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Chapter 1

General Introduction
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The birth of a precocial creature

Is a wonder of nature, a feature

Of life that’s so strong

It can’t help but belong

To the world, a miracle, a teacher.
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CHAPTER 1. GENERAL INTRODUCTION

1.1 Postnatal Locomotor Development

1.1.1 Artistic, Computational Motivation

Modern-day computational and scientific tools have led to a deep understanding of life and
its processes. We can witness the birth of another living being, and measure and compare
parameters to quantify the miracle. We can feel emotionally stirred by that encounter,
empathize with the mother or the offspring, feel delight and astonishment, and calculate the
physiological improbability of the event. We can be amazed by how little (or how much)
time it takes for a little one to stand and walk, to live independently, by measuring it with
a digital stop watch. We can feel sad for individuals initiated with disadvantageous traits,
and we can screen which environmental effects have influenced development, and how.

Thanks to sophisticated analytical tools, we can understand to an ever-growing extent what
exactly is going on during the propagation of life. Does analyzing and understanding the
wonder make it less beautiful? Does knowing the workings of a “wonder” make it less
wonderful?

The limerick above might be considered poetic, you might find it beautiful. But on close
read you will find that it is definitely not “art”, and ultimately it is AI-generated nonsense
(Fig. 1.2). Does that change your opinion about it?
The duality of research method and research subject, i.e. methodological and biological
aspects of research, is also apparent in this thesis. One core aspect of an animals existence
is locomotion. Initially, the primary goal of this project was to analyze the locomotion
and locomotor development of newborns. More specifically, this thesis project set out to
investigate in detail the putative deficits of piglets with lower-than-normal birth weight in
locomotor development. Luckily, I could build on the excellent prior studies in our group,
in particular the PhD project of Charlotte Vanden Hole (Vanden Hole, 2019). My own
project’s purpose then was to extend our understanding of intralimb coordination, i.e. the
fine details of how piglets orchestrate the different joints and muscles of their body to get
moving, or not. While the heart of the present thesis are newborn piglets learning to walk, its
backbone is computational methodology, applied in a novel context. This is a given necessity,
because the differences and putative deficits turn out to be most subtle. Because of this,
we require highly capable and precise statistical tools to quantify them, just as you would
need precision tools to carve the most detailed wooden figures. Yet just as with the novel
AI capabilities which currently invade our everyday life, it is important to stay sceptical of
the purpose and usefulness of the exapted algorithms. Computational techniques can be
abstract, and sometimes their purpose only becomes clear on second application. For this
reason, a considerable fraction of the chapters herein branch off to related, but different
biological questions (e.g. locomotion of ungulates in general, or locomotor development of
bipedal baboons).
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It might help if, on the way, we make sure not to loose sight of the actual phenomenon under
study. I, the author, personally think that the birth and maturation of a piglet (or any
creature) are beautiful and fascinating processes, and I appreciate the opportunity to study
them in detail. Nevertheless, herein, I will not ponder further upon the emotional or artistic
aspects of the beauty of nature and life. The core purpose of this thesis is to assemble,
extend, and scientifically evaluate some relevant facets of current research methods around
locomotor development.

Figure 1.1: "A newborn steampunk piglet galloping on a farm with the sow in the
background. (futuristic-biomechanical)“, created by the “stable diffusion” AI
image generator (https://stablediffusionweb.com) on November 3rd, 2023.
Impressive as is, this generated image has no deeper meaning or connection
to real life, and its only fascinating aspect might be how it was generated.

9
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CHAPTER 1. GENERAL INTRODUCTION

Figure 1.2: The "bing chat" prompt which lead to the introductory limerick (Nov
3rd, 2023). Besides the use of “DeepLabCut” for landmark tracking, this
poem and Fig. 1.1 are the only AI contributions to my thesis.
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1.1.2 Piglets

Any creature’s birth can be fascinating, and studying it can be insightful. Why do we study
piglets?
The first is the trivial reason: because we can. Our institute at the University of Antwerp
has phenomenal equipment. We have incubator-like rearing containers in the “Ark” (a
teaching stable in our Veterinary Science department), which can be a cozy warm home
to newborn piglets. We have the 3D2Y MOX (3-Dimensional DYnamic MOrphology using
X-rays) facility to measure moving animals from hoof to head in light and x-ray vision. The
FleXCT scanning facility is just around the block, and the friendly technicians there will scan
anything you bring them (if you have the funds, of course). I was lucky to be amidst a great,
interdisciplinary collaboration of teams: veterinarians of CoPeD (Comparative Perinatal
Development), physicists from the imec-Visionlab and Biomedical Physics (Bimef), and not
least biologists at FunMorph (Functional Morphology). The settings could not have been
better, and I cannot overstate my praise of all the fantastic people who helped with the
projects herein, and all those who previously managed to acquire funding for what enabled
my work.
Thank you!

Such equipment and personnel could have been used to study other species of animals.
However, there are size limitations. The maximum focal volume of the 3D2Y MOX is about
the size of a one week old piglet. The resolution might be a constraint on too small animals,
such as rodents. Piglets fit; and as domestic farm animals they are relatively abundant in
Belgium.
So we can. And we did.

There is another trivial reason: curiosity. We are scientists, and like to study. Piglets are
interesting, as I hope this thesis will leave no doubt: they are precocial, but less than most
ungulates; they are social, but neonate competition is fierce; they are curious and active;
and they share some common features with our own species. Furthermore, the general
workings of locomotion are exciting to us. Just observing the outcome of the fine interplay
of muscles, tendons, joints, bones - to us scientists, observing this commonplace behavior
in high resolution and slow motion is the equivalent of an audiophile listening to a Dvořák
symphony. Or to a physicist seeing a rainbow (Lewin and Goldstein, 2012). Have you
actually seen one?
Yet, back to our cute, pink subject animals. We could have studied any animal; if fact,
some of us might have certainly preferred flamingos or boxfish. This is why, at this point
and below, I will have to apply a common human strategy: ex post rationalization. Walking
piglets are graceful in their simplicity. And “graceful”, just like in (human) sports or in
playing musical instruments, often describes something which is complex and complicated
but performed to look simple. Well, sports and music requires training, and the most adept
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CHAPTER 1. GENERAL INTRODUCTION

Figure 1.3: "Leihmutter Jolante", by Ernst Kahl (date unknown). Proof that real
art can supersede current AI outcomes.

athletes or musicians seem to us as if they have never done anything else in their lives. But in
contrast to hominid trained specialists, the piglets we study indeed have never done anything
else in their lives! They are born, and they walk more or less gracefully within eight hours,
as my colleague Charlotte concluded from her exemplary PhD work (Vanden Hole, 2019).
How much trouble it would save us, and how much different trouble it would cause, if our
own toddlers could pull that trick!
Which brings us to the third reason: piglets are, to a certain degree, analogous to
humans. In other words, we have the working hypothesis that piglets are a good model
species for some aspects of human ontogeny (Fig. 1.3). Emphasis on “to a certain degree”
- are they, really? I will get back to this at the end of the thesis (Ch. 8). Domestic pigs
are maybe the only species in the world that is more degenerate than our own (on second
thought, maybe not). They are sedentary, comparatively hairless, highly social, omnivorous
(which means they can live of the crap humans feed them), training them to work takes
considerable efforts. They have probably gone through a couple of founder situations in
their evolution, yet are far more prolific than is good for themselves and the planet. That
is already quite a lot to have in common. And indeed, many researchers rightfully argue
that we can draw conclusions about humans from studying piglets - for some aspects of our
humble, shared existence. For example, highly relevant research about infant gut function
was achieved by the group of Prof. Per Sangild (Che et al., 2010; Cilieborg et al., 2011; Muk
et al., 2023; Sangild et al., 2006). One aspect of newborn piglets is that some individuals are
putatively born with a deficit. Those have received different classification labels: small for
gestational age, growth retarded, low vitality; for the majority of this thesis, I will stick to the
phenomenological classification of “low birth weight”, or LBW, yet the fine nuances in the
different classifications deserve further discussion (Van Ginneken et al., 2022; Wootton et al.,
1983). Kids can be troubling. Prof. Sangild argued in his Francqui honorary lecture here at
the University of Antwerp (April 26, 2022) that having kids during a PhD is detrimental for
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progress of the project1; which teases me to contribute contradicting evidence (this thesis).
But the question remains: can piglets serve as a model species for the study of
human locomotion? An obvious “show stopper” might be that, as mentioned above,
piglets are precocial, whereas humans are about as altricial as can be. On the other hand,
suids are the more altricial of the ungulates: feral Sus scrofa females build nests and keep
their young in shelter for a couple of weeks (Wischner et al., 2009). Domestication might
have involved restraining sows, at least to a certain extent (nests vs. group pens vs. single
pen), and the way we keep them might have favored more mobile young who have reduced
mortality from crushing (Grandinson et al., 2002). The picture is complex, and certainly the
analogy of piglets and humans should not be taken for granted (Vanden Hole et al., 2017).

1He might have only referred to a parental leave causing delay, which is good practice, and a valid point.

Figure 1.4: Piglets of low and normal birth weight (left/right, respectively) for
size comparison. The animals are female siblings.
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A second “show stopper” for this thesis would be if it turns out that the effect we would
like to quantify (a difference between piglets of low- and normal birth weight, see Fig. 1.4)
is negligible in magnitude. In other words: if the locomotion of newborn piglets of low
and normal birth weight actually does not differ in a relevant or at least measurable way.
First off, it is obvious that low and normal birth weights do differ: per definition, in terms
of weight. But different weight might go in hand with different physical constraints, and
one has to account for the trivial consequences of a different physical appearance (Aerts
et al., 2023b). The fact that there are hyperprolific sows, increased litter sizes, and an
increased rate of intra-uterine growth restriction and low birth weight (Alvarenga et al.,
2013; Quiniou et al., 2002) is in itself an argument for using domestic pigs as a model for
human early development: it gives us useful categories for comparison. But how to approach
the potential lack of an effect? To set the frontier right from the start, I will insist to apply
good scientific methods (Chamberlin, 1890; Platt, 1964; Popper, 2002). If we searched for
differences in piglet locomotion, just search hard enough, we would surely find them. The
null hypothesis in statistical testing is that there are no differences between the study groups,
which is why researchers tend to actively search for and find differences. However, with so
many variables influencing locomotion (multiple testing), it is inevitable that some variables
will differ. It cannot be presumed that these differences generalize to the population from
which we sampled. Instead, our attempts must be to falsify the hypothesis that there
are birth-weight dependent differences in piglet locomotion. If we fail, we learned
something.

Common methods of studying locomotion fall short in their falsification capacity. First,
some methods miss or loose information in processing. For example, imagine we measured
two maximally dissimilar animals, a stork and an elephant, to quantify how they move
their limbs when walking. The stork will use high clearance, high flexion, being adapted
to cluttered terrain and swampy underground, whereas the savannah-dwelling elephant is
large, “graviportal”, and usually walks with minimal joint flexion along the limb. We could
observe these animals while they are co-incidentally running at dynamically similar speed;
assume that we measure exactly the same (normalized) speed. Although we might not see
differences in speed, we cannot exclude that the subjects (likely) differ in the way they move
their limbs (coordination). Second, methods might have trouble handling variation. One
subject animal was observed to be slower in one trial, but does that mean it cannot ever
go faster as well? So, on the one hand, failing to incorporate (or even summarize) repeated
measurements might be neglecting variation. What does it mean if there is a significant
difference which is of the order of magnitude approximately equal to the standard error of
the mean of the measurement? On the other hand, methods can amplify variation, by not
including all parameters: imagine the “unexplained” variation within a set of recordings of
piglet aged 0-10 days, but not documenting the age (which brings us to the next point).
Third, the matter is complex: just for kinematics, there are subject characteristics (age, sex,
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. . . ), spatiotemporal gait variables (speed, duty factor, clearance, . . . ), dynamic posture and
effective range of motion, and finally coordination. Stay tuned for more on this. Fourth, if we
measure, we must keep track of measurement uncertainty. If we do not know how accurate a
figure was, it is meaningless. We better have a potent modeling framework to incorporate all
that data: if we do not incorporate all measures or fail to explain their variability, differences
might be due to sampling biases and “hidden” variables. The falsification approach is a
unifying aspect of all the chapters herein.
To summarize, there are some genuine reasons for studying suid ontogeny, and there are
some methodological challenges which I will address. Yet whether or not domestic piglets
are a good model species, specifically for human locomotor development, is up for debate,
and I will return to it in the general discussion (Ch. 8).

1.1.3 Limitations of Piglet Locomotor Research

Part of the natural fate of this (and any) thesis is that others have done research on the
topic before. Existing research specifically on piglet neonate locomotion is diverse. It covers
activity and welfare (Beattie et al., 2000; Kashiha et al., 2014), muscle workings and general
motor function (Alvarenga et al., 2013; Andersen et al., 2016), behavioral and neurological
(dys-)function (Roelofs et al., 2019; Sullivan et al., 2013), and gait (Meijer et al., 2014;
Vanden Hole, 2019; Vanden Hole et al., 2017; von Wachenfelt et al., 2008).
We already know a lot about many aspects of piglet locomotion, yet there are two major
limitations. Firstly, transferability is limited (cf. Gatesy and Pollard, 2011): it is not
immediately possible to mirror findings in morphologically disparate species (such as
humans)2. Pigs are precocial quadrupeds, and it might seem far-fetched to apply analogous
hypotheses to bipedal humans, let alone to our helpless, immobile infants. Secondly, most
methods only superficially quantify locomotion: they work on general activity patterns or
spatiotemporal gait variables, or remain qualitative in the comparison of kinematic profiles.
Few studies dig deep into intra-limb coordination, i.e. the temporal succession of limb
segment movements.
The compensation strategies I attempt in this thesis are methodological development, and
the move to a model species which can be considered “intermediate” (baboons, facultative
bipeds).

2“Translational medicine” (i.e. the application of more general scientific findings to human clinical
medicine, Denayer et al., 2014) might be considered a specific type of transfer which in the case of locomotor
research is is impeded by morphological disparity.
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1.2 Limited Transferability

1.2.1 Baboons

So there is a limitation to piglets. Or, rather, I consider it a bonus. They have two extra
limbs on the ground, thus four limbs in total. This gives us about twice the number of joints
to analyze when studying grounded locomotion. Not trivial to handle, but feasible, as I will
show.

It came as a great coincidence that, during SEB conference 2021, I watched my colleague
François Druelle presenting a data set acquired from bipedally walking baboons (Papio
anubis). The rationale to study these animals can be directly transferred to this thesis: they
are facultatively bipedal, i.e. they occasionally walk on their hind limbs, just like humans
often do (Aerts et al., 2023a). Prof. Druelle and colleagues thus analyzed a developmental
series of baboons: infant, adolescent, and adult individuals (Druelle et al., 2021). Their
intention is to find out if and how the use of a bipedal gait changes with age.

That sounded like a familiar task, and with the euphoria of just having implemented a
different, potentially useful method (FCAS, see Ch. 3), I reached out to François and he
kindly provided the data. Not only the videos, but also the tracking (i.e. kinematics “to
go”). I much appreciate the time and effort François and his colleagues and students put
into generating the data, and I am thankful for the exchange. And I regret that this has not
been put into another publication, mostly for the lack of time.

Nevertheless, work on the baboon data set has a prominent place in this thesis. The fact that
there are fewer joints (bipedal), the fact that the data set has been well studied before, and
the fact that this is also a developmental series (though different: age groups are discrete),
predestined this data set to be my “playground”. I used it to refine my procedures and code.
And I ended up writing two “tutorial”-chapters, one each for Fourier Methods (part I) and
Probabilistic Modeling (part II).

Yet in fact, you could argue the other way round. Piglets are a putative model species, but
require some transfer work to draw reliable conclusions about humans and human
development. Papio, on the other hand, are bipedal primates, and their bipedalism
develops gradually over time – just like in our own species. On the downside, baboons are
less readily available, also for dynamic measurements (e.g. XROMM, part III). Hence it is
good to keep both model species in the loop.

Having a biped on board makes transferability more likely, but is no guarantee: it might be
hard to transfer findings to human infants, since there is still morphological and behavioral
discrepancy. To work towards solving this issue, it might be useful to take one step back,
explore what locomotion is technically, and see which analytical methods are available.
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1.2.2 What is Locomotion?

Fix a single solid metal rod to a support with a frictionless cylindrical joint, deflect it by a
small angle, and let gravity do its predictable magic. This is a simple oscillator, a “physical
pendulum”, which physics professors enjoy assigning to their students as calculation exercise
(LibreTexts, 2022a). Now add a second such element, another cylindrical joint and metal
rod. Something astonishing happens: we get chaos (Harrison, 2021). Even more fun to
calculate. Due to minuscule variations in the initial conditions of this system, it cannot be
solved deterministically any more.

Animal limbs resemble the physical pendulum: they have more restrictive joints, yet
usually even more segments. We should expect chaos on this system. But chaos is not
what we observe, quite the contrary. Locomotor movements are highly targeted, i.e.
pseudo-deterministic, often repetitive. Variations (though ubiquitous) are minimized by
training. This observation is due to coordination: coordination is herein understood as
the temporal pattern of non-random movements of different limbs (inter-limb coordination)
or different joints within a limb (intra-limb coordination). Coordination is achieved by
(neuro-)motor control. Control is achieved by the central or peripheral nervous structure
which establishes coordination. The study of neuromechanics attempts to relate the
central and peripheral control mechanisms to the observed motor outcome produced by the
musculoskeletal system, i.e. coordination (Full and Koditschek, 1999; Nishikawa et al.,
2007). Of course, the control “facilities” of each individual are bespoke for the precise
anatomy of that individual: each brain is tuned to the layout of segments and motors of
each individual. We do not know the exact “wiring” of each animal, though remarkably we
observe “functioning” individuals time and time again, which are the less interesting cases
in which the nervous system does a great job in steering its muscles.

Because of this intimate link of neural control and coordination output, the motor system
can be considered a looking glass into the workings of the neural system of animals. This
can be understood in an evolutionary sense: a change in the behavior, e.g. a transition to
bipedality, will reflect in the control system (Zehr et al., 2016). It can also be understood in a
medical sense: if an individual does not “walk” as expected, locomotion enables the diagnosis
of disease (Mielke et al., 2023). Perturbations, both in the environment (Daley, 2018) and
in the two systems (De Groote and Falisse, 2021; Sponberg et al., 2023; Ting et al., 2015),
and the organism’s response to it, can be analyzed to understand the robustness, plasticity,
and rehabilitation of motor control.

The vertebrate locomotor system is highly complex, therefore sensitive to changes, and
therefore a relevant multi-purpose tool for diagnostic and comparative research. Yet to
fully understand it, we need in-depth analytical tools which capture the whole ensemble of
characteristic parameters.
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CHAPTER 1. GENERAL INTRODUCTION

1.3 Methodological Prior Knowledge

1.3.1 Which Analytical Tools Do We Have?

One would think that our toolbox to study terrestrial locomotion is well-developed and
sophisticated (Demuth et al., 2023; McHenry and Hedrick, 2023). After all, locomotion has
been intriguing people for hundreds, thousands, maybe tens of thousands of years. Whenever
humans develop a new imaging technique, from cave drawings to digital cameras, they use
it (first for pornography, and second) for locomotion (Figs. 1.5, 1.6).
In consequence, the technology for studying locomotion is available, and sophisticated.
Consumer grade cameras have a high temporal and spatial resolution, and can be
calibrated to measure 3D space. Compare modern day smartphone cams to, for example,
contemporary x-ray techniques for studying the inside of things: both are equally recent,
resolution of the latter is usually inferior, price difference is defeating, yet we do not even
have color on x-ray (although it is just another form of electromagnetic radiation, see Ch.
7). Visible light videography seems to be far more accessible than other imaging
techniques. We can thus expect that far better camera equipment is available than would
minimally be required for our research questions. Sounds too easy - which is probably why
my supervisors decided to send me out to a pig farm in 2017 with an inferior JVC
camcorder (while a synced 4-cam 300fps Norpix system, and a set of high res GoPro’s,
were available at the time). Although that would not be fair to claim. There is also always
an allocation to be set on the spectrum of video quality (especially framerate) and manual
processing time (see Ch. 9.2), and I might still be clicking points on videos today if my
supervisors had decided differently. And, after all, the JVC video data might be the most
relevant data of this PhD (Mielke et al., 2023).
Acquiring videos is just the first step: as always in science, we need numbers and statistics to
get reliable results. Where do we stand on the analysis side? You might be underwhelmed.
We are in the year 2022 2023 2024, and (as if agnostic to the rise of computers) people
still essentially rely on footfall patterns (Hildebrand, 1989), spatiotemporal gait parameters
(stride frequency, speed, duty factor, etc.), and visually comparing angular profiles (Ekhator
et al., 2023; Jones and Hasiotis, 2023; Plocek and Dunham, 2023; Young et al., 2023b). Those
are doubtlessly great methods to get an overview, and they remain the go-to first analysis
for any kinematic data set. Yet as I will argue in the chapters to follow, they only capture
limited information and are therefore insufficient for a falsification approach, as illustrated
with the stork and elephant example above.
People have certainly tried to complement the conventional measurements with more in-
depth computational methods. “Planar Covariation” theory came out of one attempt to
develop a technique which captures the essence of terrestrial locomotion (Borghese et al.,
1996; Ivanenko et al., 2008). I think it is flawed, in a sense that it biases the data for high
correlation just to find out that it is highly correlated. Throughout the chapters of this
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Figure 1.5: "The Horse in Motion", by Eadweard Muybridge (1878). It seems
like every PhD thesis on locomotion or cinematography has to start with
Muybridge.

Figure 1.6: "The Piglet in Motion", by Falk Mielke (2020). Sophisticated, modern
technology exists for studying animal locomotion, but the idea is the same.
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CHAPTER 1. GENERAL INTRODUCTION

thesis, you will find subtle and polite rants about the planar covariation technique, so I will
not go into detail at this point.
Another, potentially useful method is Statistical Parametric Mapping (Flandin and
Friston, 2008; Friston et al., 1994; Pataky, 2020; Pataky et al., 2008; Worsley et al., 2004).
It is designed to test one-dimensional (e.g. time-varying) data, such as kinematic profiles,
for the statistical evaluation of group differences. “Statistical evaluation” refers to classical
hypothesis testing, which is normally complicated by the non-independence of continuous
temporal measurements. SPM implements various hypothesis tests for continuous data by
a clever adaptation of random field theory (Brett et al., 2003; Kemeny et al., 1976). The
method first and foremost tackles the temporal interdependence of measurement points
(Pataky, 2020). It does not overcome the limitations mentioned above, transferability of
kinematics and the quantification of intra-limb coordination. And its current
implementations are restricted to classical, frequentist statistics, with all their assumptions
and pitfalls. For these reasons, I have not applied SPM in my research, nevertheless
appended a brief summary of that method for interested readers (Ch. 9.3; cf.
https://spm1d.org).

1.3.2 An Overlooked Transformation

And then there is one strain of locomotor science which deviates from the Western
mainstream. It was advanced by Nikolai A. Bernstein, and I have dedicated a whole
chapter to it (Ch. 2). His group excelled in at least two ways (Bernstein, 1935; Bongaardt
and Meijer, 2000). They used clever engineering to get continuous measures of joint
positions (Bernstein, 1927b) and applied angular transformations (i.e. Fourier Series) to
analyze the data (Bernstein, 1927a). These early works are remarkable, and the day I first
read through it and realized their importance was maybe one of the happiest days of my
PhD. Essentially, what I did in the work summarized herein, is transferring Bernstein’s
ideas to a computer framework, and extending them with modern statistical models. I
acknowledge that I am not the first one to take this route (Pike and Alexander, 2002;
Webb and Sparrow, 2007). And there is a group of authors who have translated,
popularized, and advanced the “Bernstein school” (Laczko and Latash, 2016; Latash, 1998,
2008, 2010). However, given the usefulness of the transformation, I find that there are
google scholar returns astonishingly few studies to date who have applied Fourier Analysis
to locomotor data.
Venturing along this path, implementing and improving the Fourier analysis method, has
partially led this thesis away from its original study subject, neonate piglets. In the end,
my work has taken a methodological focus much stronger than anticipated. Yet this is
justified in the preliminary observation that differences in low- and normal birth weight are
on the subtle side of the effect magnitude spectrum (possibly more visible on intra-limb
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coordination), and in consequence only the finest tools would be capable of detecting them.
Furthermore, as I will demonstrate in the individual chapters of this thesis, transformation to
the frequency domain can help to partly overcome one of the major limitations posed above:
the transferability of kinematic data. In the frequency domain, some aspects of locomotion
are easily and logically separated (namely: posture, effective range of motion, and intralimb
coordination). Apparent differences in either of these separated measures can be related to
subject characteristics, such as morphology.
This opens up the path to more refined answers to long-standing comparative and
evolutionary research questions.
To summarize, there are a lot of computational tools at hand to study locomotion. Some
are old, some more recent. Some capture only a fraction of the information, others try to
be inclusive. Some are frequently used, but the ones I find most relevant did not get the
recognition in the field that I would think they deserve. This thesis is also an attempt to
rectify that.
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1.4 Thesis Outline

And this is where my PhD project found its place. We studied piglet locomotion, attempting
to falsify a difference that is due to birth weight category. This requires a methodological
foundation on topics unfamiliar to most Biologists (Fourier Analysis, probabilistic models),
which I introduce in dedicated parts. By adopting and extending these existing techniques
for the framework of biomechanical research, I demonstrate a way to overcome previous
limitations of transferability and the quantitative analysis of coordination.
The thesis will have the following structure.
Part I: Kinematic Analysis

• I will introduce Fourier Methods with a practical guide, and review its occurrence
specifically in the field of locomotor biomechanics (Ch. 2).

• The power of Fourier tools is then unleashed onto a large cross-species study that
covers most of the ungulate clade (Ch. 3, Mielke et al., 2019).

Part II: Probabilistic Modeling

• Processing complex kinematic data, I will introduce the basics of probabilistic modeling
(Ch. 4) in a “tiny textbook of statistics”, which is based on an example of locomotor
development in baboons.

• Moving on to piglets, I will turn the conventional modeling strategy upside down (or
leftside right?) and apply a predictive model to piglets (Ch. 5, Mielke et al., 2023).

Part III: Dynamics

• Kinematics are just half of locomotor research: the study of forces and moments is
reviewed and summarized in another overview chapter (Ch. 6).

• To calculate joint moments, one needs to measure inertial properties, yet it turns out
that these are not trivial to retrieve from x-ray tomographic images (Ch. 7).

The thesis closes with a general discussion to round up and project the presented work to
potential future applications (Ch. 8).
Enjoy reading!
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Kinematic Analysis
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CHAPTER 2. FOURIER METHODS IN LOCOMOTOR BIOMECHANICS

Chapter 2

Fourier Methods in Locomotor
Biomechanics
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2.1 Abstract

Analysis workflows which are based on the Fourier theorem are abundant in physics and
engineering, yet rarely found in the biological literature. They would be particularly useful
in the analysis of locomotor kinematics, where movements can usually be broken down into
repetitive cycles. I herein repeat the basics of Fourier analysis and transformation to the
frequency domain by reviewing previous studies which applied it in some form in the field
of locomotor biomechanics. I then discuss terminological and methodological heterogeneity
among these studies, and point out some relevant properties of the method which have
received relatively little attention. One of the under-appreciated capabilities is that the
transformation enables a diversity of multivariate analysis and modeling methods. I
demonstrate this by applying Fourier Series Decomposition, multivariate analysis and
probabilistic modeling to a previously analyzed data set of bipedal walking kinematics in
baboons. The results are complementary to the prior analysis, and the capability to
predict actual kinematic data for unobserved character combinations is of particular
interest for future kinematics research.
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CHAPTER 2. FOURIER METHODS IN LOCOMOTOR BIOMECHANICS

2.2 Introduction

2.2.1 Recurring Solutions

In 1822, a French mathematician initiated the remarkable discovery that any continuous
signal, no matter how complex, can be represented by a sum of relatively simple trigonometric
functions (Fourier, 1822). Despite some initial limitations which were mended by scientists to
follow, Fourier’s work opened the door to the frequency domain. Fourier analysis has become
a widely-used tool in physics and engineering, whereas biologists have only occasionally made
the transformation. In particular, although it has been argued that the study of highly
repetitive locomotor kinematics would benefit from applying Fourier methods (Mielke et al.,
2019; Pike and Alexander, 2002; Schneider and Chao, 1983; Skejø et al., 2021; Webb and
Sparrow, 2007), it seems that few researchers have applied this simple method to date. One
reason for the hesitant adoption of the method are certainly terminological complexities in
Fourier Theory. These become apparent when assembling an overview of past attempts to
apply related methods to locomotor kinematics.

In this chapter, I review the history of the application of Fourier Series in terrestrial
vertebrate locomotion.
Some properties and practical misunderstandings are highlighted, before applying the
method to a previously analyzed data set on bipedal locomotion in baboons (Druelle et al.,
2021) to once more demonstrate the enormous potential of Fourier analysis.
This article is not targeted at a mathematically rigorous audience, who will certainly find
shortcomings in the simplified explanations I provide. Instead, I aim at facilitating the
entry to the topic for applied biologists, especially in biomechanics. Fourier Theory is well
studied and widely applied, and numerous textbooks exist for all levels and fields (cf.
Bracewell, 2000; Osgood, 2019). The rich spectrum of Fourier-based methods comprises
versatile techniques which would certainly facilitate the work on many relevant research
questions in biomechanics.

2.2.2 Fourier Series

Typical kinematic measurements are joint angles, such as a hip angle, over time (but note
that the following will equally apply to any continuous, periodic signal). One recurrent unit
of terrestrial locomotor behavior is a “stride”, and it can go as follows (Fig. 2.1 A). If an
animal walks, the distal part of its limb would touch the ground at a position ahead of the
center of the limb. Our example joint of interest, the hip, would then usually be highly flexed.
During stance phase, i.e. while the limb is in contact with the ground, the hip gradually
extends, maybe reaching the lowest angle around the initiation of the swing phase. While
the limb swings forward to reach another touchdown, the hip joint flexes again. Because the
limb is a system of rigid bodies with a given mass (cf. Ch. 6), accelerations would never
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Figure 2.1: Kinematic data generation workflow. (A) Videos of animals are taken,
here a baboon walking bipedally from left to right. The frames captured at
touch-down, mid-stance, lift-off, mid-swing, and consecutive touch-down are
shown. (B) Points of interests, e.g. joints, are tracked, which yields their
pixel position over time. In this case the knee x and y positions are shown
relative to their first value. Vertical bars indicate timing of the frames from
the upper panel. (C) Joint angles are calculated from groups of three of
those points of interest. Their change over time is a joint angle profile. I
herein define joint angles to be zero at a fully extended (straight) joint, and
positive for joint flexion. Per definition of “steady state locomotion”, joint
angles in steady state movement will return to approximately their start
value over a cycle (indicated by the horizontal line). Mathematically, this is
called “periodicity”, the joint angle profiles in steady state locomotion are
thus “cyclic”.
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CHAPTER 2. FOURIER METHODS IN LOCOMOTOR BIOMECHANICS

be abrupt, and the hip angle plotted over time might be described as a “smooth saw-tooth
curve”, or even resemble a sine wave (Fig. 2.1 C). The change of a joint angle over time is
called a joint angle profile.

One could quantitatively capture joint angle profiles in different ways (Fig. 2.2). The most
intuitive, and by far most prevalent way is the time domain representation (Fig. 2.2, left
column). It stems directly from the technical method by which kinematic data is usually
extracted: landmarks on videos of the walking animals are tracked frame-by-frame (cf.
Appendix 9.2 and Mielke et al., 2020). The outcome are two columns of numbers: a
“time”, capturing the seconds at which a frame was captured, and then the “joint angle”
measurement itself, usually assessed from three landmark positions (Fig. 2.2, lower left)
The more temporal sampling points, the better the temporal resolution, but the higher the
landmark tracking workload and storage requirement.

A key assumption above is that the stride was recurrent, or cyclical, i.e. periodic. This
means that an almost (but not perfectly) identical stride will precede and follow the one
of interest. This is also called the “steady state assumption”, i.e. the requirement that the
observed behavior is regular (and thereby comparable to other observations). If (and only if)
that assumption is met, the joint angle profile will start and end at approximately the same
value, i.e. the hip angle at each limb touchdown will be almost the same. Plotting this as
angle against time will show a line with ends fixed at the same heights of the left and right
y-axes. This is metaphorically the same situation as in a guitar string, which is fixed at both
ends and performs some excursions from the zero line at positions in between. To further
stress this analogy, the hip joint angle profile can be described as the combination of a “base
tone” and a number of “harmonics” (or “overtones”). Knowing the base and the relative
contribution of the harmonics is sufficient to reproduce the “sound”, or in other words to fully
know the exact position of each element of the string or signal, or each instantaneous joint
angle of a stride cycle. Base and harmonics are called the “frequency domain”, i.e. the
representation of a cyclical signal by the relative contribution of its frequency components
(Fig. 2.2, right column). Any periodic, continuous signal, and thus also any cyclical joint
angle profile, can be described like this, just as any tone the guitar string makes can be
described as a sum of harmonics. It might theoretically take infinitely many harmonics to
exactly represent the signal (e.g. in case of non-smooth signals). However, in practice, the
effects which would cause this are usually considered to be measurement noise. Physiological,
“real” signals normally require few harmonics to be appropriately captured.

How can Fourier Series be applied? The method is based on the following formula (Bracewell,
2000; Fourier, 1822; Gray and Goodman, 1995; Mielke et al., 2019), which is presented here
for completeness and should not worry the reader.

cn = 1
T

T∑
t=0

e−2πin t
T · f(t) ∀n > 0 (2.1)
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Figure 2.2: The frequency domain. (Upper Left) Hip joint angle profiles of bipedal
locomotion in baboons, as conventionally displayed (gray traces: repeated
observation; black trace: average profile; dotted line: mean angle). The
joint angle profile shows the measured angles over the course of a stride
cycle. (Lower Left) The very same information can be stored in an excel list,
here shown as a screenshot, consisting of an indefinite number of value pairs
of time and angle. (Lower Right) By using Fourier methods, traces can be
converted to a list of relatively few coefficients, without loss of information.
(Upper Right) These coefficients have a real and imaginary part, which could
be plotted in the complex plane. (All) All these displays capture identical
data. A visual representation (upper panels) contains exactly the same
information as a numeric representation (tables / lower panels). Similarly,
the information contained in frequency domain representation (right panels)
is identical to that in the time domain (left panels). With the methods
described herein, one can transform from the time- to the frequency domain
representation or back without loss of information. The frequency domain,
which is accessible through Fourier Analysis formulas, is just a different
representation of the data, and the transformation procedure is analogous to
“plotting” (i.e. deterministic, reversible, favorable in some circumstances).
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Where cn is a complex Fourier coefficient, T is the period of the signal or in our case the
stride cycle duration, t is the time (i.e. “x” of the signal), f(t) is the signal (i.e. “y” of the
signal), e is the Euler number, i is the square root of minus one. The capital sigma tells
mathematicians that this is a series, and thus the equation defines the Fourier Series.
At first, the analytical formula might seem quite complex for everyday application, and
computer code might be more usable. In supplement 2.7.1 and online (https://git.sr.
ht/~falk/fcas_code), I provide code for Python, R and Matlab which can just be copied
and used1:
c o e f f i c i e n t s = F o u r i e r S e r i e s D e c o m p o s i t i o n ( time , s i g n a l , o r d e r )

It can be inverted (just as the analytical formula):
s i g n a l = F o u r i e r S e r i e s R e c o m p o s i t i o n ( c o e f f i c i e n t s , time )

Knowing the assumptions and limitations, and paying attention to the data types and
formats, these functions can be simply applied to transform back and forth between the
time- and frequency domain.

There are numerous morphotypes of the Fourier theorem. Equation (2.1) is the exponential
form of the Fourier Series. The formula exists in other variants (which are equivalent by
Euler’s formula): the rare but useful “amplitude-phase” form, and the more abundant
“sine-cosine” representation. Historically, trigonometric functions are more convenient to
handle, whereas modern computer implementations easily capture complex numbers,
whereas humans have most intuition for amplitude and phase. The Fourier Series is related
to, but slightly different from, Fourier Transform, a relation which will be discussed in
detail (Ch. 2.4.2). Applying the Fourier Series is a decomposition of a signal into its
harmonic components, hence I will use the term Fourier Series Decomposition (FSD)
herein. “Discrete Fourier Transform” (DFT) can be considered synonymous to “Fourier
Transform”, emphasizing the “discrete” nature of sampled data; “Fast Fourier Transform”
(FFT) is an efficient algorithm to implement Fourier Transform. DFT/FFT work on any
signal and typically involve windowing, whereas FSD demands a periodic input signal.
FSD returns a single row of numbers (“spectrum”, i.e. harmonic contributions) for that
signal, and that spectrum is discrete. FFT natively also returns a spectrum (Welch, 1967),
but a continuous one. However, in practice, Fourier Transform is often applied in shifted
windows and returns a “spectrogram” (i.e. frequency content over time). Finally, a Fourier
Series can be applied to a single joint angle (“1D”), or to multiple signals at the same time
(e.g. on phase plots). All of these (and other) variants of the method have been applied in
the research of locomotor kinematics.
It is therefore worthwhile to review the historic use of related methods in studies on locomotor
kinematics, and look for some common patterns and strategies.

1The “order” parameter in the decomposition is the number of coefficients to retain.
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2.3 Fourier Series in Locomotor Research

The analogy of limbs and a pendulum was established early on (Fischer and Braune, 1904;
Weber and Weber, 1836), and maybe that is why Fourier Series was immediately among
the relevant considerations for analysis. To my knowledge, the first formal application of it
was by Nikolas A. Bernstein (Bernstein, 1927a, 1935), who in the early years of his work
was concerned with methodological advances in measuring motor actions (Bongaardt and
Meijer, 2000). Bernstein suggested and applied a trigonometrical sum, which consisted only
of sines and bares some resemblance in form to a Taylor approximation.
In his later work, Bernstein advocated a hierarchical organization of motor control (cf.
Bongaardt and Meijer, 2000). This topic was taken up by studies in the field of motor
learning, which would find evidence of higher order harmonics being affected by locomotor
learning (Gallistel, 1982; Marteniuk and Romanow, 1983). Their methodology is overall
similar to that of Bernstein, yet improved by heuristics and standardization (Jackson, 1979;
Porges et al., 1980). The use of Fourier methods for asserting gait symmetry and variability
were recognized (Soudan, 1982).
Van Weeren et al. applied Fourier Series to measure skin marker displacement, not joint
angles (van Weeren et al., 1992), yet extracted the coefficients with a regression instead of
direct transformation. Schendel and colleagues quantified inter-vertebral angles with a sine-
cosine Fourier Series (Schendel et al., 1995), again with a computational regression. It was
found that relatively few harmonics can be sufficient to detect symmetry and lameness in
horses (Audigié et al., 1999; Peham et al., 1996). Others have applied a Fourier Series to the
segment angles of limb segments (Grasso et al., 2000), for example to infer amplitude and
phase relations. Fourier Series has recently been applied to the specific analysis of human
running (Skejø et al., 2021).
Two studies stand out from the previously mentioned, conventional uses of Fourier Series.
Pike and Alexander (2002) have made use of the data transformation to perform multivariate,
quantitative comparison of kinematics across a broad range of taxa. Their focus lies not on
the method itself and the generated coefficients, but rather on downstream data processing
methods. Another hallmark study in terms of advocating Fourier Series in locomotor research
is that of Webb and Sparrow (2007). The authors provide a comprehensive introduction
to the method, list its advantages and fields of application as well as future perspectives.
Thereby, the article has outstanding educational value for those attempting to find a start
with the method.
With the rise of computational approaches, inverse dynamic modelling of human gait was
facilitated by transforming to the frequency domain (Ren et al., 2007); pattern recognition
and classification methods were applied (e.g. Mostayed et al., 2008). Along these lines,
Fourier Series was used to get a frequency spectrum and compute development- and
pathology-related change in overall locomotor frequency (e.g. Kurz et al., 2011).
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Multi-dimensional variants of Fourier analysis for two joint angles in phase plots or
“cyclograms” (DiBerardino III et al., 2010) or for 3D joint angles using quaternions
(Kenwright, 2015) point at promising future directions.
Finally, recent work by the author (Ch. 3 and 5) has expanded on the aspect of multi-variate
analysis and favorable data properties in the frequency domain (Mielke et al., 2019, 2023).
Overall, although some references exist, the studies using Fourier Analysis are sparse among
locomotion literature. Authors who apply the technique tend to emphasize its usefulness,
but often seem to be unaware of previous implementations. Few studies have explored
downstream analysis of the Fourier coefficients. Confusions about mathematical terminology
(e.g. “series” or “transform”, “transformation” or “regression”) complicate the situation. To
summarize, variability in the use of Fourier Series arises from the following questions:

• Which signals to use? (joint/segment angles)

• How to apply the transformation? (no regression required)

• Which form and implementation to use? (“Series” vs. “transform”, “trigonometric”
versus “complex exponential” form)

• If and how to process data in the frequency domain? (multivariate analysis, modeling)

• How many coefficients to retain? (order)

• The possibility of inverting FSD has been neglected, maybe in consequence of the
above.

All these questions are the purpose of this review, and will be addressed in the next sections.
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2.4 Properties of the Fourier Series

A lot of the text below is written from the applied perspective of a biologist, who used the
transformation and its inverse to actual data. Not all of the reported properties of Fourier
methods are directly linked to literature references, but most general courses and textbooks
cover these concepts (e.g. Bracewell, 2000; Osgood, 2007, 2019).

2.4.1 Not a Regression

As pointed out above, some researchers have applied regression algorithms to extract the
weights of the harmonics contributing to the signal of interest. A regression is an iterative
procedure which attempts to match a known, parametrized function (the model) to a target
signal (the measurement) by adjusting the parameters on each iteration with clever update
rules. An intuitive example is linear regression, in which the parameters ‘a‘ and ‘b‘ of a
function y = a + b · x are found so that the formula best describes the observed data relation
of ‘y‘ and ‘x‘. Typical optimization algorithms are the Nelder-Mead simplex (Nelder and
Mead, 1965) or variants of the BFGS algorithm (Broyden, 1970; Fletcher, 1970; Goldfrab,
1970; Shanno, 1970; Zhu et al., 1997). Though it is immensely useful, regression has several
technical disadvantages: convergence is not guaranteed, start values are required and might
affect the result, the algorithm might get stuck in local optima, accuracy is finite, the iterative
procedure is computationally expensive, and reversibility requires the inverse function or
another regression. Some of these disadvantages are especially hindering when working with
trigonometric functions (e.g. inversion).

Fourier Series Decomposition is not a regression. Determining the “parameters”, i.e.
Fourier coefficients, works by eqn. (2.1), which can be directly translated to computer code
(see above and supplement 2.7.1). The procedure is deterministic, exact, and reversible;
no start values are required. The trigonometric formulas provided in many publications
resemble regression models, but applying a regression procedure is not necessary. I will
demonstrate the overall procedure and provide code for some relevant scientific scripting
languages as proof of concept.

2.4.2 Relation to Fourier Transform

As discussed above, Fourier Series Decomposition (FSD) requires a signal of finite length
which starts and ends at the same value (periodicity). It computes a discrete spectrum of
the whole function, i.e. the amplitudes for each harmonic. A generalization of FSD is the
Fourier Transform, which does not assume periodicity, and which can be applied to signals
of indefinite length by shifting a computation window along the signal. Fourier Transform
yields continuous spectra, measuring frequency content in units related to absolute time.
When applied in a sliding window, Fourier Transform provides a spectrogram of the signal,
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i.e. the changing contribution of different frequency components to the signal over time. The
minimum frequency is limited by the window width, the maximum frequency is determined
by the sampling rate of the signal (Shannon, 1949). Fast Fourier Transform (FFT) is the most
common algorithm for computation (cf. Heideman et al., 1984), and FFT is readily available
in most programming environments. Note that there are many other such transforms which
circumvent some limitations of FFT or might be otherwise useful in research, such as the
S-Transform (Brown et al., 2010; Stockwell et al., 1996) or Empirical Mode Decomposition
with the Hilbert-Huang Transform (Huang et al., 1998).
The result of FFT on a single window is a quasi-continuous frequency spectrum, and the
frequencies are related to absolute time. Because of this, joint angle profiles which look
exactly identical, but differ in stride duration, would have different frequency spectra. In
contrast, FSD only considers harmonics, which are the integer multiples of the signal
period. Therefore, the outcome of FSD is usually a much shorter array of numbers (Fourier
coefficients). The FSD formula involves a normalization for the signal period (i.e. stride
cycle duration), and thus strides of different duration can be directly compared. FSD also
avoids problems of FFT which are due to windowing. Though both procedures could be
applied to stride cycle kinematics, FSD is favorable if the periodicity/cyclicity
assumption holds.

2.4.3 Time Scale Independence

Another favorable property follows from the cyclicity: Fourier coefficients are
independent of temporal scale or sampling. Due to the normalization mentioned
above, the FSD of the signal does not contain any information about the original duration
of the signal (e.g. stride duration), nor does it matter much where the cycle started. On
the inverse FSD, a new time frame and temporal sampling must be chosen. It is thus
possible to re-sample the time line of a measurement by transforming it to the frequency
domain, and then back with a different timeline.
In consequence, FSD is useful for homogenizing and comparing signals of variable duration.
This can be advantageous, if groups or paradigms of variable stride durations are to be
compared. If discarding that information is unintended, “duration” can simply be retained
as a separate variable. The same holds for speed and other spatiotemporal gait variables
which are related to the temporal structure of the signal.
It follows that Fourier coefficients do not replace spatiotemporal gait variables
(e.g. duration, speed), but complement them. In case of joint angle profiles, Fourier
coefficients capture the kinematics, while gait variables quantify the system outcome as a
whole. Both are related by morphology (i.e. limb segment dimensions), which is another
relevant class of variables that can and should be associated with kinematics in modeling
approaches (cf. Ch. 4).
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2.4.4 Approximate Periodicity

How “flexible” is the periodicity assumption? Motor behavior underlies variability
(Bernstein, 1935), thus one might never measure a perfect end-start match. Fourier Series
Decomposition works on noisy signals, yet it should be assured (as a technical requirement)
that the end-start-difference is smaller than the white noise. There are a few common
strategies to accomplish this if it is not given, and it has to be discussed how these
strategies affect the outcome.
Firstly, one could ignore a start-end-difference, and bluntly apply FSD. The algorithm
assumes periodicity, but the formula has no means to check this assumption, and will hence
“connect” the last and first sample. This would lead to an abrupt change, which demands
high order harmonics, which will show in the spectrum. However, abrupt changes from
discontinuities are not physiological, so those values can be considered an artifact.
As a second option, it is common practice to generate an inverted version of the signal (of the
form g(t) = −f(−t) ) and append it to the end of the original signal. This could be visualized
as a rotation of a duplicate of the signal about its last measurement point, which results in
the values progressing first in forward and then inverted in backward measurement order, all
changes accumulating to zero, and the “double” signal ending where it started. This method
is common in the Fourier analysis of ground reaction force measurements (Alexander and
Jayes, 1980; Schneider and Chao, 1983), where data usually starts and ends at zero.
The procedure shifts harmonics up by one due to period doubling. The rationale of using this
method is that it generates symmetry and smoothness, which generally reduces the order
(i.e. number of harmonics) required to retain all relevant information of the signal.
A third method to mend end-start differences is to simply spread them over the whole
period of the signal (Mielke et al., 2019). This can be achieved in a computationally efficient
way by subtracting an array of numbers from the signal which is linearly increasing from
zero to the end-start difference, and which has the same number of samples as the signal
(pseudo-algorithm: signal -= linspace(0, end-start, number_of_samples)). For this
to be valid, it must be ensured that the end-start-difference is negligible in magnitude, non-
physiological, and non-systematic. If those are givens, spreading the difference over the cycle
is least invasive with regard to the outcome coefficients. As with the previous method, this
smooths the signal and reduces higher order coefficients, yet without the caveat of altering
the relation of relevant harmonics.
If used with caution, the third method is the favorable one for applications on locomotor
kinematics. However, with that sort of data, there is another relevant method to minimize
end-start-differences. The choice of where the start and end of a cycle lie is
conventionally made by finding the (left hind-limb) touchdown. This time point is more or
less distinctly visible on videos, and might be a requirement for data comparison. Yet,
mathematically, that is just an arbitrary point in the cycle, and biomechanically, the

37



CHAPTER 2. FOURIER METHODS IN LOCOMOTOR BIOMECHANICS

0 20 40 60 80 100
frame number

1

2

3

4

5

lo
g 

Pr
oc

ru
st

es
 D

ist
an

ce
 (×

10
3 )

93 97 101 105
end frame

0
1

2
3

4
5

6
st

ar
t f

ra
m

e

A B

C D

1.4

1.6

1.8

2.0

2.2

×1
03

Figure 2.3: Stride cycle end-start matching. A stride cycle can be defined as the
time interval between two frames which have the highest similarity in joint
configuration and enclose exactly one swing and stance phase. (A) Putative
start and end frame configurations, superimposed onto the original video
frames. Several frames are candidates for cycle end, indicated by the series
of cross markers. (B) Superimposition of end frame candidates onto the
reference start frame, using Procrustes Superimposition. Only the axial
line points (head to toe) are used for superimposition. (C) Configuration
difference (measured as Procrustes distance pd, shifted by the arbitrary
formula log (pd ∗ 103 + 2) for visualization) over the whole stride cycle for
different candidate start frames. (D) A heat-map of configuration difference
can identify mathematically optimal stride cycle intervals. Dashed black
crosshair: cycle start and end, conventionally determined by limb touch
down. Blue crosshair: start and end frame with maximal configuration
similarity, i.e. minimal Procrustes distance of the configurations at candidate
frames.
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configuration of the limb can be different on two touch downs (two strides might instead
have higher cross-resemblance just before touchdown, or at mid-stance; Fig. 2.3). The
term configuration herein describes the relative spatial arrangement of a set of points of
interest or markers. Thus, if emphasis of the analysis lies more on the cyclic character of
the stride, and if researchers find it valid to choose a different point for start and end of the
cycle, then optimal points could be found automatically by cross-comparing the
configurations of the whole limb in a sufficient frame range around the limb touch downs
(as applied in Mielke et al., 2019, 2023). This can be achieved by taking all relevant points
tracked in the videos (treating them in each frame as a geometric shape; Fig. 2.3B) and
calculating the Procrustes Distance between those frames or shapes (Rohlf and Slice,
1990). That Procrustes Distance is a direct measure for the configuration difference
between frames (Fig. 2.3C). In a cross-comparison, the two frames which have least
Procrustes Distance are candidates for start and end of the cycle (Fig. 2.3D), and should
be verified by visually superimposing the video frames. Conversely, whether or not there
are two such frames with a sub-threshold Procrustes Distance, and at what time in the
cycle they appear, can be a useful proxy to confirm steady-state locomotion.
All these are technical tricks which usually improve the data set quality and consistency. The
bottom line is that, in steady state locomotion, the periodicity assumption is usually
met, and there exist minimally invasive adjustments to ensure that the data strictly meets
the mathematical requirements of FSD.

2.4.5 Reversibility

Some data operations can be undone (math.: invertible, i.e. reversible), others not. For
example, consider the Euclidean vector norm of a temporal series of velocity vector
measurements: the resulting number (speed) can quantify the magnitude of the original
velocity vector, but not its direction. Conversely, when modeling speeds depending on
some other parameter and predicting magnitudes, or when averaging speeds, one could not
infer a direction. Information is lost in the transformation from a three-dimensional vector
to a single number representing its length.
Other operations are invertible: consider again a series of velocity vectors of a physical
object moving in space. One can freely change the reference coordinate system. Moving
from an earth-bound reference frame to the coordinates defined by the object and back is
possible without loss of information. Another common, invertible coordinate transformation
is the Principal Component Analysis, which transforms data into the space spanned by the
orthogonal eigenvectors of a data covariance matrix. Because these transformations retain
all information, and because an inverse mathematical operation exists, one can move the
given data forth and back between the different spaces or domains. Even more, one can
transform or untransform unrelated, new data between spaces, although that data was not
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involved in defining those spaces. This feature is useful and commonly applied to averages
and extrapolations.
Fourier Series Decomposition is invertible. As described above, it translates the data from a
“time-dependent array” form to a time-independent, complex-valued frequency space. Any
set of values, be they observed or synthetic, can also be translated back via an inverse
operation. In contrast to PCA, this does not even require the eigenvectors of the original
data (there is only one frequency domain). Some operations, such as averaging of multiple
signals, are equivalent in the time- and frequency domain.
The formula for the inverse Fourier Series is the following:

f(t) =
N∑

n=0
(2 · cn) · e2πin t

T (2.2)

Notation herein as in (2.1), with N being the order (number of coefficients). Computer code
for application in R, Matlab and Python can again be found in supplement 2.7.1 and online
(https://git.sr.ht/~falk/fcas_code).
The existence of this inverse formula means that just as exchanging a coordinate basis for
linear coordinates, one can convert freely between time- and frequency domain.
However, one limiting factor is the order of the Fourier Series. Some signals (i.e. those with
sharp turns or quick changes) require a high number of harmonics to be accurately
represented in frequency space. Conversely, when operating with a finite order, some
signals might be filtered on the first transformation to the (pruned) frequency domain.
Real measurements are usually subject to measurement noise, such noise involves changes
as quick as measurement sampling, which are thus lost in FSD. This filtering property
of FSD can represent a loss of information (if the noise is considered informative, but note
that in that case the residual after re-transformation might be even more informative).
However, in cases where this filtering effect is negligible or even favorable, FSD and its
inversion can be applied. Repeated back- and forward transformation does not discard
further information. When implementing a version of the equations above in computer
code, a good check is whether values are unchanged after applying FSD and its inversion in
series. And because of the relatively few coefficients needed for accurate representation of
physical processes, compared to sampled timelines, it is often efficient to store kinematic
data in the form of FSD coefficients.

2.4.6 Choice of Order

How to decide how many coefficients should be retained? That number is the “order” of
the Fourier Series. It can be easily determined by exploiting the reversibility of a method.
Each observation (i.e. each measured joint angle profile) should be converted to the
frequency domain with a given order, and then converted back to the time domain. The

40

https://git.sr.ht/~falk/fcas_code


(root-mean-square) difference of the original signal and the re-transformed one should be
small in magnitude and normally distributed around zero. Additionally, original and
re-transformed signals should be plotted on top of each other for visual inspection.
This strategy is of general use, and I will demonstrate it on the test case (Ch. 2.5.1). In
the particular case of joint angle kinematics, it has often been concluded that relatively few
coefficients are sufficient to capture the essence of the phenomenon. This is physically
plausible, because the elements of limbs are rigid bodies with a certain inertia. Such
elements cannot perform too abrupt accelerations, and in consequence, the profiles are
smooth. Furthermore, in the case of steady-state locomotion, the ensemble of rigid body
elements produces the behavior, and it is unlikely that any single element can oscillate an
order of magnitude quicker than the whole limb. The stride cycle is the defining time
interval, and normally all elements move in relative unison, which limits amplitude in the
higher order coefficients.

2.4.7 Affine Components

Some attributes of a signal are emphasized by Fourier methods. Those can be summarized
intuitively as those attributes of the signal which can be changed without altering the
“perceived shape” of the signal when plotted.
The most obvious one is the average of the signal over time, i.e. its mean value. When
changing the mean of a signal in the time domain by adding the same scalar value to every
sample, the signal shifts “up and down”, but retains its temporal structure. The mean
is completely captured by the zero’th Fourier coefficient, which therefore is always a real
number. Apart from that one number, changing the mean of a signal leaves its frequency
domain representation unchanged.
Another attribute of the signal is the amplitude, or how much values change around the
mean. In the time domain, amplitude is altered by centering the signal and multiplying it
with a scalar, followed by un-centering. In the frequency domain, amplitude is visible as the
distance of coefficients from the origin of the complex plane (i.e. the cumulative magnitude
of the complex numbers, or the norm of the complex coefficient vector).
The third special signal aspect is phase, and it has to do with the periodicity of the signal.
Phase is quantized in the time domain by sampling, and it can be changed by taking a
number of samples from the end of the signal and appending it to the start (“rolling” the
signal around, or changing the start point of the cycle). In the frequency domain, changing
the phase rotates the coefficients in the complex plane (but note that higher order coefficients
rotate exactly n times quicker). Because the frequency domain is independent of sampling,
phase can be changed by any scalar number here, and is not limited to the sample raster.
This allows efficient temporal resampling, as well as an optimal alignment of multiple signals
(cf. Ch. 3.7.2). Phase is an angle, best used in the range of zero and 2π. It is changed in the
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frequency domain, just as any rotation in a complex plane, by multiplication of a complex
exponential (“delay/shift theorem”, cf. Bracewell, 2000).
The fact that amplitude is the distance and phase the angle of Fourier coefficients in the
complex valued frequency space illustrates the relation of the exponential and amplitude-
phase form of the Fourier formula: the latter are just the corresponding polar coordinates.
Mean, amplitude and phase are called affine components of a signal, which describes the
fact that they can be adjusted by scalar operations without altering the “signal shape” (see
Ch. 3). They can even be standardized (mean: zero, amplitude: one, phase: zero). They can
be associated with biological meaning: the mean quantifies dynamic posture, the amplitude is
related to effective range of motion, the phase quantifies relative timing of joint movements.
What remains after standardization, i.e. after isolation of the affine components, is in a
way the essence of a signal, its “shape”, which is defined by the temporal (or frequential)
structure of the behavior. In the case of joint angle profiles, this remainder can be considered
coordination sensu strictu (Mielke et al., 2019, 2023).

2.4.8 Multivariate Analysis

The numeric representation in the frequency domain is usually shorter, and as mentioned
above, storage might be efficient. Nevertheless, an FSD of the order N will yield N + 1
coefficients, which are 2N + 1 numbers when splitting up their real and imaginary parts.
Although we usually find an order of N < 10 appropriate (Ch. 2.4.6), this would still leave
a considerable amount of variables for analysis.
This raises the question of the effect of multivariate analysis methods, such as Principal
Component Analysis (PCA). PCA is a coordinate transformation which finds orthogonal
coordinate axes in the data set that are oriented towards the largest variability within the
data (MacLeod, 2007). A common purpose of PCA is dimensionality reduction, and it is
particularly effective if there are strong co-variations within the data. It seems clear that
Fourier coefficients of a single joint angle profile are intrinsically linked, for example through
the phase rotation in the complex plane (exponential form). However, it is not obvious
whether that holds any advantages for PCA, because the phase rotation does not cause
linear correlation. On the other hand, higher coefficients are usually of lower amplitude
than the main coefficients, and thus their putatively relevant variability might be lost in a
PCA-based dimensionality reduction. Thus, PCA does not generally hold benefits for the
analysis of single joint FSD in its complex exponential formulation. It might be different in
the amplitude-phase formulation, which should be explored in future research.
If more than one joint is of interest, coefficient number is multiplied, but the situation for
multivariate analysis changes. Different joints are often interrelated through adjacency along
their linking segments. Biarticular muscles and tendons can cause correlated movements,
which makes top-down sense, because a typical vertebrate limb during swing phase tends to
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be extended and flexed altogether (Fischer and Blickhan, 2006). This situation is favorable
for PCA, in a sense that dimensionality reduction can often be achived with relatively little
information loss. Note, however, that PCA must be adjusted in a way that accounts for
the FSD properties as follows. It is common practice and often advisable to standardize
input variables prior to PCA, so that their value ranges are comparable (usually done by
subtraction of the mean and division of a variability measure). Such a standardization
would disrupt the temporal structure of the signal, and emphasize nuisance variability in
higher order coefficients. A better strategy for multi-joint analyses is the standardization
by extraction and isolation of affine FSD components. As mentioned above, mean joint
angle and joint amplitude can be standardized, and phase differences of all observations can
be minimized by temporal alignment. With such preprocessing, the outcome of a PCA will
equally represent each joint of interest, without disrupting the temporal structure of the joint
angle profiles, and benefiting from intrinsic correlations of movements of the limb elements.
PCA is invertible, just as FSD, and so any downstream modeling outcomes can be related
back to the original joint angle profiles.
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2.5 Case Study: Predicting Bipedal Walking in Adult
Male Baboons

Above, I re-iterated some fundamental properties and best practices related to Fourier
Analysis, and Fourier Series Decomposition in particular. I will now outline the typical
workflow of the analysis of kinematics with that method, focusing only on the steps which
are affected by the Fourier method. There is a lot of flexibility in the procedure (see Fig.
2.4 for a coarse guideline), and researchers should feel encouraged to adapt the steps to
their needs. For illustration, I applied the method to a previously analyzed data set of
bipedal walking in olive baboons, Papio anubis (Druelle et al., 2021).

2.5.1 Data Preparation

After data acquisition is complete and hard drives are filled with videos, the individual
stride episodes which were captured on video must be annotated and extracted. As a good
approximation, one can use the conventional touch down timepoints (though lift off or mid
stance would work equally well, and the choice may vary within the dataset).
A prerequisite for any meaningful analysis is consistent, complete data. Data in this case
are points of interest, tracked on videos. There are many tools for landmark tracking on
video, which are more or less automatic and accurate (Crall et al., 2015; Dunn et al., 2021;
Hedrick, 2008; Karashchuk et al., 2021; Knörlein et al., 2016; Mathis et al., 2018; Mielke
et al., 2020). It should be assured that no frames have been involuntarily skipped in the
process of tracking, and that there are no discontinuities in the series of point positions.
This can be easily achieved by plotting the time series of tracked points, either in the global
reference frame, or in a moving reference associated with the subject (Fig. 2.5). After
landmark tracking, the aforementioned calculation of Procrustes distances between putative
start and end frames (Ch. 2.4.4) can be used to refine the stride interval and minimize
end-start-differences.
With strides identified and data quality assured, collective variables such as duration, speed,
clearance, or gait asymmetry can be stored for each stride observed in the dataset.
Next, joint angles can be calculated in a variety of ways. Their precise definition and
direction is arbitrary, yet should be consistent and clearly documented. Care should be
taken that joint angles do not show jumps at any time point of the movement, for example
by crossing the 2π angular interval border. Such jumps would lead to a wrong FSD, because
that procedure does not natively consider angular value ranges or interval wrapping and
thus treats the jump as if it were an actual discontinuity. The joint angle definition chosen
herein, with fully extended limb corresponding to a joint angle of zero, and ranging from −π

to +π, usually avoids such discontinuities.
In the case of two-dimensional joint coordinates, calculation of joint angles is relatively
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point of the procedure, transformation between the domains is possible and
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straight forward with an arctan formula. When working in three dimensions, the question
is whether sufficient anatomical reference points can be tracked to calculate actual anatomical
joint angles. If not, it must be sufficient to calculate a single joint angle between the segment
vectors, though that does not necessarily correspond to anatomical degrees of freedom. If
instead there are sufficient reference points, multiple joint rotation axes and angles per joint
can be used and integrated just as in a multi-joint analysis. Note that there have been
attempts to directly calculate Fourier coefficients from 3D joint angles, using quaternions
(Kenwright, 2015), which would be the most elegant solution for this purpose.
After removing end-start-differences as described above (Ch. 2.4.4), joint angle profiles are
plugged into the Fourier equation (2.1), e.g. by using the corresponding programming
functions supplemented to this manuscript. Thereby, joint angle profiles are transformed to
the frequency domain. Though I above emphasized the complex values of the coefficients,
they can as well be represented by a one-dimensional array of alternating real- and
imaginary parts of the coefficients. The transformation should be inverted, and original
and re-transformed joint angle profiles plotted together, to exclude coding errors and
confirm that order was chosen high enough (Figs. 2.6, 2.7).

2.5.2 Multivariate analysis

Each stride processed in the analysis counts as exactly one data point, and so far, data points
were considered independently. The conventional next step is to analyze their relation to
each other.
For example, it might be apparent that two or more data points are phase shifted relative
to each other: all the characteristic maxima and minima of the joint angle profile would
consistently appear later or earlier in the time domain plot. If one assumed that strides are
cyclic, it must be concluded that these phase shifts are due to our arbitrary choice of the start
point within the cycle. Phase differences should therefore be minimized. However, different
joints, when analyzed together, might theoretically give contradicting information on the
relative phase shift of different strides. Obvious solutions are to either choose a reference
joint angle for phase alignment (this might be a kinematic angle not otherwise used for
analysis: in the baboon test case, I chose the “total limb”, i.e. the head-hip-toe angle), or to
use an amplitude-weighted average phase shift as calculated from all joint angles of interest
together.
And just as with phase, there are design choices about whether to keep the other affine
components (mean, amplitude) implicit in the multivariate data set, or extract and isolate
them for subsequent analysis.
Independent of these choices, the result of the previous steps is a data table consisting of
multiple observations (strides, in rows) and variables (Fourier coefficients, in columns). The
observations can be related to their corresponding master data (i.e. subject characteristics,

46



A B

Figure 2.5: Raw data inspection. (A) Plotting a series of stride cycles in the camera
reference frame can aid the identification of data discontinuities (visible here
in the distal limb markers). The animal is moving from left to right. A stick
figure displayed for the last frame facilitates landmark attribution (torso,
tail, hind- and forelimb are shown, similar to Fig. 2.3). (B) Plotting one
stride in the moving reference frame of the subject (zoomed in on the limbs)
can confirm cyclic/steady state movement.
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Component Analysis (orange, using first 5 principal components, after
FSD). The residual ϵ is the mean of Euclidean distances of all joint angle
measurements over time from their corresponding re-transformation in the
time domain. See also Fig. 2.7.
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are included, the distribution of residuals is indicated by grey “violins”.
Relatively low numbers of coefficients and components are sufficient to get
close to the asymptotic accuracy. The absolute residual is joint-dependent
(compare hip and knee, for example), an effect which is primarily determined
by landmark tracking accuracy and measurement noise. The data point for
“full” PCA dimension is the reference value with just the FSD.
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morphology, collective variables, isolated affine components) by a simple stride index lookup.
Such a data structure is eligible for multidimensional analysis methods, and one of the
simplest such method is Principal Component Analysis (PCA). Often, PCA justifies a
significant reduction of data dimensionality (i.e. number of data columns), depending on
how much variance is concentrated on the first components. Apart from the residual
variance not covered by the retained principal components, PCA is again information
preserving and reversible (which should be confirmed, Figs. 2.6, 2.7). Most often, PCA is
just used to prepare the data for subsequent multivariate methods (e.g. factor analysis).
To summarize: in the procedure drafted above, I have extracted and quality checked
kinematic measurements from raw video digitization. Joint angles were calculated and
submitted to two transformation procedures: FSD and PCA. All procedures to this point
can be performed without loss of information: any of the resultant data rows could be
converted back to an animation of moving points. Thus, the PCA outcome essentially
contains the whole of what was captured by the original kinematic data: the
spatiotemporal coordination of the moving body appendages of interest.

2.5.3 Statistics and Modeling

Despite the direct link to the raw data, the data table resulting from PCA might seem
abstract. Nevertheless, those values are useful, because they are much more compact than
the original two-dimensional time series of varying length. And this compactness is crucial
for statistical testing and modeling, for which computational complexity can be restrictive.
As a proof of concept, I herein briefly present the outcome of one type of analysis approach:
probabilistic modeling (to be discussed in all detail in Ch. 4). The two major advantages
are that (1) probabilistic models capture the variability of the intrinsically variable process
of locomotion, (2) such models can be used for extrapolation (out-of-sample prediction).
The usual modeling steps are:

• data simulation (prior to acquisition; can provide valuable information on required
sample size, feasibility, and model structure)

• model construction

• (MCMC) sampling or “model fitting”

• model comparison and refinement

• posterior checks (model “hygiene”)

• predictive sampling

I applied all these to the baboon data set. In total, 40 stride cycles from 17 subject individuals
entered the analysis. I applied a stepwise modeling approach, modeling the PCA-transformed
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Fourier coefficients (θ) generated from a set of joint angles (hip, knee, and ankle) as a function
of sex (male), age class (adol, inft), body mass (cbm /centered), limb length (ll), clearance
(clr), duty factor (df), trunk angle (trnk) and speed-related parameters (str, from a PCA
of stride duration, length, speed and frequency).

θi ∼ v1,i · αi+
+ vmale · βmale,i + vadol · βadol,i + vinft · βinft,i + vcbm · βcbm,i + vll · βll,i+
+ vclr · βclr,i + vdf · βdf,i + vtrnk · βtrnk,i + vstr1 · βstr1,i + vstr2 · βstr2,i+
+ ϵi

(2.3)

In the case of the baboon data set, I was able to successfully train this complex model
despite limited sample size. I then confirmed model convergence and ensured that the model
is favorable over alternative models with more or less parameters. The implementation in
PyMC (a Python library, https://www.pymc.io) has the capability of posterior predictive
sampling: the trained model can be used to generate an arbitrarily high number of virtual
data points, which underlie the same variability as the original data. Most notably, this
includes predicting “out-of-sample”, i.e. parameter combinations which were not directly
observed (in this case, male adult baboons were not included in the data, but could be
predicted; Fig. 2.8). Though the model infers abstract PCA values, the much emphasized
reversibility of the method enables the computation of joint angle profiles from the predicted
values. All data and documented code for all the steps described above are available online
(https://git.sr.ht/~falk/papio_fcas). I will return to this data set and extend the
explanation of the modeling procedure later in this thesis (Ch. 4).
This modeling and prediction is complementary to and consistent with the analysis of
Druelle et al. (2021). A targeted model design could for example serve to infer effects of
age class, speed, or their interaction, as was done in the original treatment of this data set.
Such research questions can be addressed without transformation to the frequency domain.
However, the point highlighted here is that the frequency domain data retains almost the
full kinematic information, and thereby enables assessing a broader range of quantitative
analysis questions, and predictive modeling of joint angle profiles and coordination.
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Figure 2.8: Posterior predictive sampling. A probabilistic model which is trained
on the kinematic data (dark grey lines) is capable of predicting joint angle
profiles (colored, thin lines; 1000 predictions per category). This can be
extrapolated, for example to unobserved category combinations (here: adult
males, which were not part of the dataset). Model design and training are
enabled by transformation of the data to a PCA-space of the frequency
domain. Joint angle profiles are centered around their mean for visualization;
black bar in the lower left plot indicates angular units.
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2.6 Summary

When reviewing prior attempts to use Fourier-based methods for the analysis of kinematics,
a lack of consistency becomes apparent. Prior studies using the method exist, but hardly
reference each other, which indicates independent events of lateral Fourier gene transfer
into the population of biologists. Authors seem to be unaware of the different available
methods and how to apply them efficiently. Some of the choices for application are of little
relevance for the outcome of the analysis (e.g. whether to use the sine-cosine, exponential,
or phase-amplitude form of Fourier Series), whereas others have severe impact (e.g. choice
of order). I pointed out that Fourier methods do not require a regression algorithm for
data conversion, and that often the most appropriate tool in the Fourier toolbox to analyze
joint angle profiles is Fourier Series (and not FFT). Usually, few coefficients are sufficient
to capture all relevant kinematic information, and multivariate methods such as PCA are
readily available for further dimensionality reduction. Some properties of joint angle profiles
become directly accessible by FSD (affine components), and a mathematically precise phase
alignment is possible.
Yet, as demonstrated above, I would argue that the biggest advantage of transforming the
data to the frequency domain is that it enables the quantitative analysis of coordination.
Though joint angle profiles could theoretically be resampled and submitted to multivariate
analysis directly, this approach would face major technical challenges if sample size is
limited, or data points are structurally different, misaligned, or undersampled (all of which
is practically always the case in comparative kinematics). FSD circumvents these problems
by providing an elegant, concise representation of the data: a set of relatively few,
meaningful complex coefficients which can be converted back to the original data.
This availability for quantitative analysis has far-reaching potential. I demonstrated it on a
relatively small, but well studied data set of bipedal walking in baboons, and was able to
predict stride cycles for a co-incidentally unobserved combination of subject attributes. Using
phylogenetic and morphometric bracketing, the same procedure could be applied to infer the
locomotion of extinct species, e.g. hominids. Another potential purpose of this quantitative
method is its combination with dynamics, i.e. force and moment measurements: consider a
perturbation analysis, where normal locomotion is interrupted, and a subject can succeed or
not in maintaining dynamic balance. Certainly, success will depend on the specific movement
of some limb elements, and quantitative kinematic modeling can highlight which.
I will get back to and extend the use of FSD and the probabilistic modeling approach in the
following chapters (Ch. 4, Ch. 5).
None of these analysis components are novel. Fourier Analysis is a standard tool in physics
and engineering. I see equally great potential for the biological sciences, where cyclic
phenomena are abundant (genetics, physiology, behavior, . . . ). I suspect that the reason
for the limited use of these tools to date is limited accessibility, caused by terminological
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confusion and the lack of attention for example studies. I referenced some excellent work
that made use of the Fourier theorem (Bernstein, 1935; Pike and Alexander, 2002; Webb
and Sparrow, 2007), as well as my own attempts to extend the capability of the technique
in the context of kinematics (Mielke et al., 2019, 2023). Thereby, I hope that this review
can increase availability of the Fourier method to biological sciences, potentially even
beyond the study of locomotor kinematics.
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2.7 Supplements

2.7.1 Computer Code to Apply Fourier Series

This is an example how the Fourier Series can be implemented in the Python programming
language (https://python.org).

Similar implementations for R and Matlab are provided “ready-to-use” on the following git
repository:

https://git.sr.ht/~falk/fcas_code

d e f F o u r i e r S e r i e s D e c o m p o s i t i o n ( time , s i g n a l , o r d e r ) :
# c a l c u l a t e the F o u r i e r S e r i e s decomposit ion o f a s i g n a l ,
# given the sample time array ( " time " )
# and a chosen " o r d e r " ( i . e . h i g h e s t c o e f f i c i e n t r e t u r n e d )
# r e t u r n s complex c o e f f i c i e n t s

# the p e r i o d o f the s i g n a l
p e r i o d = numpy . max( time )−numpy . min ( time )

# number o f samples taken
n_samples = l e n ( time )

# the e x p o n e n t i a l formula f o r each c o e f f i c i e n t
S i n g l e C o e f f i c i e n t = lambda t , T, n : numpy . exp(−1 j ∗2∗numpy . p i ∗n∗ t /T) / (2 i f n == 0 e l s e 1)

# c a l c u l a t e the F o u r i e r S e r i e s as a l i s t o f c o e f f i c i e n t s
f s d = (2/ p e r i o d ) ∗ numpy . array ( [ \

numpy . sum( s i g n a l ∗ S i n g l e C o e f f i c i e n t ( time , per iod , n ) ) / n_samples \
f o r n i n range ( o r d e r +1) \

] )

r e t u r n f s d
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d e f F o u r i e r S e r i e s R e c o m p o s i t i o n ( c o e f f i c i e n t s , output_time ) :
# r e c o n s t r u c t a s i g n a l from i t s f r e q u e n c y space r e p r e s e n t a t i o n
# i . e . take c o e f f i c i e n t s l i s t and r e t u r n the s i g n a l at g iven output_time p o i n t s

# the e x p o n e n t i a l used i n t h i s formula
FourierSummand = lambda t , T, cn , n : cn ∗numpy . exp (1 j ∗2∗numpy . p i ∗n∗ t /T)

# the F o u r i e r f u n c t i o n at a s i n g l e time p o i n t
FourierFunctionT = lambda t , T, c o e f f i c i e n t s : numpy . sum(numpy . array ( [ FourierSummand ( t , T, cn , n ) \

f o r n , cn i n enumerate ( c o e f f i c i e n t s ) \
] ) )

# the p e r i o d "T" o f the s i g n a l
p e r i o d = numpy . max( output_time )−numpy . min ( output_time )

# f o r every p o i n t i n time , sum up the c o e f f i c i e n t s
s i g n a l = p e r i o d ∗ numpy . array ( [ FourierFunctionT ( t , per iod , c o e f f i c i e n t s ) \

f o r t i n output_time \
] ) )

r e t u r n numpy . r e a l ( s i g n a l )
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Chapter 3

Fourier Coefficient Affine
Superimposition
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3.1 Abstract

Many phenomena related to motor behaviour in animals are spatially and temporally
periodic, making them accessible for transformation to the frequency domain via Fourier
Series. Although this has been applied previously, it had not been noticed that the
characteristic arrangement of Fourier coefficients in their complex-valued representation
resembles landmarks in geometric morphometrics. We define a superimposition procedure
in the frequency domain which extracts and isolates affine differences (mean, amplitude,
phase) to reveal and compare the shape of periodic kinematic measures. This procedure is
conceptually linked to dynamic similarity, which can thereby be assessed on the level of
individual limb elements. We demonstrate how to make intralimb coordination accessible
for large scale, quantitative analyses. By applying this to a data set from terrestrial
ungulates, dominant patterns in forelimb coordination during walking are identified. This
analysis shows that typical strides of these animals differ mostly in how much the limbs are
lifted in the presence or absence of obstructive substrate features. This is shown to be
independent of morphological features. Besides revealing fundamental characteristics of
ungulate locomotion, we argue that the suggested method is generally suitable for the large
scale quantitative assessment of coordination and dynamics in periodic locomotor
phenomena.

This chapter is a slightly modified version of a previously published article (Mielke et al.,
2019). The publication preceded the review in Ch. 2, which unfortunately causes some
redundancy. The concept of affine components and the analogy to geometric morphometrics
are extended and applied to a comprehensive data set. I must apologize that the relevant
publication by Pike and Alexander (2002) had completely slipped my attention prior to this
publication, I was unaware of its existence, but added reference ex post.
Furthermore, it must be noted that this chapter, contrary to the title of the thesis, does not
analyze developmental data. the variable “age” was not available for the animals shown on
’YouTube’, and could not be included. No neonate or early juvenile data was incorporated.
It is not clear whether age plays a role on this precocial group of animals. Due to the
large sample size, I would expect effects to average out. In consequence, the intention of
this chapter is explorative: I applied a novel method to a broad data set, inspecting and
interpreting the outcome.
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3.2 Introduction

A prevalent feature of motor behaviour of animals is temporal and spatial periodicity.
Rhythmic or cyclical recurrent patterns can occur on all scales, from large (e.g. seasonal
migration) to small (e.g. neural pattern generators, actin-myosin binding). Locomotion is
one behavioural class which is highly relevant for the organism, and which often shows a
considerable degree of recurrence, most prominently during steady-state locomotion. In
consequence, locomotion was one of the first subjects of motor behaviour to be formally
studied (Bernstein, 1927a,b; Braune and Fischer, 1904; Marey, 1878; Muybridge, 1893). In
the study of terrestrial locomotion, limb kinematics (e.g. joint angles) and dynamics (e.g.
joint moments, ground reaction forces) represent relevant periodic profiles accessible to
comparative analyses. Groups for comparison can be defined by differences in various
attributes, such as for example phylogeny, age and development, physiological background,
or pathological status. Locomotion holds diagnostic potential in all of these: the periodic
profiles are ultimately linked to the ecology, ontogeny, and morphology through
evolutionary processes, and proximately modified by immediate external and internal
constraints (e.g. Barrett et al., 2008; McGibbon, 2003; Mohling et al., 2014; Nyakatura
et al., 2012, 2019; Vanden Hole et al., 2018a; Vanhooydonck et al., 2014).
The analysis of locomotor patterns can be insightful and has been applied in numerous
cases, targeting different levels of detail. A common tool to quantitatively compare
kinematics are spatiotemporal gait parameters, which are summary statistics over limbs,
stride cycles, or both (see e.g. Biancardi and Minetti, 2012; Christiansen, 2002). The
limitation of gait parameters is that they do not resolve differences in intralimb
coordination. Intralimb coordination is a complex phenomenon, which has been difficult to
capture in quantitative methods. In some hallmark studies, the comparative analysis of
intralimb coordination has been performed by relatively sparse sampling from large groups,
with nevertheless respectable workload (Fischer et al., 2002; Isler, 2005; Stoessel and
Fischer, 2012). Gatesy and Pollard (2011) have attributed the limited quantitative
accessibility of coordination to limitations in transferability of kinematic profiles.
According to their theoretical considerations, the temporal change of a joint angle within a
limb can hardly be disentangled from morphology, posture, and the interaction with
adjacent joints, which makes it hard to transfer observations between groups. These
authors call for novel methods to resolve these dependencies. We herein present such a
method, and exemplify it on a broad sample of terrestrial ungulates. The backbone of our
approach is Fourier Series decomposition (FSD). Its novelty lies in an attempt to
superimpose temporal profiles in a manner analogous to geometric morphometric
techniques, i.e. using FSD to extract the “shape” of cyclic curves.
To extract shapes from such temporal profiles (or any periodic signal in general), one
requires data that resembles landmarks, as well as a procedure to superimpose
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observations. Profile landmarks can be found by applying Fourier Series (Ch. 2). Fourier
Series is a classical method in the study of kinematics (Bernstein, 1927a, 1935), although
there are few recent studies exploring it further (Grasso et al., 2000; Pike and Alexander,
2002; van Weeren et al., 1992; Webb and Sparrow, 2007). Note that Fourier Series is
related to, but different from other techniques previously applied in the context of
locomotion (namely Fourier Transform and Elliptical Fourier Descriptors, see discussion).
By applying FSD, the signal is decomposed into its harmonics, which describe it in what is
called the frequency domain. The outcome of FSD is usually reported as sine- and cosine
coefficients, which through Euler’s formula are equivalent to complex exponentials. As will
be illustrated further, this latter representation has some advantages for our purpose.
When plotted in the complex plane, Fourier coefficients have characteristic arrangements,
which we find are to an extent analogous to landmarks in geometric morphometrics
(Bookstein, 1991; Kendall, 1989). Furthermore, the affine components of a signal become
mathematically accessible in the complex plane representation. Affine components are
those that can be scaled linearly without altering the shape of the signal. In the case of
complex Fourier coefficients, those are (i) the mean profile value (i.e. “y-value”) over time,
captured as the zero’th Fourier coefficient, (ii) the amplitude of the harmonics, visible as
the distance from the origin of the complex plane, and (iii) the phase, which is related to a
(non-trivial) rotation in the complex plane (cf. methods, Fig. 3.1). These terms are
analogous to the parameters of a harmonic oscillation of frequency f over time t of the
form “y = c0 + A · sin(2πf · t + ϕ)”. Such an oscillation has the mean c0, amplitude A, and
the phase ϕ. Assume there is a mathematical operation which extracts the affine
components of two such oscillations by shifting (i.e. changing c0), scaling (changing A),
and rotating (changing ϕ) the complex coefficients in the frequency domain to a
standardized arrangement. This would be a Procrustes procedure which results in a
mathematically optimal superimposition (two harmonic oscillations of the same frequency
would become identical). The differences would not be removed, as in “discarded”, but
isolated, and can still be part of subsequent analyses. We explore such a superimposition in
this study, terming it Fourier Coefficient Affine Superimposition (FCAS).

The motivation behind this is the search for a quantitative, comparative measure of
coordination of joints along a limb. For such measurements to be comparable, one should
normalize the measures according the the dynamic similarity principle. Dynamic similarity,
in general and in its biological application (cf. Alexander and Jayes, 1983; Vaughan and
O’Malley, 2005), is also concerned with the isolation of affine components. In general,
dynamic similarity applies when all spatial dimensions of two mobile systems scale with the
same factor (i.e. geometric similarity), the temporal aspects of all involved movements
scale with another, again uniform factor (i.e. similar coordination), and therefore all forces
are similar except for a uniform third factor. Scaling the system by such factors represents
an affine transformation. In the specific case of terrestrial locomotion, dynamic similarity
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allows predictions about kinematics and kinetics of different animals (i.e. about leg
phasing, relative stride length, duty factors, forces and power output; Alexander and Jayes,
1983). In practical application, a common purpose of the dynamic similarity principle is to
compare animal locomotion at equal Froude numbers (e.g. Holmes et al., 2006;
Steudel-Numbers and Weaver, 2006). Perfect dynamic similarity is rarely observed and not
expected, but finding the reason for deviations from it can be instructive (e.g. Kramer and
Sylvester, 2013; Raichlen et al., 2013; Steudel-Numbers and Weaver, 2006). Such studies
are usually concerned with spatiotemporal gait variables. We attempt to apply the
dynamic similarity principle on the level of joint angles, i.e. to measure intralimb
coordination, using FCAS as a method to separate affine and non-affine differences in time
profiles of joint angles.
A classical illustration of the concept of dynamic similarity is the case of terrestrial
ungulates (Alexander and Jayes, 1983). These are a group of mammals that successfully
populated an impressive variety of habitats, such as cluttered rain forests, swamps, rugged
mountainsides, plain grasslands, and even deserts. Ungulates have achieved this without
fundamental adjustments in the topology of the locomotor apparatus (Alexander, 1984;
McMahon, 1975), albeit variation in their limb geometry. The musculoskeletal layout and
posture of ungulates favour movement that is characterized by parasagittal limb excursions
(Jenkins, 1971; Stein and Casinos, 1997). Therefore, their locomotor characteristics can be
adequately approximated by time profiles of two-dimensional joint angles. Despite this
simplification, their enormous diversity makes ungulates a challenging subject for
conventional analyses of intralimb coordination. During steady state locomotion, joint
angle profiles are approximately periodic, thus FSD and FCAS can be applied. We herein
use ungulate kinematics as a case study for FCAS.
FCAS does not reveal intralimb coordination per se. However, the fact that
superimposition operators (and with them affine differences between groups) are
transferable to adjacent joints can be exploited (analogous to Mielke et al., 2018a). More
specifically, in this study, we will perform superimposition of elbow joint angle profiles with
respect to the carpus joint. This example application of FCAS yields relative joint angle
profiles, which are quantitative measures of intralimb coordination because they contain
the combined variance from two joints. Using the frequency domain representation, the
relative profiles become accessible for multivariate analysis. These ingredients allow us to
investigate intralimb coordination in a quantitative comparison of unprecedented
phylogenetic scope, overcoming previous limitations (Gatesy and Pollard, 2011).
In this study, we focus on the practical application of FCAS and the insights it extracts
about ungulate locomotion and evolution. We supplement a detailed mathematical
description (supplements 3.7.1 and 3.7.2), an extensively commented, open computer code
tutorial (supplementary data 3.7.5), and all data that was generated (supplementary data
3.7.5). We present data of walking gait, densely sampled across terrestrial ungulates (87 of
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117 genera). For this purpose, we tracked landmarks on freely available video material
from online video platforms, as others did before (Biancardi and Minetti, 2012; Lees et al.,
2016). Rather than fixing an a priori hypothesis, we are interested in extracting major
patterns of variation in intralimb coordination in the proximal forelimb of ungulates. We
discuss evidence for deviations from dynamic similarity, and possible reasons. This
provides hypotheses for future, more controlled experimental tests that can likewise benefit
from the herein proposed analytical methodology.
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Figure 3.1: Analysis work flow, schematic. A Video material of walking ungulates
is digitized by tracking trace marks (shoulder, elbow, carpus and fetlock
joints; see supplementary movie 3.7.5) over a stride cycle, and joint angle
profiles are computed (joint angle defined zero at fully extended limb,
positive direction indicated by arrows). Thin black lines are the original
measurement, whereas blue lines show the same profile, filtered by FSD
with 7 components. (continues next page)
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Figure 3.1: (contd.) B Fourier Series decomposition and synthesis allow transformation
of temporally periodic joint angle profiles back and forth between time
domain and frequency domain. The zero’th Fourier coefficient (c0, lower bar
plot) corresponds to the temporal average of the joint angle profile (i.e. mean
joint angle). The higher coefficients (cn>0) can be plotted in the complex
plane (ℜ, ℑ); line connections are only for visualization. Coefficients i of
joints j have phases (ϕji) and amplitudes (Aji), as indicated in gray for c1
of the elbow. Average phase and amplitude of the joint angle profile can be
derived (for example ϕc, Ac for carpus). Mean joint angle, amplitude, and
phase are the affine components of the signal.
C Multiple groups are compared, in this case ungulate genera (Lama, Giraffa,
and Equus; coloured in blue, yellow, and brown respectively). By quantifying
how they differ in affine components, operators can be extracted (dϕ, dA,
dc0). This is facilitated by the transformation to the frequency domain, but
a synthesis of time domain traces (line plots on the left and right margin) is
always possible.
D Affine operators are applied to superimpose the joint angle profiles.
Superimposition operations from the carpus (reference joint) are applied to
the carpus itself, but also transferred to the elbow (focal joint).
E (inset) Fourier coefficients of carpus-superimposed elbow joint profiles are
available for multivariate analyses, such as PCA.
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3.3 Materials and Methods

Data Acquisition

The data for this study was acquired from an online video sharing platform (youtube.com).
Genera were searched in Latin, English, or various local languages and search results were
scanned for episodes of walking in approximately lateral perspective that did not show signs
of post hoc manipulation (cutting, etc.). Slow motion recordings were included if the frame
rate was available in the video description. To exclude confounding variability due to the
non-standardized recording circumstances, i.e. to get controlled reference measurements
that ensure the validity of the online data, we supplemented high quality recordings of some
genera available at our institute or local zoological gardens (34 stride cycles from 11 videos;
Bos, Equus, Lama, Tapirus). In total, 388 videos contained candidate episodes and were
annotated and cut (i.e. full stride cycles) in ELAN software (Max Planck Institute for
Psycholinguistics, Nijmegen; Brugman and Russel, 2004). Episodes were selected to have
sufficient temporal and spatial quality and correct perspective (movement perpendicular to
the view axis). Videos of juvenile individuals were rarely included, i.e. only in cases where
few recordings were available for a genus. Video cutting was performed in the free video
manipulation software “ffmpeg” (http://ffmpeg.org).
Tracking of the animal movement (Fig. 3.1A) was done in a custom-written tool (Mielke
et al., 2020) using the Open Source Computer Vision Library (“OpenCV”, https://opencv.
org) interface for the Python programming language (Python Software Foundation, https:
//www.python.org). We manually tracked joint center pixel positions over time, tracking
four joints along the forelimb which was ipsilateral to the camera. From this data, joint
angles were calculated, various quality checks applied, and it was ensured that the joint angle
profiles (i.e. joint angles over time) were cyclical (for a detailed procedure, see supplement
3.7.1). The videos with episodes that passed quality criteria were reviewed to register species,
sex, speed, duty factor, and degree of obstruction. The final material covers 87 of 117 genera
(109 of 251 species) of terrestrial ungulates. 556 stride cycles passed strict quality checks,
stemming from 217 of the videos (supplementary data table 3.7.5).

Fourier Series Decomposition (FSD) Exposes Affine Signal Components

We herein study periodic joint angle profiles, but with methods that generally apply to
periodic signals. There are two fundamental ways in which two or multiple signal
observations can differ. One type of differences are those which can be changed by a linear
operation (i.e. addition or multiplication of scalars). Those are the mean, amplitude, and
phase, which can be standardized by “y-shifting”, scaling around the mean, and
phase-shifting, respectively. These differences are termed affine differences. Other affine
operations exist (reflection, shear, planar rotation), but they do not apply to time profiles
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because they disrupt the spatiotemporal integrity of the signal. Differences that cannot be
standardized by affine transformations are subsumed as non-affine.
In the time domain (plot of the signal value over time, Fig. 3.1A), the affine differences are
intuitively visible, but hard to capture mathematically due to temporal periodicity. Hence,
Fourier Series decomposition (FSD, as defined in supplement 3.7.2) is applied to the signals
we study herein. This transformation decomposes a signal into a finite sum of its
harmonics. These harmonics are wave functions for which the product of their signal
period T (i.e. full cycle recording duration) and frequency f is an integer (e.g. T = 2.1 s,
f = 3/2.1 Hz, which is the n = 3rd harmonic). The harmonics are the Fourier coefficients,
but instead of the commonly used sine- and cosine representation (an, bn), we extract
complex exponentials (cn; both representations are related through Euler’s formula).
Hence, the coefficients herein are complex numbers which, with their real and imaginary
part, constitute the frequency domain representation of the signal (Fig. 3.1B).
Complex Fourier coefficients facilitate the extraction of information about affine
components of the signal (see supplement 3.7.2) because rotational operations are
conveniently applied with complex exponential factors. Affine differences translate to the
coordinate positions of the coefficients in the complex plane: the zero’th coefficient c0

reflects the temporal mean, whereas polar coordinates of the other coefficients (distance
from origin, rotation relative to positive real coordinate axis) map the amplitude and phase
of the signal (Fig. 3.1B). The transformation has an interesting effect on the temporal
sampling. Take, for example, a signal composed of 20 measurement samples over the cycle.
To phase shift, one could “roll” the vector of samples, e.g. appending the first sample at
the end. Intermediate phase-shifts are inaccurate because they require interpolation. In the
frequency domain, the signal becomes independent of temporal samples (cf. supplement
3.7.2), except that sampling gives an upper limit to the number of harmonics which can be
extracted. In consequence, phase information becomes continuous, phase shifting is not
restricted to the temporal raster defined by sampling, but no interpolation is required.
Conversely, series decomposition with a finite number of harmonics leads to low pass
filtering, hence FSD removes high frequency components from the original signal.
An overview of how affine changes affect the signal in time and frequency domain can be
found in the online supplements, together with an implementation of FSD (supplementary
data 3.7.5). It is important to note that all of FSD and the procedures described herein are
deterministic. Hence, none of these require a fitting- or optimization algorithm. In
previous studies, it has been quite common to determine Fourier coefficients by
approximation (e.g. Alexander and Jayes, 1980) or an iterative algorithm (regression, e.g.
Hubel and Usherwood, 2015). A deterministic implementation is more efficient and less
error prone and should thus be strictly preferred (the space that an optimizer has to
traverse is complex due to angular ambiguity; there are inherent phase relationships of
coefficients that common samplers ignore). We also recommend to reconstruct test signals
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from coefficient values for visual comparison with the original signal to confirm that the
decomposition was accurate.

Fourier Coefficient Affine Superimposition (FCAS) Reveals Signal Shape

Taking all coefficients derived from the FSD of a signal together is data that is structurally
analogous to two-dimensional landmarks. Hence, methods of geometric morphometrics can
be applied (Bookstein, 1991; Dryden and Mardia, 2016; Gower, 1975; Kendall, 1989), in
particular Procrustes superimposition, a method which standardizes affine components of
the form of an object to reveal its shape. For the complex Fourier coefficients, it is possible
to define standard values for the affine components (i.e. mean of zero, amplitude of one,
phase zero) and operators that shift or scale the signal to achieve standardization.
Similarly, it is possible to find, extract, and apply operators that superimpose two signals
by standardizing affine components (Fig. 3.1C), which we term FCAS. In contrast to
geometric morphometrics, the rotation is not uniform, but depends on the harmonic
number. Also, the translational component is restricted to c0, and all higher coefficients are
only affected by rotation and scaling. These modifications do not hinder the general
procedure. Analogous to the process of Generalized Procrustes Analysis in geometric
morphometrics, the superimposition can be applied to find improved averages of signals.
The (non-affine) residual after isolation of affine differences is, in analogy to geometric
morphometrics, the “shape” of the signal, and it is possible to define distance metrics to
quantify shape differences (though not relevant for the present study).
In case kinematic measures, such as joint angle profiles, are the signals of interest, both
affine and non-affine differences can have consequences for the kinetics. However, only
non-affine differences imply different coordination, whereas affine components are merely a
change in temporal or spatial scale of the same patterns. Coordination should be evaluated
in context of the limb. Hence, when regarding multiple joints along the limb, it is crucial to
retain the coupling of the limb joints. For example, when phase aligning carpus joint
profiles (reference joint, for reasons to be discussed), the same time shift should be applied
to other joints of the limb (focal joints, herein the elbow, Fig. 3.1D). Similarly, a
normalization of the mean and amplitude of the reference joint can be applied to focal
joints, which then express relative mean and amplitude. When applying operators from a
carpus joint superimposition to the elbow joint profiles, we term this “carpal
superimposition of the elbow”, and retrieve “relative elbow profiles”. This transfer shifts
the affine variance from the carpus to the elbow joint. For example, if in species A the
carpus phase is lagging +0.05 stride cycles relative to species B, but the elbow phase
difference of the two species is −0.1 (A before B), then the phase of the relative elbow
profile of species A will be −0.05 with respect to that of B. Hence, relative profiles capture
intralimb coordination. They are also represented in the frequency domain, but temporal
profiles can be reconstructed at any point for visualization (margins of Fig. 3.1C and D).
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The Fourier coefficients of relative elbow profiles are subjected to further analysis. Because
we are interested in dynamic temporal changes relative to the mean joint angles, we isolate
differences in c0 by subtracting it from the profiles, despite acknowledging that posture or
average joint angle might affect the dynamics.

Multivariate Analysis

A variety of multivariate methods exist that could be explored with relative elbow profile
Fourier coefficients. Because our study is introducing a previously unexplored method
(FCAS), we restricted post processing to plain Principal Component Analysis (PCA, Fig.
3.1E). PCA was applied to the real and imaginary parts of relative elbow FSD coefficients.
By an eigenanalysis of the covariance matrix of the coefficient table, PCA finds
orthonormal axes which orient the data in a way that shows the major variation (cf.
MacLeod, 2007). This was manually implemented in Python, using singular value
decomposition (numpy.cov, scipy.linalg.eig). We apply it to genus averages (Mitteroecker
and Bookstein, 2011) of FSD coefficients of relative elbow profile (i.e. after FCAS with
regard to carpus).
The component axes are not per se biologically meaningful, but can be associated with
covariates. Covariate choice is arbitrary, but depends on the question of interest. In our
case, four classes of covariates which potentially have a relevant connection to intralimb
coordination were collected. In addition to that, we quantified the affine composition of the
relative profiles. The covariate classes are morphology, spatiotemporal gait parameters,
ecology, and phylogeny.
First, characteristics of general and musculoskeletal morphology determine locomotor
function. Species- and sex-specific average measures of body length, shoulder height, and
body mass were taken from online data repositories (Animal Diversity Web, 2019;
Huffman, 2019). For measures on the video, segment lengths were taken from pixel
distances of the tracked points, but normalized as indicated below to remove differences in
video resolution. To evaluate lever relations at the critical joints, zeugopodial length
(elbow-wrist, normalized to withers-croup distance) and the meta- to zeugopodial length
ratio were included. Under ideal circumstances, segments should measure equal length in
every frame. However, there is uncertainty in the landmark tracking procedure. In
addition, in cases where the fetlock joint was covered by vegetation during ground contact
(but not during the swing phase), tracking points were shifted proximally along the limb
segment to still be able to capture the (carpus) joint angle over time. The framewise 90%
quantile value turned out to be robust to episodes when joints were hidden during stance,
while being sufficiently close to the true mean segment length (i.e. robust to inadvertent
tracking outliers).
Second, intralimb coordination potentially covaries with spatiotemporal gait parameters
(kinematics). From the video data, duty factor (ratio of stance- and stride time) and
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approximate speed (body lengths per second, from back line to reference landmark
movement) could be measured. The exact Froude number was unavailable, since the
spatial scale of the videos was unknown. Furthermore, a proxy for clearance (cf. Austin
et al., 1999) was calculated, i.e. how much the hoof is lifted above the ground during a
limb swing. This required the effective limb extension (ξ), defined as follows, from segment
(i) lengths (li) and their proximal joint angles (αi, Fig. 3.1):

ξ =
∑

i

li · cos αi

We define clearance as the quotient of the 5% and 95% quantiles of ξ over time (which
quantifies limb flexion ratio), subtracted from one.

clearance := 1 − ξ5%

ξ95%

Again, quantile values were used because the extremal values would be at the far tail of the
Gaussian noise associated with point tracking.
The third group of covariates are ecological parameters. In particular, we were interested
in the species habitat and the momentary environment at video recording. We followed the
method of Stankowich and Caro (2009) to quantify habitat openness (Caro et al., 2004;
Stankowich and Caro, 2009). Web resources indicated multiple habitat preferences for
most species, in which case an uninformed average of the openness values was taken. The
momentary openness, or its inverse (“degree of obstruction”), was determined by noting
how far substrate clutter reached up the supporting limbs of the animal in each video.
Values ranged from 0 (hoof visible) to 0.9 (limb visible to just below the carpus joint, see
supplementary data table 3.7.5).
The fourth covariate was phylogeny (see supplement 3.7.3 and Fig. 3.4; Adams, 2014;
Zurano et al., 2019).
Except for phylogeny (which is directly estimated), associations of covariate genus averages
and principal component scores of genus means (Mitteroecker and Bookstein, 2011) were
assessed by calculating Pearson correlation (Python: scipy.stats.pearsonr). Within-group
variability was high and observation count heterogeneous across groups, and we applied
many correlation tests. Hence, we only deemed associations with p < 10−2 relevant.
It can be instructive to quantify how much each of the affine differences contributes to the
overall relative elbow trace difference. Therefore, the affine operations that would align the
genera averages with their global average were computed. We report the correlation of
these affine differences to the PC axes, as well as the residual shape difference that would
remain after their isolation.
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3.4 Results

3.4.1 Superimposition of Joint Angle Profiles Improves Profile
Averaging

To demonstrate the effect of FCAS, we applied the method to our most extensively sampled
genera (Equus, Lama, and Giraffa; Fig. 3.2). Raw data (“video aligned”) was manually
aligned for the video frame of limb touch down for comparison with the computational
alignment. Although this was done at maximum possible accuracy (±1 frame), averages
revealed no clear similarities or differences between the three genera. Standard deviation
ranges were comparatively high and averages could potentially suffer from incorrect phase
relations (analogous to destructive interference) or artificial amplitude weight (because at a
fixed time point, particularly high absolute values might attract the average). FCAS was
subsequently performed with regard to carpus joint profiles (Fig. 3.2, “superimposed”, “[c]”
for carpus joint). Afterwards, carpus profiles were practically identical for the three example
genera. Elbow joint profiles (“[e]” in Fig. 3.2) were kept in synchronization and amplitude
relation with the carpus profiles and were therefore processed with the same operators,
resulting in relative profiles (see methods). Note that no additional superimposition or
alignment was performed, except for centering the profiles around their mean. Relative
elbow profiles revealed a precise similarity of lamas and giraffes with regard to coordination
of the two joints, which was not obvious from the “video aligned” traces. In contrast, equid
intralimb coordination indicated a higher amplitude and a slight phase delay at the elbow
(triangle marker, Fig. 3.2), relative to carpus joint. Thus, equids turn out to be more distinct
from the other groups than was visible prior to FCAS.
This example indicates the increased accuracy of joint profile averaging after FCAS, even in
the presence of noise.

3.4.2 Patterns of Variation of Ungulate Intralimb Coordination

We aim to extract the most prevalent patterns of variation in ungulate intralimb
coordination. Therefore, we used the same superimposition procedure as above to generate
genus averages for the full data set. Average joint angle profiles of all joints and genera (cf.
Fig. 3.4 for overview of phylogeny) were then superimposed with reference to the global
mean carpus (carpal superimposition). Thereafter, a PCA was performed on the Fourier
coefficients of genus average relative elbow profiles (Fig. 3.3). The first component axis
captured 37% of the variance, and the next three principal components further 49% (PC2:
27%, PC3: 12%, PC4: 10%). Together, they span the ungulate elbow “coordination space”.
In that space, bovids and cervids, which contributed the majority of genera, dominate the
central region. On PC1, we observed a spread of bovids from Bovinae to Caprinae. For
cervids, who spanned almost the same range on that axis, there was no clear grouping.
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Figure 3.2: Superimposition can improve joint angle profile averaging. Mean
joint angle profiles of different forelimb joints ([e]: elbow, [c]: carpus joint)
for the genera Equus (brown, ▽), Lama (blue, □), and Giraffa (yellow, ◦).
These examples were chosen for their high sample size (more examples in Fig.
3.5). See methods and supplementary tutorial 3.7.5 for nomenclature and
definition of FCAS. Upper row: input data (“video aligned”). Lower row:
after carpal superimposition using FCAS. A Forelimb joint angle profiles
(α) over time (t, stride cycle period T ), centered around their temporal
averages (gray horizontal axes) to emphasize temporal differences. Thick
lines are genus averages for elbow (solid line) and carpus (dashed line) joint
angles. Thin dotted lines indicate ±standard deviation range of individual
observations. Scale bar 22.5◦, time axis T . B Mean (bars) and standard
deviation (whiskers) of the joint angle temporal averages (c0) per genus.
This indicates the actual y-offset that was removed for visualization in (A)
and (C). Joint angle values are to scale with (A). C The same joint angle
profiles as in (A), but converted to the frequency domain via FSD. Whiskers
indicate standard deviation.

70



Bovidae

Camelidae

Cervidae

Giraffoidea

Hippopotamidae

Perissodactyla

Suina

Tragulidae

−0.04 −0.02 0.00 0.02 0.04 0.06

PC1 (37.4%)

−0.04

−0.02

0.00

0.02

0.04

P
C

2
(2

6
.9

%
)

Alces

Axis

Camelus

Capreolus

Dama

Diceros

Equus

Giraffa

Lama

RhinocerosTaurotragus

1○ 2○

3○

4○

Figure 3.3: Bivariate plot of the Principal Component Analysis of elbow-
carpus coordination visualizes a slice of the ungulate “coordination
space”. The PCA is based on the genus average Fourier coefficients of
relative elbow profiles after carpal superimposition. Gray grid lines on the
biplot indicate the (0.1, 0.9) quantiles of all observations; reconstructions
were done on their intersections. Outset line plots on the margins represent
these reconstructed angular profiles (black) at the quantile values for each
component axis, relative to the reconstructed mean (gray). Their labels
(circled numbers no. 1-4) are for reference in the text. Annotations on the
plot mark the examples used in Figures 3.2 and 3.5. See Fig. 3.6 for further
components and complete labeling of taxa.
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Tragulids were found on higher values of PC1. A useful aspect of PCA is the possibility to
reconstruct hypothetical joint angle profiles at arbitrary points of coordination space (black
line plots at the lower figure margin, Fig. 3.3, no. 1-4). From these, it can be seen that the
major difference is how much the relative joint angle changes during ground contact.
Ground contact (stance phase) begins with limb touch down (left end of the line plot),
continues for approximately the first half of the line, and is followed by a shorter swing
phase. At low values of PC1, the relative elbow profiles (no. 1) are “saw-tooth-like” curves
with steeply sloped, increasing joint angles during stance phase. These profiles are
characterized by two periods of relatively constant slope, one rising (elbow extension,
during stance) and one falling (flexion, during swing). The slope of these curves changes in
between these periods, which approximately coincides with hoof touch down and lift off.
Extension of the elbow joint happens during ground contact, hence we call this type of
profile “grounded elbow extension”. In contrast to that, elbow joint angles that cluster on
high PC1 values (no. 2) only change during the swing phase (brief period of consecutive
down- and upward slope), whereas they are close to zero during stance, indicating a
straightened joint. Elbow extension is almost absent during stance (approximately
horizontal curve), and after swing-related flexion, an extension follows immediately while
still in the swing phase (“swinging extension” type profile).
PC2 separated a cluster of Rhinocerotidae and Suina (upper left) from the rest. Their
relative elbow swings (represented by no. 4) were of lower relative amplitude and slightly
phase delayed than those of groups on the opposite end of PC2 (reconstruction no. 3).
Standard deviations within groups were high (not shown; approx. ±0.02 for Giraffa on
PC1) and sample size was low for many groups. However, overall group and observation
counts were sufficient to describe population effects. In addition to the shape
reconstruction, the direct comparison of geometrically or phylogenetically related genera
along the major axes could confirm the mentioned trends (i.e. stance phase slope, relative
peak timing and amplitude; Fig. 3.5). This further supported the observations from PCA
reconstruction.
In summary, the PCA, profile reconstruction, and taxa comparison allow the identification
and visualization of major differences in intralimb coordination among the studied groups.

3.4.3 Covariates of Intralimb Coordination

To evaluate possible explanations for the variation along principal component axes, we
computed Pearson correlation of the components with various morphological, kinematic,
and ecological factors, considering effects with p < 0.01 to be relevant (Tab. 3.1). We also
split the joint profile shape after superimposition into (non-)affine components, and
quantified which of these affine changes were associated with the PCs or whether the shape
(“residual”, i.e. coordination sensu stricto) was affected (Tab. 3.1, “[A]” category). These
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values quantitatively characterized the profile reconstructions from the PCA (Fig. 3.3) and
were consistent with the findings reported above.
Of the first four component axes, PC1 showed the strongest correlation with clearance
(r = 0.49, p < 10−5) and degree of obstruction (r = 0.33, p < 10−2). Comparatively
smaller taxa (i.e. lower body mass) tended to appear on higher PC1 values
(r = −0.34, p < 10−2). PC2 was associated with limb morphology, particularly lever
relations (ratio of meta- to zeugopodial length, r = −0.51, p < 10−6; normalized
elbow-wrist segment length, r = −0.46, p < 10−4), and with duty factor
(r = 0.4, p < 10−3). PC3 scales with habitat and multiple aspects of size, whereas PC4
captured non-affine shape differences (visible in that it correlated to “residual”).
Hence, by the use of simple correlation, it is possible to associate the variational
components identified by PCA with meaningful extrinsic (e.g. ecology) and intrinsic (e.g.
morphology) covariates.

Table 3.1: Correlations of [M]orphological, [K]inematic, [E]cological and
[A]ffine covariates (see methods) with the major axes of the PCA (Figs.
3.3, 3.6). Note that affine covariates are components of the joint angle profiles.

PC1 PC2 PC3 PC4
covariate rxy p < · rxy p < · rxy p < · rxy p < ·

[M] body length -0.24 10−1 -0.17 100 -0.31 10−2 -0.11 100

[M] shoulder height -0.19 10−1 -0.22 10−1 -0.33 10−2 -0.11 100

[M] log(body mass) -0.34 10−2 -0.19 10−1 -0.28 10−2 -0.11 100

[M] elbow-wrist 0.05 100 -0.46 10−4 -0.24 10−1 0.05 100

[M] meta-/zeugopodial 0.08 100 -0.51 10−6 0.01 100 0.16 100

[K] approx. speed 0.06 100 0.11 100 0.12 100 0.15 100

[K] duty factor 0.16 100 0.40 10−3 0.19 10−1 -0.16 100

[K] clearance 0.49 10−5 -0.02 100 0.14 100 -0.27 10−1

[E] habitat -0.09 100 -0.15 100 -0.29 10−2 -0.06 100

[E] d.o.obstruction 0.33 10−2 -0.20 10−1 0.10 100 -0.06 100

[A] amplitude 0.12 100 0.47 10−5 -0.70 10−12 -0.08 100

[A] phase 0.47 10−5 -0.51 10−6 -0.36 10−3 0.13 100

[A] residual 0.67 10−11 0.17 100 0.15 100 0.36 10−3

rxy: Pearson correlation coefficient, “p < ·”: p-value, order of magnitude. Bold numbers are
below significance threshold (p < 0.01).
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3.5 Discussion

In this study, we demonstrated how an application of Fourier theory can be used to extract
non-affine differences in joint angle profiles, thereby enabling their mathematically accurate
superimposition (FCAS). The new method has to be classified with relation to existing
tools. As an example of FCAS, we analyze intralimb coordination on a large scale,
involving the majority of terrestrial ungulate genera, which has not been possible
previously. The kinematic data from the proximal forelimb of ungulates reveals systematic
patterns of variation in intralimb coordination. These can be linked to extrinsic and
intrinsic covariates, thereby proposing hypotheses for specific tests of dynamic similarity at
the joint level.

3.5.1 Quantifying Intralimb Coordination with FCAS

Conventional kinematic analysis of intralimb coordination involves visual inspection of
joint angle plots in space and time (Day and Jayne, 2007; Fischer et al., 2002; Irschick and
Jayne, 1999; Nyakatura et al., 2010; Polk, 2002; Schmidt, 2008; Stoessel and Fischer,
2012). Joint angle values for statistical evaluation are extracted at fixed “timemarks” in
the stride cycle. Taken together, these sampled joint angles allow for coarse assessment of
intralimb coordination, but they potentially sacrifice information. Timemarks are reference
points of putative biological meaning, and it is possible to use them for temporal alignment
(e.g. Hsiao-Wecksler et al., 2010). However, the number and choice of timemarks involves
some critical design decisions. When for example superimposing only based on limb touch
down, the alignment is insensitive to differences in hoof placement trajectories before and
after that time point. The hoof can reach the ground at a flat impact angle with smooth
horizontal deceleration. But the impact could instead be vertical, preceded by a more or
less brief period where the hoof hovers above the substrate before being placed. The end of
hoof forward movement might provide a more homologous timemark, but it might still be
that the two cases differ fundamentally in the underlying dynamics at that particular
episode of the stride cycle. FCAS represents a mathematically optimal superimposition
that equally incorporates all the information contained in the profiles. The advantage of
this strategy is its independence of selected points, and instead the sensitivity to the joint
angle trajectory over the whole stride cycle. Working in the frequency domain also has the
advantage of providing a manageable feature vector for multivariate analysis or
classification via machine learning. Fourier Series requires periodic signals to work upon.
As we argued initially, this requirement is often met in the study of locomotion, in which
case a transformation to the frequency domain opens up new ways of analyzing the data.
The direct application of Fourier Series (Bracewell, 2000; Fourier, 1822; Gray and
Goodman, 1995) is not novel in the context of kinematics (e.g. Bernstein, 1935; Pike and
Alexander, 2002; Webb and Sparrow, 2007; Wheat and Glazier, 2006). Note that Fourier

74



Series is related to Fourier Transform (cf. Bracewell, 2000; Robertson et al., 2018): it is
also a transformation, but considers only the reduced frequency domain constituted by
harmonic frequencies. Because the interrelation of segments is of interest, Fourier methods
have previously been applied to cyclogram curves. Cyclograms, or phase portraits, are a
direct, two- or three-dimensional visualization of segmental coupling (Bernstein, 1934;
D’Août et al., 2002; Goswami, 1998). Several quantitative descriptors of cyclograms exists.
Elliptic Fourier Descriptors (Kuhl and Giardina, 1982; Wheat and Glazier, 2006) are an
application of Fourier Series to two-dimensional phase portraits. This technique is
abundant in the study of intralimb coordination (e.g. Hsiao-Wecksler et al., 2010; Polk
et al., 2008; Rosengren et al., 2009), but influenced by variance in reference point
determination. Although affine-invariant outline descriptors exist (e.g. Arbter et al., 1990),
we are not aware of an attempt to apply those to kinematic data. Planar covariation
(Borghese et al., 1996; Hallemans and Aerts, 2009; Ogihara et al., 2014) originated in the
pursuit of unifying, general features of gaits, and finds high covariation values by design
(choice of segment angles, common temporal swing/stance structure for these, use of PCA;
Hicheur et al., 2006; Ivanenko et al., 2008). In contrast, we seek a method to highlight
differences across taxa. Another method that has found application in the analysis of
human locomotion is continuous relative phase (CRP, cf. Lamb and Stöckl, 2014). This
method calculates the difference in instantaneous phases of two signals (using phase
portrait plots or the Hilbert transform). CRP requires removal of differences in mean joint
angle and amplitude (i.e. normalization), whereas our method retains the other affine
components. By intentionally phase-shifting random test signals (not shown), we found
that both the relative phase from CRP (averaged over a stride cycle) and the FCAS phase
difference as introduced herein (supplement 3.7.2, Eqn. 3.6) accurately recover the shift.
However, the methods do not yield identical results when other aspects of the signal are
manipulated (which in general complicates the definition of a signal phase). It is thus
possible that Hilbert transform and CRP offer alternatives for phase determination.
Because ungulate joint angle profiles are sufficiently homogeneous, we expect general
agreement between the methods for the test case presented herein.
All the mentioned related methods have originally been applied to phase plots and
cyclograms. Our approach initially goes one step back, to the transformation of individual
time profiles of joint angles. FSD preserves their shape information, and no a priori
definition of temporal reference points is required (we herein performed the conventional
limb touch down alignment, prior to FCAS, only for comparison). To generate measures of
coordination, one has to combine variance from multiple mobile elements (joints or
segments) by aligning with regard to one of them while keeping the intralimb coupling
intact. We exploit the empirically observed uniformity of carpus joint profiles, and use this
joint as reference, which is motivated by mathematical convenience. Although
superimposition based on the elbow joint might be biologically more meaningful (for
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example with regard to a proximo-distal sequence of neural control), it would be a less
suitable reference because profiles might be topologically heterogeneous. Transferring the
affine components from references to adjacent, focal joints results in relative joint angle
profiles, which are optimally synchronized (phase) and depict the relative amplitude (scale)
and differential mean joint angle. If mean joint angles are not of interest, profiles can
optionally be centered. We argue that this way of superimposition results in measures that
overcome the theoretical limitations in transferability of angular parameters (Gatesy and
Pollard, 2011): (i) posture can be removed by centering relative profiles; (ii) adjacent joint
angles are combined; (iii) morphology, i.e. segment lengths, can be correlated ex post as
shown, or could even be multiplied in (effective segment length l · cos (α); not explored).
FCAS crucially depends on reference and focal joints, but is not limited in the choice (or
number) of these. Also, it is not limited to a single limb or to phylogenetic comparisons
(for example, pseudo-cyclic episodes during gait transition could be compared) and it could
be generalized to three-dimensional measurements. FCAS results in a mathematically
optimal alignment, and is robust against low video frame rate due to the filtering
properties of the Fourier Series with a finite number of coefficients. The capacity of a
one-dimensional FSD to standardize affine components in the frequency domain has not
been emphasized in previous work. The delay theorem, from which we derive a formula
that defines a zero phase (see supplement 3.7.2, Eqn. 3.6), is of particular interest. FCAS
is not limited to kinematics, and could potentially be applied to a broad variety of other
periodic measurements, such as ground reaction force profiles.

3.5.2 Dynamic Dissimilarities in Terrestrial Ungulate Intralimb
Coordination

The purpose of the PCA step in the present analysis is to orient the multivariate data so
that maximum variation is revealed. Variation in this case means dissimilarity. It is herein
applied to relative elbow profiles. These combine information from carpus and elbow, but
the carpus only contributes affine changes (Tab. 3.1, category [A], “amplitude” and
“phase”). Non-affine variation (Tab. 3.1, category [A], “residual”) will stem exclusively
from the elbow. Hence, relative elbow profiles in our case show elbow profiles that are
centered, normalized and time-aligned relative to the carpus profiles. The change of one
joint angle relative to another is the most basic measure of intralimb coordination. From
these measures, PCA extracts the “coordination space” of the relative elbow joint profiles
(Fig. 3.3). The method also allows to reconstruct hypothetical profiles at arbitrary points
in that space. Overall, the group differences might seem subtle at visual inspection,
attributing to the fact that “Bauplan” and movement mode are homogeneous in the data
set. However, even subtle changes in the coordination of the proximal limb have a
considerable lever towards the ground contact point. Also, the reconstructed profiles are
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derived quantitatively, incorporating a lot of information. Hence, they are a sharp image of
the most pronounced statistical differences that remain after the standardization of affine
parts of background variance. Likewise, dynamic similarity (as usually applied to
spatiotemporal gait parameters) refers to similarity in non-affine dynamic measures. This
conceptual link indicates that FCAS enables the direct comparison of dynamic differences
in the coordination of large data sets of animals. For the present measurements of walking
ungulates, PCA of FSD coefficients of relative elbow joint angle profiles revealed variation
associated with several factors.

The most prominent effect revealed by the PCA (PC1, 37% of variance) was related to
clearance. Clearance quantifies how much the animal lifts the foot from the ground during
swing phase (Austin et al., 1999; MacLellan and McFadyen, 2010; Perrot et al., 2011). The
component axis was also correlated with animal body mass and momentary degree of
obstruction (i.e. how free the path of the animal is), but independent of morphology.
Classical gait characteristics (duty factor, symmetry, i.e. inter-limb coordination)
doubtlessly classify all included strides as “walk” (Hildebrand, 1989), but do not consider
intralimb coordination or clearance. Because all observations are “walk”, and because no
change in duty factor was detected (Tab. 3.1), the timing of stride- and stance phase is
uniform along PC1. However, the temporal pattern of the net joint moments at a limb
joint (i.e. the net result of the moments generated by muscles crossing the joint) will likely
differ among the profile types as the movements patterns throughout the cycle differ. For
example, the ungulate elbow in the swinging extension type of relative joint profiles (Fig.
3.3, no. 2) is commonly held stiff during the period of ground contact (constant joint angle
value), but quickly flexed and extended during forwards swing. It thereby resembles the
common pattern of the ungulate carpus joint (see Fig. 3.2). In contrast, the elbow joint
oscillation of grounded extension type profiles is distributed across the whole stride cycle.
This suggests either that the elbow can be a pivot point of limb movement, in which case
more proximal elements could be fixed passively, or that the elbow contributes to limb
compliance during stance to minimize vertical oscillation of the center of mass (cf. Geyer
et al., 2006). Animals commonly use the grounded extension profiles on obstruction-free
substrate, whereas the swinging extension could be interpreted as an alternative mode of
walking that animals use on cluttered terrain.
The elbow profile modes have different implications for the energetic demands of the
locomotor behaviour. Energetics are affected by the substrate that an animal frequently
encounters. Grounded elbow extension implies non-zero angular velocity at the elbow
during all of the stride cycle. If, as discussed above, more proximal elements are mostly
fixed, this would lead to an effective shortening of the part of the limb which is mobile.
This is consistent with evidence of stabilizing modification of the shoulder of equids
(Hermanson and MacFadden, 1992). Conversely, muscle arrangement in tapirs, which
usually exert higher clearance than horses, shows adjustments that favour shoulder motion
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(MacLaren and Nauwelaerts, 2016). The effective limb shortening, together with the
passive pendulum dynamics of the distal elements on unobstructed ground, would reduce
energy expenditure. In contrast, the brief flexion-extension period in swinging flexion
appears to require more energy per stride (quicker angular acceleration in opposing
directions, longer effective limb, higher clearance). At the same time, because collision with
substrate features is avoided, this behaviour reduces collisional energy loss (i.e. loss from
collision with superficial vegetation or rubble, which has to be distinguished from the
collisional models in Ruina et al., 2005). Negotiation of a substrate with inflexible
obstruction might even be impossible without lifting the feet (which is not the general case
we observed). Hence, both profile types can be energetically favourable, depending on the
circumstances.
This suggests questions of whether and how animals adjust their coordination. At least
some species seem to be able to use elbow profiles with both the grounded- and swinging
extension. This would mean that animals retain full capacity to immediately alter their
locomotor mode according to momentary features of the substrate (hypothesis h0), though
we cannot resolve whether modes are used bimodally or whether intermediate patterns are
frequent. In contradiction with h0, we observe distinct groups (e.g. Alces, some Tapirus
species) that seem to walk with exaggerated clearance even on free, solid and featureless
substrate. The apparent continuum along PC1 might therefore be an artifact of averaging
strides across genera. This would imply a certain degree of plasticity, i.e. reduced
behavioural flexibility, in consequence of adaptation to their preferred habitat (h1). If h1
turns out to be more plausible, it could be tested whether morphology co-evolved to reduce
hoof-lift energy consumption in genera which show a bias towards compliant limb
movement. If experiments confirm plasticity in locomotor behaviour, it might act at
different time scales (ontogenetic: h1a, or evolutionary: h1b). Our crude averaging
quantification of habitat openness has limited decisive value in this case, also because the
original classification focuses on canopy level characteristics (Stankowich and Caro, 2009).
Uncontrolled variation and sample size within the present data set prohibits an in-depth
analysis. Previous studies found contradicting evidence on whether and how locomotion is
influenced by habitat (Arnold, 1983; Druelle et al., 2019; Fuller et al., 2011; Schulte et al.,
2004; Stoessel and Fischer, 2012). These studies did not superimpose profiles for averaging,
except for the conventional alignment to limb touch down. Measurements under more
controlled experimental circumstances are required to settle the case between “walking
mode flexibility” or “(adaptive) plasticity”.

The second-largest share of variation in the present data set (PC2, 27% of variance, Fig.
3.3) shows strong association with morphological indicators. Both the length of the
zeugopodial (elbow-wrist, normalized for shoulder-pelvic length; Tab. 3.1) and the lever
relations at the carpus (metapodial/zeugopodial length ratio) decrease with increasing PC2
values. In accordance with this, the component spans a morphological range from marsh
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deer (Blastocerus) and pronghorn (Antilocapra) to peccaries (Tayassuidae) and rhinos
(Rhinocerotidae; see also Fig. 3.6). The geometric dissimilarity along the axis is a case of
dynamic dissimilarity, but in addition to that our analysis provides insight on how the
elbow-carpus interaction is affected. Genera at low PC2 values have long limbs and
comparatively long distal segments. This correlates with a higher relative amplitude at the
elbow and conversely less angular movement at the carpus, as well as a comparatively
shorter stance phase (without notable overall increase in clearance). In contrast, groups at
high PC2 are stout and have comparatively shorter metacarpals, which correlates with
slightly earlier and quicker swing. This lays out a path for future research to evaluate how
the angular excursions and the morphological disparity together can be captured by
different spring-pendulum models, how they translate to ground reaction force, and what
effect this would have on joint moments.
The analysis of correlation of FCAS-derived principal axes to various other locomotor
quantities can elucidate some gross effects which appear in the data set. Other effects
might be expected, yet we did not observe them. There could be phylogenetic signal in the
data, which we found to be less relevant (supplement 3.7.3). A relation of speed and other
locomotor parameters is often among the most prominent effects in multivariate analyses of
locomotion (Druelle et al., 2021; Fukuchi et al., 2019; Kirtley et al., 1985; Schwartz et al.,
2008), and might be expected in the present analysis. However, we did not find a
noticeable speed effect (Tab. 3.1). This can be explained by the character of the data.
Firstly, speed had do be normalized due to data limitations (no absolute spatial scale
available), hence the measure available is relative speed. In consequence, we compare
dynamically similar observations. Secondly, we look at relative elbow profiles at voluntarily
walking animals. The elbow joint angle might not be the driver of speed change, and
maybe more generally intralimb coordination might be unaffected by speed (as opposed to
range of motion). FCAS is flexible and allows for dedicated tests of any such effects.
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3.6 Conclusion

Locomotion is costly, responsible for at least 20% (but usually much more) of the energy
expenditure of animals (Girard, 2001; Rezende et al., 2009). It has long been appreciated that
this behavioural class and associated traits must be optimized with regard to the capacities
and condition of the animal (Hoyt and Taylor, 1981; Reilly et al., 2007). One reason that
optimization is so efficient in locomotion is its high degree of recurrence, which amplifies
the effect of ontogenetic and evolutionary adjustments. Many of the processes involved in
locomotion are periodic, and Fourier methods become applicable. This opens up a variety of
analysis paths and can even link kinematics and geometric morphometrics, as we explored in
this study. Our findings on terrestrial ungulates re-iterate the requirement to consider habitat
structure and substrate as confounding factors (cf. Johnson et al., 2002; Lejeune et al., 1998;
Shepard et al., 2013), although it remains to be explored to what degree animals adapt
or react to it. The data presented herein confirms that habitat features and morphology
are the dominant determinants of elbow-carpus coordination in terrestrial ungulates. The
moderate magnitude of this variation emphasizes how strongly conserved and optimized
ungulate coordination actually is at the joints we investigated, despite the enormous variety
of habitats and substrates that these animals encounter. Our findings from a broad overview
of the clade form the basis for hypotheses that can stimulate future research. It might seem
a trivial finding that animals lift their feet more when the path is obstructed. However, to
our knowledge, FCAS is the first method that can confirm this on a large scale because it
yields quantitative measures of dynamic similarity on the level of intralimb coordination.
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3.7 Supplements

3.7.1 Extraction of Joint Angle Profiles

For quality check, the tracked landmark points of the first and last frame were
superimposed on the frame images, which were blended into each other. Stride cycles that
were not approximately cyclical (i.e. relative joint positions at start and end differed) were
discarded. Joint angle profiles were then calculated, defined as the joint angle difference
from a fully extended limb, with negative joint angles occurring when the joint is flexed
towards the direction of movement. The angular profiles were inspected ex post for
tracking irregularities, and in such cases corrected or discarded. An example video that
shows how joint angles are derived from a video can be found in the supporting material
(supplementary movie 3.7.5).
Segments were initially cut to be a bit longer than the stride cycle. A start-end-matching
procedure then found the part of the episode that was as close as possible to precise
periodicity. It was visually confirmed that profiles were approximately cyclic afterwards,
but to enable precise Fourier analysis, the residual difference of the last and first frame was
equally distributed over the whole stride for subtraction.
Two additional points on the back line (withers, croup) and a reference on the ground close
to the forelimbs were tracked for speed calculation. To minimize workload, this was only
done for ten frames of the video, equally spaced through the stride.
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3.7.2 Fourier Series Decomposition

Methods based on the Fourier theorem are diverse (Bracewell, 2000; Fourier, 1822; Gray and
Goodman, 1995). We herein use the exponential notation of the Fourier Series. Because
joint angles α = f(t) are always real (recorded with finite sampling rate), we can simplify
the Fourier Series to N positive coefficients cn by combining complex conjugate coefficients
ℜ(cn + c−n) = ℜ(cn + cn) = 2ℜ(cn):

f(t) =
N∑

n=−N

c∗
n · e2πin t

T =
N∑

n=0
(2 · cn) · e2πin t

T (3.1)

The coefficients (n > 0) therein are defined as follows:

cn = 1
T

T∑
t=0

e−2πin t
T · f(t) ∀n > 0 (3.2)

The zero’th coefficient is the temporal average of the joint angle and has an imaginary
component which is always equal to zero, which makes it a real number:

c0 = 1
T

T∑
t=0

e0f(t) = ⟨f(t)⟩ (3.3)

The number of Fourier coefficients N is capped by finite temporal sampling
(Nyquist–Shannon sampling theorem, Nyquist, 1928; Shannon, 1949); higher frequency
noise is not captured. The quickest stride in the present data set (≈ 0.6 s at 25 fps, 14
samples, by a tragulid) thus limits the number of coefficients extracted for all our data to
7, which we also consider sufficient for the rest of the data (given that we observe little
remaining amplitude for higher coefficients). Fourier coefficients cn are complex numbers;
the real part ℜ(cn) would correspond to a cosine wave component, and the imaginary part
ℑ(cn) to a sine.

The zero’th coefficient (3.3) is also the mean of the signal. For a standardized signal, its
value is zero. Non-zero values indicate that the whole signal is shifted in y-direction. The
signal oscillates around that mean. The strength of the excursion is quantified as the
amplitude; the temporal delay compared to standard cosine/sine is the signal phase.
Every Fourier coefficient has its own amplitude and phase component.

An =
√

ℜ(cn)2 + ℑ(cn)2

ϕn = 1
2π

· arctan2 (−ℑ(cn), ℜ(cn))

An ≥ 0, 0 ≤ ϕn < 1 ∀n

The total amplitude of the signal is the sum of the amplitudes of coefficients, which is one
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for standardized signals.
A =

∑
n>0

An (3.4)

The phase is divided by 2π and “wrapped” to the positive interval, because signals in the
present case all start at t = 0, and can be phase-shifted between zero and one period.
According to the delay theorem (also shift theorem, Bracewell, 2000, p. 111), a signal in the
frequency domain can be shifted in time by multiplying it with an complex exponential that
contains the shift value ∆t, the coefficient number n, and the period T .

cn (f(t + ∆t)) = cn (f(t)) · e2πin ∆t
T (3.5)

Geometrically, this means that a phase shift corresponds to a rotation of the coefficients
around the origin of frequency space, whereby the angular “velocity” of each coefficient is
its coefficient number. Assume that a signal fA which has the main phase ΦA = 0 has all
coefficient phases approximately at zero. Such signals are also maximally symmetric around
t = 0. Interestingly, it follows from the delay theorem that a phase shifted signal fB has
phases that are at a slope of ∆Φ = ΦB. We therefore determine the main phase of the signal
relative to Φ = 0 as the amplitude-weighted average of the coefficient phase differences.

Φ =
∑N

n>0(ϕn − ϕn−1) · An

n∑
n>0

An

n

(3.6)

A signal can be de-phased (i.e. time-shifted so that Φ = 0) with equation (3.5) by using
∆t = −Φ T

2π
.

Note that, in the time domain, a time shift of the signal can only be achieved by rolling the
sampled values around the sample time points, hence maximal resolution for a phase shift
is the sampling rate (interpolation is possible, but inaccurate). This limitation is absent in
the frequency domain: equation (3.6) is independent of sampling. In fact, the entire
frequency domain representation of a signal is indifferent to sampling time points, except
that the order N is limited by the aforementioned sampling theorem.
To summarize, we are able to calculate three affine components of a signal in the frequency
domain: the mean c0, eqn. (3.3), the amplitude A, eqn. (3.4) and the phase Φ, eqn. (3.6).

For computation, it is critical that the FSD is a transformation, i.e. deterministic.
Coefficients should not be extracted by an optimization procedure, because it is not
generally ensured that the optimization finds the global best fit (Basu et al., 2019; Hubel
and Usherwood, 2015). Problems become apparent when reconstructing and plotting the
coefficients and comparing the reconstruction to the original signal, which should always be
part of the quality check procedure.
As an example implementation of the presented procedure, we supplement an extensively
commented tutorial (supplementary data 3.7.5).
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3.7.3 Quantification of Phylogenetic Signal

Phylogenetic dependence within our data might affect the PCA results. The coordination
of recently separated genera could be more similar than that of distant relatives. Because
our data was multivariate and interdependent (shape), Adams’ K is applied to quantify
phylogenetic signal (Adams, 2014).
For the data at hand, the test for a phylogenetic signal in the PCA result was significant
(Adams’ K = 0.16, p < 0.001 from randomization). This indicates significantly higher K

than for PC values that are randomized on the (pruned) ungulate phylogenetic tree.
However, the value for K itself is much lower than that expected for random evolution.
This indicates that the lineages are closer than would be expected given their separation
times (non-random evolution), but that phylogenetic clusters are still distinguishable
(which is consistent with Fig. 3.3). Because speciation and lineage diagnostics are
interwoven with habitat, morphology, and locomotion, this is an expected result for broad
phylogenies with sufficient time for convergences. Removing all phylogenetic signal via
pPCA (Revell, 2009) yielded no plausible results in our case (not shown). A reason,
besides the complex interrelation of influence factors, might be the technical analogy
between superimposed angular trace shapes and shape data in geometric morphometrics
(cf. Polly et al., 2013). Comparing sample genera along the PC axes (Fig. 3.5) indicated
that the overall patterns persist within closely related taxa, making a confounding effect of
phylogenetic relation unlikely.
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3.7.4 Supplementary Figures
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Figure 3.4: Informal phylogeny of terrestrial ungulates. Taxa grouped on genus
level, with non-monophyletic genera split. Colors and group labels serve
rough orientation. Cetaceans are excluded from our study. Based on
Zurano et al. (2019), and complemented from various other sources (Frantz
et al., 2015; Funk et al., 2007; Gongora et al., 2011; Hassanin et al., 2012;
Parisi Dutra et al., 2017; Price and Bininda-Emonds, 2009; Ryder and
Steiner, 2011; Zurano et al., 2019).

Figure 3.5: (next page.) Representative joint angle profile examples. Taxa were
selected based on their position in the PCA (Fig. 3.3) and to inspect cases
of geometric or phylogenetic uniformity. Display of time domain joint angle
profiles (left), mean joint angle (middle) and frequency domain (right) as
before (see Figs. 3.1, 3.2). A Two genera (Taurotragus, Alces) that are
approximately geometrically similar (size, body mass), but distributed along
PC1.
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A selection along PC1

B cervids along PC1

C tylopods along PC2

D rhinos along PC2
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Figure 3.5: (contd.) Representative joint angle profile examples. B Closely
related taxa (Cervidae) along PC1. C, D Two pairs of closely related taxa
(Tylopoda; Rhinoceroidae) that are spread along PC2.
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Figure 3.6: Principal Component Analysis, further axes. Data as before (Fig.
3.3), but with additional principal components (lower biplot) and labeling
of all taxa.
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3.7.5 Supplementary Files

The following supplementary files of the original publication can be found here:
https:
//academic.oup.com/zoolinnean/article/189/3/1067/5648043#supplementary-data
Movie: An example recording from a walking lama, obtained by the authors with permission
by the owner. Tracked landmarks (shoulder, elbow, carpus, fetlock) are superimposed; joint
angle profiles for four consecutive steps are shown. The video is available in high quality
here: https://www.youtube.com/watch?v=J1fhg33ZDvI.
dataset: supplementary_tutorial.zip. A step-by-step tutorial (formats: HTML and
jupyter notebook) that illustrates the implementation and application of the methods
presented in this manuscript.
dataset: supplementary_data1.xls. A list of and link to the videos from which data was
acquired, including timestamps of the stride cycle episodes that entered the analysis.
dataset: supplementary_data2.zip. All tracking data generated from the videos. Note
that many stride cycles did not pass quality criteria for the final data set.

3.7.6 Acknowledgements

The authors would like to thank all involved video providers for sharing material for this
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owners (Jo Leroy, Kathleen Vercauteren) and caretakers of the Lamas and horse from which
direct video material was obtained. Jana Goyens, Jamie MacLaren, Maja Mielke and Sam
Van Wassenbergh gave valuable feedback on the manuscript.

88

https://academic.oup.com/zoolinnean/article/189/3/1067/5648043#supplementary-data
https://academic.oup.com/zoolinnean/article/189/3/1067/5648043#supplementary-data
https://www.youtube.com/watch?v=J1fhg33ZDvI


89



Part II

Probabilistic Modeling

90



91
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Chapter 4

Probabilistic Modeling Workflow

92



4.1 Preface

The text of this chapter originally served as a memorandum, for internal documentation
and knowledge transfer, distributed on October 16th, 2021 under the original title “A Tiny
Textbook About a Fraction of Statistical Methodology”. It applies probabilistic, predictive
modeling to a previously analyzed data set, which was kindly provided by François Druelle
(Druelle et al., 2021). The prior analysis, which focused on the comparison of
spatiotemporal variables, is herein extended to questions of posture and coordination. To
tackle these additional research questions, a sophisticated statistical modeling procedure is
required. In preparation of a potential manuscript (which did not materialize after all), I
realized that a significant amount of knowledge transfer is required to get all co-authors
and interested readers up to level with the technical details and design decisions
encountered on the way.
In a nutshell:

• I analyze bipedal locomotion in olive baboons, Papio anubis.

• Kinematics are processed with a previously established technique (“Fourier Coefficient
Affine Superimposition”, Ch. 3).

• Probabilistic Models are used to infer major interrelations of subject-,
spatiotemporal-, and kinematic parameters.

• Model design is validated by model comparison.

• One purpose of these models is in-sample- and out-of-sample prediction.

• For reference, all analysis code, including the org mode document compiling this text
are available here: https://git.sr.ht/~falk/papio_fcas.

In accordance with the originally internal target audience, this chapter takes a more
colloquial tone than actual publications. As a compensation, I provide practical tips and
trial-and-error-based experiences for readers interested in implementing their own models.
The document also lacks a conventional introduction. If the relevance and importance of
statistical modeling is not immediately obvious to the reader, I kindly refer them to the
applied chapter to follow (Ch. 5), which contains extensive elaboration on the topic.
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CHAPTER 4. PROBABILISTIC MODELING WORKFLOW

4.2 Introduction: Probabilistic Modeling

4.2.1 Probabilistic Modeling and Other Statistics

To approach probabilistic modeling, it is important to understand its relation to other areas
of statistics, such as hypothesis testing. Many researchers have been primed on statistical
hypothesis testing early during their education. Its goal usually is to make an informed
choice of whether a hypothesis about the data is true or not. For example, one might ask:
“does the speed at which an animal moves change with age?” The expected answer is often
a simple “yes/no”. But the example question is not well formulated for statistics. It defines
a quantitative measure (speed), which is good. However, it should rigorously be wrapped in:
“does our data set provide evidence that a rejection of the hypothesis . . . ”. Furthermore, it
should refer to testable subsets of the sample: “. . . that movement speed of young animals
is different from that of adults.” Finally, one must set an a priori threshold above which the
rejection of the null hypothesis would most likely be false (called “p-value”, too commonly
desired to be below p = 0.05, Dallal, 2003). A proper hypothesis to test must relate to the
data, contain rejectable predictions and (ideally exclusive) alternatives, and finally must be
linked to a confidence threshold (Chamberlin, 1890; Platt, 1964; Popper, 2002).
Yet there is a caveat: the metrics generated from conventional hypothesis testing do not
yield a quantitative assessment of effect size. In other words: a low p-value does not indicate
a large speed change with age, it just indicates that the change (i.e. rejection of the null
hypothesis “speed does not depend on age class”) is more likely to be true. Also, there must
be an assumption of how speed changes with age: is it increasing linearly or is it low for
young, high for middle, and low again for high-aged individuals? The reason is that all tests
explicitly require a set of mathematical assumptions to be met (e.g. “Normal distribution”
of the data, one- or two-sided comparison). And because of this, there exists a whole zoo
of different test for different assumption situations, the choice of which is a science by itself.
Familiar examples are the “t-Test” or “ANOVA” in all their variants. To summarize, this
branch of statistics is called hypothesis testing; it is a complex field and valuable when it
comes to falsifying hypotheses.
The term “hypothesis testing” might be understood to be synonymous with “frequentist
statistics”, or “non-Bayesian statistics”. This conception would be inexact, because there
are also Bayesian hypothesis tests, which rely on a concept called “Bayes factor” but are
not discussed herein (cf. Shikano, 2019). Hence, we need to disentangle two categories of
distinction (Tab. 4.1).

Table 4.1: Statistics: an overview. Probabilistic models are the focus of this chapter.

Frequentist Probabilistic
Hypotheses decision trees “Bayesian” hyp. tests
Modeling (least squares) regression MCMC Sampling
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Not all researchers are after hypotheses. What we usually desire in obtaining experimental
data is a quantitative assessment of different effects which exist in the data and influence
the outcome of a quantitative measurement. There are two main frameworks to tackle
these questions, both of which are captured by the term modeling: “frequentist” models
(usually least squares optimization), and “Bayesian” / probabilistic models (enabled by a
technical trick called MCMC = “Markov Chain Monte Carlo” sampling). Hence, we should
distinguish the type of question (hypothesis / quantitative estimate) and the methodological
school (frequentist or Bayesian, see Tab. 4.1).
All these “strains” of statistics have historically developed different terminologies,
sometimes even different meaning to the same terminologies, which can be confusing and
even misleading (e.g. try to find out about the term “likelihood”, cf. “Bayesian Statistics
without Frequentist Language” by Richard McElreath, 2017,
https://www.youtube.com/watch?v=yakg94HyWdE). In particular, there is a lot of
confusion and ongoing discussion about the distinction and proper presentation of
confidence intervals and credible intervals. A credible interval is an interval in which the
true value of a model parameter is expected to be found, with a given likelihood. For the
purpose of this chapter, I calculated, but will not always report, credible intervals1. I will
occasionally explain conventions on the way, but leave it up to the interested reader to dig
deeper or ask. You might notice that my way of tackling statistics with inclusive models
were heavily primed by the book “Statistical Rethinking” by Richard McElreath
(McElreath, 2018), and there is an infrequently updated, highly recommendable lecture
series by that author available on YouTube.
The main approach presented in this document is probabilistic modeling. For simplicity,
models will all be linear models, which means that all outcome variables are modeled as a
combination of linear predictors (i.e. just linear slopes / no multiplications, exponents etc.).
This subclass of models is often summarized as “Generalized Linear (Mixed) Models”, or
GLMs. It is a special subset of thinkable models, probably the most frequently used one.
Despite this practical restriction, most concepts introduced below should equally apply to
non-linear models. In fact, good modeling frameworks are sufficiently flexible to enable any
model design, not only linear equations.

Hypothesis testing and modeling are non-exclusive, as one can ask both questions of effect
significance and effect magnitude at the same time (though in the case of probabilistic
models, we do not speak of significance, but of “credible intervals”). If a given data model
turns out to match the data well, this affects the hypotheses which can be hypothesized
(e.g. Normality assumption can be confirmed or rejected by measuring the goodness of fit
of a “Student’s T” model). On the other hand, because most models also contain a residual
variance, it is tempting (but not always legitimate for rigorous reviewers) to use the credible

1I herein take the [3 %, 97 %] HDI, i.e. Highest Density Interval, which is the smallest value range that
covers 94 % of the posterior probability distribution.

95

https://www.youtube.com/watch?v=yakg94HyWdE
https://xcelab.net/rm/statistical-rethinking/


CHAPTER 4. PROBABILISTIC MODELING WORKFLOW

intervals and residual variance to reject hypotheses without additional test. I would like
to emphasize: all four major segments of statistics are intimately related, best executed in
parallel, and should ideally yield consistent results.
Hence, one might validly ask why I focus on probabilistic modeling. Firstly, most people are
already familiar with the frequentist side, since academic education on statistics focuses on
these methods (or at least, it used to). Readers probably know these methods already, and
chances are they are more of an expert than I am. Secondly, one perspective of the particular
data set at hand is prediction, which is challenging for processes which are intrinsically
variable (such as locomotion). Probabilistic models are ideal for this purpose, as will become
clear below.
But before getting to the actual data, I attempt to give an abstract overview of the involved
methodological steps.
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4.2.2 Modeling Workflow

When cooking my soup of statistics, I tend to pragmatically stick to the “ingredients”
outlined in the paragraphs to follow. A prerequisite material is “well-cleaned” data, usually
stored in database format (as “csv” for compatibility), containing as much information
about the experiments as possible. “Pragmatically” here does not imply that these steps
must be executed in sequential order for practical work. In fact, they are often repeated
iteratively.

Data Simulation

Before going to the actual data, I prepare a simulated data set which roughly incorporates
parameters and parameter relations (for an example, see Mielke, 2024). These relations
are comparable to those I intend to model later. For example, imagine I hope to find an
age-dependent body mass slope, i.e. I expect that one of my variables (“obs1”) depends on
body mass (bm), but the strength of this dependence is different for each age class. Then
I will generate a fake data set which follows exactly this desired relation: starting with a
white noise data column for obs1, I add a known intercept. I randomly assign an age
group to each of the data rows. Then, for each of the entries, I add bm*slope(age), i.e.
an age-group dependent component which represents the obs1 / bm relation. I tend to use
values which are approximately in the range I would expect for the actual data, or I even
work with averages from the data.
With that simulated data in place, I run a model which resembles the actual one applied
later. For example, one could use:

obs1 ∼ intercept + slopebm|age · bmcentered (4.1)

This is our first model equation, and we will encounter and explain more below. Model
equations are an abstract formulation of the model, which helps communicating the content
and keeping track of model alterations. Centering the body mass could happen per group,
i.e. for each subset of the data which has a certain age group, I would subtract the group
mean body mass from the actual body mass values. Or one could center for the whole
data set. I can “simulate” all of these structures by simple numeric calculation: a slope
based on absolute body mass, one based on centered body mass, and finally one based on
group-wise centered data. And then I cross compare and see how the wrong model captures
the simulated data and whether I can distinguish. With the sheer amount of parameter
combinations, this can be time consuming. Is simulation worth it? Or, in another word:
Why?! You might feel the urge to ask: why this extra step of using fake data to apply a
fake model? The reason is simply that, by this tautologous simulation procedure, I ensure
that the model structure I apply is in fact capable of finding the effects I suspect in the
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real data. I thereby make sure that my model roughly works as I intend. This is first and
foremost important for setting up and getting used to a modeling framework. But I can also
apply simplified models and observe how they fail, which helps to explore the limitations of a
given model design. This might seem trivial for simple, linear models. However, when going
to multi-level, multivariate models2, things get complex, and model structures are neither
straight forward, nor intuitive. Recovering the artificial parameters which I put into the
data gives me some confidence that the model structure is as intended (which is not to say
that the model is a good one for my real data set). Critically, some models are inherently
ambiguous (e.g. think of a toy model as the one above which instead has age as an explicit
parameter and as a level for body mass). By playing around with the parameters which
generate the simulated data set, and then checking how the model changes, one can learn
which effects end up where and how unique, and how sensitive, the model components are.
Likewise, it is possible to simulate varying sample- and effect sizes, to see how much data is
needed to reliably recover a given effect.
Ideally, this informative procedure should happen in the process of experimental design,
prior to a grant application or ethics proposal. Yet even if the data happens to be on your
hard drive already, better simulate late than never.

Data Inspection

Before throwing complex models at the data, one might want to get a feeling of the
parameters recorded with the data set.

• How many data points are there in different groups?

• Which categorical, which continuous parameters were recorded?

• What are the empirical distributions of outcome values, and which theoretical
distributions could potentially resemble them?

• Is the distribution similar in different groups?

• Are there notable correlations between parameters, on the predictor or outcome side?

This step is a rather flexible and personal one, and usually not documented (except for
some high quality, polished figures in publication). Data can be explored by looking at
spreadsheets, using pivot tables and pivot charts, or better: by writing scripts in a scientific
scripting language (Python, R, Matlab).
This is the “data playground”. Just learn what might be going on in the data, and build
hypotheses for the subsequent analysis.

2If you are unfamiliar with the terms “multi-level” or “multivariate”, I would like to ask some patience:
they will get clearer below, and in fact you might already have encountered them under alternative names.
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Technical Framework

Although I happen to be an advocate of probabilistic modeling frameworks, I tend to test
some basic models with “conventional”, frequentist statistics toolboxes. These are, for
example, statsmodels in Python or lmer in R. The most general models are easily
formulated in formula notation. Per default, such frameworks are (i) frequentist and have
(ii) “high-level” APIs (Application Programming Interface).
The “frequentist” aspect was mentioned above, compared to “probabilistic”. Probabilistic
sampling usually takes more time than a least squares procedure. Ideally, models from both
worlds should match. A “quick and (more or less) dirty” model generation can facilitate
hypothesis refinement or model structure sharpening.
In principle, there is nothing wrong about publishing these “quick” model outcomes
directly (but there are some advantages to probabilistic procedures, which are covered
herein). However, the “high-level” aspect comes with some limitations. By “high-level”, I
mean that the syntax is close to human intuition, and less demanding in terms of
programming skills. “Low-level”, in contrast, refers to high control and detailed
initialization, closer to “machine language”, which can be challenging for inexperienced
users. This should not be confused with unnecessary complexity and cumbersome syntax,
which is abundant in both approaches (maybe more often found in high level APIs). In my
experience, the model construction procedure on high level modeling toolboxes tends to be
intransparent and limited. In consequence, my personal skill with them stayed limited over
the years. In my idealistic strive for reproducibility, I prefer to publish models of which I
controlled and can explain every single design aspect on demand.
One example to illustrate the “high/low-level” dichotomy is formula notation. Many
available model programming libraries strive to give an “easy to use” interface for novice
statisticians to produce models. These users want to enter things like “speed ~ 1 + sex +
age + (bm*age)”, and get the result in convenient table format. This notation is called
“formula notation” (e.g. the Python library patsy is used for it). Convenient as this may
be, I tended to encounter problems with this approach: most real models are not “easy to
use”.

• Formula notation is limited: the explorative steps mentioned earlier ideally yielded
many creative hypotheses that the eager statistician desires to forge into a model.

• Model internals are intransparent: parameter interactions, “random and fixed” effects
(i.e. multi-level parameters), multivariate parameter blocks. . . abstracting these
abundant model components to formula notation might obfuscate the actual inner
working of the model (because formulas introduce an extra level of abstraction).

• Formula syntax: although not being an expert, I experienced that formula notation is
not universal; or if so, it involves syntactical details which I am unable to remember
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or intuitively disentangle (e.g., what is the difference between bm*age and bm|age?).

The alternative is a low-level toolbox in which one has to initialize intercept, slopes and
outcome separately, and use operators to produce the “formula” (here: the mathematical
formulation) in code.
Which to choose has a lot to do with prior experience, and I acknowledge that the major
reason for my preference for low level interfaces lies at least partly in my personal inexperience
with formula notation and the like, and in my attraction to code tinkering.
Here is my approach: object-oriented programming. This is not strictly an alternative
to formula notation and “high level” toolboxes, but an addition. You can wrap formula
generators in an object as well as “low level” component generators. My strategy is to define
a “model” object in code, which can be initialized with certain settings, and then assembles
a model. The advantage is that I get many convenience functions which I can easily adjust
to the specific requirements of my project (for example, saving and loading, see Ch.
4.2.2, or model hygiene, see Ch. 4.2.2). At the same time, I retain precise control of the
mathematical model internals. This strategy could be labelled “building a high level API
from low level ground”. Of course, the “low level ground” requires some tensor juggling
and programming insights, which is certainly a show stopper for inexperienced programmers.
But for me, the benefits of “full control” over the models outweigh the disadvantage of short
term inconvenience. Furthermore, the system really “flies” with the highly iterative quest of
finding the right model for a data set.

Modeling Design Choices

When it comes to the actual components of a model, there are always multiple options of
how to include a parameter. This refers to questions of inclusion/exclusion, mathematical
choices, and the hierarchical and co-variable structure of individual model components (i.e.
how parameters are interrelated):

• “inclusiveness”: whether or not to include nuisance parameters (e.g. the effect of moon
phase on animal locomotion)

• whether to include it explicitly, or in a random intercept (e.g. “sex” male/female can
be a model component, or obscured by a subject-level intercept)

• the hierarchical structure of components (e.g. whether body mass slope is universal, or
different for each age class; most familiar are “random slope” and “random intercept”)

• whether/how to include the covariance of outcome variables (e.g. speed, stride
frequency and stride length are interrelated)

• whether/how to include the covariance of slopes
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• mathematical detail which can affect the sampling (e.g. the so-called
“parametrization”: multi-level components can be modeled by “sampling” from a
hyper-prior or as “offset” from a population slope)

More on all this below. Generally, the possibilities tend to be more numerous than one would
like.
How to choose? Two things guide model design choices: (i) logical arguments and (ii)
model comparison. Model comparison is covered in detail below (Ch. 4.2.2). It is a “hard”,
numerical guide to which model succeeds best in representing the data. Models are
compared ex post, i.e. sampling (model fitting) is a prerequisite. Logical arguments, on the
other hand, are soft criteria which exclude some implausible/unfeasible model structures ex
ante. There is no general advice on those, yet oftentimes, the inability to MCMC-sample a
particular probabilistic model can hint at overlooked logical errors. An advantage is that
logical exclusion criteria restrict the model search space a priori and save us from sampling
all too many design choice combinations.
Note that, in some fields, it is an ethical requirement to pre-register your statistical models
and tests. If your work in such a field, make sure to get advice about it from a senior
colleague. Most certainly, pre-registration enforces more diligence in the simulation step.

MCMC Sampling

The fundamental magic which enables probabilistic models is a set of algorithms called
“MCMC Sampling” (“Markov Chain Monte Carlo”). There are excellent explanations about
this on the web, and I’ll restrict the explanation here to what I think is the necessary essence.
MCMC sampling is the procedure which adjusts model parameters to match the data. It is
notoriously time-consuming.
Sampling in probabilistics is analogous to the least squares regression in frequentist models.
However, in probabilistics, this step is a semi-random exploration of the model parameter
space (“semi” because of heuristics which avoid errors and facilitate convergence). This
exploration is initiated at a random “point” (read: distribution), and the hope is that after
a certain “tuning” period, this “non-random walk” will get stuck in a local optimum. To
make sure the optimum is stable, the repetitive exploration step is run for a sufficiently large
number of iterations. Also, such an optimum should be characterized by the best match
of the model values (“posterior distribution”) and the data. The mentioned heuristics are
technical tricks to increase the chance that the most attractive local optimum is the global
one (e.g. run several independent “chains” with random starting points; using an adaptive
algorithm). There are many different update rules and algorithms (“Metropolis”, “NUTS”,
“Hamiltonian Monte Carlo”, . . . ) all well explained on Wikipedia.
A defining difference to conventional regression is that the matter and outcome of
parameter optimization are distributions of model parameter values (as opposed to point
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estimates). I tend to think of the sampling as a procedure that attempts to “deform” the
shape of the initially set distribution (e.g. a Normal N (µ = 0.0, σ = 1.0)) to reach
optimal agreement with the data distribution (e.g. a slightly narrower, shifted Normal
N (0.6, 0.1) for a hypothetical set of duty factors) by adjusting the model parameters. A
bit like pressing a blob of pudding into an animal-shaped form. Note that what I write
above (except maybe the pudding metaphor) is not an exact description, e.g. a starting
point should more exactly be called an initial distribution shape, or “prior”.
The purpose of sampling is clear: explore the parameter space and find model parameters
which lead to a best resemblance of model and data.

Deserialization and Data Flow

While “coming of age” with statistics, one usually goes through several phases of data
organization skills. Note that I am not judging on beginners here for their work on data,
but rather attempt to analyze and generalize my own experience.
Many people (including me) are primed on Excel-like spreadsheet programs, which I in
retrospective would call a non-scientific data processing tool. Non-scientific because it is not
easy, maybe even impossible, to establish reproducible work flows in spreadsheets. Formula
links are hidden and prone to break, data types are a mess, cell references are limited, variable
definition is impractical, and version control is hindered by the proprietary file format.
However, when taught well, spreadsheets can prime people on good database structure (for
example, it is good practice to use the functions vlookup, offset, match and indirect +
address frequently). And, acknowledged, well-made spreadsheet files are often designed to
accomplish one given task a time (e.g. they can make a handy “dashboard” when connected
to external data sources). Let’s call this one-task-one-spreadsheet strategy “task-boxing”
(“boxing” as in “unboxing”, not like the sports), because steps of a larger procedure are
solved by individual black box spreadsheets.
When advancing to scripting languages like Python, Matlab, or R, one learns to process
spreadsheets and other database-like data sources in programming. Noteworthy in this
regard are “data frames” (cf. R: dplyr, Python: pandas, Matlab: table), as the
programming analogy to a single spreadsheet. For experienced readers: the
multidimensional variant of those are worth exploring (e.g. Python xarray). Scripting can
handle many data tables at once, easily. But then, one might be tempted to write long
scripts which perform the whole analysis procedure in one go, in a serial fashion. This
temptation is fostered by notebook-like programming interfaces, such as
RStudio/RMarkdown, Jupyter, or the Matlab interface. I call this extreme strategy
“serialization”. The problem is that complex, serial scripts are hard to generalize and
maintain. Complexity should be avoided; good documentation is indispensable.
Is there an intermediate way? It would be good to break the complex scripts and
spreadsheets down to meaningful unit tasks, but what is a good unit? In my experience, one
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has to find a middle ground between the antagonist strategies outlined above. Functional
programming can help to split tasks, whereas object-oriented programming can help to
define working units and how they are processed. A good framework must be available for
version control (git/mercurial/subversion). General definitions should be separated from
project-specific tasks. And all steps should be well documented. The outcome is neither
a series of black boxes, nor an unmaintainable monster script: it is a deserialized sequence
of monofunctional building blocks. The ultimate goal is to produce fully reproducible and
transparent data processing pipelines.
One particularly relevant aspect of deserialization is the storage of intermediate results or
whole models. “Whole models” refers to the input data, the model structure and the model
sampling outcome (“trace”, i.e. the model outcome after fitting it to the data). The process
of MCMC sampling can take a long time (and it usually does). Model comparison requires
many models to be sampled. Hence, one must be able to write models to hard disk and
recall them when necessary. This may seem trivial, but it is a critical skill. In particular,
when it comes to prediction (Ch. 4.2.2), it must be ensured that model input data can be
dynamically altered after storing and re-loading of the model. Obviously, the association of
model settings, structure, and outcome, must be maintained at all time, e.g. by “settings”
log files.
I found all my personal requirements met in the library PyMC for Python (Salvatier et al.,
2016). Compatible choices exist in the R programming language, or language-independent
(STAN).

Model Comparison/Selection

“Which Model is the best for my data?” As mentioned above, the best of all the
logically plausible model designs should not be determined by pure personal preference, but
rather by hard, quantitative measures. This is why this comparison step is also labeled
“model selection”. The topic is exceptionally well covered in my favorite statistical literature
(McElreath, 2018, Ch. 11 therein), which I will briefly summarize.
The framework of information theory provides tools for quantitative assessment, namely
Information Criteria (e.g. WAIC, LOO). The comparison problem has two balancing effects:

• complex models tend to fit a model better

• . . . but too complex models will be prone to “overfitting”.

To illustrate this, try to mentally fit a fifth-order polynomial to a short segment of a quadratic
curve: the match might be perfect in the observed area. However, there are far too many
degrees of freedom in the equation which might end up at values that produce weird wiggly
curves outside of the data range. To get around this, modern information criteria are designed
to find the best trade-off between model fit and complexity by quantifying and penalizing
overfitting tendencies appropriately.
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Model comparison is one of the most powerful aspects of the modeling procedure, because
it enables statisticians to make an informed choice about what is going on in the data. If, in
direct comparison, a model including a certain parameter receives less “support” than the
model lacking it, then it is valid to accept the null hypothesis that the parameter in question
is of no relevance for the data.

Posterior Prediction

The other extraordinarily powerful tool in the modeling workflow is “prediction” (Shmueli,
2010). This feature can serve two relevant purposes, which are technically almost identical.

1. In-Sample Prediction. Or: Did my model shot hit the data? After two weeks
of exhaustive sampling (not uncommon in probabilistic statistics), one might get a
“trace” of sampling values for a particular model. And ideally, one has stored them to
disk (see deserialization). Then, the best of many such models is identified in model
comparison. But how well does this model fit the data?

The common toolboxes for probabilistic inference all come with a feature of “posterior
predictive sampling”. Quick vocabulary:

• “posterior” means that this happens after the model is tuned to the data.

• “predictive” means that the data vectors fed to the model shall differ from the
experimental values

• “sampling” refers to the fact that not only a single mean output is generated,
but rather a data distribution (i.e. hundreds, thousands or millions of posterior
samples, if you like).

This is to be distinguished from the data sampling step (MCMC sampling), and from
another trick called prior sampling. All are called “sampling” because of the
underlying technical procedure, and they actually mean that we work on data
distributions. However, the purpose of these sampling procedures is different. MCMC
sampling is the process of regression, i.e. of fitting the model parameters to the data.
Prior sampling is used to see if the model structure and the prior settings are
plausible. In contrast, posterior sampling yields values from an already fit model.

You could say that MCMC sampling is like tuning a guitar, prior sampling is analogous
to playing on an untuned guitar, and posterior sampling is like playing proper chords
and thereby new or old songs.

Why is posterior sampling useful? I tend to explore the parameter space of my data
set (e.g. Fig. 4.1). For example, I choose one category of observations (e.g. “infant
female animals of the lower body weight quartile”) and set the probe data to according
values. Then, I can tell the model to generate a number of samples for this setting.
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I compare the distribution of these posterior samples to the original data, filtered by
the settings specified. Repeat this for all categories.

Ideally, the predictive samples will match the observed data values. If so, it is confirmed
that the model converged to be a plausible representation (or: “simplification”) of the
real phenomenon that generated the data. Even more: by sampling a high number of
values, one can infer the distribution of values of interest for a specific setting, which
might otherwise be obscured by a limited sample size.

2. Out-Of-Sample Prediction. Take this one step further: what if the settings I choose
are not part of the original data set? Can the model make predictions beyond the
data I provided? (Percussive playing skills in the guitar analogy. . . or maybe time
to admit that analogies can hardly be extrapolated beyond their scope.) Prediction is
the ultimate test to every model: when probing an unobserved or intentionally filtered
category of observations, can the model produce outcomes which later stand the test of
reality? With this capability, the model is able to generate informed hypotheses which
stimulate future research. Even if a subsequent observation is impossible (thinking
of inferring palaeontological data), the model can yield a distribution of values for a
given phenomenon which is most plausible with the actual data. Another use case is to
test evolutionary hypotheses, for example by relating hypothetical traits (e.g. extreme
morphology) to limited physical or ecological parameter spaces (e.g. contact forces).

I conclude that “out of sample prediction” is where the fun starts. As I put it above, this
feature is one of the biggest advantages of probabilistic models.

Model Hygiene

Having gone through the tedious procedures of acquiring a data set, designing a model, and
getting a sampler to run, one might easily be tempted to jump for joy when finally retrieving
the first MCMC trace (i.e. a fit model). However, sampling does not always succeed. It
can fail bluntly (with an explicit error message), but with a trace you are already past that
hurdle. Worse, it can also fail in numerous non-obvious regards, and it is crucial to diagnose
whether this happened.
Several diagnostic quantities are available:

• divergent samples: occur if the sampler occasionally leaves the local optimum, even
after tuning

• energy: quantifies whether the parameter space was well explored

• effective sample size: check whether is enough sample coverage in the optimal
region
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• r hat: (Gelman-Rubin statistic) measures if multiple, independent sampling “chains”
converged, i.e. end up in the same local optimum

• auto correlation: make sure the sampler did not get stuck in cyclical patterns

More such “hygiene quantities” exist. I call them “hygiene” because they are like body
hygiene: you might live without for a certain period, but rather sooner than later people
around you will smell it. Luckily, many diagnostics are readily delivered with the actual
results by the modeling toolbox, so the hurdle to check them is minimal. Model diagnostics
make a great, long supplementary table. I omit presentation of the diagnostics in this
chapter, but you would probably smell if they were not calculated and positive for the main
selected models.
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4.3 Application: Baboon Kinematics

After this long, conceptual introduction, let us finally get to “the meat” and apply the
procedure to a real data set with Python and PyMC. This requires me to gradually present
the data which was acquired by Druelle et al. (2021), and what I made of it.

4.3.1 Data Preparation

Data Overview

Data was processed via a sequence of python scripts which can already be found here:

https://git.sr.ht/~falk/papio_fcas

These scripts complete the following tasks:

• import data per stride cycle to python

• store master data (subject info e.g. age, and spatiotemporal gait variables e.g.
relative speed)

• calculate joint angle temporal profiles

• remove end-start difference (make “cyclical”)

• transformation to the frequency domain via Fourier Series

• temporal alignment to remove phase differences in whole-limb movement

• posture: extraction of affine components (mean joint angle, amplitude = effective
range of motion/eROM)

• coordination: Principal Component Analysis of non-affine remainder

• perform statistical analysis

Highlighted above are the different categories of data (see Tab. 4.2 for a detailed overview).
In total, 40 stride cycles from 17 subject individuals entered the analysis. The goal of the
subsequent analysis is to quantify the interrelation within and between these categories of
parameters. This has to regard their implicit hierarchical structure (subject → stride → {
posture, coordination } ).
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Segment- and Joint Angles

In the parameter overview table, several angles are listed. Firstly, there is the trunk angle,
which is a segment angle. A segment is a more or less rigid sub-unit of a body which lies
between two joints, normally it is associated with a bone or skeletal unit. Segment angles
(here: in two spatial dimensions) are calculated as the angle of a segment relative to the
global reference frame. For example, the trunk angle is herein defined as the angle between
the head-hip vector and the vector parallel, but opposite in direction to the gravitational
acceleration vector (i.e. pointing upwards; approximated from the video y-direction). By
this definition, if you sit straight on a chair right now, your trunk angle would be zero; if
you lean back, it becomes negative, and if you lean forward to tie your lace it gets positive.

Segment angles of coupled series of segments (“limbs”) are highly correlated, which can be
problematic for statistical analysis. To illustrate this, imagine a limb in which the knee joint
is fixed, i.e. held at a constant angle throughout the stride cycle. The thigh and the shank
segments will both have temporally varying segment angle profiles, but the correlation of
these profiles is perfect. Further, imagine that there is an effect changing the hip angle (a
joint angle) temporal profile under certain circumstances; that effect will be visible in the
shank segment angle as well, although the knee does not move. The reason is the “fixed
knee” constraint introduced here for illustration; the correlation is hardly less with mobile
joints (the distal segments just hang on a chain downstream of a given joint, and never fully
cancel out the proximal movements).

Joint angles measure the difference of two segment angles, which is equal to the angle
between two segments. Imagine an action cam with a wide angle lens attached parallel
to your upper arm, pointing in direction of the elbow: you could see and quantify the
movement of your lower arm on the videos, independent of shoulder angle. Joint angles are
also interdependent through musculoskeletal coupling and the influence of gravity. Imagine
an animal holds its trunk always perfectly vertical for some reason. As in the scenario above,
a change of the hip angle profile will be visible as compensation in the more distal joints and
segments. The reason is the “fixed trunk” constraint, and that the limb as a whole has to
compensate for the change.

I want to submit either of these sets of angles to the FCAS procedure (previous chapters,
cf. Mielke et al., 2019), to achieve temporal alignment and the separation of posture and
coordination measures. However, which angles of those mentioned above are more
appropriate? In other words: which of the constraint scenarios is more realistic? Joints are
always mobile, as are segments, and neither of the extreme constrains above are realistic for
freely moving animals. Nevertheless, some observations tip the balance towards using joint
angles, in my opinion. Muscles (the “motors” in animal locomotion) are usually changing
joint angles. According to my observations, there is a tendency to reduce joint angle
change, or limit it to short temporal intervals (probably due to energetic optimization). In

108



contrast, the change of segment angles is of larger magnitude, and probably optimized to
exploit gravity in pendulum-like mechanics. Another observation comes from in silico tests.
When using a simulated two-segment system with realistic segment lengths, computing
random joint angle profiles in a reasonable range of motion, I observe that correlation is
high (O(0.8)) despite the random input values. I conclude that the underlying mechanism
of movement and the spatial arrangement of the segments increase the correlation issue
with segment angles. I think of joint angles as being a kind of spatial differential/derivative
of segment angles, which is why they are insensitive to issues of the absolute position. This
can be advantageous for tackling kinematic research questions, but disadvantageous for
kinetic research (in which the direction of gravity matters).

For the present analysis, I chose joint angle profiles as the measures which enter the FCAS
procedure. The trunk angle, which appears to be variable among different strides in the
data set (and might hold predictive value), is included in some of the calculations below as
a spatiotemporal gait variable.

Dimensionless Spatiotemporal Gait Variables

Except for the trunk angle (in units of π, where π ≡ 3), all spatiotemporal gait variables
are normalized, i.e. made dimensionless (according to Hof, 1996). The reference l0 for
spatial parameters is the leg length (hip-knee-ankle). Stride duration was normalized by
the characteristic time

√
l0
g

with gravitational acceleration g = 10 m
s2 . Dimensionless

frequency is the reciprocal of dimensionless stride duration. Speed was divided by
√

l0g to
get dimensionless speed.

The rationale behind using dimensionless parameters is the intention to compare the animal’s
performance at points where their locomotion is equally costly (in terms of energy). This
is intuitive in the case of stride length: a stride of a given distance (e.g. 1 m) might be
a small step for an adult animal, but a huge leap for an infant. When normalized with a
meaningful morphological reference, comparison of the observations is at least a bit more
fair (with regard to the animal’s energy investment).

Note that there is no pressing reason to perform this normalization, and it is by no means
clear whether models improve with it. The dimensionless parameters are most likely
correlated to their non-normalized counterparts. And repeating the actual calculation with
the raw spatiotemporal parameters showed that the outcomes are not all too different from
those presented below. On the other hand, interpretation of the outcome is facilitated by
the normalization, because all effects due to morphological differences are supposedly
summarized on the body proportion predictor(s).

109



CHAPTER 4. PROBABILISTIC MODELING WORKFLOW

PCA of Gait Variables

It turned out that some of the models (namely the more complex ones involving posture and
coordination) did not sample well when all the spatiotemporal gait variables listed above
were included as predictors. However, a strong correlation between some of them is expected
and confirmed by calculation. Therefore, a useful trick to enable sampling for the complex
models is a dimensionality reduction via principal component analysis (PCA).
A PCA of stride distance, stride frequency, and speed (all dimensionless) was performed
(“stride PCA”, Tab. 4.3). The three input parameters were standardized so that they
equally contribute to the components. The first two principal components capture 99.8% of
the variance, justifying an optional reduction to two parameters via PCA transformation.
PCA space is orthogonal, i.e. there is no correlation between the principal components (thus
we do not have to model a multivariate predictor block). This means that PCA can be
favorable for sampling even if dimensionality is retained. The inverse transformation allows
to convert predicted PC values back to the original parameters.
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Table 4.2: Overview of data parameters.

category parameter units description
subject subject - names of the subjects
(subject) age years time since birth
subject age class {infant, adolescent, adult} three disjunct age classes
subject sex {female, male} sex of the animal
(subject) body mass kg weight at recording
(subject) leg length m leg length
(subject) bmi kg/m body mass divided by body length
stride duty factor 1. fraction of stride in ground contact
stride distance relative distance covered by stride (m),

normalized by reference segment length (m)
stride frequency Hz = s−1 reciprocal stride duration
stride speed rel. (s−1) (rel.) stride distance divided by duration
stride clearance 1. how much (%) the limb is

shortened during the stride
stride trunk angle radians mean trunk segment angle (rel. to upright)
stride stride PCi arb. units PCA of distance, frequency, speed
posture mean angle π zero’th Fourier Coefficient of joint angles
posture amplitude π Fourier Amplitude (related to

effective joint range of motion)
coordination PCi 1. PCA of non-affine components of

the Fourier coefficients of all joints

Table 4.3: Stride PCA: variance covered (%) and eigenvector loadings.

d.s. distance d.s. frequency d.s. speed
PC1 (69.1%) -0.39 -0.61 -0.69
PC2 (30.7%) -0.86 +0.50 +0.04
PC3 (0.2%) -0.32 -0.62 +0.72
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4.3.2 Subject Parameters

The first order model parameters are the subject parameters, because they are characteristic
and more or less constant for each of the animal subjects under research. The purpose of
this section is to find out how they interrelate.
Within this group of parameters, sex stays constant for a given subject. Of the 17 subjects
included, 5 were male. By study design, age class was also constant over recordings for
all subjects in the data set (subjects might be measured at slightly different ages, however
recording periods were narrow, and no subjects of transitional ages were considered). A
total of 4 adults (4/0 females and males, respectively), 6 (4/2) adolescent and 7 (4/3) infant
Papio anubis entered the final data set. Subjects were intentionally selected so that the ages
of the classes do not overlap, i.e. to have disjunct age classes. Note that, in principle, age
class and sex can be interrelated, e.g. if there is a bias in the experimentally selected sex
ratios per age group. This is indeed the case in our data set: in the “adult” class, only
females were measured. However, this bias is neither coincidental nor intentional, but owes
to the group structure and social habits of baboons. It forces us to assume that locomotion
of adult Papio anubis is indifferent to sex, or that the sex difference in adults can be inferred
from the observed difference in subadults. More on this to follow.
The body mass of the animals was determined for each recording (averages for
infant/adolescent/adult individuals: 3.0/10.2/13.1 kg). This means that different strides of
the same subject would associate with slightly different body masses if body mass changed
within the narrow time period of recording. Furthermore, body mass can be associated
with the other subject parameters (e.g. trivially with age, because individuals grow). For
the subsequent analyses, this interrelation of subject characteristics needs to be taken into
account.
The two leg long bone segments (hip-knee-ankle) were chosen as a size reference for
normalization of distance values. They measured 0.27/0.41/0.43 m (inft./adol./adult) per
age class on average. Adding the length of the torso segment (head-hip), we retrieved a
total body length proxy, which was used to calculate a “body mass index” (BMI, averages
5.0/11.4/14.1 kg/m for the respective age classes). This is no proper scientific BMI, but
one solely for demonstration purposes in this document.

To prepare the decision on how to include body mass, leg length and BMI in the subsequent
models, behold the first probabilistic model. It is a rather simple one, modeling body
mass as a function of age class and sex. I will use it to settle some fundamentals about how
I apply the modeling procedure herein.
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The Body Mass Model

Take the following linear model for body mass, with body mass θ, intercept α, data vectors
v, slopes β and residuals ϵ:

θ ∼ v1 · α + vmale · βmale + vadol · βadol + vinft · βinft + ϵ (4.2)

Note that all vectors v in eqn. (4.2) are boolean column vectors, containing ones for data
rows of a given category and zeros on all other rows (v1 is an all-true boolean specially used
for the intercept). This way, the decisive slopes are only added to the data rows which match
a given category: for example, only the entries where vmale is True get the value of βmale

added.
A brief recap to homogenize vocabulary:

• The “left hand side”, “independent”, or “outcome” variables (often called θi) are termed
observables in this text. Acknowledged, all parameters are “observed” (or “dependent”,
or “outcome”. . . ), but observables are the ones in focus of a given chapter.

• The “right hand side”, “dependent”, or “input” variables are usually described as
predictors. Again, this label is my arbitrarily changing choice.

• Model components which do not stem from the data table are called (model)
parameters; in the case of linear models these are intercepts, slopes and the residual.

I will explain all components in detail in the following paragraphs.

1. Intercept α: Each model “starts” with an intercept (though it wouldn’t need to, or
the intercept could be implicit). For continuous variables, the intercept is intuitive to
understand: it is the observable value when the predictor is zero. With categorical
variables, the intercept value is the value observed for a given “reference” set/selection
of parameter values. For example, in the body mass model below, the intercept is
approximately corresponding to the average body mass of adult, female animals. The
choice of reference is done by the statistician, it is an arbitrary one, and sometimes
only visible by the category changes associated with slopes.

2. Slopes β: Slopes quantify the change in the value of the modeled observable (e.g.
body mass) when changing along a parameter axis (e.g. sex from female to male).
Some mathematical explanation:

• For binary categorical values, such as sex, this is simple: set the corresponding
value for “female” to 0.0 and that for male to 1.0 and the slope (“female → male”,
or just “male”) will be their modeled difference in body mass.

113



CHAPTER 4. PROBABILISTIC MODELING WORKFLOW

• For multi-categorical values (e.g. age class, three possible categories), one
reference category is chosen (e.g. adults), and separate slopes are modeled for
each of the other groups (i.e. “adlt → adol” and “adlt → inft”). Because for
each slope, only the target category is associated with 1. and all others with 0.,
the slopes determine the pairwise distance of the target categories and the
reference (the category associated with the intercept). No animal is infant and
adolescent for a single observation (categories are mutually exclusive), hence no
observation will get associated with both slopes.

• For continuous values (e.g. age), the slope is related to the numerical values in
that parameter. Parameter ranges must be considered when evaluating effect size.
It usually makes sense to center or even normalize the parameter to make slopes
comparable.

3. Residual ϵ: Even with all measured parameters, some unexplained variation remains
in models of partly random processes. This can be measurement “noise”, or simply
unexplained variation. Its order of magnitude is estimated in the sampling procedure
as the “residual”. The terms “residual”, “epsilon”, and “standard deviation” (in model
context) can be considered approximately synonymous (:statistician-smiley:).

4. Prior Choice and Sampling: Because I use a probabilistic modeling framework
(the python library PyMC), the actual values of the model parameters are determined
in MCMC sampling (see Ch. 4.2.2). This procedure requires start values (“priors”),
for which I usually take the mean and standard deviation of the observed values
(because the sampled model values should certainly fall in that range). Also, there is
a whole lot of voodoo about setting the correct distribution type for a given
parameter. Usually (with the sample size encountered in this data set), it is hard to
falsify the assumption that model values, logarithmized in obvious cases, are
approximately normally distributed (Downey, 2013).

Finally, the MCMC sampling itself asks for some choices by the researcher. I chose
something close to industry standard (No U-Turn Sampler “NUTS”; sufficient tuning
and sampling steps; twenty chains; Student’s T distribution for the posterior) and
verified ex post that sampling went well (“hygiene”).

5. Model Comparison: I skip this here for clarity. Usually, one would have to argue why
the chosen model is the most appropriate one (though of course limited by availability
of parameters). More on it when we get to spatiotemporal gait variables. For body
mass, the model choice is rather trivial, there is not many options but to use the other
subject parameters as predictors. I do not use leg length and BMI as predictors for
body mass, because they share a hierarchy level, are correlated, and thus the idea of
one predicting the other might falsely imply causality.
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6. Data: Because there is usually only one body mass per subject animal in our data
set, the data set onto which I apply the body mass model is reduced (17 observations).
For one animal which was measured at two body masses, the average value was used.

7. Transformations: As an additional technical complication, body mass (and the other
body proportions) have to be transformed. For most body measures, negative values
are implausible, e.g. a negative body mass does not exist. Also, one can usually
observe that the Normality assumption, or in our case a Normal prior distribution,
is better met when log-transforming the values. In consequence, predictions become
more accurate for models of logarithmized measures. This was also the case for the
current data set. Therefore, the body parameters presented here were transformed
with the natural logarithm for modeling, and all values untransformed with the Euler
exponential for presentation.

Body Mass is Age-Dependent (Surprise!)

As expected, body mass and age class are associated (Tab. 4.4). But how much? On average,
adolescents are 2.4 kg and infants are 9.4 kg lighter than adult individuals. The effect of an
animal being infant is deemed relevant because the credible interval does not include zero.
The credible interval is the smallest possible value range to contain 94 % of the values, i.e.
from 3 % to 97 % quantile of the samples; termed “highest (probability) density interval” or
HDI. That interval is comparable to the “standard error of the mean” of a given slope, and
has to be seen in relation to the intercept and model residual to judge if an effect is large or
small, i.e. relevant or not. The difference for the adolescent group exemplifies this: it is in
the order of the ϵ, and the HDI contains zero. Although we know that adolescents weigh less
than adults, the data set is insufficient and effect size too low to give waterproof statistics.
In contrast to age, sex seems to have no effect on body mass (keeping in mind that there are
generally few and no adult males in the sample; slope: +0.6 [−1.9, +3.7] kg ).
Finally, the parameter ν (“nu”) deserves some explanation, to demonstrate another neat
modeling trick (Wiecki, 2013). An often disputed, but indispensable assumption in

Table 4.4: Results of the body mass model.

parameter value interval cred.
α +12.3 (+10.2, +14.8)
βmale +0.6 (−1.9, +3.7)
βadol −2.4 (−4.6, +0.4)
βinft −9.4 (−10.1, −8.6) *
ϵ +2.6 (+1.7, +3.8)
ν +52.1 (+15.1, +94.0)

Asterisk in the “cred.” column indicates model parameters for which the credible interval
does not include zero.
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conventional statistics is the Normality assumption (i.e. that values of a variable are
normally distributed). Likewise, in probabilistic modeling, one can choose the distribution
type (e.g. Normal) of a model parameter, which together with the distribution properties
(e.g. µ = 0, σ = 1) is the prior for that parameter. Distribution properties are adjusted in
MCMC sampling, and the prior only influences the result when sample size is very small.
In contrast, the distribution type stays fixed and has major influence on the outcome.
Hence, choosing a Normal here might need some justification. Part of that justification
comes from model comparison (see Ch. 4.2.2). But in case of the Normal distribution, we
can use a more general distribution (Student’s T) to actually measure how “Normal” our
data is. Student’s T has an extra parameter, which is ν or the “degree of freedom”. The
larger ν, the higher the resemblance to a Normal distribution. In contrast, on lower ν

values, Student’s T has more “weight in the tails”, accounting for “outliers” which are
non-normally far from the mean. For our body mass model, the sampler converged at
ν = 52.1. This is a relatively high value, confirming that body mass is approximately
normally distributed. Usually, model comparison favors the use of a Normal posterior in
such cases.

Multi-Level Modeling

For all following models, there is the option to include the body mass parameter as a
hierarchical (better: multi-level) parameter. This means that, when we have a model which
includes a slope for (centered) body mass, we actually make it three slopes (one for each
age class). I will note this as βbm|age.
As mentioned above, group-wise centering body mass (cbma = bma − mean(bma) ∀a =
ageclasses) can be useful to facilitate interpretation of the model outcome. If data values
are centered, the slopes are relative to a mean, and the intercept will give a value at the
average of all continuous parameters (in this case: at average body weight). And because
age has such a high impact on body weight, it makes sense to center the groups individually,
to get relatively lighter or heavier individuals per age class separated.
The complexity of this matter is not to be underestimated. Just to review our options to
model body mass:

• inclusion or exclusion

• log-transform or not

• not centering or centering to population mean or to age class mean

• multi-level: one slope for the whole population or slope for each of the age classes

All of these choices in combination affect the model, and need to be compared. Even worse:
they affect how to best model other parameters (if bm|age is used, leglength|age might
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be a worse choice than leglength alone, but if bm is a population slope, leglength|age
might become the model of choice). Multi-level modeling gives a lot of options for model
comparison. These will be handled below.

Multivariate Posterior Structures: Mor(e)phometrics

Together with body mass, I modeled leg length (ankle-knee-hip distance, accumulated) and
body mass index (BMI, body mass divided by ankle-knee-hip-head distance). The model
formula from above remains unchanged, except for the left side. But that, namely “multiple
parameters on the left side”, is a concept on its own. The solution is a Multivariate
Posterior. I imagine this as multiple models, sampled in parallel, but cross-connected
through the data and the correlations (like a ladder with steps of chewing gum, floating in
free space. . . yes, I’m running out of metaphors). In an unconnected model, the MCMC
sampler would explore the parameter space randomly, and might be “at different ends”
for two variables at a given time. In contrast, when they are connected by a multivariate
posterior, the sampler path is also connected, and therefore a positive correlation of two
parameters reflects in the values the sampler sees simultaneously. The connection can be
either fixed (empirical correlation, based on the data) or inferred. The correlation is crucial
for predictive sampling to avoid implausible parameter combinations.
Let us rehearse this concept on the body proportions, where it is rather intuitive. Body
proportions (including body mass) are highly correlated. For BMI, this is trivial: it is
defined as the quotient of two other measures.
We can simply calculate the correlation of the three present observables from the raw data.
This would be the empirical correlation. However, according to our statistical theory, the
data we acquired is just a sample from the true, underlying distributions of the observables.
So the correlation might be incomplete or inexact. Probabilistic statistics is the attempt to
infer that true underlying distribution, and when it is known, one can calculate a potentially
more exact correlation (inferred correlation). The inferred correlation is not per se more
exact; imagine a situation where correlation is close to ±1 and the sampler might have
problem with parameter bounds. It depends on the data which one works best (yay, more
model comparison!).
In my toolbox of choice, PyMC, a multivariate posterior can be initialized with either (i) the
empirical or (ii) the inferred correlation structure; a third choice is to use (iii) no correlation.
For cases (i) and (ii), I introduce the observables as a multivariate Student’s T distribution.
The empirical correlation (i) enters the model in form of the Cholesky matrix calculated
from the data3. To get inferred correlation (ii), I instead initialize the MvStudentT with a
so-called LKJ Prior (Lewandowski et al., 2009), which allows me to quantify the posterior
correlation. Finally, uncorrelated posterior (iii) do not need an MvStudentT, but go with

3Subtle technical complication: this variant does not allow the inclusion of an explicit model residual; in
such cases I report the standard deviation of the observables as model residuals.
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independent StudentT’s; the system can sample multiple observables at once.
Note that multivariate blocks will also be relevant on the predictor side. The only difference
between observables and predictors in modeling is the somewhat arbitrary choice of which
variables we define as “dependent”, and which as “independent”. After all, they are all
just distributions, as probabilistic modeling is about juggling distributions. Tricky detail:
a multivariate predictor block must be initialized with inferred correlation (LKJ), because
this block contains inferred slopes and no observed data, and thus the correlation is that of
the slopes, and not of the data.
In the case of our group of body proportions, the empirical correlation is close to unity (Tab.
4.5). It is less strong with the inferred posterior correlation (Tab. 4.6): body mass is highly
correlated with both leg length and BMI, but the latter are not correlated to each other.
The multivariate model also infers the relation to the primary subject parameters (sex and
age class, cf. Tab. 4.7). The values for body mass are identical to those reported above
(Tab. 4.4), but here the outcome is shown for the log-transformed observables. The results
for the additional quantities are consistent with those from body mass, except that we see
that leg length of adolescents is almost identical to that of adults (whereas in body mass,
the difference is more pronounced).
And there are many more body size measures (broad category: morphometrics) which could
be measured and included. (There is always another parameter which one could include
in the model.) BMI was intentionally introduced as a redundant parameter and will not
be included in subsequent models. Body mass and leg length are highly correlated, and
if both are part of another model (e.g. a model on coordination), it might be hard to
distinguish which of them is causally responsible for an observed effect. On the other hand,
I demonstrated that body mass and leg length are slightly different with regard to the
adolescent individuals. Hence, the question whether or not to include either, both, or none
of these two parameters in the more complex models to come remains to be evaluated.
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Table 4.5: Body proportions: empirical cross correlation. Asterisk indicates
parameter pairs in which the Pearson Correlation p-value is less than 0.05.

log( body mass (kg)) log( leg length (m)) log (bmi (kg/m))
log (body mass (kg)) 1 +0.97 * +1.00 *
log (leg length (m)) +0.97 * 1 +0.94 *
log (bmi (kg/m)) +1.00 * +0.94 * 1

Table 4.6: Body proportions: inferred cross correlation. Asterisk indicates
values for which the HDI does not include zero.

log (body mass (kg)) log (leg length (m)) log (bmi (kg/m))
log (body mass (kg)) 1 +0.49 * +0.92 *
log (leg length (m)) +0.49 * 1 +0.18
log (bmi (kg/m)) +0.92 * +0.18 1

Table 4.7: Body proportions: model results. Note that these values refer to log-
transformed body proportions.

intercept female adult adult ϵ
→ male → adolescent → infant

log (body mass (kg)) +2.51 +0.05 −0.21 −1.44 * ±0.19
log (leg length (m)) −0.87 +0.03 −0.03 −0.46 * ±0.08
log (bmi (kg/m)) +2.60 +0.02 −0.18 −1.01 * ±0.16
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Posterior Predictive Sampling

Because the body proportion problem involves still relatively few parameters, a rather
complete visualization is possible (Fig. 4.1). Some observations:

• Comparing the raw data to the predicted values confirms plausibility of the predictions.

• The effect of modeling in log space is visible in the narrower distribution of groups
with lower values.

• Groups with fewer observations (e.g. adults) tend to be wider, reflecting the influence
of relatively wide priors and a high uncertainty in these classes.

• Out-of-sample prediction is possible: adult males were not observed, but their model
values get tuned by the observations of partly similar subsets of data (i.e. other sex/age
combinations).

The visual comparison captures all relevant info in this simple example case. For subsequent
models, such plots are equally valuable, yet the occurrence of continuous predictors and the
increase in complexity require a lot more filtering and adjustment.

Summary: Subject Parameters

The example of a body mass model has already taken us deep into the modeling world.
We explored simple relations (body mass as a function of age class and sex, and the body
proportion cross correlations). This involved a linear model with rather few components. It
is a trivial finding that body mass depends on the age class of our subject, and we will see
how that can be incorporated in subsequent models. With regard to the interrelations of
our body proportion quantities, we encountered multivariate posteriors and saw how they
can serve to infer correlations among the observables. Visual comparison of raw data and
model predictions confirmed that the model converged to plausible results.
All this was more a playground to rehearse and apply some basic modeling concepts, establish
vocabulary and visuals, and to prepare some upcoming design decisions when moving on to
other quantities of relevance.
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Figure 4.1: Subject parameters: raw data (white circles) and model predictions
(distributions).
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4.3.3 Spatiotemporal Gait Variables

With this knowledge about the subject parameters, I will proceed to the next parameter
category: the spatiotemporal gait variables, also called gait variables, spatiotemporals, or
stride cycle parameters (Tab. 4.8). Those are:

• duty factor

• diml. stride distance (relative to lower leg length)

• diml. stride frequency

• diml. speed

• clearance

• trunk angle

The “diml.” indication refers to “dimensionless”, which means that the spatiotemporal
parameter can be normalized, according to the concept of dynamic similarity (see Ch. 4.3.1;
Alexander and Jayes, 1983; Hof, 1996). Just as body mass and its relation to the other
subject parameters was the focus of the previous chapter, we now move spatiotemporal gait
variables to the “left hand side” of the equation, i.e. they are observables, and we guess that
they will be in part predicted by subject parameters.

Model Design

As before, some design decisions should be justified.

1. Parameter Correlation: The spatiotemporal gait variables are intrinsically
correlated. This can have trivial reasons, such as their definition (e.g. speed is the
product of distance and frequency). In other cases, it is at least physically and
physiologically plausible (e.g. lower duty factor at higher speeds). These correlations
must be quantified, which can be part of the sampling procedure. As with moving
from body mass to a set of body proportions, we will have a connected set of
observables. This can also be incorporated in the mathematical descriptions.

The favored model in this case was one which got programmed on the empirical
correlation of spatiotemporal gait variables (Tab. 4.9). The speed parameter
correlation can elucidate how animals reach higher speeds: they walk at increased
stride frequency and cover a larger distance, whereby the duty factor tends to reduce.
This, however, implies no consistent change in clearance, nor does it depend on mean
trunk angle.
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2. Reference Model: I will model the spatiotemporal gait variables as a function of
sex, age and body mass, i.e. all the relevant subject parameters. The goal is to find
out how strides of a given subject are characterized, e.g. whether certain aspects of
the subject lead to difference in their gait characteristics.

There are two basic strategies to identify the final model. As mentioned before, there
are logical reasons for a model choice, and quantitative comparison. Choosing an
inclusive strategy (i), one might start off with an “all in” model. From there, one can
iteratively leave out parameters, perform model comparison, and see whether models
with fewer parameters are favored by information criteria. Alternatively, starting
from a minimal model (ii), one can gradually increase complexity and find the point
when adding parameters does not indicate improvement. Either way, the procedure is
iterative: sample all plausible, possible models, and perform model comparison (Ch.
4.3.3). Ideally, both strategies will converge on “the best model”. This model is
simply the one which, of a broad range of models, had favorable model scores, and is
logically consistent. It is labeled ex post as the reference model.

In the case of spatiotemporal gait variables, the reference looks as follows. The
equations below extend the θ from (4.2) to be a multivariate data “block” (i.e.
matrix). It has the number of observations in rows, and the number of observables in
columns. Similarly, data vectors v, intercept α, slopes β and residual ϵ receive an
extra dimension and become matrices (which means incredibly fuzzy work for model
programming, but can be considered bean counting given that we may turn to the
actual outcome one variable at a time).

Here is thus the formula for one gait variable:

θi ∼ v1 · αi + vmale · βmale,i + vadol · βadol,i + vinft · βinft,i + vcbm · βcbm,i + ϵi (4.3)

Therein, i is one of the spatiotemporal gait variables, which are all sampled in a
multivariate model. The intercept vector v1 is simply a column vector of ones. The
boolean vmale holds values one for every stride for a male subject, and zero for females.
Similarly for vadol and vinft, which are mutually exclusive in the equation (i.e. animal
is either adolescent, or infant, or neither, but never two of those options). In contrast,
vcbm for centered log body mass contains continuous values; the centering was done per
age class, and after log transformation. Group-wise centering affects the data vector,
however the body mass slope is not affected by age class (a model with βbm|ageclass was
also included in model comparison).

3. Prior Choice: A Normal distribution was used for all the slopes, a multivariate
Student’s T for the observables. Informative priors (global mean and standard
deviation) are used, which is a good heuristic to improve sampling without biasing
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the sampler. The multivariate block of observables is initialized with the empirical
correlation, which facilitates the work of the sampler (yet all three options of
multivariate posterior were applied and compared).

Subject Parameters Affect Stride Characteristics

The model of spatiotemporal gait variables quantifies how stride (or gait) characteristics in
bipedal baboon walking are affected by subject parameters (Tab. 4.10).
Clearance is highest in adult males of low body mass (though we did not actually observe
those; the effects are separately determined for age class, sex, and body mass). Females and
subadults lift their feet less during the swing, as do animals of comparatively higher body
mass. Duty factor is higher in infants: they are in ground contact for a longer portion of
the stride. All of the three speed-related parameters (i.e. distance, frequency, speed; all
dimensionless) are affected by body mass, though only for frequency the effect is clearly
different from zero. Animals of higher body mass tend to take shorter steps of higher
frequency, which seems to overcompensate in terms of speed. Infants cover lower relative
distance at lower frequency, which adds up in terms of relative speed. The results on trunk
angle show that males hold their upper body less upright than females (i.e. at a higher
trunk angle; though as with any sex effect this might be due to few, influential observations).
Although this inference can only stem from the subadult classes, it is separate from (and in
opposing direction of) an age effect: adults seem to walk more crouched than infants (i.e.
infants walk with a lower trunk angle, more upright).
A value which is sampled, but not shown, is the ν parameter (or degrees of freedom, see
Ch. 4.3.2) of the Student’s T posterior. It is high (ν = 54.2), indicating that the posterior
distribution has hardly more “weight in the tails” than a Normal distribution would; the
Normality assumption is a good approximation in this case.

Gait Variable Two Step Prediction

The posterior prediction of spatiotemporal gait variables holds an additional complication:
as shown in the body proportion model, we now have interdependent predictors (i.e. body
mass might depend on age and sex, though note that it is group-wise centered). Therefore,
two consecutive steps of posterior prediction are necessary: first predict a number (e.g. n
= 1000) of body masses, then based on those samples predict spatiotemporal gait variables.
For a given setting for sex and age class, the workflow is as follows.

1. draw posterior predictive samples from the body proportion model, to get n body mass
samples

2. convert these samples (i.e. log transform, age class-wise centering with the means from
actual data)
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Table 4.8: Observed spatiotemporal gait parameter value ranges. stdev =
standard deviation.

gait variable units mean stdev.
clearance % 0.35 0.05
stride distance m 0.57 0.16
stride duration s 0.56 0.14
duty factor 1 0.63 0.07
stride frequency Hz 1.92 0.55
speed m

s
1.10 0.41

trunk angle rad 0.57 0.18

Table 4.9: Empirical Cross Correlation of Spatiotemporal Gait Variables.
Significant correlations (as per Pearson’s correlation coefficient and test for
non-correlation) are marked by asterisks. d./d.s.: “dimensionless (stride)”
parameter.

clearance d.s. distance duty factor d.s. frequency d. speed trunk angle
clearance 1 +0.32 * −0.42 * −0.01 +0.15 +0.38 *
d.s. distance +0.32 * 1 −0.57 * +0.09 +0.52 * −0.12
duty factor −0.42 * −0.57 * 1 −0.52 * −0.72 * −0.27
d.s. frequency −0.01 +0.09 −0.52 * 1 +0.89 * +0.12
d. speed +0.15 +0.52 * −0.72 * +0.89 * 1 +0.07
trunk angle +0.38 * −0.12 −0.27 +0.12 +0.07 1

Table 4.10: Effects of Subject Characteristics on Spatiotemporal Gait
Variables. Values which do not contain zero in their HDI are indicated
by an asterisk.

intercept female adult adult c.log. body mass ϵ
→ male → adol. → infant

clearance +0.39 +0.05 * −0.05 * −0.06 * −0.12 * ±0.05
d.s. distance +1.72 +0.16 −0.06 −0.13 −0.38 ±0.25
duty factor +0.58 −0.05 +0.01 +0.10 * −0.03 ±0.07
d.s. frequency +0.39 −0.02 −0.02 −0.06 +0.21 * ±0.10
d.s. speed +0.68 +0.04 −0.06 −0.16 * +0.21 ±0.20
trunk angle +0.67 +0.14 * −0.12 −0.20 * +0.10 ±0.18
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3. replace the data in the spatiotemporal gait variable model with these samples

4. then draw (i.e. predict) n spatiotemporal gait variable samples.

Step 3 in this workflow might seem odd, but it is exactly the same procedure we get when
choosing a setting for age and sex. The only difference is that we do not set n boolean
values, but n values which are drawn from a continuous distribution. Although one should
in theory sample multiple spatiotemporal gait variable values for each sample of body mass,
it is sufficient (and technically convenient) to keep the n constant throughout the procedure
and compensate by a large number of samples.
As with the subject parameters, we can compare the observed values with the predictions
of the model (Figs. 4.2 and 4.3). The data and predictions are overall consistent with the
effects identified by the model (Tab. 4.10), and it is good sport to reason how the prediction
for male adults came about.

Stride PCA in Posterior Prediction

Due to the intrinsic correlation of stride distance, stride frequency, and speed, it is an option
to submit them to a PCA for optional dimensionality reduction. In posterior predictive
sampling, the same PCA must be used to transform the samples to PCA space.

Model Comparison

One of the great features of quantitative models is the ability to perform model comparison.
An arsenal of “information criteria” is available to compare models and choose which one
succeeds best in capturing the effects present in the data, without being over-complex.
In addition to the reference model above, many other models were sampled for comparison.
Those are similar to the reference, but individual parameters are removed in turn, or their
hierarchical structure is altered (in the case of body mass). In other test models,
parameters were added (e.g. leg length). The centering of body mass was optionally
omitted. Additionally, the correlation structure of the observables (“empirical” per default)
can be changed to “inferred”.
The outcome of this particular comparison method (Tab. 4.11) are “LOO” values (“Leave
One Out”) as a quantification for the model performance/complexity trade-off. As
mentioned, there are alternative quantifiers (e.g. WAIC), but experience shows that
rankings from different information criteria are often similar. Given relatively little
difference and wide standard error ranges in the LOO estimate, we can conclude that
almost all of the tested models yield some plausible descriptions of the data (in other
words: most models do not perform clearly better or worse than the reference). In fact, the
reference model is not the highest on the list: for example, choosing a Normal distribution
instead of a Student’s T for the observables would be better, which is consistent with the
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Figure 4.2: Spatiotemporal gait variables: raw data and model predictions. Part
1.

Table 4.11: Model comparison. LOO is the model goodness indicator. For
convenience, delta (LOO difference from highest ranking model) and
standard error (range of the LOO estimate) are displayed.

rank loo delta std err description
0 286.5 0.0 9.7 additional predictor- leg length
1 286.4 0.0 9.8 additional predictor- BMI
2 285.9 0.6 10.1 Normal distribution in posterior
3 285.7 0.7 9.6 body mass/age class level
4 285.6 0.9 10.1 reference model
5 284.9 1.5 9.8 non-centered body mass
6 284.6 1.9 9.8 no sex slope modeled
7 280.3 6.2 10.1 body mass excluded entirely
8 280.1 6.4 10.4 age class slopes excluded
9 276.9 9.6 16.8 sampled observable covariance

10 208.4 78.1 11.8 spatiotemporals in SI units

127



CHAPTER 4. PROBABILISTIC MODELING WORKFLOW

0.5

1.0

1.5

2.0

2.5

d
.s

.
d

is
ta

n
ce

female male

−0.25

0.00

0.25

0.50

0.75

d
.s

.
fr

eq
u

en
cy

adultadolescentinfant

ageclass

0.0

0.5

1.0

1.5

d
.

sp
ee

d
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inferred high value for ν. This switch in this case would be little more than cosmetics,
since that extra parameter does not affect the results presented above.
Among the models ranking lower than the reference are models leaving out either of the
current predictors. Most of them are still within the range of the reference LOO, so it would
be justifiable by logical arguments to choose either of them as reference. The only outlier is
the model with “spatiotemporals in SI units”, i.e. where distance, frequency, and speed are
measured in absolute values. Those values are less well explained by a linear model with the
given priors and structure. This does not mean that model is wrong: most likely, they are
just less normally distributed. Yet for the sake of constructing a cascade of models (from
subject-, via stride-, to coordination parameters), it seems better to choose the dimensionless
parameter set.
On the other hand, comparison would favor an age class dependent (hierarchical) body mass,
or the inclusion of another body proportion proxy (leg length or BMI). However, this ranking
appeared only after I made a final, last-minute (and presumably minor) adjustment to the
data. Any extra data could tip the balance back towards the current structure - or not.
This exemplifies the finite sharpness of model comparison. It guides model design, and some
designs can be clearly excluded (falsification!). Yet it should by no means be interpreted as
carved in stone ultimate wisdom. A problematic corollary of this is the need to re-sample
a high number of models after even the tiniest change in the data. Combined with the
long duration of MCMC sampling, this can be prohibitive, but partially alleviated with an
efficient sampling toolbox (see Ch. 4.2.2).

Hierarchical Components (“Random” Effects)

Above, I have touched on the concept of a hierarchical parameter (bm | ageclass), and in
fact it might be chosen here over the current reference. Other hierarchical structures are
possible and should be included if that is indicated by model comparison.
A particularly popular one is a “random intercept”, where “random” means that each subject
has its own, specific value for and intercept. In the case of spatiotemporal gait variables,
such a construct would be possible if we had longitudinal sampling (e.g. individuals recorded
at different ages, or different body weights). However, given that the set of subjects is
partitioned (e.g. into male and female), a model structure with a subject-level intercept
might shift variance to that “random” intercept which would otherwise be captured on
the sex slope. Such ambiguities in effect distribution sometimes manifest in sampling failure
(because the sampler can freely move values between the overlapping categories, and thereby
fails to converge). Other times ambiguous models get disfavored in model comparison due
to the extra complexity. And yet on other examples in-sample prediction produces weird
results (e.g. unlikely parameter combinations).
In conclusion, due to the data structure, I would argue that a subject level intercept is not
useful in the case of spatiotemporal gait variable model. An attempt to include such a model
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for model comparison failed accordingly during MCMC sampling, which is why it is not even
in the model comparison list. Note that this sampling problem would not become apparent
in least squares modeling.

Summary: Spatiotemporal Gait Variables

The presented findings on spatiotemporal gait variables are substantial insights into the way
in which spatiotemporal characteristics of gait in Papio anubis are affected by sex, age class
and body mass. These findings are interesting by themselves and were part of the prior
research on the data set (Druelle et al., 2021). They are re-iterated here with a different
modeling framework and serve to exemplify important statistical concepts, most importantly
(two-step) posterior predictive sampling and model comparison.
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4.3.4 Posture and Coordination

The remaining classes of model parameters (Tab. 4.2, Ch. 4.3.1) are posture and
coordination. In this chapter, I will briefly describe how they are acquired, before even
briefer presenting the results of probabilistic models which quantify their dependence on
subject and spatiotemporal gait variables.
This chapter does not introduce any new concepts of statistics, but instead has some nice
graphs and figures. Its purpose is to round off the baboon story and provide the basis for
further discussion.

Quantifying Posture and Coordination

Among the most relevant outcomes of video-derived data and kinematics are joint angles.
Their temporal profiles, i.e. the joint angle over time, and how they change for different
settings or subjects, can yield insights on coordination and motor control. In cases were we
have steady state locomotion, one can exploit the fact that joint angle profiles are cyclic
and submit them to a Fourier Series Decomposition (cf. Mielke et al., 2019). This operation
is simply a reversible transformation, and no information is lost in the process. Temporal
profiles can thereby be investigated in the frequency domain, which involves a complex
(math.) quantification of a given number of harmonics (this is often called the “spectrum”
of a signal). This is perfectly analogous to harmonics on a guitar string, and because one
can tune models of Fourier Coefficients with MCMC sampling (see above), guitars are now
officially my favorite metaphor in explaining statistics.
Some characteristics are particularly prominent in the frequency domain/spectrum:

• The temporal mean value of a joint angle appears as the zero’th Fourier coefficient (i.e.
where the string is “hung up”).

• The magnitude of the coefficient values corresponds to the amplitude (i.e. loudness,
per coefficient or accumulated).

• Fourier coefficients rotate in the complex plane depending on their phase (rarely
perceived in music, except in directional hearing).

Mean, amplitude and phase are familiar from general theories and descriptions of oscillations.
They can be classified as affine components of a signal, which simply means that they
can be altered by multiplication with a scalar. (Maybe not) coincidentally, they also have
a biological meaning. The mean of all joint angles defines posture (sensu stricto, it is
“dynamic” posture). Think of school children walking in a duck walk (or try it yourself, best
immediately, but with vocalization): their limbs will be far from straightened, and their joints
set at high angles. Amplitude corresponds to effective range of motion (eROM): when you
try to walk over ice with some care to not slip, it will most likely decrease. Herein, I chose
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to subsume mean and amplitude as “posture” (sensu lato). Phase quantifies the relative
timing of oscillating parts with respect to each other, which is, if you like, a “regular” part
of coordination. Lastly, if mean, amplitude, and phase are subtracted or normalized, the
(non-affine) remainder of the signal can be described as an “irregular” part of coordination.
This removal of affine signal components is achieved by the method of Fourier Coefficient
Affine Superimposition (FCAS, Ch. 3). More precisely, the purpose of FCAS is to separate
mean, amplitude, phase and the non-affine remainder, and use them in reasonable ways. In
the present analysis, I used it to disassemble hip, knee, and ankle joint angle profiles and
extract posture (mean joint angle and range of motion) and coordination (the remainder,
including phase differences). Phase was not isolated for the different joints; however, a
“global phase alignment” was performed by temporally aligning all joint angle profiles so that
the phase difference of the whole limb (head-hip-toe angle) is zero. I find this mathematically
more convenient than the conventional alignment to toe touch down, which in my opinion
over-emphasizes a single time point and has problems with all-too-variable duty factors.
A minor practical complication is that there are immensely many parameters in the
“coordination” category (number of harmonics retained times number of joints times two
for real and imaginary part). The often misused bread-and-butter method for
dimensionality reduction is PCA. Hence, I submit the coordination parameters to a PCA
for modeling. The first 8 components capture 91.0% of the variance and were submitted to
the modeling procedure.
To summarize: by neat mathematical tricks, we are able to extract direct quantitative
representations of posture and coordination for each stride.

Model Design

Posture and coordination are technically similar for the model procedure. However, they
depend differently on the available predictors. Furthermore, they differ in posterior design:
because coordination observables were derived from a PCA (which is an orthogonal
transformation), these parameters are non-correlated per definition - no multivariate
posterior necessary. In contrast, the posture parameters correlate in a characteristic way
(Tab. 4.12), and the model with a sampled covariance structure was favored by model
selection. Therefore, posture and coordination were handled by two separate models with
similar general structure.
In addition to the predictors used to infer spatiotemporal gait variables, the models now
include the gait variables themselves on the right hand side. Since the number of observations
has not changed, but the number of predictors increases, modeling gets challenging. As
it turns out, a multivariate block of gait variables was too complex to be included, and
consequently sampling was unsuccessful. At the same time, interdependence of speed-related
parameters should not be disregarded. I solved both problems by using another PCA, in this
case for the gait variables (see Ch. 4.3.1). Although this reduces the number of predictors
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by just one, it enables successful sampling.
The reference model for posture and coordination is as follows:

θi ∼ v1,i · αi+
+ vmale · βmale,i + vadol · βadol,i + vinft · βinft,i + vcbm · βcbm,i+
+ vclr · βclr,i + vdf · βdf,i + vtrnk · βtrnk,i + vstr1 · βstr1,i + vstr2 · βstr2,i+
+ ϵi

(4.4)

In equation (4.4), the lines correspond to the four predictor parts (intercept, subject
parameters, spatiotemporal gait variables, residual). Abbreviations are as above, plus clr:
clearance, df: duty factor, trnk: trunk angle, str1 / str2: stride PCs.
Implications from model comparison are overall similar to those in the spatiotemporal gait
variables. Some exceptions are better-ranked models with left-out predictors, which however
were not used because I prefer to keep parameter selection and basic structure consistent
throughout the chain of models. Interesting results are anticipated by the comparison: for
example, the trunk angle, which per definition contributes “half” of the hip joint angle
profiles (adjacent segment), is an integral part of the posture model but not relevant for
coordination.
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Table 4.12: Sampled cross correlation of posture parameters. Values of which
the HDI excludes zero are marked by asterisks. “Mean” refers to the
temporal mean of the joint angle profile, whereas “amplitude” is related
to range of motion at that joint.

hip hip knee knee ankle ankle
mean amplitude mean amplitude mean amplitude

hip mean angle 1 +0.53 * −0.57 * −0.07 +0.07 −0.26
hip amplitude +0.53 * 1 −0.12 −0.30 −0.08 −0.01
knee mean angle −0.57 * −0.12 1 −0.11 −0.38 * +0.25
knee amplitude −0.07 −0.30 −0.11 1 +0.03 +0.05
ankle mean angle +0.07 −0.08 −0.38 * +0.03 1 −0.31 *
ankle amplitude −0.26 −0.01 +0.25 +0.05 −0.31 * 1

Table 4.13: Model comparison of posture models.

rank loo delta std err description
0 235.0 0.0 14.4 age class slopes excluded
1 231.8 3.3 13.8 no sex slope modeled
2 231.3 3.8 14.0 additional predictor- leg length
3 229.9 5.1 14.8 reference model
4 229.9 5.1 14.4 Normal distribution in posterior
5 229.4 5.6 13.3 body mass excluded entirely
6 229.3 5.7 14.8 body mass/age class level
7 229.1 5.9 14.9 additional predictor- BMI
8 228.2 6.8 15.0 duty factor slope excluded
9 226.7 8.3 14.8 non-centered body mass

10 224.8 10.2 14.3 stride PC1 slope excluded
11 222.7 12.3 15.2 clearance slope excluded
12 212.5 22.5 15.1 stride PC2 slope excluded
13 196.3 38.8 8.6 fixed observable covariance
14 187.8 47.2 14.9 trunk angle slope excluded
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Table 4.14: Model comparison of coordination models.

rank loo delta std err description
0 337.3 0.0 15.3 age class slopes excluded
1 332.8 4.5 14.3 body mass excluded entirely
2 332.0 5.3 14.8 additional predictor- leg length
3 330.7 6.6 14.7 additional predictor- BMI
4 330.6 6.7 14.8 reference model
5 330.6 6.7 14.7 Normal distribution in posterior
6 330.2 7.1 15.2 no sex slope modeled
7 329.7 7.7 14.8 trunk angle slope excluded
8 329.4 7.9 14.2 stride PC2 slope excluded
9 329.2 8.1 14.5 non-centered body mass

10 328.5 8.8 15.2 stride PC1 slope excluded
11 327.3 10.0 14.6 body mass/age class level
12 327.3 10.0 14.8 clearance slope excluded
13 326.6 10.8 14.9 duty factor slope excluded
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Lots of Figures

The “statistics tutorial” part of this journey ends here, where the biological discussion begins.
Following below is a series of figures and tables which I will leave uncommented, to open a
discussion on baboon kinematics, if you like.
Whereas posture parameters have an intuitive meaning (mean joint angles and eROM), it
seems futile to interpret the outcome of the coordination model (Tab. 4.16, Figs. 4.7 and 4.8)
directly. The observables are principal components of Fourier coefficient non-affine residuals
– even Fourier himself could not make sense of such numbers. However, it should be pointed
out that PCs are ordered by the variance they cover, hence the first ones capture the larger
effects. Furthermore, the edges of the coordination space can be sampled and re-transformed
to joint angle profiles, which I demonstrated elsewhere (e.g. Fig. 3.3 in Ch. 3).
The role of duty factor deserves special attention to illustrate what level of detail is contained
in these figures. Although zero difference is not excluded by the HDI (probably I should
have log transformed it, or given it a Beta distribution), some duty factor slopes are higher
than others (Tab. 4.15). We can learn from this that hip and knee angle are affected (hip:
more flexed, knee: more extended on average) and that the knee range of motion increases
with duty factor. Duty factor also has the biggest effect on coordination, being the highest
slope value on PC1 (Tab. 4.16).
In combination, posture and coordination values can be translated back into joint angle
profiles. This is especially interesting for prediction (e.g. Figs. 4.5 - 4.8). The final cherry
on this cake (Fig. 4.9) is thus a promising attempt to predict joint angular profiles for the
given classes.
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Figure 4.5: Posture model predictions. Part 1: mean joint angles.
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Figure 4.6: Posture model predictions. Part 2: amplitudes (range of motion).
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Figure 4.7: Coordination model predictions. Part 1.

141



CHAPTER 4. PROBABILISTIC MODELING WORKFLOW

−0.2

0.0

0.2

P
C

5

female male

−0.2

0.0

0.2

P
C

6

−0.2

0.0

0.2

P
C

7

adultadolescentinfant

ageclass

−0.2

0.0

0.2

P
C

8

Figure 4.8: Coordination model predictions. Part 2.
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Figure 4.9: Joint angle profile predictions from combined results of coordination
and posture models. Thick lines are actual observations; thin lines in the
background are posterior predictive samples. Identical to Fig. 2.8 in Ch. 2,
yet this time it should be clear how the prediction was performed.
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Lots of (New) Questions

The results of in-sample prediction of joint angle profiles in the presented form (Fig. 4.9)
mainly serve to confirm whether a model was correctly tuned to the data or not. But this
capability also opens up a whole set of questions for which the original data set might have
been too fragmented or complex. Here is one example.
I touched above on the influence of duty factor. One might want to ask: How do joint angle
profiles in bipedally walking baboons change with duty factor? This parameter
changes with age class and potentially also with sex (Tab. 4.10). Hence, plotting all joint
angle profiles of low duty factor strides (LDS) and comparing them to high duty factor
strides (HDS) will probably be confounded with a comparison of juveniles and adults and
unbalanced sex ratios in these groups. Sample sizes are low due to data fragmentation,
thus filtering for adult females (8 strides) does not retain enough data to derive statistically
relevant conclusions. In fact, to answer the duty factor question above, one would like to
use information from within-age class comparisons and from both sexes, because each of
these classes contribute their own bit to our knowledge of duty factor-related changes in
kinematics. This is what the probabilistic model did: it separated effects of the subject and
spatiotemporal gait variables. Ideally, the model has learned the concerted influence of these
parameters on the outcome parameters.
So let us ask the model what the effect of duty factor is, specifically for adult females! The
prediction (Fig. 4.10) depicts the exact temporal coordination of joint angles within the
specified group. Changing from LDS to HDS, the hip mean angle increases (more flexed),
which indicates that a prerequisite for quicker strides is a somewhat extended posture. The
knee is affected in terms of amplitude. Curiously, the ankle joint profile is hardly altered
during the swing phase (phases not indicated in figure, but it is the latter part of the cycle
progress and can be guessed from the ankle) except that obviously the “second trough” in the
trace starts later; the stance phase again is altered in terms of mean joint angle. As a bonus,
we can see the variance in the strides (as shaded traces in the background), though that
variance might be an over-estimation due to low data sample size (partially influenced by
wide priors). Remember that duty factor cross-influences other spatiotemporal gait variables
(Tab. 4.9). Luckily, it is easily possible and might be worth comparing the speed etc. of the
selected, predicted strides.
The capacity to fix some parameters and “playing” with others is immensely useful for all
kinds of research questions, beyond the context of kinematic analysis. As shown above, the
prerequisite is a well-fit probabilistic model of the phenomenon you want to analyze, and a
sufficiently high number of observations.
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Figure 4.10: Joint angle profile predictions for duty factor quantiles, for adult
females. Thick lines: averages; thin lines: individual predictive samples.
Caution: to emphasize differences, the range of y-values varies on the three
panels.
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4.4 Summary

With this chapter, I attempted to plant the seed which will grow into your love for the
beauty of probabilistic modeling. Alternative (and less ambitious) claim: you could call this
my illustrative/colloquial/desperate attempt to explain what I think when I hear or talk
“statistics”.
Still, I hope I kindled some good ideas.

This rough overview is the basis of the subsequent chapter, in which I will take the modeling
procedure one more step further to predictively model subject parameters as a function of
gait, posture, and coordination (Ch. 5). The intention of this chapter was also to facilitate
orientation for those who would like to look at the scripts that generated all the models,
figures, and tables above (available at https://git.sr.ht/~falk/papio_fcas).
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Chapter 5

Predictive Modeling of Piglet
Locomotor Kinematics
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5.1 Abstract

In the study of vertebrate locomotion, kinematic measures of gait, dynamic posture, and
coordination often change when comparing subjects of different body mass, size, and age.
Is it, conversely, possible to infer subject characteristics from the kinematic measures? For
this study, piglets (Sus domesticus) were filmed from lateral perspective during their first
ten hours of life, an age at which body mass and size have major consequences for survival.
We apply deep learning methods for landmark tracking (DeepLabCut), calculate joint
angle profiles, and apply information-preserving transformations (Fourier Series and PCA)
to retrieve a multivariate kinematic data set. We train a probabilistic model to predict
subject characteristics from kinematics. The model infers subject characteristics accurately
for strides from piglets of normal birth weight (i.e. the category it was trained on), but
surprisingly predicts the body mass and size of low birth weight piglets (which were left
out of training, out-of-sample prediction) to be “normal”. The discrepancies between
prediction and observation confirm that dynamic posture and coordination are unaffected
by lower birth weight and lower size, which might indicate that low birth weight does not
imply locomotor deficits. However, the age of some (but not all) low birth weight
individuals is underestimated, supporting the hypothesis that these piglets can experience
a delay in locomotor maturation.
This chapter was submitted to the Journal of Experimental Biology in February 2022.
Rejection led to the revision of the use of Fourier methods in locomotor biomechanics (Ch.
2). An alternative version of this chapter was finally published in 2023 (Mielke et al.,
2023); that text targets a veterinary audience, but results are identical to the version
herein. The history of the document can be followed on BioRXiv
(https: // www. biorxiv. org/ content/ 10. 1101/ 2022. 02. 04. 479126v3 ) and git
(https: // git. sr. ht/ ~falk/ piglet_ fcas ).
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5.2 Introduction

Vertebrate locomotion is a complex phenomenon. The kinematic and dynamic
measurements obtainable in experiments represent the collective output of interacting
variables of an ensemble of subsystems: the musculoskeletal apparatus, energy supply,
metabolism, and multiple levels of neuro-motor control (Nishikawa et al., 2007). All these
subsystems are potentially affected by characteristics of the animal (e.g. age, due to
individual development) and by external circumstances (e.g. friction) in different,
non-trivial ways. Conversely, studying alterations in locomotor patterns under controlled
experimental conditions holds diagnostic potential (e.g. Figueiredo et al., 2018). In
well-studied species, it is even possible to identify individuals from kinematics (e.g. Patua
et al., 2021).

Yet the complexity of the biological system is a major challenge to locomotor research. In
a hypothetical experiment, one might record two animals of different weight, walking at
different speeds, and producing two distinct kinematic patterns (e.g. one tending to bend
the knee and ankle joints, the other emphasizing bending of knee and hip). Additionally,
even for identical external conditions and in a single individual, there is intrinsic variation
in the process, owing to the fact that “successive movements [...] never exactly repeat
themselves” (Bernstein, 1935). Which of the many “input factors” is responsible for the
difference in ensemble output, i.e. kinematics? This analysis question is common in research
on bipeds (e.g. Bruton et al., 2013; Ganley and Powers, 2005; Stiffler-Joachim et al., 2020)
and quadrupeds (e.g. Irschick and Jayne, 1999; Pike and Alexander, 2002; Stavrakakis et al.,
2014), and the solution is not novel. Multivariate models are capable of handling complex
situations, given sufficient data. However, the high dimensionality of kinematic data sets, the
multi-parameter, multi-level (hierarchical) covariate situations, and the high video tracking
workload have often been a limiting factor in the particular case of vertebrate locomotion
(Jackson et al., 2016; Michelini et al., 2020; Seethapathi et al., 2019).

Several recent technological advances have enabled researchers to tackle scientific questions
on locomotion in a more efficient way. Firstly, the past few years have brought huge leaps
in terms of computer vision, deep learning, and thereby semi-automatic video tracking
methods (Corcoran et al., 2021; Jackson et al., 2016; Karashchuk et al., 2021; Mathis et al.,
2020; Mielke et al., 2020, cf. Ch. 9.2). These tools typically require a manually tracked
subset of the data as the “training set” for a neural network, which is then able to track
landmarks on further videos in high through-put, hopefully with reasonable accuracy. A
second field of technological advance are probabilistic models, which build on an elegant
technical implementation of Bayesian theory (Markov Chain Monte Carlo / MCMC
sampling, cf. Gelman et al., 2020; McElreath, 2018; van de Schoot et al., 2021). Such
models can naturally incorporate hierarchical parameter interrelations and intrinsic
variability. The main reason for this is that probabilistic models work on data
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distributions, and their outcome are distributions and “effect likelihoods”, rather than
point estimates. This can be informative on an intrinsically varying process such as
locomotion (Mielke et al., 2018b). Machine Learning methods for video point tracking are
validly advancing to be the standard in kinematic analysis, whereas probabilistic models
still lack wide recognition in the field, despite their potential.

Piglets are a well-studied model system in which scientific interest joins the economic
interest of commercial breeding. These animals have been subject to a variety of locomotor
studies, including paradigms to test the effects of breed (Mirkiani et al., 2021), birth weight
(Vanden Hole et al., 2018a, 2021, 2017), surface friction (von Wachenfelt et al., 2008),
welfare (Guesgen and Bench, 2017), various pathologies (Abell et al., 2014; Benasson et al.,
2020; LaVallee et al., 2020), and more (cf. Netukova et al., 2021). Of particular interest has
been the occurrence of a subset of individuals which are born with lower weight (LBW, low
birth weight) than their “normal” (NBW) littermates. There are multiple standards to
classify these birth weight categories, using absolute mass, litter quantile criteria, or
asymmetry of body proportions (Amdi et al., 2013; D’Inca et al., 2011; Feldpausch et al.,
2019; Quiniou et al., 2002; Roehe and Kalm, 2000; Van Tichelen et al., 2021; Wang et al.,
2016). A possible cause of low birth weight is intra-uterine growth restriction, and LBW
phenotype seems often, but not always, to correlate with low vitality and a reduced chance
of survival (Baxter et al., 2008; Hales et al., 2013; Muns et al., 2013; Van Ginneken et al.,
2022). Locomotor maturation after birth is quick (Andersen et al., 2016; Vanden Hole
et al., 2017), yet crushing by the sow constitutes one of the major causes of piglet mortality
(Edwards and Baxter, 2015; Marchant et al., 2000). The likelihood of being crushed is
directly reduced by more agile locomotion. Thus, locomotor capabilities are crucial for
piglet survival, and delayed development might be fatal.

Previous studies from our group (Vanden Hole et al., 2021, 2017) raised the hypothesis
that the apparent difference in LBW and NBW individuals can be attributed to delayed
development. They measured spatiotemporal gait variables (e.g. stride frequency and
distance, speed, duty factor), which are collective variables of the actual kinematics (cf.
Aerts et al., 2000; Newell and Liu, 2021; Nishikawa et al., 2007). This strategy has the
advantage that it requires only five landmarks (four limbs, one reference) to be tracked,
which used to be a crucial trade-off to handle large data sets. However, the the collective
variables cannot capture full information on intra-limb coordination (i.e. the relative
timing of segmental movements within a limb; as opposed to inter-limb coordination, i.e.
the relative timing of the cycling of the different limbs). This complicates disentangling
effects such as those of size, age, (birth) weight, and disease. It is expected that animals
adapt their gait to the physical constraints of motor behavior, which are depending on the
weight and other characteristics of the subject. However, the changes to kinematics might
be more subtle, and collective variables might not be altered in a distinct way. For
example, an animal might learn to move its joint angles in a more efficient way by adapting
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clearance to substrate conditions (Mielke et al., 2019; von Wachenfelt et al., 2008), which
could in principle be achieved without changing the speed of voluntary locomotion on those
substrates. Hence, it would be desirable to include full kinematic information.
Using the semi-automatic landmark tracking techniques mentioned above, one can extend
the analysis of spatiotemporal gait variables to quantities of intra-limb coordination with
manageable effort. However, using the whole set of raw point coordinates of joint angle
profiles of interest raises the issue of dimensionality (two to three coordinates per reference
point/joint, minimum a hundred temporal samples; simply too many data variables).
Statistical modeling requires a minimum number of observations for being able to infer
effects of the different variables (Austin and Steyerberg, 2015; Frick, 1996; Maxwell et al.,
2017; Riley et al., 2020). The common solution is to reduce the dimensionality with an
appropriate transformation. To choose a transformation, it can be exploited that common
analysis procedures in locomotor biomechanics require steady state locomotion. “Steady
state” implies that the behavior consists of repetitive blocks of kinematics, i.e. stride
cycles. And one of the most common sets of techniques in physics and engineering to
handle cyclic data is Fourier Analysis, or more specifically Fourier Series Decomposition
(FSD; Bracewell, 2000; Fourier, 1822; Gray and Goodman, 1995; Mielke et al., 2019; Pike
and Alexander, 2002; Webb and Sparrow, 2007). With FSD, joint angle profiles are
transformed into their representation in the frequency domain, i.e. an array of harmonics.
Some of the characteristics of the profiles (namely mean joint angle, amplitude, and phase)
are more readily captured by those harmonics and can optionally be removed. This is most
intuitive in the case of phase: removing phase differences enables a mathematically optimal
temporal alignment of the profiles. By isolating the other characteristics, mean and
amplitude, the joint angle profiles can be transformed to meaningful quantities such as
dynamic posture (mean joint angle and effective range of motion), and coordination sensu
stricto (relative phase/joint timing and residual kinematics, cf. Mielke et al., 2019, and Ch.
2). Harmonics are independent of temporal sampling and duration: the coefficient array is
of fixed size, which is useful for subsequent multivariate analysis methods, such as
Principal Component Analysis (PCA). Another advantage of this transformation procedure
is that it is reversible because all mathematical information is retained in the process
(which is not the case when using collective variables alone). This means that joint angle
profiles can be reconstructed for any observed or hypothetical point in parameter space,
which enables in-sample and out-of-sample predictive sampling.
To summarize, the Fourier Series decomposition provides a mathematically convenient and
biomechanically meaningful representation of the kinematic data, which opens up new
options for data analysis and modeling.
In this study, a conventional, 2D kinematics data set is extracted with the aid of deep learning
tools from lateral videos of walking piglets. By applying multivariate analysis and FSD, we
separate spatiotemporal gait variables, dynamic posture, and coordination, and model their
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relation to subject characteristics (mass, size, age, and birth weight category). Crucially,
this constitutes the complete information captured by locomotor kinematics. All parameters
are submitted to an inclusive, probabilistic model. We tackle the question of whether low
birth weight is an indication of delayed development, and attempt to quantify the delay with
an inverse modeling strategy as follows. Intuitively, and conventionally, joint kinematics are
considered the output of the locomotor system. Therefore, conventional statistical models
might consider them on the “outcome” side; on the “input” side, the effects of birth weight,
age, speed, or other parameters are quantified. Herein, we use a different approach, and invert
the model. We construct a probabilistic computer model which describes “age” and other
subject characteristics as a function of all available kinematic parameters. The rationale
is similar to that in subject recognition tasks (e.g. Patua et al., 2021): given a certain
kinematic profile, can we infer characteristics of the subject which produced it? We split
our data set into birth weight classes, and train the model on only the strides from NBW
observations. This NBW model is our “kinematic reference” model, quantitatively capturing
the expectation of what would be “normal” by inferring the plausible age range for a given
kinematic observation. We then use the model and compute out-of-sample prediction of all
LBW observations.
Our hypothesis is that, if LBW were at the same stage of postnatal locomotor development as
their NBW siblings, then the prediction should accurately infer the age of the LBW animals.
Conversely, if the LBW piglets are delayed in development, the model would underestimate
their age. Thus, by applying this inverse modeling strategy and comparing the computer-
predicted age to the actual age of the LBW piglets, we can falsify or quantify a hypothesized
delay in locomotor development.
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5.3 Materials And Methods

5.3.1 Data Acquisition

Recordings were done at a local farm in Belgium during several trips in October and
November 2017. Farrowing was monitored to select Topigs x PIC piglets for another
experiment (Ayuso et al., 2021). Piglets from selected litters were weighed at birth and
numbered with non-toxic skin markers. Low birth weight (LBW) was classified by birth
weight quantile (lowest 10% of each litter) and by a maximum mass of 800g (D’Inca et al.,
2011; Litten et al., 2003; Van Tichelen et al., 2021; Wang et al., 2016); all other piglets are
assigned the NBW category. At variable time points afterwards (ages 1 − 10 hours), piglets
were briefly taken from their pen and brought to a separate room for video recording.
Animals were recorded in pairs (as in Mielke et al., 2018b), which drastically reduced
anxiety and increased their motivation to cooperate. A few animals were recorded
repeatedly, usually with a changing partner. Animals were ear-tagged and followed up:
recording was repeated at approximately 4 and 10 days of age. That data was part of the
landmark tracking procedure (i.e. “DeepLabCut” network training), but excluded from
further analysis (i.e. probabilistic modeling). The subject characteristics documented for
analysis are birth weight (continuous, and categories “LBW”/“NBW”), mass at recording,
age at recording (i.e. hours since farrowing), sex, and size. The size of the animal was
approximated by a Principal Component Analysis (PCA) of landmark distances along all
segments (“size PCA”, only first PC used, 93% of variability). Size and mass are expected
to correlate, yet deviations would indicate animals of particularly slender or rotund
habitus. All procedures followed ethical regulations and guidelines, and were approved by
the Ethical Committee for Animal Testing of the University of Antwerp, Belgium (ECD
2015-26).
The recording room contained an elevated runway (150×50cm), covered with a rubber mat to
increase friction, and visible through a transparent frontal shield. Color videos were recorded
(camera model: GC-PX100BE, JVC, Japan) at a temporal sampling rate of 50 frames per
second and a spatial resolution of 1920 × 1080 pixels (later cropped to 500 px height), from
a distance at which the field of view would exactly capture the entire runway. A chess board
at the back wall enabled spatial calibration. Video surveillance was permanent during the
presence of the animals and stopped only in between recording sessions. Animals were able
to move freely on the enclosed platform. To stimulate locomotion, the two animals were
repeatedly placed on opposite ends of the runway. Gentle tickling on the back and grunting
vocalization of the researcher were other successful strategies to induce targeted locomotion
in the direction perpendicular to the camera axis. After recording sessions the piglets were
returned to their litter and remained with the sow. The workflow herein involved handling of
the animals as a consequence of the research setting. However, note that the procedure could
easily be automated for continuous data collection by a suitable pen arrangement (Meijer
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et al., 2014; Netukova et al., 2021; Stavrakakis et al., 2014).

5.3.2 Landmark Tracking

We used the software DeepLabCut (DLC, Mathis et al., 2018) for landmark tracking of all
video material. In addition, a custom made point tracking software (Mielke et al., 2020)
was used to generate a training set. In total, our dataset contained 180 videos (more than
11 hours, 169 animals). Our goal was to prepare a general DLC network which would be
capable of automatically tracking piglets at multiple ages, and which can be shared and re-
used for subsequent research questions. This was the initial motivation to use the full data
set for landmark tracking and for the calculation of some derived measures (size PCA), yet
the quality of the automated tracking was insufficient, and no generalizable neural network
could be trained. The analysis focus of this study was only a subset of the data (i.e. the
58 animals of the youngest age class). The video processing workflow, applied to the full
data set, was as follows. To get a balanced training set, one stride of each of the animals
was selected, and the video was cut, cropped to runway height, and optionally mirrored
horizontally so that movement would always be rightwards. All videos were concatenated
and submitted to the DLC training set generation. DLC was set to select 2552 frames from
these videos, which were tracked in an external software and re-imported for training (80%
training fraction). Seventeen landmarks (i.e. points of interest or “key-points”; usually joint
centers, fig. 5.1) were tracked, representing all body parts visible on the lateral perspective
(head: snout, eye, ear; back line: withers, croup, tail base; forelimb: scapula, shoulder,
elbow, carpal/wrist, fetlock, forehoof; hindlimb: hip, stifle/knee, tarsal/ankle, hind fetlock,
hindhoof). We selected a “resnet 152” network architecture and trained for 540, 672 iterations
(16 days of computer workload). The network was then applied to track the continuous, full
11 hours of video twice: once in default direction and once horizontally mirrored, because
training set was always rightward movement.
The next step is to find the relevant temporal sequences of walking in the continuous videos.
Naturally, the trained network would only extract potentially useful landmark traces for
episodes which resembled the training set, i.e. in episodes with a piglet moving perpendicular
to the image axis, in lateral aspect and rightward direction. We automatically extracted
2597 of such sequences by filtering for high landmark position “likelihood” provided by
DLC, low noise (i.e. steady landmark movement) and consistent, plausible inter-landmark
distances. We further applied an automatic algorithm to find footfalls and label stride
cycles in the candidate episodes (4730 cycles). This procedure involved a start-end-matching
optimization (using Procrustes superimposition, cf. Ch. 2) to ensure that strides were indeed
cyclical. To further assess tracking data quality, gait variables were automatically extracted.
Definition of these variables was chosen to simplify the automatic procedure, as follows.
Stride distance, frequency, and speed are trivial measures of the animal movement. Duty
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Figure 5.1: Video landmark tracking and joint angle definitions. White circles
mark points of interest (“landmarks”). Movement was always rightwards.
Labels show joint angles, defined as shown in the inset: straight joint (parallel
segments) corresponds to zero; counter-clockwise joint angles are positive.
Forelimb joint angle was used as a reference for temporal alignment, but did
not enter the analysis.
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factor is available for fore- and hindlimb, and measures the fraction of stride time in which
the respective hoof is in ground contact. Clearance is approximated by quantifying the
ratio of flexion of each limb (one minus the quotient of minimum and maximum absolute
hip-hoof-distance during the stride). Head and torso angle are the stride-average angles
of the snout-ear or withers-croup lines with respect to the coordinate system. Hindlimb
phase measures the time between hind- and forehoof touchdown, divided by the stride cycle
duration. Where applicable, spatiotemporal gait variables were prepared for analysis by
converting them to dimensionless values (Alexander and Jayes, 1983; Hof, 1996) using the
accumulated distance of landmarks along the snout-to-tailbase line of the animal as reference,
extracted as stride average from the tracked landmarks. Only strides with plausible values
(i.e. those which lie within the theoretical distribution of each parameter; 1862 cycles) where
processed. Manual inspection further boiled down the data set to 897 stride cycles (the
others excluded for tracking errors, multi-animal confusion, non-walking gait, intermittent
or sidewards locomotion, or incompleteness).
Finally, 368 of the remaining strides from 58 animals were in the youngest age category
(< 10 h) and thus selected for the present analysis, the data table is available online.

5.3.3 Data Processing

The landmark data provided by DLC was further processed for analysis. Python code for
the whole procedure is available (https://git.sr.ht/~falk/piglet_fcas, Python version
3.11 at time of model calculation, https://www.python.org). First, joint angle profiles (i.e.
joint angle values over time) were extracted for all relevant joints and for the total forelimb
angle (croup-withers-hoof). Shoulder, elbow, carpal, hip, stifle, and tarsal were the six joints
sufficiently well tracked and therefore considered relevant for analysis. We then applied
Fourier Series decomposition in the framework we previously termed Fourier Coefficient
Affine Superimposition (FCAS, Mielke et al., 2019, and Ch. 2), a flexible procedure which
subsumes the following steps. Joint angle profiles are cyclic, i.e. periodical, and can therefore
be transformed to the frequency domain with a Fourier Series decomposition (8 harmonics
were deemed sufficient by visual comparison of raw and transformed/retransformed profiles).
In the frequency domain, the affine components (mean, amplitude, phase) of a joint angle
profile are easily accessible (cf. Mielke et al., 2019, and Ch. 3). The forelimb angle served as
reference to temporally align all cycles in the data set (removal of phase differences between
different cycles; forelimb angle was not used further). Then, mean and amplitude of the
joint oscillations were isolated for all joint angles and are categorized as “dynamic posture”
parameters. Mean joint angle is the temporal average, whereas amplitude is related to
effective range of motion (eROM). The residual, i.e. differences captured by non-affine
Fourier coefficients, can be categorized as “coordination” sensu stricto (it measures the
precise temporal succession of joint configurations). In our case, there were 96 variables of
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coordination (6 joint angles, 8 harmonics, real and imaginary) which were submitted to a
PCA. Only the first 12 coordination components (CC) were used for statistical analysis,
capturing 80.2% of the variability in coordination.
To summarize, FSD and FCAS served three purposes: (i) temporal alignment of the cyclic
traces, (ii) separation of meaningful parameter categories (dynamic posture and
coordination), and (iii) preparation for multivariate analysis via PCA. Basic script code
(Python, Matlab and R) to perform FCAS can be found on a dedicated git repository
(https://git.sr.ht/~falk/fcas_code).

Information retention is generally a strength of this method. FCAS and PCA are
mathematical transformations, which means that the information content after
transformation is theoretically identical to that prior to transformation (theoretically,
because only a finite number of harmonics can be used, yet this is of little concern for
continuous, smooth joint angle profiles). The neglected PCs and the residual not captured
by 8 harmonics were the only information from kinematics of the given joints to be lost in
this procedure, and by definition these contain the least information. Apart from that, all
information present in the raw joint angle profiles enters the analysis. Though we used a
2D dataset herein, the procedure could be applied equally well to joint angles measured
from 3D coordinate data (Scott et al., 2022).
Furthermore, all transformations are reversible, hence any analysis outcome can be translated
back to kinematics with high accuracy. Reversibility bares a lot of herein unused potential,
for example for interpolating unobserved subject states or for inferring kinematics of fossil
species by phylogenetic and morphometric bracketing. Reversibility can also be of use when
presenting raw joint angle profiles and their averages, as follows. One crucial aspect of the
FCAS procedure is temporal alignment of the joint angle profiles in the frequency domain.
In conventional temporal alignment, a single characteristic point in the stride cycle is chosen
as a reference, wherein this is only “characteristic” for a certain part of one limb (e.g. left
hindlimb hoof touchdown). Temporal alignment to the hindhoof touchdown might cause
distinct peaks in the forelimb angle joint profiles to occur at different relative points in
the stride cycle (e.g. tarsal joint profiles in Fig. 5.3, lower half, green traces). If profiles
show such variable peak positions, then their average will have a wider, less pronounced
(i.e. lower amplitude), and potentially unnatural peak. For illustration, this is analogous
to averaging two sine-waves of identical amplitude, but phase shifted: in the worst case,
they cancel each other out (as in “destructive interference”). The problem is not restricted
to pronounced peaks, but generally occurs if the temporal intra-limb coordination varies
within a data set. Using FCAS, it is possible to get a more representative average of the
raw traces which has its amplitude conserved, but phase and mean joint angle averaged.
This is enabled by transformation to the frequency domain, separation of affine components,
removal of phase differences by shifting to average phase, profile averaging, followed by
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inverse transformation back to the time domain. Because a set of profiles and phases may be
calculated for each joint angle individually, and because phase relations can differ between
joints, there are the options to align based on one reference angle (e.g. the whole forelimb,
as done herein) or minimize all phase differences across all joints. Choosing the first option
herein has implications: when plotting hindlimb joints aligned by a forelimb reference (as
in Fig. 5.3, lower half), phases still differ, and the “destructive interference” problem might
hamper averaging. In such cases it is possible to apply an extra, joint-wise FCAS alignment
for the sole purpose of generating meaningful averages.

5.3.4 Statistical Modeling

To summarize, four categories of variables were used for analysis:

• subject characteristics: age, sex, mass, birth weight category, size

• spatiotemporal gait variables: distance, frequency, speed, clearance (fore-/hindlimb),
duty factor (fore-/hindlimb), head angle, hindlimb phase

• dynamic posture: mean joint angles and eROM for six joints

• coordination: the residual after extraction of dynamic posture

Our guiding question for model design is whether a probabilistic, linear model is able to
infer subject characteristics (specifically: age, mass, and size) from raw kinematics
(expressed as dynamic posture and coordination) and spatiotemporal gait variables
(collective variables). Given the common conception that kinematics are a complex output
of an individual motor system, this might be considered an “inverse” modeling approach (it
is certainly an inversion of the model presented in Ch. 4). The present analysis focused on
three outcome variables (Fig. 5.2): mass (kg), size (arb. units, from a PCA of marker
distances), and age (h). Though these outcome variables were specific per individual and
recording session, we analyzed them “per stride” (i.e. there were multiple strides with
identical subject measures on the outcome side).
The model formula is:

θ ∼ v1 · α + vs · βs +
∑
G

vg · βg +
∑
P

vp · βp +
∑
C

vc · βc + v1 · ϵ (5.1)

Herein, θ is either of the outcome subject characteristics, β are slopes associated with the
model parameters (s sex, G spatiotemporal gait variables, P dynamic posture, C

coordination), v are data vectors (e.g. v1 is a vector of ones for the intercept α and model
residual ϵ, and vs is a boolean vector coding for subjects of ‘sex == male‘). The models
have a total number of 36 degrees of freedom. Priors (i.e. a priori assigned distributions)
for all slopes were Normal distributions with mean and standard deviation corresponding
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to the mean and two times standard deviation of all observed values of each parameter;
logarithmic transform was applied where necessary. The observable (“likelihood”) prior for
θ was a Student’s T distribution (allows for wider-than-normal tails and robust regression)
with a Gamma distributed ν (degrees of freedom); ϵ was modeled to be a Half Cauchy
distribution. The model was implemented using the Python library “PyMC” (different
versions up to 5.10.2; Salvatier et al., 2016).
To re-emphasize, dynamic posture and coordination together effectively capture all the
kinematic information of the stride. Hence, we train the predictor model with all
kinematics, spatiotemporal gait variables, and sex. Birth weight category (LBW, NBW) is
a filter parameter: we split our data set into LBW strides and two NBW subsets (training
and validation). Training is performed by MCMC sampling (‘sample‘ function in PyMC),
and a No U-Turn sampler was set to sample with 32 chains, each 214 tuning and equally
many sampling steps. All post-hoc model checks confirmed convergence (inspection of
traces, bfmi > 0.94 for all chains, Gelman-Rubin statistics ≈ 1 for all parameters, sufficient
effective sample size). Model comparison was performed (cf. Ch. 4), iteratively leaving out
model parameters or replacing some by meaningful combinations (e.g. duty factor
combined for fore- and hindlimb). However, because we follow an “all in” strategy, the
results have little instructive value for model construction: we might thus have retained
parameters which are numerically unimportant for the NBW-only models.
The data set of N = 368 strides was split into three categories: (i) the NBW training set
as reference with N = 294 strides, (ii) the NBW validation set (N = 35 strides), which is a
random subset of NBW strides, approximately equal in size to (iii) the LBW test set with
N = 39 strides.
The model was thus trained with a set of 294 NBW training strides (i). Inferences (model
“predictions”) were then done per stride, for all observed strides (NBW training, NBW
validation, and LBW test), iteratively using the ‘pymc.sample_posterior_predictive‘
function in PyMC after setting all the data arrays to the actual observed values for one
given stride (using ‘pymc.set_data‘). The number of predictions usually matches the
number of training samples, which means that all posterior information is used to
construct the prediction distributions. We would thus retrieve mass, size, and age
predictions (i.e. probabilistic inference) for each stride in the data set, which were then
compared to the known, actual mass, size, and age.
All procedures, code, data, and this manuscript are available online
(https://git.sr.ht/~falk/piglet_fcas).
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Figure 5.2: Histogram of observations. Trivially, the LBW group measured the
lowest body masses in the data set. This correlated with a lower body size,
whereas age is rather uniformly sampled for all study groups. Recordings
happened opportunistically within the first ten life hours of the animals,
repeated measurements were possible. Number of strides per class are
indicated in brackets on the legend. Bar heights are scaled by sample size
to show relative value distributions.
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5.4 Results

The present analysis is centered around a linear model which is designed to infer mass, size,
and age (subject characteristics) from an extensive set of kinematic parameters from 2D
videos. The numbers provided by the model sampling are equally extensive, and will only
be reported in brief. The key purpose of the model is posterior predictive sampling of the
LBW strides which were left out of the model, and which are analyzed in detail below.

To assess whether there are qualitative differences between the birth weight categories, one
can compare the joint angle profiles (i.e. raw, angular kinematics) on which the present
analysis was performed (Fig. 5.3). The intra-group variability clearly exceeds the differences
between groups, although it must be emphasized that groups are heterogeneous (with regard
to age, speed, etc.), which might lead to a bias if composition of LBW and NBW data differs.
LBW walk with a more flexed hindlimb posture, as indicated by the parallelly offset average
hip, stifle, and tarsal profiles. Additionally, NBW individuals on average seem to set the
shoulder at a more extended joint angle. No differences in coordination are apparent (which
would manifest in altered temporal structure of the profiles). These findings indicate that
LBW kinematics are hardly distinguishable from NBW kinematics by qualitative, visual
assessment, which is at least in part be due to high variability.

A quantitative comparison of variable kinematic measurements can be achieved with
probabilistic linear models. For the purpose of predictive sampling, we train models to
describe the interrelations of kinematic parameters and subject characteristics in NBW
piglets. The outcome of MCMC sampling of a linear model are value distributions for
slopes, which in our case indicated how certain kinematic parameters are associated with a
change in mass, size, and age (Tab. 5.1; Fig. 5.6). Of the gait- or coordination parameters,
only hindlimb clearance was correlated with differences in animal mass. Mass was also
associated with changes in the dynamic posture of the hip and tarsal. For size, the model
inferred associations with head angle, hindlimb duty factor and clearance, and one
coordination component (CC3), as well as changes in the fore- and hindlimb posture and
an effect of sex. Finally, age was associated with an increase in forelimb clearance,
potential changes at the stifle and carpal, and several coordination components (CC9,
CC11). Some eROM slope distributions for age were high in average magnitude, but
variable (the “credible interval” contained zero). More details on the model input and
output are discussed in a supplementary analysis to this chapter (Ch. 5.6). These model
results provide detailed insight into parameter interrelations in the present data set and
indicate which of the parameters are the relevant ones to infer a given subject attribute in
predictive sampling.
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Figure 5.3: Joint angle profiles per joint, grouped by birth weight category.
A joint angle of zero would be a fully extended (i.e. straight) joint. Thick
lines represent the average profiles, dashed lines indicate the average of the
opposite birth weight group for comparison. Colored, shaded lines show all
raw profiles available for the present analysis. Temporal alignment was done
based on total forelimb angle (see methods), yet for the shown hindlimb
averages (but not for the raw profiles), a separate alignment of the hindlimb
was performed.
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Table 5.1: Detailed modeling results. Asterisk (*) indicates slopes for which
the credible interval did not include zero. FL: forelimb, HL: hindlimb,
dyn.p.: dynamic posture, coord.: coordination, diml.: dimensionless, d.s.:
dimensionless stride, eROM: effective range of motion.

category parameter age (h) age (log) size PC1 mass (kg)
0 model intercept +4.86 +1.68 −3.25 +1.38
1 subject female → male +0.05 +0.00 −0.38 * −0.04
2 gait log. FL clearance −0.10 −0.08 +0.09 −0.02
3 gait log. HL clearance +0.94 * +0.32 * −0.65 * −0.15 *
4 gait FL duty factor +1.11 +0.37 +0.18 +0.07
5 gait HL duty factor +0.67 +0.24 +0.85 * +0.11
6 gait d.s. distance +1.32 +0.31 +0.45 +0.18
7 gait d.s. frequency +3.12 +1.43 +1.62 +0.15
8 gait diml. speed −1.10 −0.64 +0.82 +0.00
9 gait hindlimb phase −2.04 −0.56 −1.98 +0.05

10 gait head angle +0.26 +0.14 +1.44 * +0.18
11 dyn.p. mean hip angle +2.55 * +0.59 * −1.07 * −0.45 *
12 dyn.p. hip eROM +2.64 +0.94 −1.34 −0.52 *
13 dyn.p. mean stifle angle +0.67 +0.10 −2.01 * −0.12
14 dyn.p. stifle eROM −1.85 −0.22 −1.66 * −0.13
15 dyn.p. mean tarsal angle −1.18 −0.59 +0.44 +0.23 *
16 dyn.p. tarsal eROM −1.92 −0.88 * +2.98 * +0.60 *
17 dyn.p. mean shoulder angle +1.06 +0.07 +0.47 +0.06
18 dyn.p. shoulder eROM −0.34 −0.17 −0.65 +0.01
19 dyn.p. mean elbow angle −1.00 −0.55 +2.79 * +0.20
20 dyn.p. elbow eROM +3.22 +0.96 +0.11 −0.30
21 dyn.p. mean carpal angle −2.08 * −0.98 * +1.69 * +0.04
22 dyn.p. carpal eROM −0.24 +0.21 −0.84 +0.16
23 coord. CC1 +0.60 +0.31 * +0.10 −0.05
24 coord. CC2 +0.50 +0.15 −0.24 −0.08
25 coord. CC3 −0.25 +0.00 +0.88 * +0.07
26 coord. CC4 −0.62 −0.26 +0.13 +0.04
27 coord. CC5 −0.84 −0.25 −0.16 +0.04
28 coord. CC6 −1.49 −0.51 * −0.10 +0.07
29 coord. CC7 +0.24 +0.22 −0.76 −0.08
30 coord. CC8 −1.19 −0.24 −0.51 +0.02
31 coord. CC9 −2.96 * −0.83 * +0.66 +0.06
32 coord. CC10 −0.22 +0.06 −0.60 +0.02
33 coord. CC11 −2.05 * −0.67 * +0.10 +0.08
34 coord. CC12 −0.03 −0.10 +0.35 −0.01
35 model ϵ ±1.81 ±0.56 ±0.98 ±0.20
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Performing in-sample and out-of-sample predictive inference with the models trained on
NBW strides elucidated if and how left-out strides differed from NBW model expectation
(Fig. 5.4). Note that, to capture variance (i.e. uncertainty in the prediction), each stride
was sampled repeatedly.
Out-of-sample inferences for the NBW validation set matched those of in-sample NBW
inference in terms of average values and standard deviation for all modeled outcome
variables, which confirms that inference of subject characteristics from kinematics is
possible. In contrast, inferences for the test set of LBW strides did not match those of the
NBW training set. Low birth weight animals were inferred to be on average 0.44kg heavier
than actual, and their size was overestimated (+1.71 units). Both faults matched the
actual differences in magnitude (cf. methods, Fig. 5.2). In contrast, the age inference for
the low birth weight subjects were not normally distributed: most ages were correctly
inferred from stride-wise kinematics, but ages for some strides were underestimated. The
underestimation of those strides quantified to just below five hours.
In summary, the NBW-trained model “guesses” the size and mass of the animals producing
LBW strides to be “normal” (although they are not), which indicates that these defining
features of LBW do not reflect in altered kinematics. However, age inference is non-normal,
i.e. some strides are classified as typical for animals of younger than actual age.

To assess whether out-of-sample prediction is a valid and unbiased method to infer group
differences, we extracted additional indicator quantities from the linear models. An in-depth
analysis can be found at the end of this chapter (Ch. 5.6). Theoretical considerations
identify several criteria which, if not met, can obscure an actual group difference (which
consequently does not emerge in the prediction output). These criteria are differences in
the input parameter distribution, slope magnitude, and low residual variability; in addition,
model complexity and a limited sample size can be prohibitive. For the age model, our
considerations confirm that a predicted difference is robust, and we were able to evaluate
which of the model parameters might cause the underestimation of some strides (primarily
hindlimb clearance and hip angle). In the models of size and body mass, some of the
criteria are not met. Model complexity and sample size might restrict clarity of both models’
outcomes to an uncertain degree. In the body mass model, the residual variability is high,
which blurs potential differences in the predictions (Ch. 5.6, Fig. 5.6). In the size model,
there are some positive and some negative effects which seem to cancel out (which might be
evidence for size-dependent alternative locomotor strategies; Figs. 5.5, 5.6). We observed
few significant effects related to the coordination parameters, indicating that coordination
patterns are for the most part indifferent to age, size, and mass.
This lends some support to the outcome of the age model, and points towards the limiting
factors in case of the other two models.

To find out whether the offset age inference was related to certain individuals, or certain
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Figure 5.4: Predictive sampling of subject characteristics. For all included
subject characteristics, models which were trained on NBW strides correctly
inferred the training data (gray) and values from the validation set (blue).
In contrast, the same models wrongly inferred the characteristics of LBW
subjects (orange). The x-axes show the difference (∆) between actual and
predicted values per prediction. To facilitate comparison, histogram heights
are again normalized per category.

Table 5.2: Age inference per LBW animal (compared to NBW average, last row).
∆: “inferred - actual” difference. Underestimation is defined as ∆ < 0,
“count”: per stride, “rate”: per predictive sample. h: hours, std: standard
deviation.

piglet age strides underestimation pred. mean ∆ pred. std
h count ratio h h

b23 2.0 6 0 0.29 1.13 2.00
b15 2.9 5 0 0.37 0.68 1.96
b76 3.1 4 0 0.39 0.57 2.01
b74 4.2 7 1 0.40 0.52 1.97
1794.5 5.6 5 5 0.90 -2.57 1.99
b58 7.8 3 3 0.91 -2.85 2.00
b19v2 9.8 1 1 1.00 -6.14 1.99
b56 9.9 8 8 0.99 -4.58 1.96
<all NBW> <3.8> 329 158 0.49 -0.03 1.95
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strides from different individuals, we grouped the inferences per stride or subject and
calculated the chance of over- or underestimating age. Of the 8 low birth weight subjects
who contributed 39 strides, 4 individuals were consistently underestimated (Tab. 5.2).
Consistently means that more than 75% of all predictive samples were below actual age,
and that the ages for a majority of strides were on average underestimated. The magnitude
of underestimation was between two and five hours. Curiously, those were the individuals
recorded at a slightly higher age (> 5 hours). Overestimation in the other four LBW
individuals was also consistent, but less so (less extreme underestimation rate, mean
∆ < 2 h). Standard deviation of the estimates did not vary across individuals or birth
weight categories.
We conclude that underestimation of age is consistent over multiple strides of the same
individual, and thus individual-specific.
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5.5 Discussion

Birth weight variability in piglets is considerable. The average birth weight of a new born
piglet in our data set is just above a kilo, yet the span within a litter is typically above 800 g.
Size ranges are accordingly high. Low birth weight is often associated with low vitality
(Baxter et al., 2008; Hales et al., 2013; Muns et al., 2013), and this supposedly correlates
with deficient locomotion. Previous studies reported behavioral, physiological, and other
differences for piglets of low body mass which could affect locomotion (Alvarenga et al., 2013;
Muns et al., 2013; Quiniou et al., 2002; Roelofs et al., 2019; Vanden Hole et al., 2018a,b).
One might therefore anticipate differences in how these newborn animals move their more
or less heavy bodies, which is the immediate outcome of motor control. Top-down, direct,
visual assessment could justify the hypothesis that LBW walking kinematics are somehow
different from “normal” (D’Eath, 2012). Yet that is (i) hard to assess due to high behavioral
variability and (ii) trivially expected given the adaptation to different physical properties
of their body: gravitational force is a predominant constraint of locomotion, and it simply
scales with animal weight (Aerts et al., 2023b). The overarching question is whether low or
critically low birth weight can be quantitatively associated with a deficit in locomotion.

However, we observe little qualitative difference in LBW and NBW kinematics (Fig. 5.3).
There is a small difference when averaging hindlimb posture, which might be trivially
explained by heterogeneous group composition (but see below). This is further supported
by the fact that our models were unable to correctly retro-infer either mass or size from
blindly provided kinematic parameters, including coordination. Strides from LBW animals
were estimated to come from an animal with a “normal” mass and size (Fig. 5.4). This
suggests that low body mass or small size can not be causal for altered 2D kinematics, and
it raises doubts whether there are any deficits in coordination and control. Within the
range of kinematic variability, we observe LBW animals perfectly capable of normal
posture, coordination, and overall stride results (collective variables). Note that this does
not rule out problems of balance, stability, or endurance.

We do see differences for LBW compared to NBW recordings, nonetheless. First, a difference
in sample size. There are much fewer valid LBW strides in our data set: only 39 of 368
observations are LBW. This could be interpreted as evidence for a lower capacity of LBW to
produce normal locomotion (i.e. they succeed in this locomotor task less frequently, despite
equal potential). Yet there are proximal, trivial explanations: based on conventions, the
10% lower quantile of birth weights in a litter is considered LBW, and there is a hard cap
of 800 g. The resulting share is equal in our training set for video tracking, and in the final
data set, because of pseudo-random, opportunistic sampling on-site (i.e. recording work
was permanent, yet determined by farrowing and feeding of the subjects). The minority of
LBW training videos might lead to an under-learning of those animals, reduced landmark
tracking quality and therefore an exclusion bias for “non-normal” individuals. Though it
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seems unlikely, we cannot rule out reduced locomotor endurance in LBWs, because the
present data set is unsuited to count the occurrence of locomotor behavior. On the other
hand, the strict stride filtering criteria for “good” kinematics may have involuntarily filtered
out deficient individuals. Our conclusion that low birth weight individuals are non-deficient
is strictly tied to the definition of the low birth weight category, which is herein based on
weight criteria and did not regard phenotypic indicators of intra-uterine growth restriction
(which we did not record, cf. Amdi et al., 2013).

A second difference of LBW locomotion is that the age is underestimated for strides of
some, but not all individuals. Prediction is consistent per individual, although no subject
characteristics except sex entered the model (“blind” inference). This supports the
hypothesis that locomotor development is sometimes delayed in LBWs. Delayed
development does not necessarily corroborate the hypothesis of locomotor deficiency in
LBW: we would expect truly deficient strides to be substantially different from the data
trained to the model, making it “unpredictable” (i.e. higher variance of posterior samples).
Instead, the predictions are consistent for repeated measures of an individual, without
notable increase in variance. For the affected subjects, we can even quantify a delay of less
than five hours, which could nevertheless be critical given the rapid maturation of
locomotor behavior in this species (Vanden Hole et al., 2017) and the importance of
postnatal competition (Litten et al., 2003).

Note however that the causality might be inverse. We measured age underestimation only
in the case of the individuals which were recorded late within our sampling time frame (age
> 5 h, Tab. 5.2). This is consistent with prior evidence that energy reserves are depleted
after birth (normal locomotion) but not replenished after four hours in the case of LBW
(Le Dividich et al., 2017; Vanden Hole et al., 2019). Assuming that this is the case, i.e.
energy reserves are depleted, we would expect two effects: (i) the animal might succeed in
the locomotor task less frequently (not quantified, see above), and (ii) the kinematics might
be altered, which we observed. The present model was trained from NBW data and
thereby tuned to kinematic development from animals with normal energy levels (therefore
it can correctly infer age from kinematics in NBW). That same model quantifies the
potentially energy-deficient animals as younger. It might be that energy deficiency
co-incidentally causes effects which are exactly opposite to the changes that piglet
kinematics undergo in normal development. However, the more likely explanation is an
actual delay or a temporary halt in development. Failure of the LBW to compete in the
first hours are sufficient to explain reduced intake (Amdi et al., 2013), the absolute size and
mass difference alone might be crucial, and an immediate question which we cannot
address with the present data set is whether and how (fast, likely) animals would recover
from the delay. Alternatively, there might be a technical artifact in probabilistic sampling
(“shrinkage”, cf. Gelman et al., 2020) which caused the underestimation of “above average
age” individuals. Yet this is an unlikely explanation, given that shrinkage would apply
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equally to NBWs, and inversely to the opposite, younger subjects. Finally, with only eight
LBW individuals, we cannot exclude co-incidence in which individuals are affected.
Neither of these technical explanations puts doubt on the clarity of the initial finding: a
subset of the low birth weight individuals produced locomotor behavior which is
quantitatively similar to that of younger individuals.
A corollary question is which patterns in the kinematic variables cause the different age
inferences. We report high magnitude (but also highly variable, i.e. “non-significant”)
slopes inferred from the age model (Tab. 5.1 and Fig. 5.6). Note that these slopes solely
reflect effects within the NBW data subset. We also observed slight differences in the
average hindlimb dynamic posture (Fig. 5.3). In fact, a more flexed hindlimb is typical for
the youngest animals of both birth weight categories. This is further supported by the
observation that hindlimb clearance and mean hip angle have a pronounced effect in the
age model (Fig. 5.6). We emphasized potential differences in group composition to explain
that (e.g. sex effect in the “size” model), and different age per group might be a proximal
explanation for the non-normal age inference in LBW. However, the average age of LBW
animals (5.3h) in our data set is nominally above that of NBW (3.8h), which is a
discrepancy with the age underestimation. Yet if we assume that the hypothesis of delayed
locomotor development is correct, the nominal age would be misleading, and LBW
effectively behave similar to younger animals. This can explain the apparent discrepancy in
age group composition and age predictions from kinematics. Though many other
parameters also entered the probabilistic model and influenced the model outcome, our
data suggests that dynamic posture, especially of the hindlimb, might be the major proxy
for perinatal maturation (Fig. 5.6)

The findings discussed above are enabled by “inverse” modeling of subject characteristics
as a function of kinematic parameters, using probabilistic models. The models do reveal
various parameter associations, yet the top down (repeated) testing with the chosen model
structure complicates drawing definite conclusions (e.g. we observed a sex effect on size,
but opposite of what other studies have reported, Baxter et al., 2012, we conclude males in
our study were just smaller by chance). Instead, the demonstrated predictive modeling
strategy (Shmueli, 2010) leverages the potential of probabilistic models to perform
out-of-sample prediction (via separation of the LBW test group). This strategy is limited
by a major asymmetry: in case the prediction shows differences, they are most likely
robust, yet “non-effects” could be caused by unfavorable dataset characteristics (Ch. 5.6).
Non-probabilistic modeling could equally serve to predict values, but it cannot generate
parameter distributions (as in the bimodal age predictions, Fig. 5.4). Our probabilistic
models implicitly regard “non-significant” parameter slopes (Fig. 5.6), which are usually
neglected in standard hypothesis testing (such as the high magnitude, highly variable joint
ROM quantities, which might nevertheless have relevance for age prediction in case they
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are correlated and add up). The data transformations and predictive modeling strategy we
applied herein hold further potential for inferring kinematics, for example by morphometric
bracketing of extinct taxa. For that purpose, one would train a model to infer dynamic
posture and coordination from a given range of morphometrics, predict samples for specific
morphometrics in that range, and convert the samples back to (3D) joint angle profiles
which could be animated.
There is a conceptual hierarchy, but no clear causality, with regard to modeling parameter
dependencies in quantitative studies of locomotion. For example, animals might increase
the hip angle (posture) and the temporal pattern in the joint angle profiles (coordination)
to reach higher speeds (spatiotemporal gait variables), but the speed they reach might
depend on age (i.e. maturation, a subject parameter). But maturation and age might also
influence the speed without changing dynamic posture or coordination, simply because the
animal grows and increases strength. Age might also affect dynamic posture and
coordination directly, for example if dimensionless speed stays constant but clearance
changes with age. Reducing clearance can increase speed (less unnecessary hoof lifting) or
reduce it (higher duty factor), which can be distinguished by the other parameters. This
complex interrelation of spatiotemporal quantities complicates the intuitive modeling
strategy, which involves using subject characteristics as a factor to predict a multivariate
block of spatiotemporal gait variables and kinematics. In our experience, model residuals
in such models are high, multiple testing can yield putatively co-incidental significances,
cross-dependencies within the multivariate data set might be underestimated, and sample
size requirements are high. And even under ideal circumstances: chances are that such
models would yield some age effect, even with random data.

In contrast, the strategy applied herein is related to the question: “given the complete
kinematic output of a behavior, can we infer subject characteristics of the animal producing
it?” We used probabilistic, predictive models, which are able to capture intrinsic variability
of the process, and addressed specific categorical questions (NBW/LBW differences) by
out-of-sample predictions. We demonstrated that, in the first ten hours of piglet life, (1)
kinematics seem to be indifferent to low body mass and size, and (2) locomotion of some
LBW individuals could be explained by a delay in locomotor maturation which is initiated
post partum.
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5.6 Supplementary Analysis

The key findings in this chapter are based on an analysis which uses the statistical model of
one subset of the data for predictive inference on another subset, a strategy which demands
justification.

• Is the model actually capable of finding differences?

• Under which circumstances will group differences arise?

• Is there a bias in the modeling procedure, for example to not find all differences?

Answering these questions requires a rather technical, in-depth analysis of the model
outcome.
One important constraint is that the models herein are linear, i.e. of the form

y = a + b1 · x1 + b2 · x2 + . . . + bm · xm + ϵ = a +
∑

k

bk · xk + ϵ

Herein, y is one of the outcome variables (observed; age, size, or mass), a is the intercept,
bi are the slopes, xi are the different input parameters (observed; spatiotemporal gait
variables, dynamic posture, and coordination measures), and finally ϵ is the model residual
(unexplained variation, including for example measurement inaccuracy). As I have
demonstrated elsewhere (Mielke, 2024), there are some criteria which are necessary (but
not sufficient by themselves) for the model to predict a difference. Given there is a...

1. significant difference between the study groups in the distributions of input variables

2. high enough slope magnitude (“steepness”)

3. limited model complexity/size, i.e. moderate number of (other) slopes

4. low residual variation

5. sufficient sample size

... then we can find differences. An example where all these conditions are met is the age
model, above. In case one of these conditions is not met, a difference between the study
groups might be obscured (yet note that the criteria are on a continuum, some cases might
not be clear-cut). From theoretical considerations alone, this situation is biased. Differences
in out-of-sample prediction must have passed the criteria above, and are therefore robust.
Yet on the other hand, “the absence of evidence is not the evidence of absence” : if for example
the sample size is low, or the residual variation is high, the model’s prediction might miss
an actual effect. This situation is somewhat analogous to classical hypothesis testing, where
we quantify the chance of falsely rejecting a null hypothesis such as “groups were samples
from the same distribution”.
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The available modeling framework enables some extra insights on why the prediction of piglet
subject characteristics appeared as it did. Firstly, we can compare the input distributions
(criterion 1, above) of the observational groups, to identify those model parameters which
actually influence the predictions (Fig. 5.5). Secondly, we can calculate the absolute effect of
each parameter on the predicted outcome (slope magnitude, criterion 2), by multiplying the
parameter magnitude with the according slope (Fig. 5.6; this works because ∆y ∼ bi · ∆xi).
Thirdly, we can quantify the model residual (criterion 4; Fig. 5.6, last row). The other
criteria (model complexity and sample size) are predetermined in this modeling application,
and have an unknown influence on the outcome.

For the age model, we observe a low residual variance, and there are two parameters which
are significantly different between NBW / LBW and have a high slope (those are hindlimb
clearance and hip angle). Notably, there is hardly any difference in the observed coordination
parameters. For the model of body mass, the same parameters seem to have relevant
slopes, yet the model residual is much higher and likely prohibits conclusive differences in
the probabilistic prediction. Other slopes seem to have significant effect in the NBW group
(hip and tarsal eROM), yet the input distributions (i.e. NBW and LBW observations) do
not differ, and so their effect is irrelevant for prediction of mass. For the size model, we
find some slopes with a negative effect on the output (hindlimb clearance, head angle, hip
angle). However, others with a positive effect (knee angle, tarsal eROM) possibly cancel this
out for the overall prediction. Like the previous one, this model contains significant slopes
with nonetheless no difference in the input distribution. We also compared the relative
widths of effect size distributions, and found that “dimensionless (relative) speed” is most
variable among trials: all animals use a variety of speeds, and apparently this can not be
systematically associated with age, size, or mass. It must be re-iterated that “significance”
in these analyses merely provides a hint to guide the eye: the combination of a minor (non-
significant) difference in an input parameter with a notable, only “almost-significant” effect
size might still affect the probabilistic prediction. Finally, the input distributions (Fig. 5.5)
are insightful by themselves for NBW / LBW comparison. Some LBW parameters are
bimodally distributed, which might be related to the prediction outcome for the age model.
We observe most differences in spatiotemporals (predominantly hindlimb-related), as well
as in measures of dynamic posture and range of motion. However, there are few significant
effects of coordination parameters, and the remaining ones are cancelled out by a lack of

Figure 5.5: Observed model parameter input distributions (next page). For each
model parameter (rows), observations are indicated by tick marks for the
two study groups (NBW: gray, LBW: orange). Values were standardized
on population level (i.e. mean-centered and scaled by standard deviation).
Significance between the distributions (indicated by asterisk) was determined
by a two-sample rank sum test.
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observation distributions (standardized)

clearance FL, p = 5.1 × 10−1

clearance HL, p = 4.4 × 10−2*

duty factor FL, p = 7.9 × 10−1

duty factor HL, p = 8.5 × 10−1

diml. distance, p = 4.7 × 10−1

diml. frequency, p = 4.1 × 10−2*

relative speed, p = 2.7 × 10−1

head angle, p = 3.0 × 10−3*

phase HL, p = 3.6× 10−2*

mean hip angle, p = 3.3 × 10−4*

hip eROM, p = 2.1× 10−1

mean knee angle, p = 1.6 × 10−4*

knee eROM, p = 9.1× 10−1

mean tarsal angle, p = 2.8 × 10−3*

tarsal eROM, p = 8.7× 10−1

mean shoulder angle, p = 3.5 × 10−3*

shoulder eROM, p = 4.6 × 10−1

mean elbow angle, p = 6.0 × 10−1

elbow eROM, p = 3.2× 10−2*

mean carpal angle, p = 2.6 × 10−1

carpal eROM, p = 1.7 × 10−1

CC1, p = 7.3× 10−1

CC2, p = 7.7× 10−1

CC3, p = 6.8× 10−1

CC4, p = 1.4× 10−1

CC5, p = 5.8× 10−1

CC6, p = 5.6× 10−1

CC7, p = 2.3× 10−1

CC8, p = 2.7× 10−1

CC9, p = 5.1× 10−1

CC10, p = 9.9× 10−1

CC11, p = 8.3× 10−2

CC12, p = 3.4× 10−1

Figure 5.5: Observed model parameter input distributions. See previous page.

174



*

*

*

*

*

age (h)

*

*

*

*

*

*

*

*

*

size (arb. units)

*

*

*

*

mass (kg)
clearance FL

clearance HL

duty factor FL

duty factor HL

diml. distance

diml. frequency

relative speed

head angle

phase HL

mean hip angle

hip eROM

mean knee angle

knee eROM

mean tarsal angle

tarsal eROM

mean shoulder angle

shoulder eROM

mean elbow angle

elbow eROM

mean carpal angle

carpal eROM

CC1

CC2

CC3

CC4

CC5

CC6

CC7

CC8

CC9

CC10

CC11

CC12

residual

slope effect of ↓ on →

Figure 5.6: Effects of each input parameter on the model output. See next
page.
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Figure 5.6: Effects of each input parameter on the model output (previous
page). Effect size is calculated as the data range (difference between 2.5%
and 97.5% data quantiles) multiplied by the slope distributions (from model
sampling). Effect magnitude and therefore relevance is visualized by red
shading, effects which are different from zero (95% HDI) are also marked by
an asterisk. The residual (last row) is determined as the difference of the
actual parameter observations and the model result.

difference in the observed coordination of LBW and NBW.
To summarize, we show that a detailed inspection of on the one hand the observed model
input parameters, and on the other hand the effect “lever” of each parameter slope, warrants
some caution about non-different predictions (as in the models of size and mass). In those
models, we cannot rule out that a larger sample size or an adjusted, potentially more selective
model design might elucidate quantitative NBW/LBW differences. On the other hand,
inspection of the predictive age model confirms that finding differences by out-of-sample
prediction is possible, and we could even relate those findings to specific model parameters.
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Chapter 6

Inverse Dynamics Workflow
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6.1 Abstract

This thesis has so far explored the measurement and modeling of movement of (terrestrially)
locomoting animals. A topic which remains to be discussed is the cause of that movement.
The segments of animal limbs can be modeled as rigid bodies, each of which has a specific
momentum. Momentum is a conservative quantity, i.e. it changes due to energy transfer
with its surrounding. The retrospective inference of reasons for momentum change is often
labeled “inverse dynamics”.
The field of (inverse) dynamics is subject to various conventions and some methodological
flexibility. The purpose of this chapter is to set the table and clarify conventions used
further on in this thesis. The physical fundamentals and general algorithms applied in inverse
dynamic calculations are presented, as well as elegant mathematical tools to implement them
(wrenches, quaternions). To illustrate the basic principles of physics which come to play in
this chapter, a hypothetical collision experiment is discussed. It turns out that, whereas
most quantities in inverse dynamic calculations can be accurately measured, the inertial
properties of segments are the Achilles heel of accurate dynamic modeling.
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CHAPTER 6. INVERSE DYNAMICS WORKFLOW

Figure 6.1: A hypothetical, scientific experiment to illustrate dynamic modeling
(see text). Upper left: experimenter setting a door in motion. Lower right:
subject running towards the experimental setup. P⃗ : hinge point/axis of the
door, v⃗: velocity of the subject, θ̇ = dθ

dt
: angular velocity of the door, F⃗ :

force applied to the door by the experimenter.
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6.2 Introduction

6.2.1 A Momentum Experiment

“Slamming a door in someone’s face” is not a friendly thing to do. Yet “friendliness” is not a
scientific category, and thus we must consider this as a purely physical process (Fig. 6.1). If
a person in question is running at constant velocity (which we could quantify using Fourier
methods and probabilistic modeling, see before), the unexpected appearance of an obstacle
will certainly force the subject to change trajectory. If the unfortunate subject is unable to
adjust on time, physicists would call this a “collision experiment”. In most probable cases
the impact will thus change the subject’s momentum. Momentum quantifies the linear
and angular movement of a body. The non-sliding door itself, set up on a hinge (point P⃗

in Fig. 6.1), will gain rotational momentum through the act of slamming, performed by an
experimenter. In the collision case, the subject might (i) decelerate but proceed, (ii) come to a
hold, or (iii) ungently bounce backwards from the elastic collision. The door will thus transfer
momentum to the subject, thereby ultimately canceling out (part of) the momentum of the
person if the impact is approximately equal in magnitude, but opposite in direction, of the
running. Trained experimenters might even succeed in (iv) transferring angular momentum
to the surprised subject, generating a spin (though attention must be paid to whether that
spin is partially caused by an evasive motor response of the subject). All these possible
outcomes are manifestation of the conservation of energy and momentum, which I will
explore on the metaphor of a hypothetical door slamming experiment. Due to the numerous
involved variables, it is not clear a priori how exactly a subject will be hit, and what the
exact consequences of the collision are. Predicting the outcome of such scientific experiments
is enabled by a major field of biomechanics, which is called dynamic modeling.

6.2.2 Kinematics and Kinetics

In the next chapter (Ch. 7), I will discuss a specific contribution to dynamic modeling,
namely the extraction of inertial properties from CT scans. This chapter serves to illustrate
the overall context and to establish the connection with the previous topics of this thesis.
It answers the question of the relevance of CT-based inertial property quantification, by
providing a superficial overview of the dynamic modeling technique.
Until this point, this thesis focused on methodological development in terms of measuring,
modeling and predicting kinematics. With Fourier-based methods and probabilistic models
in place, one can (i) quantify measured kinematics, and (ii) simulate locomotion by predictive
sampling of trained models. This is a complete quantification of how limb segments of
animals change their position in space. Segments could be axial or peripheral parts of the
animal which move as a unit (rigid- or pseudo-rigid bodies, hence the general term “rigid
body dynamics”), which is to a large extent analogous to a door on a hinge.
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Having cleared the how in previous chapters, the other relevant aspect of locomotion is why
segments move. This opens up a rabbit hole of elementary physics (“Erhaltungssätze”, sensu
Noether, 1918):

A rigid body will not change its linear or angular momentum if there are no
external forces or external torques applied to it.

This, again, is a formulation of the conservation of momentum (NASA, 2021), as introduced
above.
These things seem quite intuitive: the slamming door will affect the subject upon impact.
And because there must be movement before or after the event of interest, and because
that movement changes (i.e. it is “dynamic”), the study of the conservation of momentum
in moving rigid body systems is called “dynamics”. In contrast to kinematics, dynamics
are sometimes also called “kinetics”, the study of motion and its causes. “Conservation”
as it is understood in physics implies that the measure of interest (momentum) cannot
be created or lost, only gets converted to another form (e.g. kinetic to thermal energy by
friction) or transferred to another object. Thus, dynamics are also linked to the calculation of
transformations and transfers of energy from one form or object to another (e.g. mechanical
energy transfer, dissipation of heat). These conversions and transformations are precisely
the reason why segments or subjects change their movement, and we seek to quantify and
model (i.e. predict) them.
In applied terms, which algorithm or technique would we apply to quantify and model such
an abstract thing as “momentum”? There are many, all useful under different circumstances.
I will present herein the methods which seemed most useful and intuitive to me, and I will
explain “why”. Yet this does not imply that they are generally preferred by all experts in
the field.
In a nutshell:

• Wrenches and quaternions are useful computational tools for calculating rigid body
dynamic models.

• Balance Equations are the mathematical manifestation of conservation of momentum.

• Reference frame considerations can simplify calculations; however, static frame
calculations are sufficient and result in correct joint moments.

• Computed Tomography might be a shortcut to approximate structural properties which
are crucial for the calculation of dynamics (next chapter).

Once more, the herein summarized work is physics textbook knowledge, re-formulated to be
more readily applied by the author to animal locomotion; as mentioned above, I consider this
necessary context. This chapter will summarize the theory behind inverse dynamics, and
point to literature references and conventions which turned out to be useful in preparation
of this thesis.
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6.3 Dynamics: Theory

6.3.1 Forward and Inverse Problems

Since the “slamming door” experiment (Fig. 6.1) could be unpleasant for the faces of living
subjects, one might be tempted to measure on a robot.
When constructing a robot with motors and actuators at the joints, the first problem is to
set the appropriate joint torques to generate a desired movement. This is called the forward
problem (Lynch and Park, 2017). Conversely, inverse dynamics is a second problem which
describes the inference of joint moments which could have possibly generated an observed
movement. For example, from observing (i.e. measuring) a hinge door moving at a certain
angular velocity, one can calculate the force and moment the experimenter has applied
previously to set it in motion. The study of animal locomotion is mostly concerned with
this second, inverse situation. The central quantities are “forces” and “moments”, the latter
being a physical quantity related to forces and involved in rotational movement. I will
approach forces and moments separately, before joining them in a common framework, by
first explaining how force is related to linear momentum (a measure for the motion of a
system), how this is analogous to moment and angular momentum, and finally how these
concepts are applied in practice.

6.3.2 Forces

Forces are the product of mass and an acceleration, F⃗ = md2x⃗
dt2 (or, more familiar to most,

F⃗ = ma⃗), which is one of Newton’s laws of motion (Newton, 1687; Tipler and Mosca, 2007).
In fact, force is better expressed as the derivative of linear momentum p⃗ with respect to time,
hence F⃗ = dp⃗

dt
(total derivative). They are vector quantities (magnitude, direction) and can

occasionally cancel out (superposition). Linear momentum is defined as follows: p⃗ = m x⃗
dt

,
with m the mass and dx⃗

dt
the linear velocity (change of position over time).

Combining these equations and applying the total derivative:

dp⃗

dt
= m · d2x⃗

dt2 + dm

dt
· dx⃗

dt

One can apply the inverted version of the mathematical “chain rule” (hence: “unchain
rule”):

dm

dt
= dm

dx⃗
· dx⃗

dt

Which, plugged back into the derivative of linear momentum, gives the complete force
formula (here in the scalar form).

F⃗ = m · d2x⃗

dt2 + dm

dx⃗
·
(

dx⃗

dt

)2

(6.1)
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Because a⃗ = d2x⃗
dt2 , the first part of the right hand side expression in equation (6.1) is the

familiar F⃗ = ma⃗. The second part is more enigmatic: those are “velocity product terms”,
which involve partial derivatives of the mass matrix1, thereby accounting e.g. for
configuration changes of a chain of segments, deformations or mass shifts (e.g. muscles,
blood flow, . . . ). Assuming here that mass distribution of single segments is constant or
changes are comparatively small (which is generally an inaccurate simplifying assumption),
this part is usually set to zero.
Hence, we get a more or less familiar equation for the Force F⃗ , which tells us that the
acceleration of a mass (md2x⃗

dt2 ), i.e. a change in linear momentum, must be equal to an
external force. F⃗ is a three element vector.

6.3.3 Moments

In the door slamming experiment, and experimenter must apply force to the door in order
for the experiment to “succeed”. Yet the movement of the door depends on where the force
is applied (Fig. 6.2). Consider slamming a door by applying a force close to the hinge. This
either requires much higher force, or yields much less spectacular experimental outcomes
than applying force to the distal side of the door (furthest from hinge, e.g. at the handle).
In fact, this simple physical observation explains why doors have evolved handles in the place
where we observe them in extant doors.
Otherwise, the calculation of angular quantities is largely analogous to the linear case (Lewin,
1999b; Tipler and Mosca, 2007). Mass, in the force equation, is the resistance of an object
to linear acceleration, i.e. to change of linear momentum p⃗. Analogously, Mass Moment
of Inertia2 (I) is the resistance of an object to rotational acceleration, which induces a
change in angular momentum L⃗. From experience, one can tell that lifting a door out of its
hinge is a different process than conventionally rotating it, thought few have carried out this
comparison in the absence of gravitation and friction. And so, the series of equations above
can be applied analogously to angular momentum L⃗ (with angular velocity dθ

dt
).

L⃗ = I
dθ

dt

The time derivative is as follows.

dL⃗

dt
= I · d2θ

dt2 + dI

dt
· dθ

dt

The time derivative of angular momentum is called moment (M⃗ ; see also:
1Mass is often taught as a scalar quantity, yet in more complex problems of composite systems, which

have a mass distribution, it can be more useful to represent mass by a matrix/tensor. This is analogous to
the mass moment of inertia.

2Note that I is a matrix, usually 3-by-3; this is analogous to mass, which in its general form for complex
objects is also a matrix (Lynch and Park, 2017).
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Figure 6.2: Force and Moment. A force applied further away from the hinge P⃗
(situation A) will generate a larger moment than a force similar in magnitude,
but applied more proximal to the hinge (situation B). The reason is that the
moment is defined as the cross product of the position vector of the force
application point (in a hinge-centered reference frame) and the force vector.
Furthermore, because the change in angular momentum is related to that
moment, the door will gain a higher momentum (and will therefore “hit
harder”).

Figure 6.3: Derivation of Newton-Euler equation of rotational motion.
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Wikipedia/Newton-Euler equations (2012); Wikipedia/Torque (2012)), and with further
manipulation (details in Lynch and Park, 2017, p. 242, eqn. 8.23; otherwise see Fig. 6.3)
yields:

M⃗ = I
d2θ

dt2 + dθ

dt
× I

dθ

dt
(6.2)

Again, there is an (angular) velocity product term which we hope to sufficiently well
approximate by setting it to zero (rigid body assumption, i.e. no or negligible change of I).
Just as in the linear case, we identify a cause for any change in angular momentum, and
call it the moment M⃗ (others may call it torque τ⃗). In this case, I used the vector formula
notation (explicit by the cross product; this could analogously be done for the force,
equation (6.1), above). There is another extra step compared to the linear momentum:
calculation of the angular momentum requires a reference point (usually the hinge,
P⃗ , as above, but any point could be chosen). The calculated angular momentum actually
changes depending on which reference point is chosen. Returning to the example of the
door, rotating on a hinge (Fig. 6.4). We are free to approximate the door by a point mass
in point D⃗, to see in which way the results deviate from common experience. Angular
momentum L⃗ relative to point P⃗ , which we denote L⃗P⃗ , is calculated by using the cross
product of the vector from point P⃗ to D⃗ (r⃗P⃗ D) and the linear momentum p⃗ = mv⃗:

L⃗P⃗ = r⃗P⃗ D × p⃗ = mr⃗P⃗ D × v⃗

From cross product properties, we see that the direction of L⃗ does not change during the
slamming (stays parallel to the hinge axis), and the magnitude stays constant and greater
than zero if velocity is greater than zero.
In contrast, the point mass door has a different angular momentum when calculating it
relative to point D⃗: the position vector r⃗D⃗D becomes zero, so L⃗D⃗ = 0⃗ at all times. This is
non-intuitive: the door rotates, after all; yet remember that we are reducing it to a point
mass here and L⃗D⃗ = 0⃗ only holds for the point mass case! Other points and non-point-mass-
objects require more complex calculations, except maybe in the special case where rotation
happens about the center of mass ( ⃗COM). In that special case, we speak of “spin angular
momentum”, which is an intrinsic property of the object in a sense that we do not need
to give a reference point any more because everyone knows that the ⃗COM is the reference
point for spin angular momentum.
But the general idea is that one needs to keep track of a reference point for angular
momentum, and thus also for all calculations regarding angular momentum or mass
moment of inertia.
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Figure 6.4: The slamming door, isolated sketch.
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6.3.4 Screw Theory and Wrenches

The formulas for force and moment above resemble each other. In fact, a common trick
to help novice physicists remember the angular formulas is to replace position x⃗ by θ (and
derivatives accordingly), and mass m by mass moment of inertia I (Tipler and Mosca, 2007).
The force-moment-analogy is no co-incidence. Force is a 3D vector, acting at a point.
Moment is a 3D vector with a reference point. The moment is in fact just the corresponding
force acting at a lever. And the lever is usually the same position vector used to calculate
angular momentum; in other words, given that we stay in the same reference frame, we
might just need the force and the reference point, and the moment follows.
Would it not be useful then to join force and moment?
It would. There is a framework to unify the linear and angular components of momentum,
which is called Screw Theory (Ball, 1876; Lynch and Park, 2017).
The trick is to concatenate the vectors F⃗ and M⃗ to form a six element vector W⃗ , the
Wrench (Fig. 6.5, cf. https://en.wikipedia.org/wiki/Screw_theory). “6D” might
seem unhandy, and one may ask “why”. The pure and simple answer is computational
convenience (Dumas et al., 2004; Müller, 2018): the wrench saves us from double
computation, by linking the two intrinsically related parts of momentum.
Any modern scripting language used to solve inverse dynamic questions can easily work on
six element arrays/vectors instead of three-dimensional ones. A mathematical shorthand for
writing wrenches are square brackets and a semicolon indicating that the (column vector)
components are concatenated (to form a longer column vector):

W⃗ =
[
F⃗ ; M⃗

]
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Frame of Reference

a Wrench

X
Point of Applica�on

Figure 6.5: Wrench notation. A Wrench is a combined vector of force and moment,
consisting of six elements, and requiring a point of application. Wrench
vectors are depicted as arrows, yet in contrast to forces, their tip points
towards the point of application (they can be moved around, adjusting the
moment component; see text). Note that this figure is actually a 3D sketch,
yet the limitations of a printed PhD thesis prohibit illustration beyond the
paper plane projection.

Figure 6.6: The door slamming experiment in wrench notation (see text).
Point P⃗ is the origin of the reference frame, r⃗P⃗ D is the position vector to the
attack point D⃗ of the wrench W⃗ .
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6.3.5 Balance of Wrenches

As with force and moment, we can equate a dynamic wrench to external wrenches in the
calculation of a “balance of wrenches”. This can be achieved by, again, vertically
concatenating force and moment balances.
For one, we get a “dynamic wrench” on the left hand side of the balance. Plugging in the
non-zero part of equations (6.1) and (6.2) from above, we get an expression for what can be
referred to as the dynamic wrench (defined at the ⃗COM):

W⃗dyn =
[
m

d2x⃗

dt2 ; I
d2θ

dt2

]
(6.3)

Wrenches can be added up, for example the dynamic wrench can be easily shifted (vector s⃗)
to a different reference point, which does not require extra adjustment of the mass moment
of inertia:

W⃗ ∗
dyn = W⃗dyn + [⃗0; s⃗ × (md2x⃗

dt2 )︸ ︷︷ ︸
F⃗

] (6.4)

The x⃗ and θ in the dynamic wrench refer to the movement of the rigid body itself and are
immediately derived from the object’s kinematics. The inertial properties m and I have to
be measured or approximated separately. The dynamic wrench expresses the rate of change
of momentum of an object.
On the other hand side of the equation, we have any external wrenches acting on the
object. The most important ones are the gravitational wrench, friction wrench, and the tip
wrench (stay tuned).

W⃗g⃗ = [mg⃗; 0]

W⃗f ≈ [0; 0]

W⃗t⃗ip =
[
F⃗t⃗ip; M⃗t⃗ip

]
We can sum up all external wrenches to get a total external wrench W⃗ext:

W⃗ext =
∑
ext

W⃗i = W⃗t⃗ip + W⃗g⃗ + W⃗f + . . . (6.5)

Any other known external forces and moments should be added in wrench form, keeping in
mind that correct addition requires shift to the same reference point (usually the ⃗COM).
Equations (6.3) and (6.5) constitute the Balance of Wrenches:

W⃗dyn =
∑
ext

W⃗i (6.6)

194



In other words:

The rate of change of [linear;angular] momentum of a rigid body is equal to the sum of
external wrenches acting on it.

6.3.6 Reference Frames

For simplicity, I ignored the issue of reference frames in all equations above. Just like
reference points, reference frames need to be well documented. Transformation from one to
another reference frame is possible by matrix multiplication with a transformation matrix.
It turns out that reference frames are not required for the calculations above: one can and
should simply stay in the inertial reference frame.
If one, however, decides to venture into the reference frames (as the author did), be aware
that fictitious forces add to the balance. Interested readers may refer to a practical guide by
the author (Mielke, 2020).

6.3.7 Quaternions

On top of the force/moment complexity comes the issue of quantifying rotation in space.
Angular momentum depends on angular acceleration d2θ

dt2 , which is the second temporal
derivative of “angle”. But getting that angle in 3D is not exactly trivial, and there are
several complementary notations.
When we think about rotation in space, we might think about an axis and an angle (Fig.
6.7). And that is a good point to start.

axis:


x

y

z

, angle: θ

On the swinging door, the axis would be the line through the hinge points, and the angle
could be measured as the radians separating open and closed state. Ideally, one would want
to combine axis and angle into a single object q⃗, and it turns out that the following way is
convenient (Challis, 2020; Flashner and McNitt-Gray, 2019; Pennestri and Valentini, 2010):


cos(θ/2)

x · sin(θ/2)
y · sin(θ/2)
z · sin(θ/2)

 = q⃗ =


qw

qx

qy

qz

 (6.7)

There also exists a conjugate, q⃗−1:

q⃗−1 = (qw, −qx, −qy, −qz)
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And this object q⃗ allows for convenient spatial rotation, by almost-simple multiplication:
take any 3D point’s position vector D⃗ with 4D coordinates3 (0, a, b, c). This could be the
door handle point from our example: after rotation, it will be D⃗rot, which can be calculated
by:

D⃗rot = q⃗ · D⃗ · q⃗−1

The dot “·” is just vector multiplication, and computational tools can handle this operation
quickly and efficiently. Better yet, one can stack quaternions by (non-commutatively)
multiplying them:

q⃗2 ·
(
q⃗1 · P⃗ · q⃗−1

1

)
· q⃗−1

2 = (q⃗2 · q⃗1)P⃗ (q⃗2 · q⃗1)−1

Working with time series of quaternions (q⃗(t), i.e. the angular position of an object
changing over time), there is a formula for getting the angular velocity dθ

dt
from the time

differences dq⃗/dt which fortunately even works with numeric differentials ∆q⃗
∆t

of real
measurements (Baker, 1999).

dθ

dt
= 2∆q⃗

∆t
· q⃗−1

A quaternion variant for the Kabsch algorithm exists (Kabsch, 1976; Kneller, 1991; Lawrence
et al., 2019). This algorithm is useful to find the rotational difference between rigid bodies,
including the change of rotation of a rigid body between two measurement times or the
position of a segment relative to another.
Quaternion operations are usually included as functions in common quaternion toolboxes (for
example in Matlab, R, and Python). And toolboxes also provide the capability of conversion
to other notations of spatial rotation (Euler- or Tait-Bryan angles, Rotation Matrices).
Just like with wrenches, quaternions cause discomfort to untrained analysts because they
seemingly leave the familiar space of 3D geometry. However, if one simply accepts that maths
can handle 4D or 6D problems, the reward is computational convenience. Superposition and
the generation of temporal derivatives are readily available. Quaternions also avoid some of
the pitfalls of the alternative methods (gimbal lock problem, order dependence). They have
an intuitive geometric interpretation through the axis-angle-analogy. And if anatomically
relevant axes are required for communication, they can easily be transformed to such.
This does not imply that inverse dynamic calculations are impossible with Euler Angles. Yet
in most applications, quaternions are mathematically elegant and efficient.

3The position vector D⃗ is transferred to 4D space (formally necessary for multiplication with 4D
quaternions) by simply appending a “zero” as the first element; the quaternion multiplication ensures that
D⃗rot, though also 4D, always has a zero-valued first element, being effectively 3D.
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D

Drot

Figure 6.7: Spatial rotation with quaternions. A point D⃗ (blue, with gray dashed
position vector) can be rotated by an angle θ around an axis (x; y; z) to
position D⃗rot. The higher the rotation angle value (indicated by the orange
area), the further the rotation. A quaternion (large black arrow) can encode
both the axis and the angle in a 4D vector, in a manner which conveniently
enables the execution of the rotation by simple vector multiplication.
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6.4 Dynamics: Application

6.4.1 Generic Approach

The theoretical considerations above assemble several technical advantages which are worth
summarizing.

• The Balance of Wrenches, equation (6.6), can be calculated entirely in the inertial
reference frame, without repeated switch to joint coordinate systems (and return).

• Wrenches can easily be moved to other reference points via equation (6.4).

• A convenient point to calculate the balance of wrenches is the center of mass
( ⃗COM); rotation about that point is an expression of spin angular momentum (an
intrinsic property) and most components simplify (e.g. gravitational wrench W⃗g⃗,
dynamic wrench W⃗dyn).

• Expressing rotational motion by quaternions avoids issues of other methods; favorable
features are linear superposition and direct derivative calculation.

These favorable technical properties have not gone unnoticed (Dumas et al., 2004, 2007).
Dumas et al. (2004) presented a numeric procedure to perform segment-wise balance of
wrenches (equation 15 in Dumas et al., 2004). This enables the complete solution of inverse
dynamic problems with a single, easy to apply numeric formula. Dumas et al. have provided
and since then improved an implementation of their procedure in Matlab (Dumas, 1999).
The sceptical author of this thesis has reproduced that procedure in Python, both
numerically and analytically (Mielke, 2021).

6.4.2 Algorithm

With wrenches, quaternions, or the numerical formula at hand, one can compute the Balance
of Wrenches for a single segment. Limb segments are usually arranged in a chain, e.g. a
human leg consists of the thigh, a lower leg, a foot, and toes. However, there is an issue.
The inertial wrenches (gravitational wrench, friction, . . . ) are known; the dynamic wrench
is measured from kinematics and inertials; yet connecting wrenches are usually unknown:
each segment (e.g. the thigh) receives an unknown wrench input from all adjacent segments
(e.g. the pelvis and the lower leg).
There is one exception: the distal-most segment which has ground contact. Instrumented
runways can contain force plates to measure contact forces and moments at the contact of the
distal limb on the ground. Force plates usually generate electronic read-outs from directional,
pressure sensitive piezoelectric crystals. By calibrating the plate, one can convert a voltage
profile to forces, moments, and a contact point, all of which are changing over time.
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Hence, the practical strategy (Dumas et al., 2004; Lynch and Park, 2017; Robertson et al.,
2013) is to start at the most distal limb segment (e.g. the foot-toe or hoof complex), and
measure its movement and ground contact wrench. In that situation, all wrenches in the
balance are known, except the wrench at the proximal joint (human foot example: the ankle
wrench). The external wrench at the ground contact point, in the balance calculation of the
segment which is in ground contact, is also called the tip wrench; trivially, it is zero if the
distal segment is lifted off the ground. Note that the read-out of a force plate gives a contact
point, which is not the ⃗COM , so the wrench can be taken at contact point and must then
be shifted. One can calculate the balance of wrenches by subtracting all external wrenches
(ground contact wrench, gravitational wrench, proximal joint wrench, . . . ; all shifted to the

⃗COM as the common reference point) from the dynamic wrench of the segment (measured
linear and angular movement, also with respect to the ⃗COM). Exactly one of the external
wrenches is unknown, the one on the proximal joint; we can solve for it (careful with reference
points: the calculation comes out at the ⃗COM). The proximal joint wrench is shifted to the
proximal joint position, its natural “point of attack”4. Inverted in sign (Newton’s nth law),
the joint wrench becomes the tip wrench of the proximally adjacent segment and adds to
the balance of wrenches of that segment (Fig. 6.8). There, the procedure is repeated.

6.4.3 Inertial Properties

The procedure is quite trivial to implement, however the measurement uncertainty for all the
involved quantities is not homogeneous. Whereas force plates and spatial coordinates can
be accurately measured in a calibrated lab reference frame, the inertial properties of each
segment require rough measurements and approximation. The relevant inertial properties
are mass m, center of mass ⃗COM , and mass moment of inertia I. This justifies a closer look
at them.
There are several ways to retrieve inertial properties. The classical method requires a
dissection of the segment; this can be a precise anatomical disarticulation or straight-cut
slicing of a frozen specimen. In the case of our slamming door, one would take the door off
the hinge. The segment mass is then measured on a simple scale. Center of mass could be
derived from a classical pendulum experiment (Fig. 6.9): hang an object from a thread,
measure oscillation period, apply T = 2π

√
l
g⃗

solved for effective length l, repeat the
procedure with the object hung along a different axis. A common simplification is to
express the position of the ⃗COM as a fraction of the segment length, inaccurately
assuming that it lies on the segment long axis. Anatomical landmark references are
required to transform the relative ⃗COM position into the lab reference frame. Finally, the
classical method to determine mass moment of inertia is by using a trifilar pendulum (Korr
and Hyer, 1962; Schedlinski and Link, 2001; Wells and DeMenthon, 1987).

4This series of shifts should have illustrated why the wrench is a useful construct: computational rigor
can make sure that the reference points are respected.
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⊕

Wtip

Wjoint

Wg

Wdyn

COM

ICS

Figure 6.8: Wrench balance of a piglet femur (sketch), as it can be computed for
each segment from distal to proximal. The tip wrench (W⃗t⃗ip, at the distal
joint) is the input from the distal adjacent segment or from ground contact.
Dynamic wrench (W⃗dyn, at the center of mass/ ⃗COM) is calculated from
kinematics. Gravitational wrench (W⃗g⃗, at ⃗COM) is known by the mass of
the segment. These wrenches allow to calculate the joint wrench (W⃗joint, at
the proximal joint), which is the tip wrench input for the proximal adjacent
segment. All calculations can be performed in the inertial coordinate system
(ICS, i.e. the inertial reference frame).
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The so-retrieved measurements are filled in to the algorithm outlined above.
Measurement uncertainty of the inertial properties is not determined by the accuracy of the
measurement instruments. This is where the “slamming door” analogy fails, because a door
is actually rigid. The pendulum methods above yield numerically accurate results. However,
the dissected limb is only a limited representation of the segment in vivo, for several reasons.
A first issue is the choice of a disarticulation cutting surface: which mass particles are
assigned to which segment? This choice affects mass, but also ⃗COM and mass moment of
inertia, and because cuts are generally further away from the ⃗COM , this effect matters.
Second, muscles (as a complex composition of fiber bundles and fibers) deform, shift and
slide past each other during contraction and movement (Böl et al., 2013). Their cross section
and fibre distribution can change on non-isometric movements. Gravity pulls soft tissue into
a direction (Hansraj et al., 2022) which might be different in vivo and on the preserved
configuration of the limb. Zeugopodial and autopodial segments often include multiple
bones which might experience a shift in their relative position during a stride cycle. All this
reduces congruence of the preserved, measured body part and the in vivo situation: mass is
constant, yet the ⃗COM of a segment is not stable during locomotion, and the mass moment
of inertia tensor will most certainly vary during the process.
Third, there might be shrinkage and tissue loss during the preservation of the specimen.
Formol, ethanol, or temperature are typical agents used as a fixative; any fixative has its
effect on soft tissue (Buytaert et al., 2014; Pech et al., 1987). This issue can putatively
change all inertials properties of the sample.
Fourth, 3D volumetric imaging (e.g. CT scans) could be an option to replace the
measurements above, yet such scans do not solve all of the other issues, and instead come
with their own set of problems and limitations (topic of the next chapter).
The implications of these conceptual issues will be discussed in detail in the next chapter.
Yet note already that these four effects violate an assumption above: inertial properties are
hard to determine, and the velocity product terms in the balance of forces are non-negligible
because the mass distribution is not constant.
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⊕

Figure 6.9: Measuring inertial properties of the slamming door: the center of
mass.
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6.5 Summary

This chapter serves as a brief overview of the basic methodology of inverse dynamics. This
method exploits the fundamental physical phenomenon of conservation of momentum to
model and infer the reasons for movement of systems of more or less rigid bodies. I outlined
the general algorithm, and documented one specific procedure applicable to inverse dynamic
measurements of quadruped, terrestrial locomotion.
In particular, the Wrench-Quaternion method (Dumas et al., 2004) has proven useful for
joining kinematics and force measurements for dynamic calculation. The reason is
computational convenience. Wrenches are the conceptual link of forces and moments, and
they allow convenient computer implementations. Quaternions have favorable properties to
calculate spatial rotation in the context of rigid body motion (superposition, singularity
avoidance, transformability). This establishes the conceptual framework to perform the
relevant calculations of the conventional algorithm, which involves starting at the distal
segments where external forces are known (e.g. ground contact) and processing the
calculation towards the torso of the animal.
A crucial simplification of that procedure is that we treat body segments of animals as
rigid bodies, which they are not. By post mortem fixation and dissection, or by digital
volumetric segmentation, segments can be separated and their inertial properties measured.
The accuracy of these methods will be the topic of the next chapter.
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Chapter 7

Approximating Inertial Properties of
Biological Specimens using CT Data,
or Not
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7.1 Abstract

An essential part of the inverse dynamic workflow is the measurement of inertial properties,
in particular mass, center of mass, and mass moment of inertia. In the past, these have
often been approximated by assigning average density values to limb segments. Recent
studies have explored the potentially more accurate retrieval of inertials from computed
tomography (CT) data, which would work by associating voxel gray values of the CT image
stack with densities. However, CT images actually depict attenuation, which is a different
attribute of matter and only roughly correlates with density. Though this was known since
the early days of CT, the temptation of easily retrieving inertials has recently led researchers
to re-attempt linear approximation methods.
In this study, I document my own attempts in retrieving density values from CT images.
Though a conversion is possible by using a regression, I demonstrate that the resulting
mass and inertia are highly erratic. By performing a thorough sensitivity analysis, and by
simulating common CT artifact, I can quantitatively evaluate what effect uncertainties in
the regression have for the outcome measures.
The results are alarming: in the test case, mass is overestimated by more than a fifth, and
error propagation indicates that this has an even worse effect on moment of inertia, which
directly translates to errors in inertial dynamics. However, there is no reason to expect
alternative, conventional methods to be more accurate. Thus, though CT images are not
ideal for the purpose, they might be the best option available in most cases. In conclusion,
I emphasize the value of a sensitivity analysis, and point at promising research progress
of others which might lead to improving CT reconstructions for the purpose of estimating
material characteristics.
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7.2 Introduction

7.2.1 Computed Tomography and Density

Since the advent of x-ray imaging, people are intrigued by the ability to see the inner structure
of objects and living creatures (such as the famous hand of Röntgen’s wife, “Über eine neue
Art von Strahlen”, 1895). This desire even increased by the development of computed
tomography (CT; Beckmann, 2006; Hounsfield, 1973), a set of techniques which enable the
reconstruction and visualization of three-dimensional structural images. The transmission
images obtained via high energy electromagnetic radiation often serve to answer qualitative
questions (e.g. whether a bone is fractured). Quantitative questions are obvious with regard
to the shape of a scanned structure (e.g. the length of a fracture, the shape of a bone,
trabecular and cortical micro-/architecture). However, researchers have been struggling with
the quantitative extraction of material properties from CT data. The material property of
primary interest is physical density; from a given density distribution, other relevant inertial
properties can be calculated.
Researchers suggested early on to relate the gray value of CT images to density (Mull,
1984; Phelps et al., 1975), yet it was immediately noted that the relation is nothing more
than a correlation which only holds under specific circumstances. Even these pioneer works
acknowledge that there must be discrepancies between real and x-ray-derived densities, which
are often associated with (i) the polychromatic character (source spectrum) of the used
radiation, (ii) chemical composition (absorption spectrum), and (iii) scan artifacts.
These issues demand a detailed explanation, below. Notwithstanding this list of known
problems, people have repeatedly attempted to extract density and inertial properties from
CT scans (Du Plessis et al., 2013; Durston et al., 2022; Phillips and Lannutti, 1997, as well
as the present study). The purpose of this chapter is to explore whether or not (or under
which circumstances) CT gray values can be used to estimate density distributions, and
thereby mass and other derived inertial properties. I will start by giving a brief intro to
crucial aspects of CT scanning technology, before reviewing similar attempts by others, then
introducing a simple experimental setup to measure dynamics of an excised piglet femur,
and with that re-attempting the extraction of inertial properties.

7.2.2 Emission and Absorption

Visible light and x-ray radiation are, to a large degree, analogous. The reason for this is that
both are electromagnetic radiation; they differ in wavelength, thereby energy, and thereby in
the way they interact with matter. To illustrate what is happening with x-ray light during
a CT measurement, I will use the analogy of visible light.
Most plants have evolved to be green; their cells hold organelles with the green pigment
chlorophyll, which absorbs some non-green (e.g. red) wavelengths of light very well (Fig.
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7.1, green curve). Light are photons, “elementary particles which are the quantum of
the electromagnetic field” (Wikipedia: photon). Filters let through some of them, while
prohibiting others from passing. Think of party lights or colored window sheets: a light
source is placed behind one or more filter sheets which block most colors and let through
certain others. In case of a green filter sheet, relatively more green photons pass the filter, the
filtered spectrum will appear green to our visual perceptive system. In plants, the ensemble
of non-absorbed photons also appears green to us, which is why leaves generally appear
green to our view. But leaves only appear green if there is a green content in the incident
light! Green leaves will look red under red light (and “darker”, i.e. lower number of reflected
photons than for an equal input intensity of green light). If you want to reduce the chance
of being seen while looking for something in a dark forest, better use a red flashlight.
To characterize light which is emitted, reflected, or absorbed, one can plot a spectrum (Fig.
7.1) 1. Red LEDs are an alternative to red filters: they immediately produce a spectrum
which is biased towards low frequencies. One can assess that red LEDs have a different
source spectrum or emission spectrum than white LEDs or “vintage” (tungsten) light
bulbs. If the light from a white source is filtered (e.g. by a red sheet of thin, translucent
plastic), the spectrum is altered. A red LED viewed through a green-pass filter (e.g. a leaf)
might appear to be “off”, when really power is “on”, because the majority of photons are
absorbed by the filter.
In fact, light hitting any object will change its spectral composition, depending on the
material’s absorption, transmission, and reflection spectrum. This is also a filtering
process: the outgoing light will depend on the incoming spectrum and the material properties
of the object. Plant leaves will almost entirely absorb a narrow band of incoming red light.
Interactions of photons and matter crucially depend on the energy/frequency/wavelength of
the photons, and the energetic/vibrational/resonant molecular properties of the matter. A
(differential) spectrum is a way to depict a wavelength dependence.
Crucially, the interaction of x-rays (i.e. high-energy, low wavelength photons) with matter
differs from that of visible light and matter. Hence, the analogy between visible light and
x-rays only partly holds. X-rays (Berger et al., 2018a; Buzug, 2008) are also photons, just
at a different wavelength (range 10 pm to 10 nm). An x-ray detector is a complex sensor
device, similar in function to digital camera sensors, which will detect any light which is
not absorbed or scattered by the sample or air on its way through the scanner chamber.
X-ray sources are “targets”, i.e. anodes made of certain metals (Tungsten, Molybdenum,
. . . ), shot at with an electron beam which is evoked by applying voltage (e.g. 60 kV ) to the
warmed-up anode and cathode. When hit by electrons, the target will emit x-ray photons
of a specific composition of energies (spectrum, Fig. 7.2). The source emission is generally
polychromatic, i.e. consisting of multiple colors/energies (just as the spectra in Figs. 7.1
and 7.2). Most household CT scanners (in contrast to synchrotrons) have a polychromatic

1Patient readers of this thesis will see a connection to Fourier methods (Ch. 2).
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Figure 7.1: Spectra. The horizontal axis shows all wavelengths λ (nm) of relevance (in
this case the range of visible light, for illustration). Related to wavelength
and therefore viable axis label alternatives are frequency (units: Hz) and
photon energy (units: eV ). The vertical axis shows photon occurrence
probability, or normalized intensity I, or the intensity difference ∆I for
the absorption spectrum. Black curve: emission spectrum of a white LED
(Tanabe et al., 2005). Green curve: the approximate absorption spectrum
of chlorophyll A (Zscheile, 1934). The chlorophyll will hardly get excited by
the LED, yet the plant will look bright and green.

Figure 7.2: X-ray emission spectrum. An x-ray source will emit photons with
a variety of energies (“colors”). Bremsstrahlung will cover a wide range
of photon energies, whereas discrete peaks are caused by specific emission
processes in the target material. (taken from Berger et al., 2018b, creative
commons license).
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source. On the other hand, x-ray detectors usually produce monochrome images, but are not
monochromatic! Much like a monochrome digital camera photo cell measures light intensity
of any wavelength within the visual range (restricted to visual by another filter); in contrast,
a truly monochromatic detector would detect only a specific wavelength. They integrate
intensities over a wide range of wavelengths (in a specific way that could be measured as the
sensitivity spectrum of the scintillator2). There is ongoing development on the frontier of
“spectral CT” (Liu et al., 2023), yet spectral and spatial resolution are currently still below
par (whereas price is not).

Once set on their path from within the x-ray source, x-ray photons interact stochastically
with matter they encounter on their trajectory (photoelectric effect, Compton scattering).
“Attenuation” is the term to describe that not all photons reach the detector, i.e. the
detected x-ray intensity is lower than the incident intensity. The probability of either of
the possible interactions depends on (i) the wavelength (photon energy), (ii) the elementary
composition of the material (absorption spectrum, K-edges), and (iii) the trajectory of the
photon (thickness of the material, angle of incidence).

The varying degrees of attenuation, when measured from multiple incident angles for 3D
view, is what enables the extraction of structural information (Lambert-Beer’s Law). If
children place their hands inside a conical light beam, an animal-shaped shadow will be
projected onto the wall. Their hands attenuate the light. Photos of the hand’s attenuation
pattern from all possible directions (i.e. rotating the hand) can in fact be used to reconstruct
the 3D shape of the hand to falsify the hypothesis that an actual animal was causing the
projection.

And attenuation is precisely the property which is thought to correlate with physical density:
the higher the density, the higher the attenuation. Or so it seems. Yet think of a case in
which the specific emission of the source does not match the absorption peaks of the material
- as in the example of a white LED not exciting chlorophyll of a green leaf (Fig. 7.1). Or the
opposite case, a substance with an absorption spectrum which is mostly congruent to the
emission spectrum of the source. Examples of substances problematic for x-ray are water
and formol, because they absorb a broad range of photon energies within the x-ray range.

To summarize: both in the visual and x-ray range of electromagnetic radiation, emission
and absorption are determined by stochastic interactions of photons and matter. Spectra
summarize ensemble properties of a given light source or material; differential spectra
measure relative absorption. The filtering properties of matter can be used to acquire
images and reconstruct 3D structure, even in the absence of precise spectral information.

2The scintillator is the device which enables detection of x-ray, by converting x-ray light into visible
photons which are then detected by a sensor array.
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7.2.3 Scan Artifacts

X-ray images do not always look as one would want them to look. The unfavorable image
features are commonly called “artifacts” (Triche et al., 2019). In the opinion of the
provocative author, there is actually no such thing as CT scanning artifacts. The term
“artifact” linguistically implies3 that there is an “error” or flaw in the measurement, yet
instead it can be ascertained that correctly obtained x-ray images are highly accurate. Any
tomographic reconstruction just shows exactly what is measured, convoluted with ideally
negligible reconstruction algorithm characteristics.
Acknowledged, some aspects of the measurement might be unfavorable to the observer,
because they deviate from the image which that observer expects, based on their personal
experience of the real world. For example, a “beam hardening artifact” occurs if absorption
in the superficial layers of an object alter the spectrum of the beam on its trajectory, which
will affect the virtual representation of the deeper regions (Van Gompel et al., 2011). Low
energy photons have lower penetration depth than high energy photons, because they are
more likely to interact with matter. This causes a gradual change of the spectrum, which
will shift towards higher average energy along the ray’s trajectory through thick material.
An observer will know that a cylinder is homogeneous, and reject the image which shows
a radial density gradient. However, that gradient is in fact a normal manifestation of the
actual physical process (the stochastic interaction of electromagnetic radiation and matter).
Curiously, beam hardening can be minimized by pre-hardening the beam with the use of
metal filter plates (Triche et al., 2019).
Similarly, ring artifacts stem from sensitivity variations on the image detector, which are
technically inevitable (due to constraints of the physical detection process), but can be
rectified reliably (Sijbers and Postnov, 2004). Partial volume effects are caused by finite
scan resolution and voxel volume. Streak artifacts are caused by limited dynamic range and
“photon starvation” (i.e. beam hardening, again). All these could be considered properties
of the scan, rather than interpreting them as an annoyance.
Another group of so-called artifacts might stem from the choice and limitations of the
reconstruction algorithm. There are iterative/algebraic and analytical reconstruction
methods (Andersen and Kak, 1984; Feldkamp et al., 1984; Geyer et al., 2015; Gilbert,
1972; Hansen et al., 2021), all of which have their specific limitations. These algorithms are
constantly refined and improved, and specific algorithm variants can already overcome
specific scan limitations (e.g. Frenkel et al., 2022; Six et al., 2019). In the future, the
question of reconstruction artifacts will rather be one of algorithm choice. Today, the most
common reconstruction algorithm, used in a vast majority of the CT service facilities with

3Artifact: “A product of artificial character (as in a scientific test) due usually to
extraneous (such as human) agency”; Merriam-Webster online dictionary, ; https://www.merriam-
webster.com/dictionary/artifact. “A false or inaccurate result or effect that is produced accidentally”; The
Britannica Dictionary; https://www.britannica.com/dictionary/artifact. Accessed February 6th, 2024.
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cone-beam setups, is “filtered backprojection” (FBP, or Feldkamp/Davis/Kress = FDK
algorithm; Feldkamp et al., 1984).
To summarize: scan artifacts, if one wants to use that label, are perfectly normal. Some
might be partially circumvented, others show intrinsic features of the technical and
computational tomography procedure. Artifacts are interpreted as “something is not as it
is supposed to be”, despite attenuation-based images being close to technical perfection.
Artifacts are in conflict with our psychological image of the real world: metal beads do not
look like “stars” (radial light rays) to us in the real world, so the image is rejected. I
suspect that the major reason people still perceive artifacts as problematic is that we
actually think of matter and physical objects as a distribution of density, i.e. a mass
distribution, whereas x-ray scanning really yields a distribution of x-ray attenuation.
On the other hand, if assuming that density cannot be recovered from attenuation images,
the only appropriate way to measure an exact mass distribution of an object would be to
physically slice it into millions of little voxel cubes and weigh each of them. Compared to
that option, computational tomography is certainly a time-saving alternative.
Yet it must be kept in mind that x-ray images do not quantify density, they quantify
attenuation, most often lumped over a spectrum.

7.2.4 Density Approximations: Two Case Studies

The fact that two physical properties (attenuation and density) are fundamentally different
things does not imply that researchers cannot use one to measure the other. Scientists have
repeatedly suggested and attempted to convert CT scan gray values to approximate density,
which I will discuss on two examples (Du Plessis et al., 2013; Durston et al., 2022).

Du Plessis et al. (2013) acknowledge general difficulties of accuracy and repeatability in
extracting density from CT data.
They then average gray values of putatively homogeneous blocks of polymer plastic material,
apply linear regression which, as they point out themselves, does not appropriately cover
two of the measured data points. The latter problem is attributed to differences in chemical
composition (without discussing the known composition of the objects). The authors then
argue that chemical composition can be assessed by performing a Dual-Energy CT scan
(DECT), i.e. scanning at two different tube voltages and taking the ratio of gray values.
Note that this mode of execution of DECT is not really “dual” energy: the spectrum of
energies elicited in a 60 kV scan is included in the 230 kV scan; the photons below 60 kV

might even contribute the majority of light in the high energy scan. A better differential
would have been achieved by incorporating metal filters in the 230 kV scan (just as in beam
hardening filter, see above). Nevertheless, comparing the calibration line and the DECT
ratio results, the putative outliers do not stand out more than other regression elements
(especially the PTFE sample puts the original regression in doubt: it is perfectly fit by the
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calibration regression, is a modest outlier on the DECT ratio, despite a special chemical
composition containing fluorine).
For a toy pig of unknown plastic material, Du Plessis et al. (2013) retrieve higher than actual
mass estimates; they identify chlorine and calcium content as the cause. On another unknown
sample which is assessed to be “similar enough” in chemical composition, they retrieve an
accurate prediction. The authors do not quantify or report measurement uncertainty which
manifests in gray value distributions, sub-optimal regression goodness of fit and potentially
high regression sensitivity (PTFE), or other sources of variability (Macaulay et al., 2017).
Finally, they destroy a toy pig for the study, which cannot be excused.
In a nutshell, Du Plessis et al. (2013) attempt density prediction in a particular use case
(homogeneous, chemically identical objects) and suggest a DECT ratio to assess chemical
composition.

Durston et al. (2022) attempt a huge leap from there and measure inertial properties of
frozen cadaver parts, both conventionally and computationally. Emphasis: they use whole
birds, and their considerable amount of work must be appreciated!
As the authors above, Durston et al. acknowledge the critical assumption of a linear
relation between attenuation and density, and consequentially use a simple linear relation
as a conversion from CT scan in Hounsfield Units to actual density. They supplement the
calibration regressions, which show systematic errors at close look (the regression line lies
tilted compared to the majority of relevant calibration objects; it looks biased by the “air”
sample point yet that is a valid and important reference point; the authors do not discuss
this). Still, that the linear fit works at all is surprising, given that this study uses tissue
phantoms provided for medical CT, all of which will putatively have a slightly different
chemical composition (linearity assumption violated).
To validate their results from CT density estimates, the authors apply two approaches.
The first is a comparison of virtual and physical dissection, with regard to segment mass
measurements. The second is a trifilar pendulum “ground truth” for one axis of the mass
moment of inertia. There is also a validation of the pendulum method, by applying it to
manufactured nylon blocks, yet quantitative error estimates remain vague.
Overall, results of the Durston et al. (2022) study remain superficial considering the author’s
valuable efforts on this project. They juxtapose pie charts of segment masses to verify mass
distribution, which is far too inaccurate. They compare the virtually and physically derived
dorso-ventral axis of the moment of inertia, and present what must be a clear mismatch,
considering the lack of meaningful error margins. They discuss the influence of partial
volume effects on density (which, agreeably, could be a problem with feathers), however
that is irrelevant for mass and moment of inertia because volume and density both change
if a voxel contains air and tissue. They present “moment of inertia distributions” in various
ways, i.e. the contribution of each voxel to a ⃗COM -centered I for an entire articulated
skeletal system, which is of little practical relevance (which they confirm themselves, by
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comparing extended and retracted wing configuration). It is a good reproducibility control
that their data confirms previous findings of segment masses of some bird species. The article
is published in the “methods and techniques” section of the Journal of Experimental Biology,
therefore fully focuses on the CT method, and does not discuss any further application of
the generated data.

This critique of these studies seems harsh, and I apologize for pointing a finger. Many
other studies have lumped the whole scan volume into a single density material, whereas
the presented examples explore potential improvements. I selected them because they are
related to my own work, and to point out a unifying feature and a reason for the highlighted
flaws in theses and other studies: they are output driven, and fall short of discussing the
mechanistics of CT imaging. As shown in these examples, practitioners often simply assume
that structural CT data represents physical density, instead of failing to falsify this claim.
The results are studies which yield approximate density distributions, yet fail to quantify
the inaccuracy and uncertainty of their quantitative data.
The author of this thesis is no exception. As the authors of the studies reviewed here, I
lacked insight and was driven by good hope when starting the work on the present project.
In consequence, this study is centered around the hypothesis that CT gray values can not
be converted to physical density, hopefully highlighting pitfalls to avoid and limitations to
be aware of for future researchers.

7.2.5 Reductionist Approach

This study follows up on the idea of using a calibrated CT scan (Du Plessis et al., 2013),
and adds a biologically relevant test object as well as an evaluation of the error margins
(Arroyave-Tobon et al., 2022; Hughes and Hase, 2010; Myers et al., 2015), which is crucial
for practical use. Calibration is attempted with cheap, leftover plastic pieces of known
material and density, as well as commercial bone mineral density calibration phantoms. I
chose a dissected porcine femur as the object of interest of which I seek to estimate the
density distribution, and thereby total mass, center of mass, and mass moment of inertia
(Fig. 7.3). I also attempted to validate the method on dissected animal specimens (as
Durston et al., 2022, but less sophisticated).
The hypothesis that CT images are a valid approximation of physical density is already
falsified by the theoretical considerations above. The following relevant questions remain:

• How far off the true value is the calculated mass moment of inertia, i.e. what is the
measurement error?

• How (much) exactly do known artifacts contribute to the measurement error?

• Are the cheap plastic parts appropriate calibration options for organic tissue?
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It should be pointed out that preliminary (naive) results of this study were first presented
at the conference of the Society of Experimental Biology (SEB) in 2021, one year prior to
the Durston et al. (2022) study.

Figure 7.3: Experimental Setup. A piglet femur was excised an marked with metal
bead markers. Together with various calibration objects, the sample was
fixed (“mounted”) in a PET bottle to fit into the cylindrical scan volume of
the FleXCT scanner of the University of Antwerp. The image on the left
shows the sample mount, magnified on the inset. On the right is one CT
projection of the sample, with the femur with markers clearly visible on top.
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7.3 Materials and Methods

7.3.1 The Flying Femur

As discussed in the previous chapter, the goal of inverse dynamics is to calculate the segment-
wise balance of wrenches, thereby elucidating which forces and moments each joint has to
handle in a motor task. The unit of calculation is therefore a segment. In a reductionist
approach, the purpose of this experiment is to perform all procedures and calculations on
one extracted rigid part of a segment.
For this purpose, a femur was excised from a piglet specimen which had been used previously
in XROMM4 experiments. The animal was euthanized after successful completion of the
experiment. Procedures have been approved a priori by the Ethical Committee of Animal
Experimentation, University of Antwerp, Belgium (approval number 2017–25). The femur
was extracted by carefully dis-articulating the parts of the right hindlimb of the piglet,
isolating the femur, and removing surrounding soft tissue.
The extracted bone underwent the full XROMM and inverse dynamic modelling procedure
(Fig. 7.4). Metal bead markers, 0.5 mm standard soldering balls made out of a lead-tin alloy
(Sn63Pb37), were glued to the extracted bone to simulate the typical XROMM necessity of
marked bones and facilitate landmark tracking on videos. Biplanar x-ray video recordings
were performed on the University of Antwerp’s 3D2YMOX system (Nguyen et al., 2021;
Sanctorum et al., 2020), with two experimental settings. In one setting, the femur hung on a
long, thin nylon string pendulum (appearing on camera to be “flying”). In a second setting,
the bone was rotated to mimic in vivo motion by a motor to which it was attached with a
radio-translucent, custom-made plastic clamp.
After the experiment, the femur was subjected to a calibrated scan at a local micro-CT
facility (FleXCT, imec-VisionLab, University of Antwerp, Belgium). Plastic parts for
calibration were donated by the mechanical workshop of the university, covering a range of
physical density from polypropylene (PP, 916 kg

m3 ) to Polytetrafluoroethylene (PTFE,
2210 kg

m3 ).
In addition to the plastic debris, two professional calibration phantoms (Bruker, USA) were
included in the scan. Those are hydroxyapathite cylinders, immersed in water over night,
with a diameter of about half a centimeter and a length of a centimeter. They calibrate
bone mineral density5 of 0.25 kg

m3 and 0.75 kg
m3 , and they have a physical density of 1254 kg

m3

and 1485 kg
m3 . Their physical density was measured by dividing the weight (measured with

a fine scale) and the volume (from CT scan), after the author had found out that those
are different quantities. Air and tap water volumes in the scan have known densities and

4X-ray Reconstruction Of Moving Morphology, Brainerd et al., 2010
5Bone Mineral Density (BMD) quantifies the amount of inorganic content within a volume of bone tissue.

Though sharing similar units with physical density, BMD measures just a fraction of the physical bone
density.
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complete the calibration series.
Expected outcomes of the “flying femur” experiment are twofold. Firstly, this provides a test
case as a reference for actual XROMM and inverse dynamic calculations, just with simpler
calculations, but including an “order of magnitude” estimate of the moments and forces
required to move the bone (not reported herein). Secondly, the validity of the “calibrated
CT” method for extracting inertial properties is to be evaluated.

7.3.2 Piglet Data

Originally, the femur was part of an animal, and thus also part of a bigger whole set of
experiments. That project involved newborn piglets reared temporarily at the veterinary
facilities of the University of Antwerp, and subjected to XROMM recording sessions.
Experiments were approved by the Ethical Committee of Animal Experimentation,
University of Antwerp, Belgium (approval number 2017–25) and performed in June and
July 2019.
The part of these experiment relevant for this chapter are the CT scans. Those were not
calibrated with the full array of plastic debris; they contained only air, water, and the bone
mineral density phantoms. One of the piglet scans was chosen for the validation of the
density acquisition method by comparing known segment- and total weight to the outcome
of the CT method. For this purpose, the animal was dissected both physically and virtually
(segmentation, Fig. 7.5) and the results compared. Segments were weighted individually on
a precision scale. Virtual segments were processed with the density regression procedure to
compute segment-wise mass estimates.

7.3.3 Scan Parameters

The femur scan was performed on a customized Tescan Unitom XL (FleXCT, University
of Antwerp), with appropriate settings (Tab. 7.1). The 1.0 mm aluminum filter plate and
the relatively high voltage were chosen to reduce beam hardening and metal bead artifacts.
Three “averages” indicate that every projection is the average of three scan images from the
same angle, which is a common trick to reduce pixel noise. Scan geometry was set to give
sufficient resolution (small voxel size) at reasonable scan duration. The reconstruction value
range was chosen to cover the entire histogram, excluding the metal beads, which gives best
dynamic range on the plastic and organic tissue.
The piglet scans for the second experiment were performed at a different facility (Royal
Belgian Institute of Natural Sciences, Brussels, Belgium) and with slightly different settings
(110 kV , 500 mA, 62 µm resolution, 5 averages). Piglets were scanned in frozen state and
in bags of two individuals at a time, to save time and cost. Air, water, and the bone mineral
density phantoms were available for calibration in these scans. Resolution was lower, but
exposure settings were comparable to the ones on the femur experiment.
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Figure 7.4: The "flying femur" experiment: an excised piglet femur used in
XROMM experiments as an allegory of reductionism. Left: the femur
oscillating on a pendulum. Right: installation with a motor capable of
moving the femur in a realistic way.

Figure 7.5: Virtual dissection (segmentation) of a piglet CT scan. Example
virtual slice.
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7.3.4 Inertial Properties

All code used on this project, including Python implementations of the mathematical
formulas below, can be found online (https://git.sr.ht/~falk/flying_femur and
http://mielke-bio.info/falk/posts/23.ct_density).

CT Segmentation

Of course, if e.g. the mass of a bone is to be calculated, one intends to sum up the mass of
only the bone, excluding the mass of the surrounding air or support material. A
preliminary step to calculate inertial properties from CT scans is the segmentation of the
scan. Segmentation is the separation of the “relevant” and “irrelevant” sub-volumes within
the image stack, in this case the bone and the surrounding air or background. More
generally, limb segments which are treated as a unit have to be labeled in dedicated
software (e.g. 3D Slicer), typically with a kind of “color brush” or “magic wand” tool;
thresholding of gray values, boolean operations, algebraic operations (“filling” etc.), and
other tricks may simplify the segmentation procedure in certain situations. The outcome is
a 3D boolean mask which can be used to distinguish the voxels in the scan which are
associated with the bone of interest.
This step might seem trivial, time consuming, yet necessary, and indeed it is all of that.

Mass

The mass of a volume element mi of a rigid body is calculated as the density ρi of that
element, multiplied with its volume Vi (Fig. 7.6). Summing up all volume elements will give
the total mass of the object: ∑

i

mi =
∑
i∈V

ρiVi (7.1)

The crucial part here is to get ρi, the density per voxel, which is attempted via a regression.

Center of Mass

The center of mass is the mass-weighted average position vector of all volume elements of a
rigid body (Fig. 7.6). For each volume element i, mass mi is a scalar, the position vector
ri is a three-by-one vector, and their product is summed up for all voxels of the segmented
bone. The result is normalized by dividing the total mass. The outcome is the three-by-one
position vector of the center of mass ( ⃗COM , shorthand for r⃗ ⃗COM).

⃗COM = 1∑
i mi

∑
i∈V

mir⃗i (7.2)
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Table 7.1: CT scan settings for the calibrated femur scan.

voltage 150 kV
power 55 W
current ≈ 360 mA
filter 1.0 mm Al
detector field 1920 × 1896 px
pixel size (0.15 mm)2

exposure time 50 ms
averages 3
projections 2879
source-detector 800 mm
source-object 267 mm
binning none
voxel size 50 µm
scan duration 10 min
reco value range [−0.2, 1.0]

⊕COM
mi

ri

Figure 7.6: Calculation of inertial properties of a limb segment (femur) from
CT scans. CT scans are 3D images, consisting of voxels (cubes) each of
which is associated with a gray value. If these could be associated with
physical density, it would be possible to calculate the mass, center of mass
( ⃗COM) and mass moment of inertia. In the calculation procedure, voxels
are treated as little mass elements mi, which are positioned at a given vector
position ri from an arbitrary CT origin.
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Mass Moment of Inertia

As stated before, mass moment of inertia is a tensor (speak: 3×3 matrix) which measures the
resistance of an object to angular acceleration. It can be calculated for any rigid body (see
Fig. 7.6) via an integral formula over all volume elements (Wikipedia/Moment of Inertia,
2023):

I =
∑
i∈V

mi

(
∥r⃗i∥2E3 − r⃗i ⊗ r⃗i

)
(7.3)

. . . with the rigid body’s volume V split up into voxels i which have mass mi and position
vector r⃗i; E3 is the 3 × 3 identity matrix and ⊗ the outer product.
Initially, this is always calculated with respect to the ⃗COM as reference point, the algorithm
usually includes subtracting the ⃗COM from the position vectors. The inertia tensor is a
symmetric matrix, and can be brought to a principal form by an Eigenvalue procedure, in
which the off-diagonal (“products of inertia”) become zero. The reference point of I can be
changed by the generalized parallel axis / Steiner’s theorem (Lynch and Park, 2017, p. 245).

Ip = I0 + m ·
(
s⃗T s⃗E3 − s⃗s⃗T

)
(7.4)

. . . with s⃗ being the shift vector connecting the original and target points.
It is difficult to get an intuition about Mass Moment of Inertia, but classroom demos can
illustrate how this measure depends on the geometric distribution of mass of an object (Dalvi,
2017; Lewin, 1999a,c).

7.3.5 Density Regression

The critical step in the procedures above is the relation of gray values γ and physical densities
ρ. This is the search for an (idealized) function γ = f(ρ), which can predict the CT gray
value for any given density. The inverse, ρ = f−1(γ), can then be used to assign densities to
gray values from the scan. Several regression functions were attempted, based on a guessed
relation of the observed gray values of the calibration objects.
The regression was performed in Python, namely using the scipy.optimize.minimize
function to minimize the Euclidean difference between observed and fit values with the
Nelder-Mead algorithm, tolerance set to 10−16 (Gao and Han, 2012). Convergence was
supported by setting meaningful parameter start values close to the expected outcome
(Tab. 7.2).

Table 7.2: Density Regression Functions and regression start values.

function start values
linear a + b · x a = 0.175, b = 10−4

exponential a + b · ec·x a = 0.12, b = 0.05, c = 0.0015
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Ideally, all measured points would lie on either of these functions. Yet that turns out not
to be the case in the actual data. Subsets of the calibration objects were selected for the
regression to be plausible: one group were air and the plastic parts, which approximate a
linear relation; the other group were air, water, and the two bone mineral density phantoms,
which seem to follow an exponential relation; the sample labeled “PVC” was plausible for
neither group and excluded.

7.3.6 Scan Artifacts

To estimate the effect of beam hardening artifacts, one of the scanned calibration objects was
selected by segmentation and virtually modified. I selected PTFE, because it has the highest
attenuation in the data set and is therefore most prone to suffering from beam hardening.
The PTFE cylinder has almost ideal cylindrical shape, and was well aligned with the scan
rotation axis. The object was segmented and cropped out of the whole scan so that the long
axis of the cylinder aligns with the center of the cropped volume.
Beam hardening manifests in a radial attenuation gradient in objects: superficial layers
which are reached first by x-ray beams seem to attenuate more (in absolute terms) than
internal volume elements, because they receive a higher input radiation; the inner elements
are partially shielded by the outer elements. The attenuation gradient produces a cup-like
profile in the gray value images, which is why beam hardening of cylinders is called
“cupping”. To quantify the amount of cupping, the cylinder was transformed to cylinder
coordinates (scikit image/transform/warp polar, https://scikit-image.org/docs/
stable/api/skimage.transform.html#skimage.transform.warp_polar), and then
flattened by averaging along its vertical (long) axis.

I = a + b · ek·r (7.5)

By using an exponential regression (7.5) to the exponential part of that cylinder’s intensity
profile I, one can extract a parameter k which quantifies the amount of cupping (k as in
the Dutch word “kopje”). With that k known, one can rectify the gray values of the scan
by applying a correction factor which would push up the exponential line to a flat constant
(obviously not applicable for irregularly shaped objects).
Similarly, one can multiply the intensity values of each voxel in the original volume with an
exponential of its distance to the center point. Depending on the chosen value for k in that
exponential, one can virtually manipulate the amount of beam hardening (Fig. 7.7).
The focus of this virtual experiment is Mass Moment of Inertia. One might argue that,
though the value of the tensor I depends on the mass, its principal axis orientation only
depends on the mass distribution. Given an expected mismatch of the calculated total mass
and the actual measured total mass of the test object, an appealing strategy might be to
scale the voxel-wise masses so that total masses match. I call this strategy “scaling”, and it
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Figure 7.7: Beam hardening artifact simulation. The top view (A) and side view
(B) of a PTFE cylinder with beam hardening strength k virtually set to
k = 0.5. (C) Line profile of scan gray values along the blue line indicated in
panel A shows the typical “cupping”. (D) cylinder coordinate transformation
of the slice marked by a blue line in panel B gives the gray values along the
radial lines r at angles ϕ indicated in panel A. (E) Top and side view for
different simulated beam hardening strengths k.
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is optionally compared to the “unscaled” gray values of the simulated PTFE cylinders.

7.3.7 Error Propagation

What magnitude do miscalculations of the moment of inertia have, and how much of a
problem is that for calculations of joint moment? To evaluate this, one has to consider error
propagation (Arroyave-Tobon et al., 2022; Hughes and Hase, 2010; Myers et al., 2015) with
the balance equations (7.6). The variable I only enters the balance equations through the
dynamic wrench, M⃗ = I d2θ

dt2 . This function is linear in I, so error propagation is quite simple6

(Normann, 2016):

∆M⃗ =

√√√√√√√√
dM⃗

dI
∆I

2

+
 dM⃗

d
(

d2θ
dt2

)∆
(

d2θ

dt2

)2

︸ ︷︷ ︸
=0

= ∆I
d2θ

dt2 (7.6)

Sensitivity is linear at this level: any percentage of measurement inaccuracy in I will directly
propagate to the joint moment calculation.
Yet the situation is more involved: calculating I via equation (7.3) is itself subject to errors,
by inaccuracy in the mass itself (regression), and by uncertainty in the ⃗COM position and
therefore the position vectors r⃗i of each mass element.

∆I = ∆I|mi
+ ∆I|r⃗i

=

√√√√√∑
i

( dI

dmi

∆mi

)2

+
(

dI

dr⃗i

∆r⃗i

)2


The direct dependence on mass is visible in equation (7.3), uncertainty of the mass elements
contribute linearly but are added up; errors in the mass of further away mass elements
contribute more to the total error of the moment of inertia.

∆I |mi
=
√∑

i

((∥r⃗i∥2E3 − r⃗i ⊗ r⃗i))2 · ∆mi

The partial derivative with respect to r⃗i must be added, because I is taken relative to the
⃗COM (hence, ∆r⃗i = ∆ ⃗COM). Given that the choice of reference point for moment of inertia

can be adjusted by using generalized Steiner, the error in the ⃗COM propagates as a Steiner
component, equation (7.4), with s = ∆ ⃗COM . Yet ∆ ⃗COM also depends non-trivially on
the relative mass of volume elements, equation (7.2).

∆ ⃗COM =

√√√√√ 1∑
i mi

∑
i

(r⃗i · ∆mi)2 +

∑
i

r⃗i · mi

∆∑
i mi

2

6It should not be assumed that the error in measuring d2θ
dt2 is zero, but I will here focus only on the I

component.
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With this last equation I have outlined how the target parameter, I, ultimately depends
logically on mass elements mi and their position in different ways.
In practical terms, the expected error can be conveniently computed by iteratively
changing the variables of interest by a percent, to infer how “a percent change” in a
parameter effects the result of the calculation. This is a numerical “sensitivity analysis”.
From the analytical considerations above, it can be seen that the variables to change in the
numeric computation are the regression parameters (±5% of their value), the ⃗COM

position (±5% of femur length, 0.25 mm in each direction), and the total mass (±5%,
which are 0.26 g).

7.3.8 Error Estimation

Calculating the effect of an error is only one part of sensitivity analysis. The second, equally
relevant part is an estimate of how uncertain parameter estimates actually are. A great
way to measure this are probabilistic statistics (Ch. 4). Besides yielding outcomes for
the intercept and slope, they also allow to estimate the uncertainty of these parameters by
sampling a model residual.
To estimate the uncertainty in the density regression, I repeated the procedure in a
probabilistic modeling framework (PyMC, Version 5.6, Salvatier et al., 2016). The linear
regression function was almost unaltered:

γ = a + b · ρ + εj

In this framework, the residual ε is calculated, measuring how much residual difference
remains after optimization of the regression parameters. In a linear regression, ε corresponds
to an uncertainty in intercept (it affects all calibration objects alike). Beyond the standard
model residual, I introduced εj, with index j referring to the materials used for calibration.
Each material thus receives its own residual, all of which are drawn from a higher level
normal ε (hierarchical model design). This helps to account for systematic increase of the
gray value uncertainty with increasing density (“widening” of the distribution), as it was
also observed in Du Plessis et al. (2013).
Hence, this regression serves three purposes:

• confirm results of the conventional least squares regression

• provide a measure for the intercept uncertainty (ε)

• identify potential slope uncertainties (εj)

All parameters were approximated by Normal distributions, except for the εj (HalfNormal,
i.e. bound to be > 0). Results from the conventional regression and wide enough standard
deviations were used as priors to initialize the sampling. The posterior distributions were
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calculated from the last 4 · 212 samples (after sufficient tuning of the NUTS sampler, see
Ch. 4). Gelman-Rubin statistics and trace plots indicated convergence and well-behaved
sampling.
One important distinction from least squares regression is that probabilistic regression does
not require averaging of the observed gray values. Hence, the regression took a large number
of voxels into account, capturing the variability in gray values of the homogeneous polymer
materials. A subset of 10000 randomly selected voxels per material were added to the data
array. Subsetting is necessary because the number of observations adds computational load
for the MCMC sampler.
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7.4 Results

7.4.1 Density Calibration Regression

To establish a transform function which can convert CT gray values γ to physical density
ρ and back, I compared different regression functions which fit the observed gray values of
different polymer- and other materials of known densities (Fig. 7.8).
The random plastic parts obtained from the workshop have known densities, and most of
them show a linear relation when plotting γ against ρ. The exception is PVC, which was
therefore excluded from the regression (whether it was truly PVC, or a mislabeled different
polymer, cannot be assessed retrospectively). Bone mineral density (BMD) phantoms and
water do not fall on that line. Their gray values imply an exponential relation of γ and
ρ. Both regressions were performed by minimizing least square difference of observations
and the target function. Both the linear and exponential function can be inverted. The
femur of unknown density distribution lies right between the two regression lines, but spans
a large range of gray values and densities because of its heterogeneous composition (marrow,
cavities, muscle tissue, calcified bone, metal markers and glue).
With the regression outcome, it is technically possible to convert any observed or simulated
voxel gray value to putative density values, which applies for example to the femur.

7.4.2 Issue 0: Mass Mismatch

To confirm the outcome of the regressions above, I compared the actual mass of the femur
(which is 5.271 g) to the outcome of the digital approximation.
As seen in the gray value distributions (Fig. 7.8), the majority of femur voxels have a gray
value which falls right in between the two regression lines. This propagates to the calculated
outcomes. With the linear regression, the femur mass is calculated to be 6.38 g (+21%). In
contrast, the exponential regression yields a lower than actual mass (4.96 g, −6%). Though
it appears that the correct regression would lie somewhere between the exponential and
linear attempt, there is no data, nor theoretical justification supporting an intermediate
hypothesis. Neither is there any reason to think that all biological tissues generally fall in
between the presented cases: for other samples, composition might be different.
I conclude that, at least for a femur, the regression method is not reliable.

To exclude that problems arose from the special composition of this isolated bone, I applied
a similar regression method to more complex data.
In a second experiment, a piglet body was CT scanned, virtually segmented, and analogously
physically dissected to see whether the total calculated masses of the virtual segments match
their actual counterparts (Tab. 7.3). The corresponding scan was performed at a different
facility and long before the density calibration experiments, and at the time the only available
calibration points were air, water, and two density calibration phantoms.
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Although an exponential regression was used (under-estimation in case of the femur), this
second density regression leads to a over-estimation of the mass of most of the segments,
and the specimen total (average +12%).
The contradicting results highlight how erratic the digital density approximation is.

7.4.3 Issue 1: Beam Hardening

To evaluate what effect beam hardening has on the calculated mass moment of inertia, I
simulated beam hardening on a well described PTFE cylinder within the scan volume.
The only reliable recovery of the true mass moment of inertia (Fig. 7.9B, horizontal lines) is
found to be if there is exactly zero cupping. This generally holds for homogeneous objects:
moment of inertia is determined by the geometric distribution of mass elements around the

⃗COM ; if (and only if) the relative mass of all mass elements is well approximated by the
density regression (which is only and exclusively the case in homogeneous objects), and
only if cupping is negligible, then one can calculate appropriate I values. However, if the
object is non-homogeneous (as a femur, or a cylinder with considerable cupping), then the
relative density of voxels are not appropriately covered, and I will be incorrect. If there
are any beam hardening or streak artifacts, which is non-trivial to remove from FBP
reconstructed scans, the moment of inertia will be incorrect. Mass scaling, which
was suggested as a strategy to recover total mass from density distribution, will produce
erroneous moments of inertia if artifacts are present. Attention should also be put on the
units of the calculated mass moments of inertia: it is in the order of 10−7 kgm2 for this
cylinder. This is small, justifying extra attention to numeric accuracy of computational
methods as well as sources of physical inaccuracy (e.g. ⃗COM miscalculation).
I conclude that the chance of getting an accurate measurement for mass moment of inertia
from conventional CT scans is low under the influence of common error sources.

7.4.4 Issue 2: Metal Bead Artifacts and Chemical Composition

Another typical kind of artifacts in CT scans appear around metal beads (Fig. 7.10).
Metals are chemical elements with over-proportionally higher x-ray attenuation than
carbohydrate compounds. They absorb a large fraction of the incoming radiation,
demanding the use of higher energy for sufficient penetration to avoid shadows arising from
missing information in the projections; yet higher energy can be detrimental to contrast on
softer tissue. The shadows appear as “streaks” or “starbursts” on CT scans, they
complicate segmentation, and are unwanted in XROMM visualizations (Brainerd et al.,
2010). As with other artifacts, metal bead artifacts have their source in limitations of the
tomographic method (limited dynamic range, rotationally symmetric scan geometry), and
might be corrected by appropriate counter-measures. Beam hardening reduction by using
metal filter plates can improve dynamic range and contrast (at the cost of exposure). The
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Figure 7.8: Density calibration of a CT scan. The polymer materials show a linear
relation between density ρ and CT gray value γ (exception: PVC, excluded
from regression), whereas the positions of BMD phantoms (ld: low density;
hd: high density) implies an exponential relation. Violins illustrate the
distribution of gray values, which appears due to stochastic attenuation, yet
each object in the scan is associated with exactly one true (average) density.
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Figure 7.9: Effect of beam hardening on calculated mass moment of inertia
of a PTFE cylinder. (A) Repeat of radial profiles (as in Fig. 7.7C) for
different beam hardening strengths. (B) Calculated mass moments of inertia,
unscaled (blue) and scaled (gray); scaling was optional to make the calculated
mass of the cylinder match the actual mass (i.e. normalizing mass, see text).
In this cylinder, Iz is always larger than Ix = Iy. Calculated values were
normalized by the theoretical inertia of the PTFE cylinder (I/Itrue; with
Iz = 4.6 × 10−7 and Ix = 3.3 × 10−7), hence a correct calculation would
yield values of 1.0. The more beam hardening k, the lower the (unscaled)
mass moment of inertia. Noteworthy, at k = 0 the inertia values match the
expected values. However, this is only true for the unscaled curves; when
scaling, the correct inertia is reached at an arbitrary, non-zero k, and the
calculated inertia increases with beam hardening.
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Table 7.3: Segment mass verification on an actual piglet specimen. On the
lighter segments, measurement accuracy and rounding are limiting. Note that
the total mass at euthanasia was measured 1.125 kg, a slight loss is expected
due to condensation and preservation.

segment CT segmentation dissection difference
masses [kg] [kg]
head 0.247 0.230 +7%
torso+trunk 0.666 0.580 +15%
LF humerus 0.033 0.027 +22%
LF radio-ulna 0.016 0.014 +14%
LF metacarpal 0.009 0.006 +50%
LF hoof 0.006 0.005 +20%
LH femur 0.052 0.050 +4%
LH tibia-fibula 0.027 0.020 +35%
LH metatarsal 0.012 0.010 +20%
LH hoof 0.004 0.004 +0%
RF humerus 0.031 0.031 +0%
RF radio-ulna 0.019 0.015 +27%
RF metacarpal 0.008 0.006 +33%
RF hoof 0.005 0.005 +0%
RH femur 0.050 0.053 -6%
RH tibia-fibula 0.023 0.021 +10%
RH metatarsal 0.013 0.011 +18%
RH hoof 0.005 0.003 +67%
TOTAL 1.226 1.091 +12%

Figure 7.10: Metal bead artifacts, marked with orange arrows. Despite the use
of an aluminium filter to harden the x-ray beam, metal beads produce
conspicuous, star-shaped streaks on the scan reconstructions. The reason
that the center of the metal beads appears black is a clipping setting during
image preprocessing (intentional, do ensure they do not contribute to the
total mass).
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use of a helical scan geometry in a cone-beam CT should reduce the length and contrast of
streaks, because projections from above or below the bead elevation level will project
through the tissue immediately behind the bead.
Though it is pronounced on metal beads due to their spatial confinement, the problem is
not restricted to metal. Streak artifacts also appear between multiple regions of dense bone
or strongly absorbent solute (i.e. water), especially if two such regions align along the beam
trajectory in the projection geometry.
Bead artifacts are a kind of “beam hardening”, taken to the extreme: the spectrum of
the photon ensemble changes along the projection trajectory, and much more so if x-ray
interactions with matter are more numerous. They are more numerous in some materials
than others (irrespective of density, e.g. formol): chemical composition is key.

7.4.5 Sensitivity Analysis

To put all the aforementioned issues into perspective, I calculated how a change in one
parameter affects the outcome of the calculation of inertial properties (Tab. 7.4).
Moderate changes in the density calibration regression directly influence the mass, and
thereby the moment of inertia; even the ⃗COM is mildly affected. The effect on I is in the
order of 7 − 8% (determined as Euclidean difference in the principal inertia values).
Adjusting the mass has a similar effect as a change in regression parameters, and a 5%
mass increase causes a ∆I of more than 8%. Shifting the ⃗COM alone does affect inertial
parameters depending on the shift direction, which is expected (Steiner theorem). The
effect of the notable shift (5% of the femur length) is a change in I of about 4%. This is an
artificial adjustment, changing the ⃗COM without a change in mass or mass distribution,
but it does help to estimate errors in an inverse dynamics workflow, where a ⃗COM

misplacement will also affect a joint wrench according to the Steiner theorem. Mass
changes seem to affect all inertia axes alike, whereas the error due to ⃗COM shift affects the
axes differently. Finally, the exponential regression leads to a moderate shift in ⃗COM

(0.25 mm), but an underestimation of mass (−29% compared to linear regression; −6%
compared to actual mass) and moment of inertia (−32% compared to linear regression).
These simulations confirm that moment of inertia crucially depends on the mass and position
assigned to each voxel in the CT data set; the relative error in the outcome will exceed the
input inaccuracy.

To also get an estimate how variable the actual gray value observations were, a probabilistic
linear regression was applied (Fig. 7.11).
The intercept was sampled at 0.1734 ± 10−4, and the slope was 1.6052 × 10−4 ± 10−7, both
consistent with the least squares regression. The result for the model residual ε is 0.024 ±
0.008, which is 14% of the intercept. Note that reference to the intercept here is in line with
using a percent adjustment of the regression parameters above; a more realistic estimate
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Table 7.4: Sensitivity analysis of the mass moment of inertia calculations of
the femur scan. For reference, the actual femur weighed 5.271 g, had
a length of 46 mm, volume of 4.637 × 10−6 m3 and an average density of
≈ 1140 kgm−3. Regression a and b are fit parameters (see text).

parameter input
∑

i mi ∆ ⃗COM Ixx Iyy Izz

change [g] [px] [×10−6kgm2] [×10−6kgm2] [×10−6kgm2]
(reference) none 6.38 0 0.52 1.36 1.67
regression a +5% 6.12 <1 0.50 1.31 1.60
regression b +5% 6.07 0 0.49 1.30 1.59
mass

∑
i mi +0.26 g 6.70 0 0.55 1.43 1.75

⃗COM x +2.5 mm 6.38 50 0.52 1.40 1.71
⃗COM y +2.5 mm 6.38 50 0.56 1.36 1.71
⃗COM z +2.5 mm 6.38 50 0.56 1.40 1.67

regression type expon. 4.96 5 0.42 1.09 1.34

Figure 7.11: Probabilistic density regression result. “Traceplot” showing the
posterior distributions of model parameters (left) and sampling traces
(right). The “uncertainty” (ε) quantifies the hierarchical model residual,
i.e. the total uncertainty remaining after convergence. The colored
distributions for “sigma” are the material-wise uncertainties in the gray
values (εi).
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for “percent mass change” would be the average gray value of the femur (0.39 −→ 6.3%);
that value is also in the range of the mass adjustment simulated above. Furthermore, the
material-wise residuals εj turn out to increase with increasing density, yet that overall trend
is not systematic for each material. The specific uncertainty for air is lowest of all materials
with 0.011, whereas the specific uncertainty for PTFE is 0.021. The highest uncertainty is
measured for HMPE (0.023) and polycarbonate (0.027), potentially indicating that these
objects were less homogeneous than for example PTFE. Overall, one can attribute roughly
half of the model residual to uncertainty in the slope.
These results indicate that the 5% error margins used above are rather conservative
estimates: the actual uncertainty is higher, and affects both the slope and the intercept.

232



7.5 Discussion

7.5.1 Density and Attenuation

In this chapter, I challenge the common misconception that structural information from CT
images can be easily converted to a density distribution. Humans think of objects in terms
of their mass because that is what we are confronted with in our everyday experience of
the physical world. And the structures which we recognize in CT visualizations resemble
that experience. However, the raw images quantify attenuation, which is a fundamentally
different phenomenon.
And even the voxel-wise attenuation cannot be accurately extracted, for the following
reasons. X-ray radiation used in commercial CT scanners is often polychromatic.
Absorption is wavelength-dependent in a non-trivial way. The whole process contains
stochastic aspects (e.g. scattering). Scientists tend to introduce the constraint that
chemical composition must be homogeneous within samples, yet that constraint is neither
realistic, nor practical. Finally, scan “artifacts” are often described as problematic, but as
argued above they might just be the manifestation of the inappropriate modeling of a
normal physical process by our limited arsenal of reconstruction methods.

7.5.2 Miscalculated Mass

The thorough measurements reported above confirm that the outcome of a CT scan cannot
be directly related to physical density. I followed the strategy of others, using a kind of
calibration regression to convert CT values to density (Du Plessis et al., 2013; Durston
et al., 2022; Fath et al., 2023; Mull, 1984; Phillips and Lannutti, 1997). The presented
measurements show severe differences between the actual density and the calculated values,
with errors of more than 20% of the actual mass.
Neither plastic parts, nor calibration phantoms provided an accurate reference for the density
of the test object (a piglet femur). The bone mineral density phantoms arguably serve a
different purpose (calibrating mineral density), but resemble the compact parts of the bone
in their chemical composition. Yet it is not only the chemical composition of the scanned
object, but also the spatial arrangement of its components, because the trajectory of the x-
ray beam affects attenuation (“self-filtering”). It is insufficient to just assume “comparable
chemical composition”. A calibration object should also have the same shape and spatial
arrangement as the object of interest. The ideal object to calibrate an unknown femur would
thus be an identical femur of known mass distribution (which is actually attempted in clinical
tomography, cf. Lennie et al., 2021).
The reason, as illustrated in the introduction, is that photons of different wavelengths have
specific absorption probabilities. The spectrum of the beam along its trajectory changes
at each instance in the tissue. The most obvious example of this is beam hardening, and
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I showed by a simple virtual simulation that beam hardening leads to a systematic under-
estimation of mass and moment of inertia (Fig. 7.9). In a more extreme case of this, radio-
opaque metal beads will absorb almost all passing photons (“photon starvation”), leading to
problems with conventional reconstruction algorithms which appear as starburst artifacts.
Recent developments attempt to improve the reconstruction algorithm (Batenburg and
Sijbers, 2011; Frenkel et al., 2022; Six et al., 2019; Yang et al., 2021), but their application
requires prior information and extra work. Others might eagerly await “spectral CT” (Liu
et al., 2023), yet technical and economic challenges are still limiting the capability and
availability of such machines. Dual-/Multi-Energy CT might be another route to overcome
the limitations of monochrome detector screens, and they might combine well with
iterative, model-based reconstruction techniques.

7.5.3 Non-Intuitive Inertia

It is perfectly normal that physical measurements are subject to measurement inaccuracy.
However, the error range must be quantified and reported.
Above, I demonstrated an analytical assessment of which error contributions should be
expected, as well as a numerical sensitivity analysis. I also quantified the actual regression
uncertainty with probabilistic statistical modeling. The results enable an evaluation of the
relative importance of different parameters for the accuracy of the outcome. For example,
changes in the mass or in the regression parameter values directly influence the moment of
inertia, at a rate higher than the input error. A ⃗COM miscalculation might cause errors of
lower magnitude, but those are not necessarily isotropic.
Yet by far the greatest effect was due to a change in the regression type, switching from linear
to exponential. Neither of these is accurate, yet in the absence of a model which covers the
nature of attenuation (which would rather have to adjust the reconstruction algorithm than
the regression), there is no other reasonable option. The exponential fit seemed plausible
from the BMD phantoms, which are designed to resemble ossified tissue. The majority of
observed femur gray values were not far off the exponential regression line. Nevertheless, the
calculated moment of inertia was about 30% off the reference. Note that this error is the
sum of both an over-estimation in the linear reference regression, and an under-estimation
of I in the exponential attempt. Also, the high percentage difference is explained by the
fact that moment of inertia values are relatively small in baseline magnitude. A shortcoming
of the present study is that I am unable to determine a “ground truth” inertia for the test
object, lacking sufficiently accurate physical measurement apparatus and expertise.
Nevertheless, the presented findings have practical application. Any regression should be as
accurate as possible (optimal exposure and dynamic range, noise reduction e.g. by more
averaging, beam hardening filter, more/diverse calibration objects). A probabilistic
regression is favorable, since it yields error margins for the regression parameters. With

234



those, a sensitivity analysis can and should be performed. Results I obtain are technically
accurate, confirming that cheap plastic parts are sufficient and might be preferred in most
situations over expensive calibration phantoms.
I also evaluated that scaling voxel-wise density, so that the mass matches the known total
mass, is not an option: this modification can amplify issues from beam hardening (Fig. 7.9)
or from marker streaks and thus make the outcome more unpredictable. The rationale behind
scaling was that, for moment of inertia, the distribution of densities is relevant. Scaling
masses is identical to adjusting the intercept parameter in the linear regression (Tabs. 7.2,
7.4). An alternative, which I did not attempt, would be to adjust the regression slope so
to match the mass checksum. However, both these adjustments (regression intercept/mass
scaling, regression slope) have conceptual flaws. Firstly, the resulting modified regression
would not correctly fit any of the calibration objects, and the question arises which of
the measurements is “more trustworthy” or “more true”. Second, slope adjustment over-
values the “air” observation: “air” has a negligible density, yet might have a non-negligible
attenuation (which is visible from its gray value distribution; x-ray flux strongly depends on
source-detector-distance in non-vacuum). This (energy-dependent) air issue might actually
explain the aforementioned systematic errors in the supplemented regression plots of Durston
et al. (2022). Third, again, there is no mechanistic reason to assume a linear relation; the
polymer plastics of identical chemical composition are a rare corner case, most other series
of objects could be non-linear.

7.5.4 Inertia Components

To my knowledge, this study is the first to perform a detailed sensitivity analysis of the CT
density calibration. Sensitivity is high, so are the measured error margins, which implies
that natural inaccuracies are potentially fatal for the derived measurements.
Yet whether or not an error margin is “fatal” also depends on the field of application. The
purpose of the inertial estimation is to calculate joint moments in an inverse dynamic
workflow. Joint moments of a limb in ground contact are dominated by the ground
reaction force, i.e. by the gravitational load of the animal and by the dynamics of the
heavy torso and head (which constitute 75% of the mass of the animal, Tab. 7.3). For
grounded limbs, the inertial properties of the individual limb segments themselves are
negligible (order of magnitude of limb segment mass versus total mass), although,
depending on the behavior under study, accelerations might be high and caution might be
appropriate. When calculating the inertia of limbs in the swing phase, the inertial
contributions of more distal segments dominate the joint moment calculations. In any of
those cases, measurement inaccuracy should receive a close inspection.
There is another aspect to the miscalculation of inertials: the “rigid body” assumption.
Segments in vivo are not rigid. Anisotropic muscle contractions and internal segmental mass
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movements (e.g. radius-ulna rotation) will shift the ⃗COM and might even rotate the inertial
axes. This is practically hard to capture for most dynamical behaviors (though it might be
modeled with dynamic CAD models), but the magnitude of this problem depends on the
study question.
Another factor is the preservation of the specimen (frozen in this case; formol, alcohol,
staining, . . . ) which has an influence on the chemical composition and inertial properties
(not assessed herein). Finally, in vivo movements are often restricted to one or few axes. If
a femur swings forward during walking, it will mostly rotate around the medio-lateral axis.
In that case, the moment of inertia around that axis is relevant. The segment might slightly
rotate around its long axis, but long axis rotation will hardly affect total momentum due
to a low I on that axis. Thus, in this case, the (uncertainty of the) medio-lateral inertial
component demands special attention.

7.5.5 Lack of Alternatives

The femur CT scan used in this experiment was recorded with all necessary diligence, under
ideal conditions, with good image quality and resolution. For example, a beam hardening
filter was used, sample mounting was flawless, contrast and dynamic range were optimized.
Still, I see a distribution for gray values which hinders determining the femur mass at an
accuracy better than 10% (see probabilistic regression).
The proximal conclusion would be to reject the density estimation from CT data. However,
such an attitude demands the evaluation of alternatives.
The mass can be measured accurately with sufficiently fine scales, yet dissection of segments
to determine segment-wise mass literally introduces fuzzy edges. Center of mass can be
estimated by pendulum methods, yet in addition to the dissection issues, the problem of
accurately relating the ⃗COM to an anatomical reference frame arises. The conventional
instrument to measure moment of inertia is the trifilar pendulum (Korr and Hyer, 1962;
Schedlinski and Link, 2001; Wells and DeMenthon, 1987). As Durston et al. (2022) have
demonstrated, this method is far from trivial, requires a well-prepared setup, and still suffers
from limitations (e.g. that all axes have to be measured separately, and then transformed
to an anatomical reference frame). Pendulum methods usually rely on negligibility of the
instruments’ masses and on the small angle approximation. Hence, the accuracy of these
methods remains hard to estimate.
A slightly more involved approach is the utilization of model-based inertials (Allen et al.,
2009; Hutchinson et al., 2007). This approach could be termed the “indirect CT-based”
method: volumetric images are segmented into volumes of homogeneous tissue, and tissue
types can be assigned their approximate physical density. Full CAD models might be
assembled, and to a certain extent these might even incorporate dynamic mass
redistribution during locomotion. The method requires good soft tissue contrast of the
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scans, e.g. by applying staining protocols. Since tissue is not homogeneous, but continuous
transitions can occur (e.g. muscle-tendon), a validation and error estimate of this approach
would be required. The main challenges of this approach are the workload of segmentation,
and again transferability to in vivo measurements
Finally, an alternatives to CT scans for the present purpose might be better CT scans.
Projection images are monochrome, not monochromatic, and the step towards “spectral CT”
might improve density estimation by incorporating models of chemical composition. This
will doubtlessly require technical and computational innovation such as new algorithms,
most likely algebraic ones which incorporate a measured source spectrum, which iteratively
adjust a model volume to match simulated and real CT projections (which would then
be polychromatic). All those are promising developments that would certainly impact the
accuracy of inverse dynamic models derived from XROMM experiments.
Neither of these options currently yields quick, transferable, generalizable results, which
might seem like CT gray value regression should be the method of choice, despite considerable
error. However, conceptual and practical issues from CT gray value conversion uncovered in
this study demand caution and careful evaluation of the limited circumstances in which CT
scans may yield usable inertial approximations. Doubts about measurement accuracy must
count as an obstacle in the ethical evaluation of planned experiments. It must be stated that
there currently is no validated method to reliable and efficiently measure dynamic inertials.

237



CHAPTER 7. INERTIAL PROPERTIES

7.6 Summary

At the end of this chapter, it should be clear that using CT images to calculate inertial
properties has a number of conceptual and computational pitfalls which can put serious
doubt on the results. Tomographic images depict attenuation, not physical density, and
though these are occasionally correlated, they remain fundamentally different properties of
matter. Above, I discussed potential flaws in the CT-based approximation of mass, center
of mass, and mass moment of inertia, as well as corner cases in which the calculation might
co-incidentally yield appropriate results. In all other cases, the calculation will certainly
yield wrong results. The magnitude of the error is non-negligible, since some axes of inertia
in balance equations have very small base magnitude and are therefore susceptible to faults.
However, with all that objection put to paper, it must be stated that there is currently
no reliable, efficient method to measure inertial properties of biological systems. There
is no “density tomography”, CT-based regression is error-prone, and common alternative
methods potentially suffer from equally large error margins for other reasons (e.g. dissection
inaccuracy, non-static configuration during movements, preservation issues).
Using attenuation values to calculate densities might be about as accurate as setting π ≡ 3 in
physics classes (a totally valid thing to do, if at the same time setting g ≡ 10). Typical pitfalls
(beam hardening, metal beads, symmetries) are known and can be avoided, keeping track of
error magnitudes is essential (by performing a sensitivity analysis, involving e.g. Gaussian
error propagation and probabilistic regression). Under this condition, the calculated inertials
might be a just sufficiently accurate approximation of the true values for some experimental
questions; yet accuracy must be validated and cannot be taken for granted.
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8.1 First Principles

The three parts of this thesis each had a slightly different focus, spanning the range of
methodologies which is characteristic for biomechanical research (kinematics, dynamics,
statistics). They follow a common scheme: each of the parts took a basic principle of
physics research and applied it to the study of biomechanics.
Part one was concerned with kinematic data analysis, and the generation of meaningful
measures from videos of moving animals. The basic principle therein is coordinate
transformation (Tipler and Mosca, 2007): physicists are well aware that computational
problems simplify if one converts the data to an appropriate coordinate space. For
locomotor kinematics, I reproduced and applied a suggestion of others (Bernstein, 1927a;
Webb and Sparrow, 2007) which relies on the repetitive, periodic character of many
locomotor behaviors (Ch. 2). By applying a Fourier Series Decomposition, it is possible to
transform joint angle profiles to the frequency domain, where their mathematical structure
is much simplified (affine components are accessible; time series are represented by an array
of harmonic constituents, instead of a raw signal with an undefined number of noisy
samples). The Fourier Series method is a flexible tool which opens up a data set to
multivariate statistics (Ch. 3). It is also a prerequisite of the subsequent part, which could
hardly be adapted to untransformed kinematic measures.

Part two focused on statistical modeling of kinematic measurements. It built on the
application of another physical principle: namely that most measured variables do not take
exact values, but rather follow probability distributions (LibreTexts, 2022b). This is
especially true in the biological sciences, where variability in a trait, in reproductive
success, and in the correlation of these two are the key prerequisites of our central working
model (Darwin, 1859). Statistical models which incorporate variability, though rarely
applied in that context to date, are useful in biological applications (De Groote and Falisse,
2021; Røraas et al., 2019). I provided a brief tutorial to outline why and how probabilistic
models work in practice (e.g. the MCMC sampling methodology, Ch. 4). In that
framework, I applied probabilistic, predictive modeling to a comprehensive data set of
piglet kinematics (Ch. 5). Prediction in conventional statistics would be deterministic, i.e.
yielding averages, at best with the vague guidance of standard deviations, which only
superficially capture the stochastic, variable nature of the phenomenon. I demonstrated
that probabilistic prediction can be used to generate relevant insights into locomotor
maturation of piglets.

Finally, the third part of the thesis was devoted to inverse dynamics. The goal of inverse
dynamics are estimates of joint forces and moments, which can be calculated from measured
or estimated external forces and moments by treating limb segments as rigid bodies, and by
(stepwise) calculation of their balance of wrenches (Ch. 6). Rigid bodies must be associated
with inertial properties (mass, center of mass, mass moment of inertia), which are crucial
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prerequisites for the balance equations. As I then demonstrated, the assumption that inertial
properties can be accurately derived from x-ray computed tomography cannot stand up to
closer inspection (Ch. 7). They can be derived, but not accurately, yet they might provide
the “best educated guess” available. This finding was enabled by a third basic principle
commonly applied in physics (which is actually a first principle): the quantification of a
measurements inaccuracy (Hughes and Hase, 2010).

There are certainly more examples of basic principles in physics which would deserve
application in biology in general (e.g. quantum cognition, Aerts and Aerts, 1995;
Busemeyer and Wang, 2015), or in biomechanics in particular (e.g. wrenches and
quaternions, Dumas et al., 2004).

8.2 Predictive Power

Yet are these adaptations from the physical sciences inevitable? Why/when should
conventional methods be questioned and compared to the yet uncommon methods
suggested in this thesis?
The two decisive analysis characteristics are the occurrence of variability, and predictive
modeling.
Variability is omnipresent in biology, and I find it surprising how many studies use statistics
which model point estimates for actually variable measurements.
Yet the ultimate quality criterion of statistical models (and classifiers, and neural
networks/“AI”) is how well they can be used to predict experimental circumstances which
deviate from those they were trained on, or in other words how they transfer to novel
circumstances. This refers to the distinction of descriptive, explanatory, and predictive
modeling (Shmueli, 2010; Shmueli and Koppius, 2011). In biomechanics, explanatory
modeling is rarely applied, because the cause for animal movement are known to be
physical first principles (conservation of momentum, Ch. 6). Virtually all quantitative
analyses in locomotor science are descriptive: they “summarize or represent the data
structure in a compact manner”, and “focus is at the measurable level rather than at the
construct level” (Shmueli, 2010). For example, spatiotemporal gait characteristics (e.g.
dimensionless speed) are often measured and compared between study groups. There are
numerous recent examples of studies in which spatiotemporal gait variables are the basis
and (own) goal of comparison (e.g. Cheu et al., 2022; Druelle et al., 2021; Ekhator et al.,
2023; Jones and Hasiotis, 2023; McHenry and Hedrick, 2023; Plocek and Dunham, 2023;
Young et al., 2023b). However, it is rarely modeled how and why a study group reaches a
certain speed (explanatory statistics), and the predictive power of studies on
spatiotemporal variables is low (e.g. we could not predict the speed of an individual with a
stiff joint from measuring normal individuals).
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Some examples should illustrate how predictive modeling could complement existing
analyses.
One exemplary study of kinematics was performed by Hutchinson et al. (2006). The
authors tracked landmarks on an enormous number of strides of different species of
elephants1. Their measurements are extensive (in terms of the number of derived
quantities), yet descriptive. The authors discuss whether more or less subtle discontinuities
in the spatiotemporal measures actually reflect gait changes (Alexander, 1989), but
emphasize the overall smooth speed-dependence of spatiotemporal parameters. They put
some effort into a convincing argumentation that a subset of their measurements were close
to what can be considered the maximum speed elephants can reach. And they document
the restricted repertoire of elephant gaits: these animals seem unable to trot or gallop,
reaching the highest measured locomotor speeds with their default gait.
Yet, if joint kinematics are available, these questions could be addressed and expanded in
the frequency domain: how does the ensemble of Fourier coefficients change with speed (see
Ch. 3; amplitudes or mean of specific joint angles will certainly change), and could we
predict what happens at higher speeds (limits to effective ROM)? Could we even predict
which joint loadings are critical if we set up a virtual elephant model to gallop? Are African
and Asian elephants really identical in their intralimb coordination, or do they achieve the
same spatiotemporals with altered joint profile patterns (analogous to Ch. 5)?

A particularly well studied species are humans, yet inference about our ancestors is tricky
(Cazenave and Kivell, 2023; Polk, 2004; Stamos and Alemseged, 2023). Available
techniques rely on morphological information and inverse kinematics, i.e. the inference of
kinematics from output patterns such as fossilized footprints, and dynamic constraints such
as stability (Hatala et al., 2016; Nicolas et al., 2006, 2007; Pronost et al., 2006).
Interesting debates are ongoing with regard to the bipedality and arboreality of particular
fossil specimens. Note that the methodological advances presented in this thesis could be
used for quantitative predictions of hominid (or any other animals’) locomotion. Trained
with locomotor data of e.g. extant humans and chimpanzees (phylogenetic bracket), a
probabilistic model which relates anatomical, morphological, and developmental traits to
joint angle profiles could be tuned to predict stride cycles of intermediate forms (Ch. 4).
The emphasis is on “stride cycles”: this refers to predicting complete joint angle profiles,
from which all corresponding joint positions can be recovered (information retention of the
Fourier Series, Ch. 3). These predictions could be turned into dynamic simulations and
virtual animations of the complete behavior, and matched to trace fossils (as in Nyakatura
et al., 2019, but with less manual work). Adding qualified estimates of inertial properties
(Ch. 7) to the probabilistically predicted strides would enable forward dynamic modeling,
and an estimation of the plausibility of certain hypothesized gaits (e.g. by comparing

1For reference: this was at a time when high-end consumer GPUs housed about 256MB of memory; long
before the era of DeepLabCut.
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energy efficiency). The possibility of computing independent parameter spaces for
posture, range of motion, and coordination (Fig. 8.1) enables a more fine-grained
exploration of possible ancestral locomotor modes.

These two examples illustrate how the methodological advances presented herein could
extend our knowledge about terrestrial locomotion, with datasets which already exist.
There are multiple potential goals of predictive approaches (Shmueli, 2010), such as
hypothesis generation, measurement comparison, improvement of explanatory models, and
assessing predictive accuracy of a model. The latter goal was targeted herein in a
comparative study of newborn piglets.

8.3 Transferability

Explanatory or even predictive considerations require returning to the construct level, and
for legged terrestrial locomotion this would be the level of the joints, e.g. measuring the
(joint) angles between segments. Yet there is a standing problem with that construct: joint
angles are constrained by morphology, which has been associated with issues of
transferability (Gatesy and Pollard, 2011). This complicates comparison of joint angles
between morphologically disparate groups (e.g. between species, or birth weight
categories). For example, Gatesy and Pollard (2011) assess that motion transfer between a
human and flamingo fails2, causing “undesirable motion artifacts” due to morphological
discrepancy3,4. They also speculate that underlying patterns of coordination could be
invariant to morphological disparity, yet they expose a lack of methods to directly assess
coordination. As shown herein, FCAS enables the isolation of affine components of joint
angle profiles, and, by partly removing them, the extraction of measures of coordination. I
have demonstrated how to generate relative joint angle profiles, which are direct measures
of coordination. Take a hypothetical lineage which evolves towards elongation of a single
segment (non-isometric, i.e. the other segments would not elongate similarly; Fig. 8.1): to
retain the ability to walk despite altered morphology, there are three options. These
animals must either (i) change their posture, e.g. by walking with a more extended limb.
In other cases, e.g. an elephant-like, straight limb situation as the “null” posture, they
must (ii) adjust their effective range of motion to retain locomotor capacity. Then, (iii) an
adjustment of the timing of joint angle changes, i.e. coordination, would follow. This
example re-emphasizes the importance of being able to separate affine components (i, ii)
and to process the remaining variables (iii) alone. The path for future researchers would be

2Cf. https://www.youtube.com/watch?v=1Wh8d9b2Wrw
3Another popular example for “motion transfer” is the transfer of measured running kinematic data of

chicken, Gallus domesticus, to animate a Tyrannosaurus rex, cf. https://www.amnh.org/exhibitions/
dinosaurs-ancient-fossils/theropod-biomechanics/walk-dont-run.

4These considerations must be flanked by discussions on dynamic similarity (Aerts et al., 2023b).
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to select a suitable phylogenetic branch or example (maybe Tragulidae or Giraffidae, or
more broadly Ruminantia), apply FCAS, and measure how a multivariate block of
morphological variables correlates to affine and non-affine components of the joint angle
data (a suitable method might be Two-Block Partial Least Squares, Rohlf and Corti,
2000). FCAS is the door-opener: at first instance, it can help to identify the mismatching
aspects which prohibit motion transfer (Gatesy and Pollard, 2011). It allows for the
separation of different logical components of kinematics (especially coordination; Fig. 8.1),
potentially making some of them transferable. Motion transfer is in fact the extrapolation
of kinematic aspects of one species or comparative category to another, i.e. a predictive
problem. The application of a predictive model of NBW kinematics to LBW in this thesis
is an implicit form of motion transfer: which age/size would we assign to an NBW which
walked like the LBW we observe? FCAS thus enables predictive modeling at the construct
level of locomotion.

The Fourier-method is not always applicable, but often. Oscillation, i.e. that a limb
configuration changes repetitively over time, is a common scheme in all kinds of locomotor
patterns: be it a baboon hindlimb flexing-extending-flexing-extending on a bipedal walk to
a water hole (Druelle et al., 2021), or be it an ungulate head-nodding in rhythm with its
locomotion (Loscher et al., 2016). There are multiple reasons for the abundance of
oscillation in vertebrate locomotion. The bone-joint system of vertebrates is well
approximated by rigid bodies, which can rotate, but hardly translate with respect to each
other. There are other structural constraints, e.g. elastic elements such as the nuchal
ligament which has a crucial role in head nodding. There is neural organization: brain
circuits are known to exhibit oscillations as well (Gupta and Chen, 2016), which might
project downstream. Furthermore, the evolution-like optimization of behavioral tasks:
there is little use to gain efficiency in a one-time control unit, yet repeated modules of a
task are worth adjustment; this situation might have favored recurrent locomotor modes
(but note that those are not omnipresent: think of cephalopod benthic crawling). In the
many cases which show repetitive or recurrent behavior, Fourier analysis is the natural first
choice for transformation.

8.4 Methodological Advances

To summarize: the Fourier method presented herein complements existing analysis strategies
for locomotor kinematics by transforming the data to the frequency domain. This enables
the isolation of affine components, which quantify the dynamic posture, effective range of
motion, and the coordination of segments. Though these components could in principle be
extracted from raw profiles, the transformation yields them directly. The advantages are the
following.
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• The transformation changes the data structure. Fourier coefficients are more
accessible to multivariate statistics, such as PCA and statistical modeling (Ch. 3 and
5).

• Information retention: FSD conserves information and is reversible, which means
that any model interpolations or predictions can be converted back to kinematic data,
which enable dynamic simulations (e.g. to test for stability).

• FCAS enables motion transfer within a sequence of joints: some or all affine
components can be transferred to adjacent joints (Ch. 3), leaving the residual,
relative movement, i.e. coordination.

• The method is complementary with existing analysis strategies: for example, one
can revert the “coordination” residual of an FCAS to temporal profiles and perform
statistical parametric mapping (appendix 9.3).

• Motion transfer among study groups: because of the separation of affines and the
altered data structure, one can study and test evolutionary trajectories (again, via
simulation).

• Fourier Series and its inversion are trivial to apply, they are deterministic
transformations, and code is readily available or easy to obtain in any common
programming language (Ch. 2.7.1).

These new possibilities come with a major limitation: Fourier Series decomposition demands
temporal periodicity. Joint angle profiles must be cyclic, i.e. end at the angle where they
started. Another limitation is that rather complex profiles might theoretically require a
rather high number of coefficients, as do situations with multiple joints and 3D angles (which
were not exhaustively explored in this work).
On the other hand, the nature of locomotion is that there are oscillating limb elements which
often move in cyclical patterns. There are non-invasive tricks to achieve cyclicity, some of
which I discussed herein (e.g. end-start matching, 2.4.4).
This connects the first two parts of this thesis to the third one. It would have been
desirable to link Fourier coefficients of piglet kinematics to dynamic simulations of their
limb segments. For example, an immediate question is which segment movements are
responsible for which components of joint moments. Because of the inconclusive attempts
to extract inertial properties from CT scans, and because of the reported inaccuracies in
markerless motion tracking, I failed to establish such links between kinematics and
dynamics (Ch. 7). I anticipate that frequency domain considerations hold some unexplored
potential in this direction.
Finally, there is some benefit in using probabilistic frameworks when modeling locomotion.
The motor output of biological systems is intrinsically variable, and an animal which is
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stable on one stride can tumble on the next one. Working with likelihoods and probabilities
of kinematic patterns seems to better reflect the nature of the process.

8.5 How and Why Piglets Move

The primary goal of this thesis was to falsify the hypothesis that there are differences in
locomotion of low- and normal birth weight piglets (LBW and NBW, Ch. 1). There are
two main aspects in which the study groups could differ: in kinematics (how animal limb
segments move) and dynamics (why animal limb segments move as observed). And there
are putatively confounding effects: locomotor maturation (i.e. age), size and weight of the
animals (i.e. physical appearance, cf. Aerts et al., 2023b), and the variability of locomotor
behavior.
Previous studies from our group have compared kinematics on the level of spatiotemporal
characteristics of newborn piglet gait (Vanden Hole et al., 2018a). They discussed delayed
locomotor maturation as a proximal explanation of the observed difference. I herein extended
their analysis and confirmed maturational delay by training probabilistic models on the
FCAS data of a large number of NBW piglet strides, applied to LBW observations (Ch.
5). The FCAS data entering the model contains practically all kinematic information which
could be used to distinguish the study groups. The predictive models accurately incorporate
the variability of the phenomenon. The models predict size and weight of the LBW piglets
as if they were “normal”, i.e. there are no apparent kinematic differences which would lead
the model to infer non-normal subject characteristics. This finding must be taken with
the discussed grain of salt: conceptually, indifference is hard to prove with the predictive
modeling strategy chosen herein, and of course more data would be desirable to settle the
case. The only differences found are related to the age of LBW piglets. This indicates that, if
models would not consider age or maturation as a model factor, low- and normal birth weight
piglet locomotion would be indistinguishable. The “age” model provided evidence that
maturation of LBW locomotion halts approximately four hours post partum (developmental
delay). We suspect competition within litters and limited metabolic reserves as the reason
for developmental delay (Vanden Hole et al., 2019).
Note that these observations are restricted to walking gait at voluntary speed; we cannot
exclude more obvious LBW/NBW differences emerging in more challenging motor tasks.
However, the apparent developmental delay in even this basic motor skill indicates the high
sensitivity of the method. Also, the relevance of any hypothetical, “more challenging” stair,
treadmill, or wind tunnel experiment for animals whose major priority is to find and access
their mother’s teats is questionable. Overall, the models provide at least some evidence
against the existence of fundamental differences in how LBW and NBW piglets move: their
coordination seems innate.
In fact, this lack of differences in the collective output of the animals neuromotor system
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Figure 8.1: FCAS facilitates transferability of kinematic data. A hypothetical,
non-isometric evolution of morphology must be compensated by changes
in (i) posture, (ii) effective range of motion, and (iii) coordination. By
separating these effects in kinematic measurements, evolutionary hypotheses
can be tested, and the transfer of coordination patterns from one species to
another is improved.

Figure 8.2: XROMM using Python and Blender, unpublished. Full video (https:
//ody.sh/fZe3OpgHGN ) and code (https://git.sr.ht/~falk/foss_
xromm ) are available.
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is surprising. The FCAS data quantifies joint angle profiles - which are indifferent to size.
Yet piglets of low- and normal birth weight operate under different body mass constraints:
NBW are about twice as heavy as LBW. To produce the same kinematics, one would think
that they must tune their motors differently, like using different gears. These would be
differences in why we observe the (indistinguishable) movements. Different weight implies
different physical constraints, size does matter (Aerts et al., 2023b).

Yet we encountered conceptual and practical issues in addressing this second big question (i.e.
why they move as observed). The first issue is a practical one (Ch. 7): inertial parameters,
which others have extracted from calibrated CT scans, cannot be determined at sufficient
accuracy. Then, again, there is the issue of variability, as evident from the study of kinematics
(Ch. 5): differences between NBW and LBW (when normalized for size) seem to be lower in
magnitude than the effect of maturation, and lower than normal variability of the behavior.
This was actually confirmed by analysis of 3D kinematics (which we did, unpublished): we
originally attempted the full experimental procedure for XROMM. Of course those recordings
are variable, but of the 392 recordings we obtained in several recording sessions in summer
2019, not a single one showed locomotion which strictly fulfilled the “steady state” criterion
and gave single limb forces (hitting the force plate correctly was likely, but not guaranteed,
and happened in 189 recordings, 85 of them walking gait). Not a single stride could be
considered “representative”, because young piglets in our setup literally always tumbled,
jumped, sidestepped, stopped shortly after, or interfered with each other, both LBW and
NBW. The XROMM and inverse dynamics procedure is a low through-put method, and
it was not possible to track landmarks on a sufficient number of strides to assess LBW
differences in joint moment orchestration on the background of motor variability.

These issues notwithstanding, I succeeded in porting the XROMM workflow (Brainerd
et al., 2010) to an alternative software environment (cf.
https://git.sr.ht/~falk/foss_xromm, Fig. 8.2). This workflow includes the complete
calculation of inverse dynamics, i.e. joint forces and moments can be visualized. The
software conventionally used for XROMM caused issues: due to its large dependency tree
and lack of documentation, XMALab (Brown University, USA, https://xromm.org) was
dysfunctional on the Linux operating system for about half a year during the course of this
project; Maya AudoDesk is non-free software. Except for ORS Dragonfly (Object Research
Systems, Canada, https://www.theobjects.com), which was used for CT segmentation
but could be replaced by 3D Slicer (Slicer Community, https://www.slicer.org), all the
tools in the adapted workflow are free and open source. The example animation
(https://ody.sh/fZe3OpgHGN) can be viewed in Blender (The Blender Foundation,
https://blender.org) from any perspective, and replayed at self-chosen speed. At the
current (incomplete) stage of development, we observe segment position glitches when
markers enter or leave the focal volume of the biplanar x-ray. Also, joint forces and
moments do not seem to withstand a visual quality check (their direction and magnitude

251

https://git.sr.ht/~falk/foss_xromm
https://xromm.org
https://www.theobjects.com
https://www.slicer.org
https://ody.sh/fZe3OpgHGN
https://blender.org


CHAPTER 8. GENERAL DISCUSSION

are sometimes questionable, which falls within the error margin of inertial properties).
This might be an interesting, publishable observation, or a “bug”; ultimately an error in
the computational pipeline cannot be excluded. Worth noting is that others are currently
working in similar directions to open up software alternatives to the conventional XROMM
workflow (Falkingham, 2023). At any rate, the primary issues remain the workload of the
low through-put XROMM procedure, in contrast to the high through-put demand of
appropriate statistics, given the variability of locomotion, coupled with the inaccuracy in
determination of inertial segment properties.
The few (three, non-steady) strides which I analyzed and visualized with XROMM techniques
with considerable efforts are not representative and cannot provide falsifying evidence with
regard to birth-weight dependent differences in piglet locomotor dynamics.
This of course does not imply that there can be no studies of few, representative behavioral
observations. It must be emphasized once more that this major limitation of the present
study is tied to two things: the fact that subjects are newborns, and the research question
posed herein. The high variability in locomotor behavior is a specific feature of the
“newborn piglet” model; at later ages, locomotor behavior stabilizes and becomes more
recurrent. Our research question was whether one can falsify diagnostic differences in LBW
and NBW piglets, and the answer must account for stochastic variation to exclude
co-incidental findings. In many other situations, there is either no reason to assume that
measurement uncertainty and variability in a behavior are considerable, or they would not
prohibit general mechanistic conclusions (e.g. Aerts, 1998; Astley and Roberts, 2012;
Montuelle and Williams, 2015). Single or rare observations of a behavior can be instructive
in many regards (e.g. Dawson et al., 2011; Druelle et al., 2020; Scheidt et al., 2022; Schwarz
et al., 2020). Thus, with most other study settings and subjects, mechanistic evaluations of
single strides or actions can generate valuable insights into the workings of the vertebrate
musculoskeletal system.
To summarize: this project provided evidence that there is little difference in how LBW
and NBW piglets move. Though differences in why segments move in a particular way are
unlikely in the light of this first finding, methodological limitations prohibited definitive
conclusions on dynamic differences in the study groups.

8.6 Piglets, Baboons, and Humans

An important premise of this project was that piglets are a valid model species for humans,
in terms of locomotion. This premise demands constant revision.
Piglets have long been suggested as a model species for human newborns (Book and Bustad,
1974; Cooper, 1975; Mayerl et al., 2023b), though there might be alternatives (Mellor and
Cockburn, 1986). This suggestion is perfectly justified in the fact that it can be ethically
problematic to study human newborns, especially on individuals burdened with an impeded

252



or altered development trajectory. Piglets are social, sedentary, and share similarity in their
appearance (hairless, rotund habitus). Of course, one has to carefully discuss differences and
similarities with the model species, and evaluate alternatives.
One aspect which sets piglets apart from other mammalian model organisms is the relatively
high frequency of occurrence of IUGR, Intra-Uterine Growth Retardation (Van Ginneken
et al., 2022; Widdowson, 1971; Wu et al., 2006). This diagnosis is different from low birth
weight (Wootton et al., 1983), i.e. the lowest quantile of weights in a litter. Then there is
also preterm birth: preterm individuals can have a weight which is lower than normal, but
appropriate for gestational age. Preterms can have low weight for gestational age, or even
IUGR, thus double or triple the issues. Finally, there is low vitality (Vanden Hole et al.,
2018a), which is a momentary performance measure (locomotion/respiration scoring), likely
linked to the other three state variables. The situation is complex, classification non-trivial,
and there is persistent debate on which indicators matter in which situation.
Nevertheless, researchers study newborn piglets, tracing back epidemiological or congenital
issues to histological or structural anomalies. These can be neurological studies: piglets
are somewhat similar to humans in the way their cerebral cortex develops (e.g. Lind et al.,
2007), they are available for gene editing (Lind et al., 2007), and a lot of research has focused
on neural development in piglets and implications for human infants (Conrad et al., 2012;
Dickerson et al., 1971; Fanous et al., 2020; Leyshon et al., 2016; Mudd and Dilger, 2017;
Radlowski et al., 2014). The piglet model has enabled progress with regard to the research
of respiratory problems (Spengler et al., 2019; Williams and Galvis, 1974), metabolic issues
(Mellor and Cockburn, 1986; Mota-Rojas et al., 2011; Vanden Hole et al., 2019), mastication
and gut (un-)health (Che et al., 2010; Cilieborg et al., 2011; D’Inca et al., 2011; Mayerl et al.,
2023a; Sangild et al., 2006; Vanden Hole et al., 2021).
Maybe most importantly for this thesis, muscle and bone histology and function have been
studied (Aerts et al., 2023b; Alvarenga et al., 2013; Andersen et al., 2016; Magrini et al., 2023;
Vanden Hole et al., 2018b). Results vary, indicating differences in locomotor performance
and muscle mass, but failing to associate them with differences in fibre composition or force
generating capacity.
Yet, common to all the organ systems under investigation, it must be stated that analogies
of human infants and piglets are usually related to homogeneities on the cellular- or tissue
level. Whereas developmental anomalies in gut, lung, and brain tissue can be related to
dysfunctions in neonates of both species, characteristic anomalies of muscle tissue are lacking.
Therefore, though it seems tempting to turn to piglets in light of all the prior research, it
might be questionable to choose them as a model for musculoskeletal aspects, or even for
behavioral aspects which rely on that system.
Other characteristics of the piglet prohibit transfer of findings to our own species, with regard
to locomotion. They are rather precocial (Wischner et al., 2009; Young et al., 2023a), and
locomotion of newborns matures at a baffling pace (Vanden Hole et al., 2018a, 2017). They
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are unguligrade, quadrupedal, strictly non-arboreal, and it must be assumed that during the
approximately 94 million years of evolution that separate us (Kumar et al., 2017) their neural
and musculoskeletal anatomy and morphology adapted to different locomotor constraints.
To conclude, I must re-emphasize that piglets are an appropriate and inevitable model
species with regard to anomalies on various organ systems. However, there is little reason
to expect relevant conclusions about human locomotor development from piglet research:
our locomotor systems are fundamentally different. Additionally, I quantified a lack of
differences in locomotion between low- and normal birth weight piglets (Ch. 5): it must be
assumed that motor control in precocial animals is innate and therefore locomotor capacity
indistinguishable. I cannot exclude that the most severe IUGR or preterm conditions can
elicit deficits in kinematics, tracing to impeded neural or musculoskeletal development. Also,
metabolic difference are likely, limiting endurance and vitality of LBWs, which I did not
quantify. But even if such differences occur, they cannot be easily extrapolated to humans.
This opens the discussion about alternative model species. Non-human primates, e.g.
baboons, are sufficiently similar to humans in anatomy and habitus, and their usefulness in
medical and evolutionary research is widely accepted (Aerts et al., 2023a;
Boulinguez-Ambroise et al., 2021; Druelle et al., 2021; Liang et al., 2023; Nardone et al.,
2017). Their developmental trajectory is less steep than that of piglets (Ch. 4), but still on
a manageable timescale for longitudinal studies (Druelle et al., 2017). Ethical concerns in
using primates might weigh more strongly (for reasons unknown). Those objections can be
partially mitigated for the kind of locomotor research demonstrated herein: kinematic
studies from calibrated videography are non-invasive. The inaccuracies of inertial
measurements (Ch. 7) justify doubt on the common practice of euthanizing individuals
after experiments; one could as well use naturally deceased specimens, model data, or
literature data to transfer the measured inertials to new observations (which would also
enable longitudinal inverse dynamic studies). All this of course demands ethical assessment
of, amongst more, proportionate radiation dose (especially on young individuals),
appropriate experimental circumstances (e.g. habituation requirement), and general
welfare (Young and Shapiro, 2018). The main limiting factor for such studies is the
availability of non-human primates and their offspring, even more of IUGR-like conditions,
which, as is often argued, is one of the benefits of using domestic piglets as a model.
Yet in the light of the present thesis, it seems more worthwhile to strive for appropriate
conditions and experimental circumstances to study species which are more closely related
to humans.
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8.7 Conclusion

Independent of the choice of model species, this thesis presented a number of advances in
developmental or general studies of locomotor behavior.

Conventional studies of kinematics mainly rely on irreversibly derived spatiotemporal
variables.
Raw kinematic traces are often qualitatively compared, yet inaccessible for multivariate
statistical analysis. Fourier Analysis methods are known and rarely used, yet a subtle
completion made them more accessible for kinematic analysis: equation (3.6), which
determines the main phase of a signal. Together with the delay theorem, a cyclic joint
angle profile can be “rolled” around the stride cycle for precise temporal alignment. The
affine components (mean, amplitude, phase) of the joint angle profiles can be isolated,
allowing a Procrustes-like alignment and more relevant quantitative comparison of
temporal patterns in joint angle movement.
I have demonstrated the potential of this set of mathematical tricks on a broad data set
of ungulates (comparative/descriptive) and on a longitudinal, developmental data set from
piglet kinematics (comparative/predictive).

Transforming kinematic data to the frequency domain and extracting affine components
opens up countless possibilities for data analysis.
Variability in locomotor output might be considered a nuisance, yet especially in neonates,
variability and the progressive reduction of it are arguably a feature of the system.
Variability enables learning and locomotor maturation; even seemingly innate neuromotor
control has to pass the “reality test”. Being able to quantify and compare this feature is a
huge advantage of probabilistic models. Predictive modeling, in particular, can be
implemented to compare groups (as demonstrated), refine model design, support
hypothesis building; models can take an evolutionary, comparative, longitudinal or
cross-sectional, or exploratory flavor, or many more. The modeling toolbox chosen herein
has proven to be sufficiently adaptable to handle even complex model constructs, which
relate subject characteristics (including morphometrics), spatiotemporal variables, and raw
kinematics in FCAS form. The achievement of the author with regard to probabilistic
modeling is mainly educational: these methods are popular in other fields, yet I daresay
that few biomechanists are fully aware of their potential. Consequently, all code produced
for this thesis is publicly available for others to adapt and replicate.
With all these data types and modeling capabilities at hand, future researchers can fine tune
their models to answer highly specific questions about study subjects and their locomotor
development.

In contrast to kinematic data analysis and modeling, my contribution to inverse dynamic
modeling is less than what I hoped to achieve.

255



CHAPTER 8. GENERAL DISCUSSION

As discussed above, this is due to the discrepancy in data throughput of the inverse
dynamic workflow, and variability of the phenomenon of interest. Also, initial technical
misconceptions about CT scans (Ch. 7) have temporarily misled my efforts; there were
visible problems in the outcome of my custom-made inverse dynamics workflow. In
reaction, the “flying femur” experiment as a reductive approach enabled the understanding
of all details of the workflow. This included a sensitivity analysis, which reveals
surprisingly high error margins for the inertial properties, which might be prohibitive for
inverse dynamic calculations. I take this as a clear reminder that for anything we measure,
we should put all necessary efforts into understanding the mechanistic fundamentals of our
measurement, and we must keep track of measurement uncertainty.
Both the reductive approach and the sensitivity analysis are advisable strategies hopefully
adopted by future biomechanists.

It is my sincere hope that other researchers take these analysis tools, reproduce, adapt, and
correct them where needed, and improve our understanding of how and why various animals
move in different phases and circumstances of their existence. I hope this goal explains some
extensive, tutorial-like chapters within this thesis, and it hopefully excuses the colloquial
tone of some paragraphs which might not have been to the intended entertainment or taste
of every recipient.

Thank you for your interest in my work!
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9.2 Video Digitization
To perform any kinematic analysis, one has to extract kinematic data. Therefore, one has
to “track” the trajectory of points of interest on a digital video.
The standard way to do this has changed dramatically during the course of this PhD project:
whereas the gold standard used to be having a student assistent to click points frame-wise
on the videos (“video tracking” of points), there are now deep learning algorithms to replace
those students (“pose estimation” of whole animals). Some relevant publications are listed
here for the interested reader. More details can be found in the articles marked as “review”.
The author was involved in one of the studies (Mielke et al., 2020).

• (review) DLTv: Hedrick (2008)

• Argus: Jackson et al. (2016)

• (review) Progressive Tracking: Mielke et al. (2020)

• DeepLabCut: Mathis et al. (2018, 2020)

• ThruTracker: Corcoran et al. (2021)

• AniPose: Karashchuk et al. (2021)

• (review) overview of deep learning methods: Cronin (2021)
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9.3 Statistical Parametric Mapping
A classical purpose of kinematics research is the identification of differences between study
groups. For example, one might look at low- and normal birth weight piglets, record hip
joint angle profiles for approximately a hundred walking strides of each group, and ask at
what temporal intervals they differ. One key property of joint angle profiles is that temporal
samples are not independent. In other words: joint angles do not change at random, and
the joint angle at a certain frame in a video will be more similar to the previous and next
frame than what would be expected by chance.
This is a well-known property. Naïvely, one might choose to overcome this by selecting key
points in the joint angle profile (e.g. the peak flexion) and compare those events between
study groups. However, this immediately raises questions about the number and
choice/relevance of key points. Choice and relevance are rather philosophical questions;
potentially they are motivated by a desired outcome (focusing points that differ). The
number of key points has effects on significance thresholds (multiple testing), and it has
been shown that comparing key points will increase the chance of false positives in
difference detection (due to true measurement uncertainty).
Instead of points, one might look at intervals, yet again it would be desirable to have a
non-subjective, automatic criterium of how to choose those. This can be provided by
random field theory (Brett et al., 2003; Kemeny et al., 1976). In random field theory, the
interdependence of measurement samples can be quantified by measuring how random
changes between samples are. Randomness and smoothness are on two sides of a
continuum, and the less random the changes between samples are, the “wider” the range of
dependent data points can be considered. This concept has found its way into the
framework of “Statistical Parametric Mapping” (SPM), which originates in neuroscience
and functional imaging of the brain (Flandin and Friston, 2008; Friston, 2003; Friston
et al., 1994; Worsley et al., 2004), and was adapted for biomechanic research (Pataky,
2010; Pataky et al., 2008, 2013).
With some limitations, one can say that SPM enables the hypothesis-bases statistical
comparison of joint angle profiles. Some of the limitations are the sensitivity to registration
(especially non-linear registration techniques), to processing (e.g. smoothing), and the
normality assumption. It retains all the limitations of the chosen hypothesis tests (e.g.
normality assumption often not confirmed). It must be added that SPM does not generally
account for the cyclicity of joint angle profiles (edge effects), though this can certainly be
overcome. As the authors of the method put it (Pataky, 2020), the only purpose of SPM is
the transfer of statistical methods to a multidimensional, interdependent data situation.
This relates to FCAS on several flanks. FCAS can be used for spatiotemporal alignment
(removing the phase differences), thereby reducing the dependency on more or less arbitrarily
chosen key points in the joint angles. FCAS quantifies the temporal interrelation of sample
points by translating it to harmonic components. However, FCAS is a transformation,
whereas SPM is an analysis method: in fact, SPM can be used to compare the “coordination”
residuals of superimposed joint angle profiles, or to compare relative angle profiles. In that
regard, they are complementary.
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9.4 List of Publications
The following resources with contributions by the author are publicly available. Updated
information can be found on the author’s “orcid” profile.

9.4.1 Journal Articles
• Mielke F, Schunke V, Wölfer J and Nyakatura JA (2018), “Motion analysis of non-

model organisms using a hierarchical model: Influence of setup enclosure dimensions
on gait parameters of Swinhoe’s striped squirrels as a test case”, Zoology. Vol. 129,
pp. 35-44. https://doi.org/10.1016/j.zool.2018.05.009

• Mielke F, Amson E and Nyakatura JA (2018), “Morpho-Functional Analysis Using
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2018. Vol. 45(4), pp. 449-461. https://doi.org/10.1007/s11692-018-9456-9
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“Progressive tracking: a novel procedure to facilitate manual digitization of videos”,
Biology Open., 11, 2020. Vol. 9(11). https://doi.org/10.1242/bio.055962
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and Comparative Biology. pp. icad054. https://doi.org/10.1093/icb/icad054

9.4.2 Conferences and Public Events
(first author contributions only)

• Annual Meeting of the German Zoological Society (DZG, 2019): “The Shape of
Locomotion: A Method for Large Scale Analyses of Intra-Limb Coordination”.
Recording of pre-talk available.

• Annual Meeting of the Society for Integrative and Comparative Biology (SICB, 2021):
“Swing it like a piglet!”. Recording available.

• Annual Meeting of the Society of Experimental Biology (SEB, 2021): “CT Density
Approximation to Integrate Inverse Dynamics into the XROMM Workflow”. Recording
available.
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9.4.3 Code Repositories

Here you find the code and code history of recent projects around this thesis.

• FCAS minimal code in various programming languages.
https://git.sr.ht/~falk/fcas_code

• Free and Open Source XROMM workflow, using blender and avoiding XMALab (for
reasons of frustration and ideology).
https://git.sr.ht/~falk/foss_xromm

• Piglet kinematics analysis using FCAS and probabilistic modeling.
https://git.sr.ht/~falk/piglet_fcas

• Application of FCAS to baboon data.
https://git.sr.ht/~falk/papio_fcas

• Code of the “flying femur” project.
https://git.sr.ht/~falk/flying_femur

• Automatic video/image segmentation.
https://git.sr.ht/~falk/piglet_image_autosegmentation

• Thesis defence presentation.
https://git.sr.ht/~falk/defence

• PhD thesis wrapping.
https://git.sr.ht/~falk/thesis

9.4.4 Blog Posts

All listed posts are self-published and can be found on the website http://mielke-bio.
info/falk.

Force Plate Calibration

• equipment considerations
http://mielke-bio.info/falk/posts/01.fpequipment

• basic calculations
http://mielke-bio.info/falk/posts/02.fpcalculations

• calibration of force magnitude
http://mielke-bio.info/falk/posts/03.fpcalibration1

• calibration of contact point
http://mielke-bio.info/falk/posts/04.fpcalibration2
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Video Analysis

• landmark tracking
http://mielke-bio.info/falk/posts/07.tracking

• contrast enhancement
http://mielke-bio.info/falk/posts/08.image_contrast

• image undistortion
http://mielke-bio.info/falk/posts/09.undistortion

• stereo camera calibration
http://mielke-bio.info/falk/posts/17.camera_calibration

• automatic stride cycle extraction
http://mielke-bio.info/falk/posts/27.cycle_extraction

• image segmentation
http://mielke-bio.info/falk/posts/30.difflineseg

Statistics

• probabilistic statistical modeling
http://mielke-bio.info/falk/posts/06.patella

• linear model prediction capability
http://mielke-bio.info/falk/posts/33.linearmodels

Inverse Dynamics

• wrenches
http://mielke-bio.info/falk/posts/10.id_lmx0a_wrenches

• fictitious forces - overview
http://mielke-bio.info/falk/posts/11.id_lmx0b_fforces

• Euler force
http://mielke-bio.info/falk/posts/12.id_lmx1_stutter

• Centrifugal force
http://mielke-bio.info/falk/posts/13.id_lmx2_vinyl

• Coriolis force
http://mielke-bio.info/falk/posts/14.id_lmx3_slider

• D’Alambert force
http://mielke-bio.info/falk/posts/15.id_lmx4_arm

• Generalization - n-link arm
http://mielke-bio.info/falk/posts/16.id_lmx5_nlink
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CT Analysis

• density approximation from CT data
http://mielke-bio.info/falk/posts/23.ct_density

Miscellaneous

• Procrustes superimposition
http://mielke-bio.info/falk/posts/18.procrustes

• quaternions
http://mielke-bio.info/falk/posts/21.quaternions

• photogrammetry
http://mielke-bio.info/falk/posts/22.photogrammetry

• custom wildlife cameras
http://mielke-bio.info/falk/posts/24.funcameras

• academic writing software use
http://mielke-bio.info/falk/posts/32.scird2023
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9.5 List of Abbreviations

BFGS – Broyden, Fletcher, Goldfrab, Shanno (Algorithm)

BMD – Bone Mineral Density

BMI – Body Mass Index

CAD – Computer Aided Design (models)

CC – Coordination Component
⃗COM – Center Of Mass

CRP – Continuous Relative Phase

CT – computed tomography

DECT – Dual-Energy CT

DFT – Discrete Fourier Transform

DLC – DeepLabCut (video digitization software)

DOF – Degrees Of Freedom

eROM – effective Range Of Motion

FBP – Filtered Backprojection (CT reconstruction algorithm)

FCAS – Fourier Coefficient Affine Superimposition

FFT – Fast Fourier Transform

FSD – Fourier Series Decomposition

g⃗, g – gravitational acceleration or its magnitude

HDI – Highest probability Density Interval

HDS – High Duty factor Stride

HMC – Hamiltonian Monte Carlo

HMPE – high-molecular-weight polyethylene

I – Mass Moment of Inertia

ICA – Independent Component Analysis

ICS – Inertial Coordinate System

iff – if, and only if

LBW – (piglet with) Low Birth Weight

LDS – Low Duty factor Stride

LED – Light Emitting Diode

LF – left frontlimb

LH – left hindlimb

LKJ – Lewandowski-Kurowicka-Joe prior distribution
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LOO – Leave One Out

MCMC – Markov Chain Monte Carlo

NBW – (piglet with) Normal Birth Weight

NUTS – No U-Turn Sampler

O (. . .) – in the Order of ... (magnitude)

PA6 – Nylon 6 / Polycaprolactam

PC – Polycarbonate

PC, PCi – (ith) Principal Component

PCA – Principal Component Analysis

PCs – Principal Components (see PCA)

PD – Procrustes Distance

PE – Polyethylene

PEEK – Polyether ether ketone

PP – Polypropylene

PTFE – Polytetrafluoroethylene

PVC – Polyvinylchloride

RF – right frontlimb

RH – right hindlimb

ROM – Range Of Motion

SPM – Statistical Parametric Mapping

WAIC – Widely Applicable Information Criterion

XROMM – X-ray Reconstruction of Moving Morphology
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