ulation results of φµ,z,◦(z) for different values of a and A
and two sets of λL and d. The three curves which yield
the largest φµ,z,◦ at z = 0 are calculated for a fixed ra-
tio A/a = 1.5, varying a from 0.2 to 0.5µm. For those,
the results for the two different sets of λL and d (solid
lines and crosses) coincide, and they also coincide with
the modified expression for φµ,T,◦(aeff , z) from Eq. (9)

(dots), with an effective radius aeff =
√
a ·A [15, 24].

These coincidences get lost when we significantly increase
A to 5µm, while keeping a = 0.5µm (green curves). We
note that these coincidences also get lost when a ≫ d is
not satisfied (not shown). With the significant increase
of A, the coupling factor significantly decreases and the
z dependence becomes very weak. Upon further increas-
ing a up to 4.5µm, while keeping A fixed at 5µm, the
simulated coupling factor further decreases and becomes
almost independent of z. Simulations for an equivalent
set of dimensions for square loops exhibit a similar be-
havior like the data shown in Fig. 4, with slightly reduced
coupling factors. The comparison of simulated coupling
factors for square shaped loops with Eq. (10), utilizing
the same effective loop size parameter aeff , are shown in
the supplementary material, in Sec. S1B, Fig. S4.

For measurements of the magnetization reversal of in-
dividual MNPs, we are mostly interested in the situation
which gives strongest coupling. So in the following we
consider φµ,z,◦ for various circular geometries at z = 0,
i.e., for a magnetic dipole placed at the center of the
loop, with its moment pointing in z direction. For this
case, we derive from our simulation results a fit formula
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FIG. 4. With 3D-MLSI simulated coupling factor φµ,z,◦ vs z
position of a MNP placed on the z symmetry axis of a circular
superconducting loop, for different values of the inner radius
a and outer radius A. Results are shown for two sets of λL

and d and compared to the expression given in Eq. (9) with

a replaced by an effective radius aeff =
√
a ·A.

depending only on the loop geometry A, a, d and on λL:

φµ,z,◦(A
′, a′, d′, λ′

L)
nΦ0

µB

=
1.57

a′
+

1.247

A′
(12)

− (A′ − a′)1.5

(A′ · a′)1.35 · 0.43

(1 + 0.29 d′/λ′2
L )

Here, the primes denote that all parameters are normal-
ized to 1µm. The results given by equation (12) are
within a ≲ 10% deviation from the results calculated
using 3D-MLSI for the parameter range

a = 0.2 . . . 5µm

A = (a+ 0.1µm) . . . 5µm

d = 10 . . . 100 nm

λL = 10 . . . 500 nm .

Hence, Eq. (12) covers a wide range of experimentally
relevant SQUID loop parameters.

To better facilitate the comparison of our simula-
tion results with the limiting case described by the
Ketchen formula for φµ,K,◦(a), given in Eq. (8), we
rewrite Eq. (12) by introducing the dimensionless ratio
g ≡ A/a and the Pearl length Λ ≡ λ2

L/d and normalize
to φµ,K,◦(a). This results in

φµ,z,◦(g, a,Λ)

φµ,K,◦(a)
= 0.557+

0.443

g
−f1(g)·f2(a)·f3(Λ) (13)
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FIG. 5. Correction functions from Eq. (14) which enter into
the expression for the coupling factor of a circuclar loop (mag-
netic moment at z = 0 along êz), given in Eq. (13).

with

f1(g) =
(g − 1)1.5

g1.35

f2(a) =
(r0
a

)0.2

(14)

f3(Λ) =
0.124

1 + 0.103 r0
Λ

.

When approaching the limit A → a (i.e., g → 1) of
a loop with infinitely narrow linewidth, Eq. (13) repro-
duces the Ketchen expression (8). Upon increasing g (our
simulations cover 1.02 ≤ g ≤ 25), the second term on the
right-hand-side (r.h.s.) of Eq. (13) becomes negligible,
i.e., the coupling factor is reduced to ∼ 56% of the value
obtained from the Ketchen expression, if we neglect the
third term in the r.h.s of Eq. (13). This third term, which
can lead to a further reduction of the coupling factor, is
the product of the functions f1(g), f2(a) and f3(Λ), as
defined in Eq. (14) and shown in Fig. 5. f1(g) vanishes
for g → 1; with increasing g it increases monotonically
and reaches ∼ 1.5 for g = 25. f2(a) has a weak de-
pendence on a, and monotonically decreases from ∼ 1.7
for a = 0.2µm to ∼ 0.9 for a = 5µm. f3(Λ) increases
monotonically with Λ, from ∼ 0 for Λ = 1nm to ∼ 0.12
for Λ = 25µm (the parameter range for Λ covered in
the simulations). Hence, the third term in the r.h.s. of
Eq. (13) is negligible either for small g approaching one,
or for very small Λ, i.e., thick films. It has a maximum
value of ∼ 0.3 for largest g and Λ and smallest a covered
by our simulations. In this case, the coupling factor re-
duces to ∼ 25% of the value obtained from the Ketchen
expression.
Figure 6 shows a representative plot of the coupling

factor Φµ,z,◦ vs film thickness, obtained from 3D-MLSI
simulation (dots) together with the results obtained from
Eq. (12) (solid lines) for a circular loop, with A = 5µm
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FIG. 6. 3D-MLSI simulations (dots) and results from fit
Eq. (12) (lines) for the coupling factor φµ,z,◦ vs film thick-
ness d for a circular loop, with A = 5µm and a = 0.5µm for
different λL (magnetic moment at z = 0 along êz). Note that
the vertical axis covers the range from 2 to 4 nΦ0/µB.

and a = 0.5µm for different λL. For the smallest value
of λL = 10nm, Eq. (12) underestimates the coupling fac-
tor by up to ∼ 4%. However, upon increasing λL this
deviation quickly decreases. Figure 6 clearly shows that
upon decreasing d and increasing λL (i.e., increasing Λ),
the coupling factor decreases. This is a consequence of
the scaling of f3(Λ) shown in Fig. 5. Additional coupling
factors simulated with 3D-MLSI of circular washers with
different size and comparison to Eq. (12) as well as sim-
ulations of different sized square washers compared to a
slightly adjusted equation can be found in the supple-
mentary material (figures S5 and S6). Those data show
a good agreement of the fit over the whole parameter
range investigated.
So far, we have shown that by taking into account a

finite width of the SQUID loop and a finite Pearl length,
we find that the simple Ketchen expressions [Eqs. (8)
and (11)] overestimate the coupling factor, by up to a
factor of ≈ 4 for large g and Λ and small a. Like in the
comparison of simulations for variable z with Eq.(9), a
simple correction can be done by replacing in the Ketchen
expressions the inner loop size a by an effective loop size
aeff ≡

√
a ·A =

√
g · a, to take into account the finite

width of the loop. This approach corresponds to taking
into account the effective area of the SQUID Aeff = b ·
Ah ·

√

Aw/Ah, where Aw is the outer loop area, Ah is the
area of the inner SQUID hole, and b is a geometric factor
close to one (b = 1/∆2 = 8/π2 for circular and ≈ 1 for
square loops) [41]. This approach, yields the modified
Ketchen expressions

φ̃µ,K,i =
1√
g

· φµ,K,i (i = ◦,□) . (15)

For a circular loop, Fig. 7 shows for comparison the
modfied Ketchen expression φ̃µ,K,◦(g) [Eq. (15)] together
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FIG. 7. Coupling factors vs g for cicular loops (magnetic mo-
ment at z = 0 along êz): Comparison of functions calculated
from Eq. (13) for different Λ and a with the modified Ketchen
expression Eq. (15) for a circular loop.

with the 3D-MLSI simulation results φµ,z,◦(g) [Eq. (13)],
both normalized to φµ,K,◦. In the latter case, we show
three curves for different Λ with fixed a = 750 nm (blue)
and three curves with a = 200 nm (red). For g close to
one, all curves approach each other; however, for larger
g, the modified Ketchen expression lies clearly below the
φµ,z,◦(g) curves, and for the latter one clearly sees the
dependence on Λ. Obviously, the φµ,z,◦(g) curves also
depend on a. For a < 80 nm, in the limit Λ → ∞, one
can find φµ,z,◦(g) < φ̃µ,K,◦ for a wide range of g; how-
ever, these small values of a are outside the range for
which we obtain a ≲ 10% deviation of the fit functions
from our 3D-MLSI simulation results. Altogether, these
results demonstrate, that the simple approximations of
the coupling factor by the Ketchen expressions – even
using the expressions with an effective loop size aeff –
still can significantly deviate from numerical simulations
with 3D-MLSI.

B. Near-field regime: coupling to SQUID arms

For the near-field regime, we consider the situation
when an MNP is placed in close vicinity to one arm of a
square shaped SQUID loop in the (x, y)-plane. We start
with showing that this situation can be reduced to only
considering the coupling between the SQUID arm, repre-
sented by a cuboid shaped conductor (‘single strip’) and
the MNP. For this coupling, we derive for a homogeneous
current density distribution an expression for the depen-
dence of φµ on the distance z of a magnetic moment
centered above a strip and on the width w, thickness d
and the length l of the strip; 3D-MLSI simulations show
that in the near-field regime λL has only a minor effect
on the coupling factor. We note that this approach can
also be applied to the situation when a constriction is

z

y

d

l

w

lcwc

dc

2a

2A

w/2

w/2

x

µx

FIG. 8. Geometry of a square-shaped loop with inner size 2a
and outer size 2A considered for the calculation of the cou-
pling factor φµ(x, y, z) in the near-field regime: A magnetic
moment pointing in x-direction is placed at height z above the
symmetry point of the top surface of a SQUID arm extending
along the y-direction. This arm can contain a constriction
(width wc, length lc and thickness dc). The film thickness of
the loop is d, and the width of the arm is w = A−a. Simula-
tions of this geometry are compared to simulations of single
strip conductors of length l = A+ a, which is also indicated.

introduced in the SQUID arm, which leads to increased
coupling, when a MNP ist placed close to the conctric-
tion; this situation is indicated in Fig. 8.
We consider a square shaped superconducting loop

with inner dimension 2a, outer dimension 2A, film thick-
ness d and London penetration depth λL. We place the
origin of the coordinate system on the upper surface of
one SQUID arm, that extends along the y-axis. A mag-
netic dipole is then placed at position r = (0, 0, z), i.e.,
it is centered above the arm at distance z from the upper
surface. We then assume that the moment of the mag-
netic dipole is oriented along the x-axis, i.e. êµ = êx (see
Fig. 8); hence, only the x component BJ,x of BJ needs to
be considered, i.e. we calculate the coupling factor with
Eq. (1) as φµ,x = BJ,x/J . This orientation is chosen
according to the standard geometry of measurements of
magnetic hysteresis loops of MNPs, were the magnetic
moment is (mostly) oriented in parallel to an external
magnetic field needed for switching the magnetization.
With the external field and therefore the magnetic mo-
ment aligned along the x-axis, the coupling factor can be
maximized, while the coupling of magnetic flux from the
external field can be avoided.
For sufficiently large SQUID loops or close proximity

of the magnetic moment to the SQUID arm with small
cross-section, the dominating part of the coupling results
from the interaction of the magnetic moment with the
arm only. This is illustrated in Fig. 9, where we com-
pare calculated coupling factors across position x above
one arm of a full loop and above a single strip (with
w = A− a and l = a+ A) for two values of λL and four
positions z above the upper surface of the structures. Re-
sults on full loops are obtained from 3D-MLSI and GL
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FIG. 9. Comparison of simulated coupling factors φµ,x vs. po-
sition x of a magnetic moment above one arm of a full square
loop (2a = 480 nm, 2A = 700 nm) and above a single strip
(w = 110 nm, l = 590 nm), both with d = 10nm. Full loops
are simulated with 3D-MLSI as well as GL simulations with
1 Φ0 trapped in the loop. Simulations of the single strip are
done in 3D-MLSI, with current introduced via terminals at
the short edges of the strip. Coupling factors are calculated
for λL = 10nm and 570 nm with four values of fixed height z.
The center of the arm of the full loop and of the single strip
is at x = 0.

simulations where 1 Φ0 is trapped in the loop. Single
strips are only simulated within 3D-MLSI, were the cur-
rent is introduced via terminals at the short edges of the
single strip. All simulations were done with 3 nm resolu-
tion, again with a triangular mesh and a square mesh for
3D-MLSI and GL simulations respectively.

For λL = 570 nm, which is significantly above the line
width w, the current density distribution is homogeneous
across the cross section of the single strip. For most of
the arm of the full loop this is also true, but towards
the corners the current gets inhomogeneous (c.f. Fig. S22
in the supplement.) Therefore for the smallest distance
z = 10nm, both coupling factors calculated with the full
loop and the single strip simulated with 3D-MLSI coin-
cide (red and blue solid lines in Fig. 9), whereas for in-
creasing z small deviations are visible. These deviations
are due to reduced currents in y-direction at the cor-
ners of the loop, leading to reduced contributions from
these regions, which gets more important with increas-
ing z. Maximum coupling in case of homogeneous current
densities is achieved above the center of the arm of the
loop/single strip (x = 0). For the largest z = 190 nm
(dashed-dotted lines in Fig. 9) the two simulations (for
small and large λL) with the full loop (cyan and red) coin-
cide and the simulations with only the single strip (green
and blue) coincide. This shows that for large enough dis-
tances of an MNP from the SQUID loop, inhomogeneities
in the current distribution do not affect the coupling fac-
tor.

For the simulations with λL = 10nm, more deviations
between the simulation of the full loop with 3D-MLSI
and the single strip are visible, especially for the small-
est z. This is due to inhomogeneous current densities in
these simulations which slightly differ for the two differ-
ent geometries. In the case of the single strip, the current
density peaks at both edges, symmetrically around the
center of the conductor. This produces a φµ,x(x) depen-
dence (green curves) which is also symmetric about the
center of the strip (x = 0). The simulation with the full
loop results in a current density with its maximum at
the inner edge of the loop (at x = −55 nm), which drops
towards the outer edge (at x = 55nm). This behavior is
also reflected in the asymmetry of the resulting coupling
factors (cyan curves), peaking close to the inner edge.
Nevertheless, at the center (x = 0) the coupling factors
are almost the same.

GL simulations of full loops yield closely the same cou-
pling factor (only slightly reduced values) as for full loop
simulations by 3D-MLSI. The current density distribu-
tions with identical λL are similar and can be found in
the supplement Figs. S21 to S24.

In the remaining part of this section, we treat only the
simpler system of coupling between a single strip (with its
length l along the y-axis) and a magnetic moment point-
ing along the x-axis, and we consider coupling factors
obtained above the center of the conductor. To start this
analysis we investigate the situation λL > w, d, where a
homogeneous current density in the strip can be assumed.
For this case an analytical expression for the coupling fac-
tor for a dipole moment at position r can be found by
utilizing Eq. (1) and the magnetic field B1D(r) gener-
ated by a current I1D running in y-direction through an
infinitesimally thin and narrow conductor (1D-wire) of
length l

B1D(r)=
µ0I1D
4πρ

(

sin arctan
l
2
+ y

ρ
+ sin arctan

l
2
− y

ρ

)

êϕ.

(16)
Here, the origin is set to the midpoint of the 1D-wire
along the y-axis. ρ gives the radial distance between the
wire and the position of the magnetic moment, and êϕ
is the polar coordinate base vector. For simplicity, we
consider in the following only the case y = 0.

To calculate the magnetic field BJ,x at r = (0, 0, z),
i.e., at the height z above the symmetry point of the top
surface of an extended strip (with finite d and w), we
integrate Eq. (16) over the cross-section of the strip. For
this calculation we change the origin to the position of
the magnetic moment, reversing the sign of Eq. (16). In

this case ρ =
√
z′2 + x′2 and the x′-component of êϕ is

cosϕ = z′/ρ with ϕ being the angle between the z-axis
and the line connecting the MNP with the midpoint of
the 1D wire. With this, we can integrate Eq. (16) over all
possible distances of 1D-wires, filling the strip with cross-
sectional area wd. In the integral, we have to replace I1D
by the current density J/(wd); this yields
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BJ,x(z, w, d, l) =
µ0J

πwd

∫ w

2

0

∫ z+d

z

cosϕ

ρ
sin arctan

(

l

2ρ

)

dz′dx′

=
µ0J

πwd

[

l

2
ln









(

ρz + w
2

)

√

(

l
2

)2

+ (z + d)2

(

ρd + w
2

)

√

(

l
2

)2

+ z2









+
w

2
arcsinh







l/2
√

(

w
2

)2
+ z2






− z arctan

(

lw

4zρz

)

−

w

2
arcsinh







l/2
√

(

w
2

)2
+ (z + d)2







+ (z + d) arctan

(

lw

4 (z + d) ρd

)

]

=
µ0J

πwd
Θ(z, w, d, l) . (17)

Here, we introduce ρz =

√

(

l
2

)2
+
(

w
2

)2
+ z2, ρd =

√

(

l
2

)2
+
(

w
2

)2
+ (z + d)

2
and Θ(z, w, d, l) represents the

expression in square brackets. From this and Eq. (1) we
obtain the coupling factor

φµ,x(z, w, d, l) =
2Θ(z, w, d, l)r0

πwd

nΦ0

µB

, (18)

where again r0 is introduced to provide the coupling fac-
tor in units of nΦ0

µB

.

In the following we compare the analytical result given
in Eq. (18) for a homogeneous current density distri-
bution to simulations obtained with 3D-MLSI, where a
broad range of parameters

z = 10 . . . 190 nm

w, d = 10 . . . 370 nm

l = 200 . . . 1000 nm

λL = 10 . . . 570 nm ,

was covered. Here its important to again note that the
3D-MLSI results do not contain a z-dependence of the
current density distribution, when the current sheets are
parallel to the (x, y)-plane. Therefore, simulations with
current sheets in the (x, y)-plane only capture current
density variations across the width w and not across the
thickness d of the strip. This situation is more appropri-
ate for λL < w. To capture the effects of current density
variations along the film thickness (in case λL < d), the
coupling factor was also simulated with current sheets
parallel to the (y, z)-plane. In this second case, varia-
tions of the current density along the film thickness are
captured, but those along the strip width are neglected.
Due to the smallest distance z = 10nm between the up-
per surface of the strip and magnetic moment, the trian-
gular mesh size and distance between current sheets has
to be chosen sufficiently small. For simulations with the
current sheets in the (x, y)-plane, the triangular mesh
size was chosen as 1 nm and 2 nm for simulations with
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FIG. 10. Coupling factor vs distance from a single strip cal-
culated with 3D-MLSI (symbols) and with Eq. (18) (lines).
Different colors correspond to different sets of geometrical
parameters w, d, l. Different symbols correspond to different
values of λL, with current sheets in the (x, y)-plane (solid
symbols) and (y, z)-plane (open symbols).

w < 100 nm and w > 100 nm respectively, and 1 nm dis-
tance in z-direction between current sheets was used for
all simulations. Simulations with current sheets in the
(y, z)-plane were done with the same current sheet spac-
ing along x, and mesh size was analogously chosen de-
pending on d. We note that the grid size in Fig. 9 was
3 nm. At x = 0 and z = 10nm, for the larger values
of λL = 570 nm (homogeneous current density distribu-
tions; c.f. Figs. S22, S24 and S25(b)), the 3D-MLSI sim-
ulations (both for single strip and loop) yield the same
value as obtained from Eq. (18), as expected, while for
the GL simulation the value lies slightly below. This de-
viation might be caused by the different grid geometry
used for GL vs 3D-MLSI simulations.
Some exemplary simulation results of the coupling fac-

tors φµ,x(z, w, d, l, λL) (symbols) are shown in Fig. 10,
and are compared to Eq. (18) (solid lines). More pre-
cisely, we plot φµ,x vs z for five different sets of w, d, l
(represented by different colors) and – in case of 3D-
MLSI simulations – each set for four different values of λL

(represented by different symbols). Solid symbols indi-
cate current sheets in the (x, y)-plane and open symbols
in the (y, z)-plane.
Clearly, the coupling factor increases with decreasing

distance z to the surface of the strip. This increase is
most pronounced for small z when the cross section is
smallest (red data). Notably, by considering an extended
conductor, the divergence at z = 0 of the coupling factor,
which is observed in filamentary models, is not present.
Moreover, φµ,x increases with decreasing cross-section of
the strip (c.f. red, cyan, blue and orange data for fixed
l). For the single strip with d = w = 10nm (red data)
the simulation results are independent of λL (and current
sheet orientation) and coincide with Eq. (18). For small
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λL, simulations with current sheets along the (x, y)-plane
and large w (pink, cyan and orange solid symbols) result
in lower coupling compared to Eq. (18). Simulations with
small λL and current sheets along the (y, z)-plane and
large d (blue and orange open symbols) result in higher
coupling compared to Eq. (18). It can be seen that an
inhomogeneous current density distribution has most in-
fluence for small distances z. Further, the length of the
strip gets important for larger distances z (compare pink
and cyan).

The strongest deviations between Eq. (18) and simu-
lation results can be seen for small z and λL and large w
and d. Understandably, the limiting case for λL > w, d
is represented by Eq. (18), when the current density in
the conductor approaches a homogeneous distribution.
When λL < w for simulations with current sheets along
(x, y) or λL < d with current sheets along (y, z), the
current is higher at the edges of the current sheet, sym-
metrically around the center of the strip. In the first case
this leads to the current being more distant to the point
where the coupling factor is calculated compared to a ho-
mogeneous current density, leading to lower coupling fac-
tors in simulations compared to Eq. (18). In the second
case the symmetrically increased current density at the
bottom and top surface of the single strip together with
the inverse dependence on distance of the Biot-Savart law
leads to higher coupling factors compared to Eq. (18).

Finally we want to look at the coupling factor above
a SQUID arm oriented along the y-direction, contain-
ing a constriction at the center of the arm. A magnetic
dipole shall be placed above the center of the constric-
tion, with its moment along the x-direction. The pa-
rameters w, d and l still denote the width, thickness
and total length of the SQUID arm. The smaller di-
mensions of the constriction are given accordingly by
wc, dc and lc (see Fig. 8). Eq. (18) gives the contri-
bution of the constriction φµ,c(z) = φµ,x(z, wc, dc, lc).
The contribution of the SQUID arm can be calculated
as φµ,arm(z) = φµ,x(z, w, d, l) − φµ,x(z, w, d, lc). So in
total the coupling factor is φµ,tot = φµ,c + φµ,arm.

Figure 11 shows 3D-MLSI simulation results (symbols)
with current sheet orientation along the (x, y)-plane of
the coupling factor φµ,x vs z position between a magnetic
dipole and a strip with l = 590 nm, w = 110 nm and
d = 50nm, containing a constriction with lc = 50nm,
wc = 20nm and dc = d. Again, different symbols indi-
cate different values for λL. The calculation with Eq. (18)
of φµ,tot (black line) describes the simulation data well,
with a slight deviation at smallest z. This deviation
is largest for largest λL and originates from the regions
where the constriction connects to the wider arms. There
the current density adjusts to the change of width over
a small length scale linked to λL, not captured by our
calculations (Eq. (18)). For small values of λL the length
over which the current density adjusts is smaller. The
simulated current densities can be found in the supple-
ment (Fig. S26). For small z the main contribution of the
total coupling factor results from the constriction (red
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FIG. 11. Coupling factor of a magnetic moment placed above
a SQUID arm (with l = 590 nm, w = 110 nm and d = 50nm)
containing a constriction (with lc = 50nm, wc = 20nm and
dc = d) vs distance z. Symbols show results from 3D-MLSI
simulations with current sheet orientation along the (x, y)-
plane. Different symbols represent different values of λL in
the simulations. The simulation data are compared to the
coupling factor φµ,tot (black line) calcluated from Eq. (18),
consisting of the contribution of the constriction φµ,c (red
line) and the contribution of the surrounding arms φµ,arm

(blue line). Also the coupling factor φµ,x(z, w, d, l) of the full
arm without a constriction (pink line) is shown.

line) and for big z from the surrounding arms (blue line).
From the comparison of the arm with and without a con-
striction (black and pink line) for small z, a significant
increase in coupling due to the introduction of the con-
striction is visible.

IV. CONCLUSION

In this paper we investigated the coupling factor φµ,
that quantifies the coupling of a magnetic dipole to a
SQUID, for various SQUID geometries by means of nu-
merical simulations based on London theory (3D-MLSI)
and Ginzburg Landau (GL) theory. We investigated the
far field regime, where the distance r between magnetic
dipole and SQUID is comparable to or larger than the
inner size a of the SQUID loop and the near field regime,
where the magnetic dipole is in close proximity to the
SQUID.
In the far field regime, we reviewed formulas for the

calculation of the coupling factor for a magnetic dipole
placed on the symmetry axis of circular and square
shaped SQUID loops, obtained from filamentary loop
models. We investigated the applicability of these formu-
las on spatially extended SQUID loops with outer size A,
film thickness d and under consideration of the London
penetration depth λL and the Ginburg-Landau coherence
length ξ, by simulating the coupling factor of various cir-
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cular and square shaped loops. For loops with small film
thickness d ≪ a and small line width A − a < a, the
introduction of an effective loop size aeff (connected to
the effective area Aeff of the SQUID) in the filamentary
loop model formulas results in good agreement with sim-
ulations.
Furthermore, the coupling factor for circular and

square loops was investigated for magnetic dipoles placed
at the center of the loop, where the coupling factor is
largest for a given geometry in the far field regime. From
3D-MLSI simulations we derive a fit formula for the cou-
pling factor φµ(a,A, d, λL) that covers a wide parameter
range of the inner and outer size of the loop, film thick-
ness and London penetration depth.
In the near field regime we investigated the coupling

factor for a magnetic dipole centered at a distance z
above the upper surface of one SQUID arm. 3D-MLSI
and GL simulations show that in this case, it is sufficient
to consider the coupling between a single strip conductor
representing the SQUID arm and the magnetic dipole, to
reduce the computational effort. The coupling between
a single strip and a magnetic dipole centered above the
strip at distance z was then calculated analytically for a
homogeneous current density distribution across the strip
with variable film thickness d, width w and length l. The
obtained expression showed an excellent agreement with
coupling factors calculated numerically with 3D-MLSI,
for single strips of various geometries and variable Lon-
don penetration depth for λL > w, d. When λL < w or
λL < d the analytical calculation slightly overestimates
or underestimates, respectively, the results of the simu-
lations for the investigated parameter range.
Finally, we investigated the coupling factor for a mag-

netic dipole centered at height z above a constriction
introduced to the center of the SQUID arm. Here, the
simulated coupling factor can be well described by cal-
culating the superposition of the coupling factor of the
constriction and the surrounding SQUID arm. For small

distances z the coupling factor increases significantly by
the introduction of the constriction into the SQUID arm,
while for larger distances the coupling factor is deter-
mined by the SQUID arm geometry.
Altogether, our studies show that, by taking into ac-

count the finite cross-section of a SQUID loop and finite
λL, results for the coupling factor (and accordingly the
spin sensitivity) can significantly deviate from simple ap-
proximations based on filamentary loop structures. Still
one can avoid time-consuming numerical simulations of
the coupling factor by using approximate results that
have been derived here for various situations and for
ranges of geometric parameters that are relevant for prac-
tical applications. On the other hand, we demonstrate
that numerical simulations based on Ginzburg-Landau
theory provide results that are consistent with our 3D-
MLSI simulations that have been frequently used in the
past for calculating the coupling factor. This is important
if one needs to calculate more complex three-dimensional
structures (e.g., vector nanoSQUIDs [32]), that cannot be
treated anymore by 3D-MLSI. The results presented here
may be useful for providing good estimates of signals that
are produced upon magnetization reversal of magnetic
nanoparticles that are coupled to nanoSQUIDs. More-
over, these results could also be helpful for the estimation
of the spatial resolution of scanning SQUID microscopy,
in the case of imaging dipole-like sources.
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R. Wölbing, J. Sesé, O. Kieler, R. Kleiner, and D. Koelle,
Three-axis vector nano superconducting quantum inter-
ference device, ACS Nano 10, 8308 (2016).
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