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Abstract. We compute here the sums of infinite series of four types:∑∞
n=0

(
2n
n

)
(n+ 1)−k4−n;

∑∞
n=1

(
2n
n

)
n−k4−n;

∑∞
n=0

(
2n
n

)
(2n± 1)−k4−n

for positive integers k ≤ 9. We also look at their alternating forms and

at some related series. Binomial expansions and log-sine integrals are

used for the purpose.

1. Introduction

1.1. Background. The central binomial coefficient
(
2n
n

)
is the positive in-

teger that occurs as the coefficient of the xn term in the expansion of

(1 + x)2n. A number of infinite series involving the coefficient, either in the

numerator or in the denominator, are found in literature. A 1964 issue of

the American Mathematical Monthly [3] contains a problem seeking a sum

which we evaluated in [8]:

∞∑
n=0

(−1)n
(
2n
n

)
(2n+ 1)2 24n

=
π2

10
.

Two well-known papers [6, 10] on the series involving the central binomial

coefficient were published in 1985. Zucker’s paper [10], written in 1983,

is deeper and contains some nice results. As highlighted by the author

in the title itself, his paper gives an exhaustive treatment of the series∑∞
k=1

(
2k
k

)−1
k−n. The series is expressed with log-sine integrals and shown

to be summable exactly in terms of Dirichlet’s L-series. Lehmer’s paper [6]

discusses series of two types:
∑∞

n=0 an
(
2n
n

)
and

∑∞
n=0 an

(
2n
n

)−1
where the

an are very simple functions of n. In the first part of his paper, he mainly

employs the binomial expansion to derive series of the first type.
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The main contribution of our article consists in the explicit determina-

tion of series sums of the type

S1(k) :=
∞∑
n=0

(
2n
n

)
(n+ 1)k 22n

S3(k) :=
∞∑
n=0

(
2n
n

)
(2n+ 1)k 22n

S2(k) :=
∞∑
n=1

(
2n
n

)
nk 22n

S4(k) :=
∞∑
n=1

(
2n
n

)
(2n− 1)k 22n

and their alternating forms.

1.2. Relation between two types of sums. Before proceeding to derive

the sums, we first establish a relation between two classes of sums with

k ∈ N, 0 < t ≤ 1:

2

∞∑
n=0

(
2n
n

)
(n+ 1)k 4n

tn −
∞∑
n=0

(
2n
n

)
(n+ 1)k+1 4n

tn

=

∞∑
n=0

(2(n+ 1)− 1)
(
2n
n

)
(n+ 1)k+1 4n

tn =

∞∑
n=0

(2n+ 1)
(
2n
n

)
(n+ 1)k+1 4n

tn

=
1

2

∞∑
n=0

(2n+ 2)(2n+ 1)
(
2n
n

)
(n+ 1)k+2 4n

tn =
1

2

∞∑
n=0

(
2n+2
n+1

)
(n+ 1)k 4n

tn

= 2
∞∑
n=0

(
2n+2
n+1

)
(n+ 1)k 4n+1

tn =
2

t

∞∑
n=1

(
2n
n

)
nk 4n

tn

leading to the following Lemma:

Lemma 1.

2
∞∑
n=0

(
2n
n

)
(n+ 1)k 4n

tn+1 −
∞∑
n=0

(
2n
n

)
(n+ 1)k+1 4n

tn+1 = 2
∞∑
n=1

(
2n
n

)
nk 4n

tn (1.1)

if all the series converge.

If we take t = 1, we may rewrite this useful relation succinctly as:

Proposition 1.

2S1(k)− S1(k + 1) = 2S2(k) (1.2)

where S1, S2 are as defined earlier.

Thus we can straightaway deduce the sums on the right if we have the

two sums on the left.

By combining these relations, it is easy to see that we have:
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Proposition 2.

S1(k + 1) = 2k+1 − 2
k∑
j=1

2k−j S2(j). (1.3)

We also have a relation between the other two types of sums, which can be

proved in a similar manner:

Lemma 2.
∞∑
n=0

(
2n
n

)
(2n+ 1)k 22n

tn+1 =
∞∑
n=1

(
2n
n

)
(2n− 1)k 22n

tn+
∞∑
n=1

(
2n
n

)
(2n− 1)k+1 22n

tn (1.4)

if all the series converge.

This Lemma can, for instance, be used to calculate the value of S4(k+1)

from S3(k) and S4(k):

S3(k) = S4(k) + S4(k + 1) ⇒ S4(k + 1) = S3(k)− S4(k).

We will also use Newton’s binomial series in the following form: For every

n ∈ N and −1 < y ≤ 1, we have that

1

(1 + y)1/n
= 1− 1

n
y +

1 · (1 + n)

n · 2n
y2 − 1 · (1 + n) · (1 + 2n)

n · 2n · 3n
y3 + . . . (1.5)

2. Series with factor (n+ 1)−k

Taking y = −t, n = 2 in (1.5), we obtain:

1√
1− t

=

∞∑
n=0

(
2n
n

)
22n

tn

and with t = 1− x2, we get For 0 < x ≤
√

2,

1

x
=
∞∑
n=0

(
2n
n

)
4n

(1− x2)n. (2.1)

Multiplying both sides of (2.1) by −2x and integrating, we get:

Proposition 3.

∞∑
n=0

(
2n
n

)
(n+ 1) 4n

(1− x2)n+1 = 2− 2x, x ∈ [0,
√

2]. (2.2)
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Dividing (2.2) by 1− x2, we have:

2

1 + x
=
∞∑
n=0

(
2n
n

)
(n+ 1) 4n

(1− x2)n. (2.3)

Now multiplying (2.3) by −2x and integrating leads to:

Proposition 4.

∞∑
n=0

(
2n
n

)
(n+ 1)2 4n

(1− x2)n+1 = 4(1− x) + 4 log 1+x
2 , x ∈ [0,

√
2]. (2.4)

Repeating the same procedure again yields:

Proposition 5.

∞∑
n=0

(
2n
n

)
(n+ 1)3 4n

(1− x2)n+1 (2.5)

= 8(1− x) + 2 log2 1+x
2 + 8 log 1+x

2 − 4Li2(
1−x
2 ), x ∈ [0,

√
2].

The polylogarithm is defined by Lik(z) =

∞∑
n=1

zn

nk
for |z| ≤ 1.

And similarly, we obtain:

Proposition 6.

∞∑
n=0

(
2n
n

)
(n+ 1)4 4n

(1− x2)n+1 = −4ζ(3) + 16(1− x)

+ (16− 4ζ(2)) log 1+x
2 + 4 log2 1+x

2 + 2
3 log3 1+x

2 (2.6)

+ 2 log2 1+x
2 log 1−x

2 − 8Li2(
1−x
2 ) + 4Li3(

1+x
2 )− 4Li3(

1−x
2 ).

All terms in this sum are real for x ∈ [0, 1). To make it a sum with real

terms only for x ∈ (1,
√

2], we use the following relation valid for t > 1 [7,

p.296, (6)]

Li3(t)− Li3

(
1

t

)
=
π2

3
log(t)− 1

6
log3(t)− 1

2
iπ log2(t)

to rewrite the term 4Li3(
1+x
2 ). This in combination with the fact that

log 1−x
2 = log x−1

2 + iπ
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leads to this expression for the sum in the case x ∈ (1,
√

2]:

∞∑
n=0

(
2n
n

)
(n+ 1)4 4n

(1− x2)n+1

=− 4ζ(3) + 16(1− x) + (16 + 4ζ(2)) log 1+x
2 + 4 log2 1+x

2 (2.7)

+ 2 log2 1+x
2 log x−1

2 − 8Li2(
1−x
2 ) + 4Li3(

2
1+x)− 4Li3(

1−x
2 ).

It may be pointed out that if we want a representation in closed form,

using polylogarithms for this purpose, some addends are complex, even if

the final expression is real. That is why we have recorded this alternative

form of the sum.

The expansions in Propositions 3–6 yield, for x = 0, the following

sums:

S1(1) = 2;

S1(2) = 4(1− log(2));

S1(3) = −2ζ(2) + 4 log2 2 + 8(1− log(2));

S1(4) = −4ζ(3) + (16− 4ζ(2))(1− log(2))− 8
3 log3(2) + 8 log2(2).

And x =
√

2 yields these alternating sums, using the notation

S′1(k) =
∞∑
n=0

(−1)n
(
2n
n

)
(n+ 1)k 22n

:

S′1(1) = 2(
√

2− 1);

S′1(2) = 4(
√

2− 1)− 4 log 1+
√
2

2 ;

S′1(3) = 8(
√

2− 1)− 8 log 1+
√
2

2 − 2 log2 1+
√
2

2 + 4Li2(
1−
√
2

2 );

S′1(4) = 4ζ(3) + 16(
√

2− 1)− (16 + 4ζ(2)) log 1+
√
2

2

− 4 log2 1+
√
2

2 − 2 log2 1+
√
2

2 log
√
2−1
2 + 8Li2(

1−
√
2

2 )

+ 4Li3(
1−
√
2

2 )− 4Li3(2(
√

2− 1)).

3. Series with factor n−k

To obtain the sum of series of the form

∞∑
n=1

(
2n
n

)
nk4n

(1− x2)n
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we can use Lemma 1 with t = 1−x2 in combination with Propositions 3–6.

This leads to:

Proposition 7.

∞∑
n=1

(
2n
n

)
n 4n

(1− x2)n = −2 log 1+x
2

∞∑
n=1

(
2n
n

)
n2 4n

(1− x2)n = 2 Li2(
1−x
2 )− log2 1+x

2

x ∈ [0, 1) :
∞∑
n=1

(
2n
n

)
n34n

(1− x2)n = 2ζ(3) + 2ζ(2) log 1+x
2 −

1
3 log3 1+x

2

− log2 1+x
2 log 1−x

2 + 2Li3(
1−x
2 )− 2Li3(

1+x
2 )

x ∈ (1,
√

2] :

∞∑
n=1

(
2n
n

)
n34n

(1− x2)n = 2ζ(3)− 2ζ(2) log 1+x
2

− log2 1+x
2 log x−1

2 + 2Li3(
1−x
2 )− 2Li3(

2
1+x)

By multiplying the last one by −2x
1−x2 and integrating we get the next one:

∞∑
n=1

(
2n
n

)
n44n

(1− x2)n = 4ζ(4) + 2ζ(3) log 1−x2
4 + 2ζ(2) log 1+x

2 log 1−x
2

− 1
3 log4 1+x

2 + 2
3 log3 1+x

2 log 1−x
2 − log2 1+x

2 log2 1−x
2

− 2 log 1−x
1+x (Li3(

1−x
2 ) + Li3(

1+x
2 ) + Li3(

x−1
1+x))

+ 4Li4(
1−x
2 ) + 2Li4(

x−1
1+x)− 4Li4(

1+x
2 )

For x ∈ [0, 1) this can be simplified using [7, p.296, (7)], and for x ∈ (1,
√

2],

we again use [7, p.296, (6)].

Proposition 8.

x ∈ [0, 1) :
∞∑
n=1

(
2n
n

)
n44n

(1− x2)n = 4ζ(4) + 4ζ(3) log 1+x
2

+ 2ζ(2) log2 1+x
2 −

2
3 log3 1+x

2 log 1−x
2

+ 4Li4(
1−x
2 ) + 2Li4(

x−1
x+1)− 4Li4(

1+x
2 ).
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x ∈ (1,
√

2] :
∞∑
n=1

(
2n
n

)
n44n

(1− x2)n = −4ζ(4) + 4ζ(3) log 1+x
2

− 2ζ(2) log2 1+x
2 + 1

6 log4 1+x
2 −

2
3 log3 1+x

2 log x−1
2

+ 4Li4(
1−x
2 ) + 2Li4(

x−1
x+1) + 4Li4(

2
1+x).

The results in Propositions 7–8 yield, for x = 0, the following sums:

S2(1) = 2 log(2);

S2(2) = ζ(2)− 2 log2 2;

S2(3) = 2ζ(3)− 2ζ(2) log 2 + 4
3 log3 2;

S2(4) = 9
4ζ(4)− 4ζ(3) log 2 + 2ζ(2) log2 2− 2

3 log4 2.

And x =
√

2 yields these alternating sums, using the notation

S′2(k) =
∞∑
n=0

(−1)n
(
2n
n

)
nk 22n

:

S′2(1) = −2 log 1+
√
2

2 ;

S′2(2) = 2Li2(
1−
√
2

2 )− log2 1+
√
2

2 ;

S′2(3) = 2ζ(3)− 2ζ(2) log 1+
√
2

2 − log2 1+
√
2

2 log
√
2−1
2

+ 2Li3(
1−
√
2

2 )− 2Li3(2(
√

2− 1));

S′2(4) = 2Li4(
√
2−1√
2+1

) + 4Li4(
1−
√
2

2 ) + 4Li4(2(
√

2− 1))

+ 1
6 log4 1+

√
2

2 − 2
3 log3 1+

√
2

2 log
√
2−1
2

− 2ζ(2) log2 1+
√
2

2 + 4ζ(3) log 1+
√
2

2 − 4ζ(4).

Note that we also have:

x =

√
3

2
⇒

∞∑
n=1

(
2n
n

)
n 24n+2

= 3
2 log(2)− log(1 +

√
3).

4. More series and analysis

Using the relation (1.2) and the sum in the previous section we deduce:
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S1(5) = −9ζ(4)

2
− 8ζ(3)(1− log(2))− 8ζ(2)(1− log(2))

− 4ζ(2) log2(2) +
4

3
log4(2)− 16

3
log3(2) + 16 log2(2)

+ 32(1− log(2)).

4.1. More series through software. We obtained these four sums using

Mathematica:

S2(5) = 6ζ(5)− 9
2ζ(4) log(2)− 2ζ(3)ζ(2) + 4ζ(3) log2(2)

− 4
3ζ(2) log3(2) + 4

15 log5(2).

S2(6) = 79
16ζ(6)− 12ζ(5) log(2) + 9

2ζ(4) log2(2) + 4ζ(3)ζ(2) log(2)

− 2ζ2(3)− 8
3ζ(3) log3(2) + 2

3ζ(2) log4(2)− 4
45 log6(2).

S2(7) = 18ζ(7)− 79
8 ζ(6) log(2) + 12ζ(5) log2(2)− 9

2ζ(4)ζ(3)

+ 4ζ2(3) log(2)− 6ζ(5)ζ(2)− 2
3ζ(3)ζ(2) log2(2)− 3ζ(4) log3(2)

+ 4
3ζ(3) log4(2)− 4

15ζ(2) log5(2) + 8
315 log7(2).

S2(8) = 2339
192 ζ(8)− 36ζ(7) log(2) + 79

8 ζ(6) log2(2)− 12ζ(5)ζ(3)

+ 12ζ(5)ζ(2) log(2)− 8ζ(5) log3(2) + 9ζ(4)ζ(3) log(2)

+ 3
2ζ(4) log4(2) + 2ζ2(3)ζ(2)− 4ζ2(3) log2(2) + 8

3ζ(3)ζ(2) log3(2)

− 8
15ζ(3) log5(2) + 4

45ζ(2) log6(2)− 2
315 log8(2).

The preceding sums in conjunction with relation (1.2) lead to:

S1(6) = −12ζ(5)− 9ζ(4)(1− log(2))− 8ζ(3)(2− 2 log(2) + log2(2))

+ 4ζ(3)ζ(2)− 8ζ(2)(2− 2 log(2) + log2(2)− 1
3 log3(2))

− 8
15 log5(2) + 8

3 log4(2)− 32
3 log3(2) + 32 log2(2) + 64(1− log(2)).

S1(7) = −79
8 ζ(6)− 24ζ(5)(1− log(2))− 9ζ(4)(2− 2 log(2)

+ log2(2)) + 4ζ2(3)− 16ζ(3)(2− 2 log(2) + log2(2)− 1
3 log3(2))

+ 8ζ(3)ζ(2)(1− log(2))− 16ζ(2)(2− 2 log(2) + log2(2)

− 1
3 log3(2) + 1

12 log4(2)) + 8
45 log6(2)− 16

15 log5(2)

+ 16
3 log4(2)− 64

3 log3(2) + 64 log2(2) + 128(1− log(2)).



SERIES OF THE FORM
∑
an
(2n
n

)
163

S1(8) = −36ζ(7)− 79
4 ζ(6)(1− log(2)) + 12ζ(5)ζ(2)− 6ζ(5)(8−

8 log(2) + log2(2))− 6ζ(4)(6− 6 log(2) + 3 log2(2)− log3(2))

+ 9ζ(4)ζ(3) + 8ζ2(3)(1− log(2))− 64ζ(3)(1− log(2))

− 32ζ(3) log2(2) + 32
3 ζ(3) log3(2)− 8

3ζ(3) log4(2)

+ 16ζ(3)ζ(2)(1− log(2)) + 4
3ζ(3)ζ(2) log2(2)− 64ζ(2)(1− log(2))

− 32ζ(2) log2(2) + 32
3 ζ(2) log3(2)− 8

3ζ(2) log4(2) + 8
15ζ(2) log5(2)

− 16
315 log7(2) + 16

45 log6(2)− 32
15 log5(2) + 32

3 log4(2)

− 128
3 log3(2) + 128 log2(2) + 256(1− log(2)).

4.2. Analysis of the first type of sums. Let T1(k) represent the number

of separate terms in the value the sum S1(k). Then we can see from the

sums evaluated earlier that T1(1) = 1; T1(2) = 2; T1(3) = 4; T1(4) =

7; T1(5) = 11; T1(6) = 17; T1(7) = 25; T1(8) = 36. The next sum has 50

terms in its evaluation, i.e., T1(9) = 50.

This sequence {an = T1(n−1)} is given in https://oeis.org/A096914

with:

an ∼
33/4 n1/4 eπ

√
n/3

2π2
.

We have this formula: T1(k) = 1+ k(k−1)
2 +M(k), whereM(k) represents

the number of mixed terms involving more than one zeta value. The first

two terms come from the fact that there are k terms involving powers (0 to

k−1) of log(2), one term involving ζ(k−1), two terms with ζ(k−2), and so

on, and k−2 terms with ζ(2) totalling k+1+2+3+· · ·+(k−2) = 1+ k(k−1)
2 .

NowM(k) depends on the partition of k−1 into positive integers. We ignore

the partitions having 1 in it because ζ(1) cannot come in our formula. We

also leave partitions having more than one even member. To illustrate, for

S1(6) consider: 5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1 = 2 + 1 + 1 +

1 = 1 + 1 + 1 + 1 + 1. Only one partition, namely 3 + 2, is of use to us.

The partition function p(n) counting the number of unrestricted partitions

(order immaterial) of n grows astronomically. Hardy and Ramanujan[5, eqs

(3),(6)] obtained for p(n) a very complicated expression whose first three

terms are:

1

2π
√

2

d

dn

[
eCλn

λn

]
+

(−1)n

2π

d

dn

[
e

1
2
Cλn

λn

]
+

√
3

π
√

2
cos

(
2nπ

3
− π

18

)
d

dn

[
e

1
3
Cλn

λn

]
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where C = π
√

2
3 , λn =

√
n− 1

24 .

4.3. Analysis of the second type of sums. Let T2(k) denote the number

of terms in the value of S2(k). Then T2(k) = k+ p′(k), where p′(k) denotes

the number of those restricted partitions of k which have neither 1 nor more

than one even integers. We find that T2(k) = T1(k+1)−T1(k). So we have:

T2(1) = 1; T2(2) = 2; T2(3) = 3; T2(4) = 4; T1(5) = 6; T2(6) = 8; T2(7) =

11; T2(8) = 14. This sequence is given in https://oeis.org/A038348.

The following formula given there approximates T (n− 1) :

31/4 eπ
√
n/3

4π n1/4
.

5. Series with factor (2n+ 1)−k

5.1. Series with positive terms.

5.1.1. Linear and quadratic sums. Taking y = −t2, n = 2 in (1.5) and

integrating both sides from 0 to x, we obtain for x ∈ [0, 1] :

arcsin(x) =

∞∑
n=0

(
2n
n

)
(2n+ 1) 22n

x2n+1, (5.1)

this gives with x = 1 and x = 1/2 respectively:

S3(1) =
∞∑
n=0

(
2n
n

)
(2n+ 1) 22n

=
π

2
;

∞∑
n=0

(
2n
n

)
(2n+ 1) 24n

=
π

3
.

Dividing both sides of (5.1) by x and then integrating from 0 to x, we have

[7, p.306, (19)]:∫ x

0

arcsin(x)

x
dx =

1

2
Cl2(2 arcsinx) + arcsin(x) log(2x)

=
∞∑
n=0

(
2n
n

)
(2n+ 1)2 22n

x2n+1 (5.2)

where Cln(x) =

∞∑
k=1

sin kx

kn
for even n and Cln(x) =

∞∑
k=1

cos kx

kn
for odd n

is the Clausen function. Cl2(x) =

∞∑
k=1

sin kx

k2
= −

∫ θ

0
log

(
2 sin

θ

2

)
dθ, [7,
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p.102, (4.4)] an integral treated by Clausen in 1832. The following relation

connects it with the dilogarithm [7, p.102, (4.6)]:

Li2(e
iθ) =

π2

2
− θ(2π − θ)

4
+ iCl2(θ), 0 ≤ θ ≤ 2π.

Lewin [7, p.291] records these values: Cl2(nπ) = 0; Cl2(π/2) = G.

We thus obtain:

S3(2) =
∞∑
n=0

(
2n
n

)
(2n+ 1)2 22n

=
π

2
log(2).

Taking y = −t2, n = 2 in (1.5), dividing both sides by x2 and then inte-

grating both sides we get∫
dx

x2
√

1− x2
=

∫ ∞∑
n=0

(
2n
n

)
22n

x2n−2.

The substitution x = sin θ in the integral on the left yields − cot θ =

−
√

1− x2/x. If we apply term by term integration of the infinite series

on the right, then we find, after multiplying by x:

−
√

1− x2 =
∞∑
n=0

(
2n
n

)
(2n− 1) 22n

x2n, x ∈ (0, 1]. (5.3)

Taking x = 1 yields:

S4(1) =
∞∑
n=0

(
2n
n

)
(2n− 1) 22n

= 0.

Now we can use Lemma 2 and the values of S3(1) and S3(2) to prove that

S4(2) =
∞∑
n=0

(
2n
n

)
(2n− 1)2 22n

=
π

2

S4(3) =
∞∑
n=0

(
2n
n

)
(2n− 1)3 22n

=
π

2
(log(2)− 1).

5.1.2. Series via

∫ φ

0
logk(sinu) du. Let us return to (1.2) with y = −t2, n =

2:

1√
1− t2

=

∞∑
n=0

(
2n
n

)
22n

t2n.
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Instead of integrating, we multiply both sides of this equation by logk(t),

and integrate the result between 0 and x:

x∫
0

logk(t)√
1− t2

dt =
∞∑
n=0

(
2n
n

)
22n

x∫
0

t2n logk(t) dt.

If we use the substitution t = sinu in this integral, we find:

arcsin(x)∫
0

logk(sinu) du =
∞∑
n=0

(
2n
n

)
22n

x∫
0

t2n logk(t) dt. (5.4)

For the integrals at the right hand side we have the following recurrence

relation, which can be obtained using partial integration:

Ik,n(x) :=

x∫
0

t2n logk(t) dt =
1

2n+ 1

[
x2n+1 logk(x)− k Ik−1,n(x)

]
with I0,n(x) = 1

2n+1x
2n+1, leading to:

Ik,n(x) =

k∑
i=0

(−1)ii!

(
k

i

)
logk−i(x)

x2n+1

(2n+ 1)i+1
.

Hence we get from (5.4):

arcsin(x)∫
0

logk(sinu) du =

k∑
i=0

[
(−1)ii!

(
k

i

)
logk−i(x)

∞∑
n=0

(
2n
n

)
x2n+1

(2n+ 1)i+1 22n

]
.

(5.5)

This means that we can find the exact value of the sums of the form

∞∑
n=0

(
2n
n

)
(2n+ 1)i+122n

x2n+1

from previous ones and from known values of the log-sine integrals Lsn(σ):

Lsn(σ) = −
∫ σ

0
logn−1

(
2 sin

θ

2

)
dθ.

Note that the right-hand side is related to the integral we need (substitution

u = θ/2):

Lsn(σ) = −2

∫ σ/2

0
(log(2) + log(sinu))n−1du.
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Case (1): x = 1. In this case (5.5) reduces to:

π/2∫
0

logk(sinu) du = (−1)kk!
∞∑
n=0

(
2n
n

)
(2n+ 1)k+122n

. (5.6)

We need Lsn(π). Some of the known values are [1, Example 1]:

Ls2(π) = 0, Ls3(π) = −π
3

12
, Ls4(π) =

3

2
πζ(3), Ls5(π) = − 19

240
π5,

leading to further sums S3(k) =
∞∑
n=0

(
2n
n

)
(2n+ 1)k 22n

:

S3(3) =
π

2

[
ζ(2)

4 · 0!
+

log2(2)

2!

]
, S4(4) = S3(3)− S4(3),

S3(4) =
π

2

[
ζ(3)

4 · 0!
+
ζ(2) log(2)

4 · 1!
+

log3(2)

3!

]
, S4(5) = S3(4)− S4(4),

S3(5) =
π

2

[
19ζ(4)

64 · 0!
+
ζ(3) log(2)

4 · 1!
+
ζ(2) log2(2)

4 · 2!
+

log4(2)

4!

]
Here we have used Lemma 2 for S4(k).

Case (2): x = 1
2 . In this case (5.5) reduces to:

π/6∫
0

logk(sinu) du = (−1)k
k∑
i=0

[
i!

(
k

i

)
logk−i(2)

2

∞∑
n=0

(
2n
n

)
(2n+ 1)i+124n

]
.

(5.7)

For these we need Lsn(π3 ). Some of the known values are [1, Example 10]:

Ls2

(π
3

)
= Cl2

(π
3

)
, Ls3

(π
3

)
= −7π3

108
,Ls4

(π
3

)
=
π

2
ζ(3) +

9

2
Cl4

(π
3

)
,

leading to:

∞∑
n=0

(
2n
n

)
(2n+ 1)2 24n

= Cl2

(π
3

)
=

√
3

3

[
1

2
ψ(1)

(
1

3

)
− π2

3

]
,

(see [2]) where ψ(1)(z) =
∞∑
k=0

1

(k + z)2
, z 6= 0,−1,−2, . . . , is the trigamma

function,
∞∑
n=0

(
2n
n

)
(2n+ 1)3 24n

=
7π3

216
,

∞∑
n=0

(
2n
n

)
(2n+ 1)4 24n

=
1

12

[
πζ(3) + 9Cl4

(π
3

)]
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From these results and
∞∑
n=0

(
2n
n

)
(2n+ 1) 24n

= Ls1

(π
3

)
=
π

3
, and

∞∑
n=1

(
2n
n

)
(2n− 1) 24n

= 1−
√

3

2

obtained from (5.3) by taking t = 1
4 , using Lemma 2 (with t = 1

4) we can

find the sum of the series:
∞∑
n=1

(
2n
n

)
(2n− 1)k 24n

for k = 2, 3, 4.

Case (3): x =
√
2
2 . In this case (5.5) reduces to:

π/4∫
0

logk(sinu) du = (−1)k
k∑
i=0

[
i!

(
k

i

)
logk−i(2)

2k−i
√

2

∞∑
n=0

(
2n
n

)
(2n+ 1)i+123n

]
.

(5.8)

For these we need Lsn(π2 ). One known value is [7, p.291]:

Ls2

(π
2

)
= G,

where G =

∞∑
n=0

(−1)n

(2n+ 1)2
= 0.91596 . . . is Catalan’s constant, leading to:

∞∑
n=0

(
2n
n

)
(2n+ 1)2 23n

=
1√
2

[
G+

π log(2)

4

]
.

With
∞∑
n=0

(
2n
n

)
(2n+ 1) 23n

=
π

4

√
2,

∞∑
n=1

(
2n
n

)
(2n− 1) 23n

= 1−
√

2

2

and Lemma 2 (with t = 1
2), we obtain:

∞∑
n=0

(
2n
n

)
(2n− 1)2 23n

=

√
2

2

(π
4

+ 1
)
,

∞∑
n=0

(
2n
n

)
(2n− 1)3 23n

=

√
2

16
(4G+ π(log(2)− 2)− 8).

Case (4): x =
√
3
2 . In this case we could get these two sums:

∞∑
n=0

(
2n
n

)
(2n+ 1)

(
3

16

)n
=

2π
√

3

9
.
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∞∑
n=0

(
2n
n

)
(2n+ 1)2

(
3

16

)n
=
π log(3)

√
3

9
− 2π2

27
+

1

9
ψ(1)

(
1

3

)
.

5.1.3. Series with higher powers. Series with powers > 5 obtained through

Mathematica have been rewritten in terms of zeta values to discern the

underlying pattern. Note that the value of S4(k) can be found using Lemma

2.

S3(6) =
π

2

[
3ζ(5)

16 · 0!
+

19ζ(4) log(2)

64 · 1!
+
ζ(3)ζ(2)

16 · 0!
+
ζ(3) log2(2)

4 · 2!

+
ζ(2) log3(2)

4 · 3!
+

log5(2)

5!

]
.

S3(7) =
π

2

[
275ζ(6)

1024 · 0!
+

3ζ(5) log(2)

16 · 1!
+

19ζ(4) log2(2)

64 · 2!
+
ζ2(3)

32 · 0!

+
ζ(3) ζ(2) log(2)

16 · 1!
+
ζ(3) log3(2)

4 · 3!
+
ζ(2) log4(2)

4 · 4!
+

log6(2)

6!

]
.

S3(8) =
π

2

[
9ζ(7)

64 · 0!
+

275ζ(6) log(2)

1024 · 1!
+
ζ(5)ζ(2)

128 · 0!
+

3ζ(5) log2(2)

16 · 2!

+
ζ(4)ζ(3)

256 · 0!
+

19ζ(4) log3(2)

64 · 3!
+
ζ2(3) log(2)

32 · 1!
+
ζ(3) ζ(2) log2(2)

16 · 2!

+
ζ(3) log4(2)

4 · 4!
+
ζ(2) log4(2)

4 · 5!
+

log7(2)

7!

]
.

S3(9) =
π

2

[
11813ζ(8)

49152 · 0!
+

9ζ(7) log(2)

64 · 1!
+

275ζ(6) log2(2)

1024 · 2!
+

3ζ(5)ζ(3)

64 · 0!

+
ζ(5)ζ(2) log(2)

128 · 1!
+

3ζ(5) log3(2)

16 · 3!
+

19ζ(4) log4(2)

64 · 4!

+
ζ(4)ζ(3) log(2)

256 · 1!
+
ζ2(3) ζ(2)

128 · 0!
+
ζ2(3) log2(2)

32 · 2!
+
ζ(3) ζ(2) log3(2)

16 · 3!

+
ζ(3) log5(2)

4 · 5!
+
ζ(2) log6(2)

4 · 6!
+

log8(2)

8!

]
.

Number of terms: Let T3(k) be the number of terms in the value of S3(k).

Then for k ≥ 2 we have: T3(k) = (k−1)+p′(k−1), where p′(k−1) denotes

the number of those restricted partitions of k − 1 which have neither 1

nor more than one even integers. We also find that T3(k) = T2(k − 1) =
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T1(k) − T1(k − 1). So we have: T3(1) = 1; T3(2) = 1; T3(3) = 2; T3(4) =

3; T3(5) = 4; T3(6) = 6; T3(7) = 8; T3(8) = 11; T3(9) = 14.

This sequence is given in https://oeis.org/A038348. The following

formula given there approximates T3(n+ 1) :

31/4 eπ
√
n/3

4π n1/4
.

5.2. Alternating sums. We now start from

1√
1 + t2

=

∞∑
n=0

(−1)n
(
2n
n

)
22n

t2n.

We multiply both sides of this equation by logk(t), and integrate the result

between 0 and x:
x∫

0

logk(t)√
1 + t2

dt =
∞∑
n=0

(−1)n
(
2n
n

)
22n

x∫
0

t2n logk(t) dt.

If we use the substitution t = sinhu in this integral, we find:

arcsinh(x)∫
0

logk(sinhu) du =
∞∑
n=0

(−1)n
(
2n
n

)
22n

x∫
0

t2n logk(t) dt. (5.9)

This formula can be used in the same way as in 5.1.2 to obtain the following

sums:

Case (1): x = 1.

∞∑
n=0

(−1)n
(
2n
n

)
(2n+ 1) 22n

= log(1 +
√

2)

∞∑
n=0

(−1)n
(
2n
n

)
(2n+ 1)2 22n

= π2

12 −
3
2 log2(1 +

√
2)

+ log(1 +
√

2) log(2 + 2
√

2)− 1
2Li2

(
(
√

2− 1)2
)

∞∑
n=0

(−1)n
(
2n
n

)
(2n+ 1)3 22n

= 1
4ζ(3) + π2

12 log(2) + 1
12 log3(2)

− 1
4 log2(2) log(1 +

√
2) + log(2) log(1 +

√
2) log(2 +

√
2)

+ 1
2 log2(1 +

√
2) log(2+

√
2

8 )− 5
12 log3(1 +

√
2)

− 1
2Li3(

1−
√
2

2 )− 1
4Li3((

√
2− 1)2).
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We can use Lemma 2 with t = −1, together with

∞∑
n=1

(−1)n
(
2n
n

)
(2n− 1) 22n

= −1
2S
′
1(1) = 1−

√
2

to get values for
∞∑
n=1

(−1)n
(
2n
n

)
(2n− 1)k+1 22n

.

Case (2): x = 1
2 .

∞∑
n=0

(−1)n
(
2n
n

)
(2n+ 1) 24n

= 2 log(ϕ)

where ϕ = 1+
√
5

2 , is the golden ratio of the ancient Greeks.

∞∑
n=0

(−1)n
(
2n
n

)
(2n+ 1)2 24n

=
π2

10
.

Compare it with this sum, obtained using (5.9) with x = 1
2
√
2
:

∞∑
n=0

(−1)n
(
2n
n

)
(2n+ 1)2 25n

=
1√
2

[
ζ(2)− 1

2
log2(2)

]
.

The previous sum could also be deduced from the hypergeometric summa-

tion formula [9] with z = −1
8 :

3F2

[
1

2
,
1

2
,
1

2
;
3

2
,
3

2
; z

]
= − log2(

√
1− z +

√
−z)√

−z

+
log(
√

1− z +
√
−z) log(

√
1− z +

√
−z + 1)√

−z

+
Li2(−

√
1− z −

√
−z)√

−z
− Li2(−

√
1− z −

√
−z + 1)√

−z
+

π2

12
√
−z

.

For k = 3 we have the following sum:

∞∑
n=0

(−1)n
(
2n
n

)
(2n+ 1)324n

= 1
4ζ(3) + 1

20π
2 log(2) + 1

2 log2(2) log(ϕ)

+ 1
12 log3(ϕ)− 3

2Li3(−ϕ−1)− Li3(ϕ
−1).

Here we have used the relation [7, p.283, (10)]

Li2(−x)− Li2(1− x) + 1
2Li2

(
1

x2

)
= log(x) log

(
x− 1

x

)
, x > 1

taking x = 1 +
√

2, and also [7, p.283, (6),(7); p.296, (5),(6)].
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The related sums with factor (2n− 1)−k can be found from

∞∑
n=1

(−1)n
(
2n
n

)
(2n− 1) 24n

=
3

2
− ϕ

and Lemma 2 with t = −1
4 .

Postscript : After having completed our paper, we found that Hansen’s

book [4, p.139, (6.7.48)] contains this general formula for m = 1, 2, 3, . . .

∞∑
k=0

(a)k
k!(kx+ y)m

=
Γ(1− a)

x(m− 1)!
(−1)m−1

dm−1

dym−1

{
Γ(y/x)

Γ[(y/x)− a+ 1]

}
,

which gives two types of our sums with positive terms on taking a = 1/2

together with x = 1, 2 and y = 1.
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