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ABSTRACT 13 

Multi-objective optimization is an important decision-making tool for energy processes, as 14 

multiple targets need to be achieved. These objectives are usually conflicting since a single 15 

solution cannot be optimal for all objectives, resulting in a set of Pareto-optimal solutions. 16 

Multiple indicators might be available to describe a sustainability objective, such as the 17 

environmental impact which is commonly evaluated by performing a life cycle assessment. In 18 

this study, Pareto aggregation is proposed as a method which employs a novel multi-objective 19 
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optimization-based approach as an alternative to the classically used aggregation in life cycle 20 

assessment. This method identifies conflicting environmental indicators and performs an 21 

aggregation among those that require a trade-off. An environmental-economic optimization of 22 

a second-generation bioethanol plant is used to illustrate and evaluate the proposed method. 23 

Process parameters from a biochemical conversion pathway flowsheet simulation model are 24 

chosen as optimization variables. To reduce the computational time, surrogate models, based 25 

on artificial neural networks, are used. Out of the eighteen ReCiPe Midpoint environmental 26 

indicators, five were identified as conflicting, resulting in an aggregated environmental 27 

objective, which was then traded off with the economic objective function, chosen as the 28 

levelized cost of ethanol. Comparison with the widely used single-score EcoIndicator99 29 

showed that the Pareto aggregation method can reduce most of the environmental indicators by 30 

up to 6.5%. This research provides an insight on non-redundant objective functions, aiming at 31 

reducing the dimensionality of multi-objective optimization problems, while taking into 32 

consideration decision-makers’ preferences. 33 

KEYWORDS 34 

Multi-objective optimization, sustainability optimization, life cycle assessment, bioprocess 35 

modelling, biorefinery 36 

NOMENCLATURE 37 

Abbreviations 38 

ANN: Artificial neural network 39 

BP: Best point 40 

CAPEX : Capital expenditure   41 
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LCA: Life cycle assessment 42 

MOO: Multi-objective optimization 43 

MSE: Mean squared error 44 

OPEX: Operational expenditure 45 

Symbols 46 

𝑎: annuity factor 47 

 𝐶𝐹𝐶𝐼: fixed capital investment (EUR) 48 

𝐶𝑜𝑝𝑒𝑟𝑙𝑎𝑏: operating labor cost (EUR/h) 49 

𝐶𝑜𝑝𝑓𝑖𝑥: fixed operating cost (EUR/y) 50 

𝐶𝑜𝑝𝑣𝑎𝑟: variable operating cost (EUR/y) 51 

𝐽𝑖: predicted value of 𝐽𝑖 52 

𝐽𝑖𝐵𝑃: objective value of 𝐽𝑖 on the Best point 53 

𝐽𝑎𝑔𝑔,𝑒𝑛𝑣: aggregated environmental objective 54 

𝐽𝑐𝑜𝑛𝑓: set of conflicting objectives 𝐽𝑖 55 

𝐽𝑒𝑛𝑣: set of environmental objectives 𝐽𝑖 56 

𝐽𝑖: objective function i 57 

𝐽𝑖𝐵𝑃,𝐸𝐼99: objective value of 𝐽𝑖  on the Best point of the EcoIndicator99-economic Pareto front 58 
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𝐽𝑖𝐵𝑃,𝑎𝑔𝑔: objective value of 𝐽𝑖  on the Best point of the aggregated environmental-economic 59 

Pareto front 60 

𝐽𝑜𝑏𝑗: set of objective functions 61 

𝑘: number of objectives for each combination  62 

𝐿𝐶𝐸: levelized cost of ethanol (EUR/L) 63 

𝑁: number of Pareto fronts 64 

𝑛: number of samples 65 

𝑛𝐽: number of objective functions J 66 

𝑛𝐽𝐶: number of conflicting objectives 𝐽𝑖  67 

𝑛𝐽𝑒𝑛𝑣: number of environmental objectives 68 

PEtOH: annual ethanol production (L/y) 69 

𝑃𝐹𝐽𝐶: number of conflicting Pareto fronts 70 

𝑊𝑖: weights of each conflicting objective 𝐽𝑖 ∈ 𝐽𝑐𝑜𝑛𝑓 71 

𝑥: vector of optimization variables 72 

𝑥𝑚𝑎𝑥: vector of the maximum values of the optimization variables 73 

𝑥𝑚𝑖𝑛: vector of the minimum values of the optimization variables  74 

𝑦𝑖: variable of min-max scaling 75 

𝑦𝑖′: normalized value of 𝑦𝑖 variable 76 
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𝑈: Utopia point of two objective functions 𝐽𝑖 and 𝐽𝑗≠𝑖 77 

1. INTRODUCTION 78 

During the design and operation of energy systems, decisions have to be taken 79 

considering multiple objectives, namely: maximizing economic performance (e.g., Net Present 80 

Value (NPV), profit), while minimizing environmental impact (e.g. global warming potential, 81 

carbon footprint, ecosystem quality savings) [1]. These objectives can be conflicting, as 82 

improving one can result in worsening the other. In such a situation, there is not one optimal 83 

solution, but rather several mathematically equivalent trade-off solutions exist (i.e., Pareto 84 

optimal solutions) [2]. Multi-objective optimization (MOO) methods generate such a set of 85 

Pareto optimal solutions, called the Pareto front [3], and have been widely used in energy 86 

applications [4]. These mathematically equivalent trade-off solutions can then assist in the 87 

decision-making process. The systematic generation and efficient presentation of these optimal 88 

alternatives to decision-makers plays a key role in computer-aided decision making. Decisions 89 

need to be made in an efficient and well-informed manner while the decision-makers’ 90 

preferences also need to be taken into account [1]. 91 

In environmental assessments, such as the widely used life cycle assessment (LCA), 92 

many different indicators are exploited to quantify and evaluate environmental impacts [5]. 93 

Usually only CO2 emissions are taken into consideration in multi-objective optimization 94 

problems on energy systems [6,7], neglecting the rest of the indicators. On the other hand, 95 

multiple environmental indicators can be normalized and weighted, resulting in a single score 96 

indicator. The use of a single aggregated indicator facilitates the communication and 97 

interpretation of the comparative results from LCA practitioners to decision-makers [8]. For 98 

example, endpoint impact categories (i.e., damages to human health, ecosystem quality and 99 
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resources) are used to have a comprehensive view on environmental impacts [9]. Then, these 100 

impact categories are often aggregated into a single Eco-Indicator [10] (e.g., Eco-indicator 99 101 

[9]).  102 

However, the weighted sum procedure has received lot of criticism over the years, due 103 

to the danger of incorrectly interpreting the weighted results, as weighting factors are subjective 104 

and might not represent decision-makers’ preferences [8,11]. As a result, multiple efforts have 105 

been made to improve the aggregation approach in environmental assessments. Afrinaldi et al. 106 

[8] have proposed a novel method for normalization and aggregation in LCA based on fuzzy 107 

logic, which was applied in automotive engines. Similarly, Agarski et al. [12] have used fuzzy 108 

logic for impact category weighting in an LCA study on waste treatment processes. The 109 

analytical hierarchy process (AHP) has also been applied to estimate weighting factors for an 110 

electricity generation case study [11]. Moreover, Sohn et al. [13] have developed a novel 111 

weighting method, called Argumentation Corrected Context Weighting-LCA (ArgCW-LCA), 112 

which uses multi-criteria decision analysis to aggregate midpoint impacts to a single indicator. 113 

Despite these efforts, the use of aggregated impact indicators as the final environmental 114 

objective function in optimization problems, can lead to suboptimality and a loss of information 115 

for decision makers [14,15]. Indeed, the attained solution of the problem is influenced by the 116 

weighted sum procedure as the conflicting behavior of different impact categories is not 117 

considered, leading to suboptimal solutions. A recent study by Zacharopoulos et al. [16] focused 118 

on optimizing battery electric vehicles (BEV) charging profiles by minimizing their 119 

environmental impact, while also including the identification of conflicting and non-conflicting 120 

environmental midpoint impact indicators. The conflicting indicators were determined by first 121 

optimizing each impact indicator separately, then calculating the rest of the indicators for these 122 

optimized charging profiles and finally measuring the deviation between the objectives. Despite 123 
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identifying conflicting environmental objectives, the aggregation of these conflicting indicators 124 

into a single final environmental objective was not included in the study.  125 

To address this knowledge gap, a novel method named Pareto aggregation is proposed 126 

in this study which firstly solves systematically a multi-objective optimization problem related 127 

to environmental sustainability using different indicators and identifying which indicators are 128 

truly conflicting and between which ones a tradeoff needs to be made. In contrast to the current 129 

state-of-the-art, by identifying the difference between conflicting and non-conflicting 130 

objectives, the objective space is reduced by only retaining the conflicting ones, as the non-131 

conflicting ones will lead to the same optimal solution (and hence a waste of computational 132 

power and time). Based on decision-maker preferences and/or the level of conflict between the 133 

objectives, an aggregation is performed, resulting in one aggregated environmental objective, 134 

which is then traded off against an economic objective function when solving a second bi-135 

objective environmental-economic optimization problem. This method is especially designed 136 

to tackle in a systematic way multi-objective optimization formulations which are normally 137 

solved via aggregation, although it is generally applicable to all types of MOO problems. Thus, 138 

it can serve as a useful tool in decision-making processes, commonly encountered during the 139 

design and operation of energy systems, when the technical, exergetic, economic, 140 

environmental and/or social performances are often evaluated. 141 

To illustrate this methodology, second-generation bioethanol production is chosen as a 142 

realistic and complex energy conversion case study. Biomass has emerged as a renewable 143 

energy resource with a high potential in the worldwide efforts for a greener energy transition 144 

[17]. Out of its various applications, the production of biofuels can assist in achieving future 145 

climate targets and meeting energy demand [18]. In particular, lignocellulosic biomass is an 146 

abundant carbon source, rich in energy components that can be converted to biofuels, 147 
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commonly known as second-generation biofuels [19]. Due to its recalcitrant structure, the 148 

bioconversion of lignocellulose requires multiple complex processes [20]. The optimization of 149 

such energy conversion systems has been an area of interest for the past years, with numerous 150 

studies focusing on the optimal process design of biofuels production with respect to economic 151 

and environmental criteria [21]. Dynamic process models are developed for the upstream 152 

processes, those being dilute acid pretreatment, enzymatic hydrolysis and fermentation, by 153 

using already developed kinetic models. Due to their complexity and long computational time, 154 

surrogate models are developed and used instead [22], calculating the final optimization 155 

objectives. In addition to this case study, the Pareto aggregation method can easily be applied 156 

to different types of MOOs and systems. Its applicability is explained further in subsection 157 

3.4.1, along with specific directions and requirements. 158 

2. MATERIAL AND METHODS 159 

The proposed methodology consists of three steps, indicated by A, B and C in Figure 1. 160 

First, rigorous process models are developed to calculate mass and energy balances which are 161 

the basis for the environmental and economic objective functions (Figure 1 (A)). For the 162 

lignocellulosic bioethanol production these models are developed in ASPEN Plus, by using 163 

kinetic models available in literature. Through an interface connection between ASPEN Plus 164 

and MATLAB, the final economic and environmental objectives are calculated. Due to the 165 

computationally expensive interface between ASPEN Plus and MATLAB and time required to 166 

solve multi-objective optimization problems, artificial neural networks (ANN) are developed 167 

as surrogate models for each objective function (Figure 1 (B)). As such the computational cost 168 

to evaluate objective functions is reduced and the optimizations can be conducted efficiently. 169 

The development of surrogate models is also highly relevant when more complicated models 170 

are used that require more computational time. Finally, the Pareto aggregation method is 171 
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applied in order to calculate the final aggregated environmental objective, which is then traded 172 

off against the economic objective (Figure 1 (C)) through a multi-objective optimization. A 173 

detailed description of each methodology step is given in the next subsections. 174 
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 175 

Figure 1. Schematic overview of the methodology steps applied: (A) Dynamic process 176 

modelling and calculation of objective functions, (B) Development of ANN surrogate models, 177 

(C) Pareto aggregation and multi-objective optimization.  178 



 
 
 

11 
 

2.1 Rigorous process model development & simulations 179 

Bioethanol production from corn stover is simulated in ASPEN Plus® v.12.1 [23], based 180 

on the model of the National Renewable Energy Laboratory (NREL) [24]. Three main upstream 181 

processes are included: dilute acid pretreatment, enzymatic hydrolysis and co-fermentation. 182 

Dilute acid pretreatment was modelled according to Shi et al. [25] for hemicellulose 183 

degradation, while the solubilization of lignin according to Lavarack et al. [26]. Following the 184 

model of Humbird & Aden [27], a two-stage pretreatment process was assumed with 70% 185 

conversion of oligomers to monomers. The kinetic model of Kadam et al. [28] was used for the 186 

enzymatic hydrolysis (saccharification), assuming three main reactions with competitive 187 

inhibition. Finally, co-fermentation by recombinant Zymomonas mobilis was assumed for the 188 

final process, applying the kinetic model of Leksawasdi et al. [29].  189 

Thus, all reaction yields are estimated based on the kinetic models used for each process 190 

(see Supporting Material). The developed Ordinary Differential Equation (ODE) and 191 

Differential Algebraic Equation (DAE) systems are solved in MATLAB R2022b with the built-192 

in ode15s function, transferring the calculated reaction yields to ASPEN, through an ActiveX 193 

interface connection.  194 

2.2 Economic indicator calculation 195 

The levelized production cost of ethanol (LCE, EUR/L) is chosen as the main economic 196 

indicator, calculated using equation (1) [30]: 197 

𝐿𝐶𝐸 = (𝐶𝐴𝑃𝐸𝑋 ∙ 𝛼 + 𝑂𝑃𝐸𝑋)𝑃𝐸𝑡𝑂𝐻  
(1) 

  
Where CAPEX is the capital expenditure (EUR), OPEX the operational expenditure (EUR/y), 198 

α the annuity factor (y-1) and PEtOH the annual ethanol production (L/y). The annuity factor is 199 
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calculated assuming 20 years of project lifetime and 15% discount rate [30], for a production 200 

plant starting its operation in 2022. 201 

The CAPEX is calculated by summing the fixed capital investment 𝐶𝐹𝐶𝐼 (EUR), the 202 

working capital (5% of the 𝐶𝐹𝐶𝐼) and the land cost (2% of the 𝐶𝐹𝐶𝐼) [24]. The 𝐶𝐹𝐶𝐼 consists of 203 

the total direct and indirect costs. The OPEX is calculated as the sum of the variable operating 204 

(𝐶𝑜𝑝𝑣𝑎𝑟) and the fixed operating (𝐶𝑜𝑝𝑓𝑖𝑥) costs. Details on the input values and calculations are 205 

given in the Supporting Material. 206 

2.3 Environmental indicators calculation 207 

The environmental performance is evaluated through a life cycle assessment (LCA). 208 

The system covers the cultivation and supply of biomass, the supply of raw materials and energy 209 

as well as the production of the final product. A cradle-to-gate approach is chosen, as the case 210 

study is limited to the upstream processes of lignocellulosic ethanol (EtOH) production. The 211 

functional unit is taken as 1 L of ethanol production. For the biomass cultivation, an economic 212 

allocation is applied (11.3% for corn stover).  213 

The EcoInvent database [31] and data on Belgian corn agriculture are used to develop 214 

the life cycle inventory (see Supporting Material). The input and output flows are taken from 215 

the ASPEN model and are expressed per L EtOH (i.e. the functional unit). The life cycle impact 216 

assessment is performed in SimaPro® v.9.4.02, using the ReCiPe 2016 v1.1 Midpoint method 217 

[32] and calculating eighteen environmental impact indicators.  218 

For the validation of the suggested methodology, the EcoIndicator99 is also calculated, 219 

using the ReCiPe 2016 v1.1 Endpoint method and its normalization factors, while weights are 220 

taken from the methodology report on the EcoIndicator 99 [9]. This single score was chosen as 221 

it is well recognized and widely used in relevant studies. 222 
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2.4 Multi-objective optimization problem formulation 223 

Multi-objective optimization problems of the following form are studied in this work: 224 

min𝑥 {𝐽1(𝑥, 𝑝), … , 𝐽𝑛𝐽(𝑥, 𝑝)} (2) 

  
subject to 225 

𝑐(𝑥, 𝑝) ≤ 0 226 

𝑥𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥 227 

With 𝐽𝑜𝑏𝑗 = { 𝐽1(𝑥, 𝑝), … , 𝐽𝑛𝐽(𝑥, 𝑝)} the 𝑛𝐽 objective functions, 𝑐(𝑥, 𝑝) the constraint functions, 228 𝑥 the vector with optimization variables, 𝑝 the model parameter vector, 𝑥𝑚𝑖𝑛 the vector 229 

containing the minimum values of the optimization variables and 𝑥𝑚𝑎𝑥 the vector with the 230 

maximum values of the optimization variables.  231 

The solution of such a multi-objective optimization problem is a Pareto front of tradeoff 232 

solutions. The Non-dominated Sorting Genetic Algorithm II (NSGA-II), an elitist evolutionary 233 

algorithm, is used in this work. Problems are solved in MATLAB R2022b using the gamultiobj 234 

function, taking function tolerance at 10-4 and constraint tolerance at 10-12. All calculations were 235 

performed using the Intel® Xeon® Gold 6334 CPU @ 3.60GHz – 3.59GHz (4 processors) and 236 

16.0 GB RAM. 237 

2.5 Surrogate modelling 238 

Surrogate models are used for the calculation of the objective functions, as the coupling 239 

of ASPEN and MATLAB is computationally expensive. Artificial Neural Networks (ANN) are 240 

developed in this study for each objective function [33]. Thus, a set of 20 models is created, as 241 

shown in Table 1.  242 
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Table 1. Objective functions for the multi-objective optimization of second-generation 243 

bioethanol production. 𝐽1is the economic indicator, 𝐽2-𝐽19 are the environmental indicators and 244 𝐽20is the EcoIndicator used for comparison. 245 

Optimization objectives Objective functions  Units 
LCE 𝐽1  EUR/L 
Global warming 𝐽2  kg CO2 eq/L 
Stratospheric ozone depletion 𝐽3  kg CFC11 eq/L 
Ionizing radiation 𝐽4  kBq Co-60 eq/L 
Ozone formation, Human health 𝐽5  kg NOx eq/L 
Fine particulate matter formation 𝐽6  kg PM2.5 eq/L 
Ozone formation, Terrestrial ecosystems 𝐽7  kg NOx eq/L 
Terrestrial acidification 𝐽8  kg SO2 eq/L 
Freshwater eutrophication 𝐽9  kg P eq/L 
Marine eutrophication 𝐽10  kg N eq/L 
Terrestrial ecotoxicity 𝐽11  kg 1,4-DCB/L 
Freshwater ecotoxicity 𝐽12  kg 1,4-DCB/L 
Marine ecotoxicity 𝐽13  kg 1,4-DCB/L 
Human carcinogenic toxicity 𝐽14  kg 1,4-DCB/L 
Human non-carcinogenic toxicity 𝐽15  kg 1,4-DCB/L 
Land use 𝐽16  m2a crop eq/L 
Mineral resource scarcity 𝐽17  kg Cu eq/L 
Fossil resource scarcity 𝐽18  kg oil eq/L 
Water consumption 𝐽19  m3/L 

EcoIndicator 99 𝐽20  Points/L 
 246 

2.5.1 Sampling and generation of training data 247 

The training data required for the surrogate models are obtained by sampling the design 248 

space with the Best Candidate algorithm [34]. The chosen algorithm performs well and satisfies 249 

major requirements for surrogate modelling applications [35].  250 

Feed rate, acid loading, pretreatment temperature, pretreatment residence time, 251 

saccharification residence time and fermentation residence time are the optimization variables 252 

chosen. The six-variable design space (6D) is sampled at once for 5000 samples, according to 253 

the permitted lower and upper bounds of Table 2. These limits are selected based on the 254 
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constraints of the kinetic models used for the process modelling, while ensuring that the 255 

simulation model runs without errors (simulation status was checked after each run). The 256 

generated samples are then used to run the simulation model and calculate the economic and 257 

environmental indicators. Since both inputs and outputs have different scales that affect the 258 

sensitivity and convergence of the developed surrogate models, they are both normalized from 259 

0 to 1, using the min-max scaling equation (3): 260 

𝑦𝑖′ = 𝑦𝑖 − min(𝑦𝑖)max(𝑦𝑖) − min(𝑦𝑖) (3) 

  
Where 𝑦𝑖′ is the normalized value of 𝑦𝑖 variable. 261 

Table 2. Upper and lower limits of optimization variables. 262 

Optimization variables (x) Lower bound (𝑥𝑚𝑖𝑛) Upper bound (𝑥𝑚𝑎𝑥) 𝑥1: Acid loading (mg/g dry biomass) 1 2 𝑥2: Pretreatment temperature (oC) 155 185 𝑥3: Pretreatment residence time (min) 1 20 𝑥4: Feed (dry t/d) 80 2000 𝑥5: Saccharification residence time (min) 10 120 𝑥6: Fermentation residence time (min) 10 50 
 263 

2.5.2 ANN development 264 

First, the architecture of the ANN is studied and optimized for each objective. In this 265 

study, only shallow and two-hidden layers ANNs are considered due to their simplicity. The 266 

number and size of layers are optimized, taking a maximum number of neurons per layer as 267 

double the amount of inputs based on rules-of-thumb [36], that being 12. The mean squared 268 

error (MSE) is used as the performance criterion to select the optimal ANN architecture: 269 

𝑀𝑆𝐸 = 1𝑛 ∑(𝐽𝑖 − 𝐽𝑖)2𝑛
𝑖=1  (4) 
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Where 𝑛 is the number of samples, 𝐽𝑖 is the real value and 𝐽𝑖 is the predicted value. 270 

The ANN models are developed in MATLAB R2022b, using the fitnet function of the 271 

Deep Learning Toolbox. The training data are partitioned into training, validation and testing 272 

sets at a 70%, 20% and 10% ratio respectively. The Levenberg-Marquardt training method is 273 

chosen, while the rest of the training parameters are kept the same as the default options. 274 

2.6 Pareto aggregation algorithm 275 

The proposed Pareto aggregation algorithm is presented in Figure 2. First, multiple bi-276 

objective Pareto fronts are computed for each unique combination of two environmental 277 

objectives. The number of Pareto fronts 𝑁 is calculated by equation (5): 278 

𝑁(𝑛𝐽𝑒𝑛𝑣, 𝑘) = 𝑛𝐽𝑒𝑛𝑣!𝑘! (𝑛𝐽𝑒𝑛𝑣 − 𝑘)! (5) 

  
Where 𝑛𝐽𝑒𝑛𝑣 is the number of environmental objectives and 𝑘 is the number of objectives for 279 

each combination. In this work, the environmental objectives are 𝑛𝐽𝑒𝑛𝑣 = 18: 𝐽𝑒𝑛𝑣 = {𝐽𝑖  | 𝑖 =280 2, … ,19}. For 18 environmental indicators taken two at a time, 153 Pareto fronts are required.  281 

Then, the most conflicting objectives are identified based on specific criteria, and 282 

weights are generated as described in the following subsections. This way the optimization is 283 

focused on finding solutions that balance the conflicting objectives first, leading to more robust 284 

results. Finally, the aggregated environmental objective is formed and traded-off against the 285 

economic objective 𝐽1.  286 
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 287 

Figure 2. Schematic representation of the Pareto aggregation algorithm (BP: Best point, U: 288 

Utopia point, d: Euclidean distance between BP and U, 𝑡𝑜𝑙: tolerance value, W: Weights used 289 

for aggregation). 290 

2.6.1 Identification of conflicting objectives 291 

The most conflicting objectives 𝐽𝑖 ∈ 𝐽𝑒𝑛𝑣 are identified using the following criteria: 292 

1. The Pareto front should consist of more than one point. 293 
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2. The minimum Euclidian distance of the Pareto points from the Utopia point should be greater 294 

than a tolerance value: 295 

min {√|𝑈 − 𝐽𝑖|2 + |𝑈 − 𝐽𝑗≠𝑖|2} ≥ 𝑡𝑜𝑙, 𝐽𝑖 , 𝐽𝑗≠𝑖 ∈ 𝐽𝑒𝑛𝑣 (6) 

  
Where 𝑈 = (min(𝐽𝑖) , min(𝐽𝑗≠𝑖)) is the Utopia point and 𝑡𝑜𝑙 is the tolerance value. The Utopia 296 

point consists of the individual minima of each objective function. The 𝑡𝑜𝑙 parameter can be 297 

specified by the decision-maker, reflecting what is defined as conflicting. Indeed, its value can 298 

be varied to make the criterion more or less strict. In this study, a tolerance of 10-3 is deemed 299 

as suitable, as the objective values are normalized from 0 to 1. The point of each Pareto front 300 

that satisfies the left part of equation (6) is hereby mentioned as “Best point” (BP). A simplified 301 

example is given in Figure 3. 302 

 303 

Figure 3. Environmental Pareto front for aggregation between objectives Ji and Jj. U is the 304 

Utopia point, BP the Best point and d the distance of each Pareto point from U. 305 
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By satisfying both of these criteria, the most conflicting objectives (𝐽𝑐𝑜𝑛𝑓) are identified, 306 

with 𝐽𝑐𝑜𝑛𝑓 ⊆ 𝐽𝑒𝑛𝑣. The number of conflicting objectives is 𝑛𝐽𝐶  corresponding to 𝑃𝐹𝐽𝐶  Pareto 307 

fronts. 308 

2.6.2 Weights generation 309 

The final aggregation of the most conflicting environmental objectives can be done 310 

through a weighted sum method: 311 

𝐽𝑎𝑔𝑔,𝑒𝑛𝑣 = ∑ 𝐽𝑖𝑊𝑖𝑖∈[2,19]|𝐽𝑖∈𝐽𝑐𝑜𝑛𝑓  (7) 

  
Where 𝑊𝑖 is the weight of the conflicting objective 𝐽𝑖 ∈ 𝐽𝑐𝑜𝑛𝑓, with ∑ 𝑊𝑖𝑖∈[2,19]|𝐽𝑖∈𝐽𝑐𝑜𝑛𝑓 = 1.  312 

For the generation of the weights, a novel approach is suggested that accounts for 313 

decision-makers’ preferences (if available) and/or the level of conflict between the objectives. 314 

Higher weights can be assigned to objectives that are more important to decision-makers and 315 

are highly conflicting:  316 

min𝑊 ∑ 𝑊𝑖𝐽𝑖𝐵𝑃𝑖∈[2,19]|𝐽𝑖∈𝐽𝑐𝑜𝑛𝑓  (8) 

 
s.t. ∑ 𝑊𝑖𝑖∈[2,19]|𝐽𝑖∈𝐽𝑐𝑜𝑛𝑓 = 1 

 

 

𝐴 ∙ 𝑊 ≤ 𝑏 
 𝑐(𝑊) ≤ 0 
 

 

0.01 ≤ 𝑊 ≤ 1 
 

 

Where 𝑊 is a vector containing the weights, 𝐽𝑖𝐵𝑃 are the objective values on the Best Point 317 

(BP) of 𝐽𝑖 ∈ 𝐽𝑐𝑜𝑛𝑓, A is a matrix, b a vector and 𝑐(𝑊) a nonlinear inequality function that returns 318 
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a vector. The values of A and b can be chosen in order to reflect the decision-makers’ 319 

preferences and/or the level of conflict between the objectives. The nonlinear inequalities are 320 

taken as 𝑐(𝑊) = (𝐽𝑖𝐵𝑃 − 𝑊𝑖𝐽𝑖𝐵𝑃)2 − 10−8 ≤ 0, ensuring that the weight generation is not 321 

significantly influenced by the absolute values of the objectives (e.g. extremely high weights 322 

assigned to low objective values). For the same reason, the lower bound of the weights is taken 323 

as 0.01 in order to guarantee that high objective values 𝐽𝑖𝐵𝑃 are not given extremely low 324 

weights, close to 0 (e.g. 10-6-10-4). The fmincon MATLAB function is applied, using the default 325 

options of the Interior Point Method.  326 

3. RESULTS AND DISCUSSION 327 

3.1 Surrogate modelling results 328 

 The 6D design space was sampled 5000 times using the Best Candidate algorithm [34], 329 

requiring 470 seconds of running time. Detailed results on its performance are available in the 330 

Supplementary Material. ANNs were then used to create 20 surrogate models in total between 331 

the optimization variables and the optimization objectives; one for each out of the 19 ReCiPe 332 

environmental indicators and one for the EcoIndicator99. The optimal architecture, identified 333 

through the calculation of MSE, was found for each surrogate model, as shown in Table 3. 334 

Mean squared errors in the magnitude of 10-5-10-6 were achieved for all models for a two-335 

layered ANN. The coefficients of determination (R2) for the training, validation, testing total 336 

data are also shown in Table 3. These are higher than 99% for all models and data, indicating 337 

good predictions and that surrogate models are able to capture the relationships between the 338 

objective functions and optimization variables.  339 
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Table 3. Performance and architecture of the optimal ANN for each surrogate model/objective function. R2 train, R2 val, R2 test and R2 total are 340 

the coefficients of determination for the training, validation, testing and total data respectively. 341 

Surrogate 
model/Objective function 

MSE R2 train R2 val R2 test R2 total No of neurons in 
1st layer 

No of neurons in 
2nd layer 𝐽1 8.36e-06 0.9992 0.9995 0.9997 0.9993 10 8 𝐽2 1.70e-05 0.9999 0.9976 0.9997 0.9995 11 9 𝐽3 9.65e-06 0.9993 0.9998 0.9997 0.9995 12 10 𝐽4 2.58e-06 0.9998 0.9986 0.9997 0.9995 12 6 𝐽5 1.40e-05 0.9999 0.9998 0.9956 0.9995 11 7 𝐽6 1.47e-05 0.9992 0.9997 0.9996 0.9995 10 6 𝐽7 1.38e-05 0.9992 0.9998 0.9998 0.9995 11 9 𝐽8 1.64e-05 0.9992 0.9994 0.9997 0.9995 11 7 𝐽9 1.29e-05 0.9993 0.9997 0.9998 0.9995 12 7 𝐽10 1.23e-05 0.9993 0.9998 0.9997 0.9995 11 6 𝐽11 1.29e-05 0.9993 0.9998 0.9998 0.9995 12 8 𝐽12 7.82e-06 0.9994 0.9998 0.9998 0.9995 12 10 𝐽13 1.07e-05 0.9998 0.9997 0.9955 0.9995 11 8 𝐽14 9.56e-06 0.9993 0.9998 0.9997 0.9995 12 5 𝐽15 9.99e-06 0.9993 0.9997 0.9997 0.9995 11 9 𝐽16 1.12e-05 0.9999 0.9979 0.9999 0.9995 12 7 𝐽17 7.74e-06 0.9999 0.9981 0.9998 0.9995 12 9 𝐽18 1.45e-05 0.9999 0.9998 0.9962 0.9995 12 10 𝐽19 1.64e-05 0.9999 0.9974 0.9984 0.9995 12 9 𝐽20 1.25e-05 0.9999 0.9977 0.9998 0.9994 12 9 

 342 
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3.2 Pareto aggregation results 343 

In total, 153 Pareto fronts were calculated for 18 environmental indicators. Out of these, 344 

four (𝑃𝐹𝐽𝐶 = 4) were found to be conflicting based on the criteria specified in the Pareto 345 

aggregation algorithm. In Figure 4, the minimum distance calculated between the Pareto points 346 

and the Utopia point (U) is depicted, that being equal or higher to 10-3. Therefore, five 347 

environmental indicators are identified as the most conflicting, those being the stratospheric 348 

ozone depletion (𝐽3), ionizing radiation (𝐽4), terrestrial ecotoxicity (𝐽11), land use (𝐽16) and water 349 

consumption (𝐽19).  350 

It is evident from Figure 4 that land use (𝐽16) is highly conflicting with stratospheric 351 

ozone depletion (𝐽3) and terrestrial ecotoxicity (𝐽11), while water consumption (𝐽19) has the least 352 

conflicting relation with stratospheric ozone depletion (𝐽3). Based on these observations and 353 

given the lack of decision-makers’ preference in the current case study, the linear inequalities 354 

of equation (8) are chosen, assigning higher weights to the most conflicting objectives, those 355 

being 𝐽16, followed by 𝐽3 and 𝐽11. 356 
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 357 

Figure 4. Conflicting objectives identified through the Pareto aggregation algorithm: (A) 358 

Stratospheric ozone depletion (𝐽3) vs Land use (𝐽16), (B) Stratospheric ozone depletion (𝐽3) vs 359 

Water consumption (𝐽19), (C) Ionizing radiation (𝐽4) vs Land use (𝐽16) and (D) Terrestrial 360 

ecotoxicity (𝐽11) vs Land use (𝐽16). The distance (d) between the Utopia Point ( ) and the Best 361 

Point ( ) is also shown. Both objective values are normalized within [0,1]. 362 

The identified conflicting behaviour can be explained by the fact that corn stover has 363 

the highest emission factor for land use, which on the other hand has an insignificant emission 364 

factor for stratospheric ozone depletion, ionizing radiation and terrestrial ecotoxicity, which are 365 

mostly affected by the diammonium phosphate and electricity supply. Indeed, ozone depletion 366 

and ionizing radiation get both minimized at a very low fermentation residence time, almost 367 
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three times less than the one for land use, due to the high impact of diammonium phosphate 368 

consumption. Similarly, water consumption indicator is mostly affected by the wastewater 369 

output, resulting in around 30% less acid loading required for the minimization of this indicator 370 

compared to the rest. 371 

The final weights for each objective are presented in Table 4. Land use has the highest 372 

contribution to the final environmental objective, followed by stratospheric ozone depletion, 373 

terrestrial ecotoxicity, ionizing radiation and water consumption.  The performance and 374 

reliability of the proposed weight generation algorithm has been verified through a robustness 375 

check (details in Supporting Material). 376 

Table 4. Weights assigned to the most conflicting environmental objectives 377 

Environmental objective Weight 
Stratospheric ozone depletion (𝐽3) 0.3159 
Ionizing radiation (𝐽4)  0.0107 
Terrestrial ecotoxicity (𝐽11)  0.2546 
Land use (𝐽16) 0.3188 
Water consumption (𝐽19) 0.1000 
Sum 1.0000 

 378 

3.3 Environmental-economic multi-objective optimization results 379 

The aggregated environmental objective 𝐽𝑎𝑔𝑔,𝑒𝑛𝑣 was then traded-off against the economic 380 

objective 𝐽1. The final Pareto front is presented in Figure 5(A), obtained for 1200 maximum 381 

number of iterations and population size taken as 200. A conflicting relationship between the 382 

chosen economic objective and the aggregated environmental objective is identified. Detailed 383 

results of the optimization variables can be found in the Supporting Material. 384 
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 385 

 386 

Figure 5. Final environmental-economic Pareto front of the (A) Aggregated environmental 387 

objective (𝐽𝑎𝑔𝑔,𝑒𝑛𝑣) and (B) EcoIndicator99 (𝐽20). The Utopia Point ( ) and the Best Point ( ) 388 

are also depicted. All objectives are normalized within [0,1]. 389 

As far as the optimization variables are concerned, a high biomass feed is required for 390 

all of the Pareto optimal solutions, around 1800 dry t/d biomass on average, as the scale of the 391 

biorefinery has a significant effect in the economic performance (economies of scale) [37]. A 392 

high acid loading (2.0 mg/g dry biomass) accompanied by low temperature (159 oC) and high 393 

residence time (20 min) is required for the acid pretreatment process. The low pretreatment 394 

temperature influences both the economic and environmental performance, as less inhibitors 395 

are produced while limiting the energy consumption. A high saccharification time (120 min) 396 

is also required in order to achieve a high sugar conversion, while the fermentation time is 397 

significantly lower, varying from 35 to 39 min. This can be explained by the fact that after 30 398 

min most of the sugars are already converted to ethanol [29].  399 

 In order to validate the aggregation approach proposed in this study, a comparison with 400 

a commonly used environmental single-score indicator, EcoIndicator99, has been conducted. 401 
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The Pareto front obtained for trading the economic objective against the EcoIndicator99 is 402 

presented in Figure 5 (B). 403 

 The optimization objective values (non-normalized) on the Best Point of each Pareto 404 

front were calculated, allowing for a more comprehensible comparison. The relative difference 405 

between the two Pareto fronts for all optimization objectives is presented in Figure 6. It is now 406 

evident that almost all of the environmental objectives are lower by applying the Pareto 407 

aggregation algorithm compared to the EcoIndicator99, except for the Land Use (𝐽16) which is 408 

however insignificantly higher, less than 1%. Notably, Fossil resource scarcity (𝐽18) can be 409 

reduced by 6.5%, Freshwater ecotoxicity (𝐽12) by 5.1% and Marine ecotoxicity (𝐽13) by 4.8% 410 

by applying the Pareto aggregation algorithm. For both MOOs, the same value on the economic 411 

objective (LCE) was obtained, that being 1.25 EUR/L. 412 
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 413 

 414 

Figure 6. Relative difference between optimization objectives on the Best Point (BP) of the 415 

Economic-Aggregated environmental objective (𝐽𝑖𝐵𝑃,𝑎𝑔𝑔) and the Economic-EcoIndicator99 416 

(𝐽𝑖𝐵𝑃,𝐸𝐼99) Pareto fronts. Relative difference calculated as: 
𝐽𝑖𝐵𝑃,𝐸𝐼99−𝐽𝑖𝐵𝑃,𝑎𝑔𝑔𝐽𝑖𝐵𝑃,𝑎𝑔𝑔 . 417 

These final environmental objectives on the Best point can be attained by decreasing the 418 

acid pretreatment temperature by 7oC, while increasing the feed by 47 dry t/d and the 419 

fermentation time by 3 min, compared to the EcoIndicator99 results. The rest of the 420 
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optimization variables are almost the same. Detailed results on the optimization variables and 421 

objectives for both Pareto fronts can be found in the Supplementary Material. 422 

3.4 Discussion 423 

The Pareto aggregation method suggested in this study is especially designed to tackle 424 

in a systematic way MOO problems which are normally solved via aggregation. This is done 425 

by identifying truly conflicting optimization objectives and performing an aggregation of those 426 

while taking into consideration their level of conflict and/or decision-makers’ preferences, if 427 

available.  428 

This method allows the practitioner to account for multiple indicators that are available 429 

to describe a single performance (e.g., economic, environmental, social). Nevertheless, the 430 

identification of conflicting indicators before the final multi-objective optimization can 431 

significantly reduce the dimensionality of the optimization problem. That was indeed illustrated 432 

by the applied case study on a lignocellulosic biorefinery, as only five out of the eighteen in 433 

total environmental indicators were found to be conflicting and an aggregation between those 434 

was required. 435 

Moreover, the criteria used for the identification of the most conflicting objectives are 436 

subjected to the practitioners’ priorities, and can be adjusted to make the algorithm more or less 437 

rigorous. Thus, the tolerance value required by the algorithm (equation (6)) should be carefully 438 

chosen based on the case study and desired outcome. Similarly, the weight generation approach 439 

is highly dependent on particular parameters specified by the practitioner. It is thus evident that 440 

another advantage of the proposed method is that it can easily be adjusted to take into 441 

consideration and reflect both practitioners’ and decision-makers’ preferences.  442 

3.4.1 Method applicability 443 
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The developed method was illustrated on an environmental-economic multi-objective 444 

optimization problem, as the aggregation issue involved in environmental assessments has been 445 

widely discussed in literature [38]. However, its usage can be further expanded and applied to 446 

different types of multi-objective optimization problems that require an aggregation of multiple 447 

indicators. Based on the obtained results, decisions can be made on the operating conditions of 448 

a lignocellulosic bioethanol plant, to minimize the final production cost, while, at the same 449 

time, supporting a more environmentally sustainable performance. For the chosen case study, 450 

a large plant capacity in addition to low pretreatment time and high saccharification time can 451 

achieve a large ethanol production, and thus a low production cost (economies of scale), 452 

accompanied by a low environmental impact (less inhibitors production). It can thus serve as a 453 

quantitative tool in decision-making processes, exploring the relationship between different 454 

objectives and guiding decision-makers to select optimal operating parameters based on their 455 

own priorities. Such decision-making processes are critical for energy technologies, covering 456 

both energy generation and management, as technical, economic, environmental and social 457 

objectives need to be satisfied [4]. 458 

The suggested Pareto aggregation method can easily be applied to different case studies. 459 

The only requirement is the development of a dynamic model that describes the relationship 460 

between the optimization variables and the optimization objectives. For process engineering, 461 

this relationship is usually expressed through detailed mass & energy balance calculations. For 462 

complex processes, process simulation software, such as ASPEN Plus used in this study, are 463 

commonly used to facilitate these calculations. Then, the Pareto aggregation method, i.e. the 464 

third step (C) in Figure 1, can be easily applied. In case of computationally expensive models, 465 

parallel computing and/or surrogate models (e.g., ANNs used in this study) could help reduce 466 

running times. 467 
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3.4.2 Limitations & Future work 468 

It is worth mentioning that any uncertainties related to the models applied were not taken 469 

into consideration and left out of the scope of this study. However, these uncertainties do not 470 

have a direct effect on the suggested method itself, but rather on the final case study-specific 471 

results. In future work, the proposed Pareto aggregation algorithm could also be embedded in 472 

an interactive multi-objective optimization framework, and the inherent uncertainties of the 473 

models should also be taken into account, as these may affect the process [39]. The inclusion 474 

of uncertainties could be done by using uncertainty propagation techniques such as 475 

linearization, sigma points (unscented transformation) and polynomial chaos expansion to 476 

propagate the uncertainty on the model parameters towards the objective functions and 477 

constraint functions, as explained by e.g., Nimmegeers et al. [40], and Mores et al. [41]. 478 

Nevertheless, the application of the suggested method to different case studies, as explained in 479 

section 3.4.1, could help to further improve and operationalize it. 480 

4. CONCLUSIONS 481 

A novel method, named Pareto aggregation, is suggested for generating an 482 

environmental objective function, by identifying the most conflicting environmental indicators. 483 

This method was applied to a bioethanol production plant in an economic-environmental multi-484 

objective optimization. Surrogate models were developed based on simulation and kinetic 485 

models. Five environmental indicators, namely stratospheric ozone depletion, ionizing 486 

radiation, terrestrial ecotoxicity, land use and water consumption, were identified as conflicting. 487 

Based on the level of conflict, an aggregated environmental objective was developed and 488 

traded-off against an economic objective, that being the levelized cost of ethanol. The final 489 

Pareto optimal solutions obtained indicate the best performance possibilities for the investigated 490 

biorefinery. The method was compared against the single-score EcoIndicator99, demonstrating 491 
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a better performance as a decrease ranging from 1.0 to 6.5% was observed for almost all 492 

indicators calculated through the Pareto aggregation method. This approach can significantly 493 

reduce the multi-dimensionality of optimization problems and can be easily applied to other 494 

energy systems, serving as a useful tool in decision-making processes when multiple objectives 495 

need to be satisfied.. 496 
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