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A Multisensor Hyperspectral Benchmark Dataset
For Unmixing of Intimate Mixtures

Bikram Koirala, Member, IEEE, Behnood Rasti, Senior Member, IEEE, Zakaria Bnoulkacem,

Andréa de Lima Ribeiro, Yuleika Madriz, Erik Herrmann, Arthur Gestels, Thomas De Kerf, Sandra Lorenz,

Margret Fuchs, Koen Janssens, Gunther Steenackers, Richard Gloaguen, and

Paul Scheunders, Senior Member, IEEE

Abstract—Optical hyperspectral cameras capture the spectral
reflectance of materials. Since many materials behave as het-
erogeneous intimate mixtures with which each photon interacts
differently, the relationship between spectral reflectance and
material composition is very complex. Quantitative validation of
spectral unmixing algorithms requires high-quality ground truth
fractional abundance data, which are very difficult to obtain.

In this work, we generated a comprehensive laboratory ground
truth dataset of intimately mixed mineral powders. For this,
five clay powders (Kaolin, Roof clay, Red clay, mixed clay, and
Calcium hydroxide) were mixed homogeneously to prepare 325
samples of 60 binary, 150 ternary, 100 quaternary, and 15 quinary
mixtures. Thirteen different hyperspectral sensors have been used
to acquire the reflectance spectra of these mixtures in the visible,
near, short, mid, and long-wavelength infrared regions (350-
15385) nm. Overlaps in wavelength regions due to the operational
ranges of each sensor and variations in acquisition conditions
resulted in a large amount of spectral variability. Ground truth
composition is given by construction, but to verify that the
generated samples are sufficiently homogeneous, XRD and XRF
elemental analysis is performed. We believe these data will be
beneficial for validating advanced methods for nonlinear un-
mixing and material composition estimation, including studying
spectral variability and training supervised unmixing approaches.
The datasets can be downloaded from the following link: https:
//github.com/VisionlabHyperspectral/Multisensor datasets.

Index Terms—Hyperspectral, intimate mixtures, multi-sensor
dataset, benchmark, unmixing

I. INTRODUCTION

S
INCE each material interacts differently with incident

light, it can be uniquely characterized by its reflectance

spectrum. In remote sensing, hyperspectral cameras (HSC)

are used to resolve the reflected sunlight into hundreds of
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successive small wavelength bands in the visible and near-

infrared (VNIR, (350-1000) nm) and the short-wave infrared

(SWIR, (1000-2500) nm) regions [1]. Due to limitations of

the sensor’s spatial resolution, a pixel may contain more than

one material. The measured spectral reflectance is generally

modeled as a linear mixture of the different materials involved

[2]. The linear mixing model has shown very good perfor-

mance in scenarios where the Earth’s surface contains large

homogeneous areas with clearly separated regions containing

different pure materials [3]. In close-range scenarios, however,

the material behaves as an ”intimate mixture” with which each

photon interacts differently, making the relationship between

the spectral reflectance and material composition highly com-

plex and highly nonlinear [4].

With advances in technology, small portable, low-cost HSCs

have emerged that can be installed on unmanned aerial vehi-

cles, agricultural machinery, conveyors, or used in laboratory

environments [5]. The close-range setting generates higher-

quality reflectance spectra, better describing the intimate mix-

tures, and can potentially estimate material composition from

spectral reflectance [6].

Several nonlinear unmixing approaches have been devel-

oped [7]. Nonlinear mixing models, describing secondary re-

flections [8], or higher-order interactions simplify the complex

interaction of light with mixtures [9], [10]. The study [11]

introduced the HapkeCNN, a Convolutional Neural Network

(CNN) that incorporates the Hapke model into the learning

process. By integrating the physical model into the CNN

architecture, the HapkeCNN enhances the understanding and

representation of the underlying physical processes involved

in the data. Although physics-based mixing models have been

developed to explain the interaction of light with intimate

mixtures [12], [13], most of them fail when the material

grains/particles have a size, smaller or similar to the wave-

length of light, are non-spherically shaped and behaving as

anisotropic scatterers. Moreover, these nonlinear mixing mod-

els are not invariant to spectral variability caused by changes

in acquisition conditions, such as illumination conditions, dis-

tance, and orientation from the sensor, using different sensors

or white calibration panels. In this work, we will use the term

external variability to refer to spectral variability caused by

changes in acquisition conditions.

In previous work, we developed a robust nonlinear unmixing

approach by combining model-based unmixing and machine

learning and validated it on binary mineral mixtures [14].
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Accurate characterization of mixtures of more than two pure

materials is currently lacking in the literature.

To develop and validate advanced algorithms that can char-

acterize mixtures of more than two pure materials and also

address external variability, a comprehensive hyperspectral

dataset of intimate mineral powder mixtures acquired by

multiple sensors with different acquisition configurations is

required.

Recently, research has been devoted to generating ground-

truth data for spectral mixture analysis in the remote sensing

field; this, however, remained limited to linearly mixed data.

In [15], targeted scenes containing paper-based panels of

different sizes and filled with different colors and propor-

tions were imaged with a terrestrial hyperspectral imager at

various spatial resolutions. In [16], a hyperspectral unmixing

dataset was generated by data acquired over the German

Aerospace Center premises in Oberpfaffenhofen, containing

airborne hyperspectral images, high-resolution RGB images,

and ground-measured spectral reflectance of a number of

synthetic reference targets of different materials and sizes.

Several recent works report on the generation of small-scale

intimately mixed datasets. The Relab data set contains spectra

of crafted mineral mixtures from the NASA Reflectance Ex-

periment Laboratory (RELAB) at Brown University, publicly

available at www.planetary.brown.edu/relab/ [17]. The data set

contains binary mixtures from five minerals: Anorthite (An),

Bronzite (Br), Olivine (Ol), Quarts (Qz) and Alunite (Al).

For each of the binary mixtures of An-Br, Br-Ol, Ol-An,

and Qz-Al, 3 mixtures were available with a 25%, 50%, and

75% ratio by mass. In [18], a spectral database was built by

acquiring hyperspectral images from 29 intimate binary and

ternary mixtures by homogeneously mixing five different clay

samples (illite, kaolinite, montmorillonite, calcite, and quartz).

In [19], different mixing scenes were set up to mimic various

mixture models. Hyperspectral images were acquired from a

checkerboard (linear mixtures), a scene containing a vertical

board and the checkerboard (bilinear mixtures), and mixed

quartz sands (intimate mixtures). Endmembers of these scenes

were collected by acquiring images of pure materials. The

ground truth fractional abundances of the intimate mixtures

were obtained from high-resolution RGB images. For the

other scenes, ground truth fractional abundances were given on

the basis of the material composition. In [14], we developed

datasets of homogeneously mixed mineral powder mixtures

acquired by two sensors, i.e., an AgriSpec spectroradiometer

[manufactured by Analytical Spectral Devices (ASD)] and

a snapscan shortwave infrared hyperspectral camera, under

strictly controlled experimental settings. The data set contained

a total of 49 binary mixtures of 5 mineral powders. The

five chosen minerals are different oxides, typically found in

soil and applied in cementitious materials: Aluminum oxide

(Al2O3), Calcium oxide (CaO), Iron oxide (Fe2O3), Silicon

dioxide (SiO2) and Titanium dioxide (TiO2). In total, seven bi-

nary mixture combinations of minerals were prepared: Al2O3-

SiO2 (Al-Si), CaO-SiO2 (Ca-Si), CaO-TiO2 (Ca-Ti), Fe2O3-

Al2O3 (Fe-Al), Fe2O3-CaO (Fe-Ca), Fe2O3-SiO2 (Fe-Si) and

SiO2-TiO2 (Si-Ti). For each mineral combination, 7 different

mixtures were prepared.

A. Contributions and Novelties

The contribution of this work is fourfold.

1) Comprehensive intimate mixture samples: In this work,

we generated a comprehensive hyperspectral dataset of

intimate mineral powder mixtures by homogeneously

mixing five different clay powders (Kaolin, Roof clay,

Red clay, mixed clay, and Calcium hydroxide) in labora-

tory settings. In total 325 samples were prepared. Among

them, 60 mixtures are binary, 150 mixtures are ternary,

100 mixtures are quaternary, and 15 mixtures are quinary.

To the best of our knowledge, this is the first publicly

available intimate mixture dataset of this size, generated

by mixing up to five pure materials. Because these pure

clay powders are typically applied in building materials,

the quality of construction materials is determined by the

amount (fractional abundances) of pure clay powder in

the mixture.

2) Comprehensive sensor measurements: For each mixture

(and pure clay powder), reflectance spectra are acquired

by 13 different sensors, with a broad wavelength range

between the visible and the long-wavelength infrared

regions (i.e., between 350 nm and 15385 nm) and with

a large variation in sensor types, platforms, and acqui-

sition conditions. We believe that this dataset will help

researchers develop single and multi-sensor hyperspectral

unmixing algorithms that deal with the large spectral

variability and intrinsic nonlinearities of the data. We like

to clarify that we do not target typical remote sensing

applications but applications in close-range scenarios.

As each sample is a homogeneous mixture of different

pure clay powders, the spatial scope of these datasets is

limited. When acquired by imagers, the mean spectrum

of each sample can be used to analyze the mixture.

3) The dataset of intimate mixtures challenges existing

unmixing methodologies, as demonstrated by showing

highly inaccurate results from linear and Hapke-based

unmixing.

4) Confirmed ground truth fractional abundances: High pre-

cision ground truth of the fractional abundances is given

by construction. To validate the ground truth for the

elemental composition of each powder, X-ray powder

diffraction (XRD) and X-ray fluorescence (XRF) elemen-

tal analysis are performed on all mixtures.

This manuscript is organized as follows: section II presents

a detailed description of the sample preparation; section III

describes the data acquisition in the VNIR and SWIR wave-

length regions; section IV describes the data acquisition in

the mid-wave infrared (MWIR, (2500-8000) nm) and long-

wave infrared (LWIR, (8000-15000) nm) wavelength regions;

section V describes the data acquisition with the X-ray sensors.

II. SAMPLE PREPARATION

In this work, we used 5 pure clays typically applied in

building materials: Kaolin (Ka), Roof clay (Ro), Red clay (Re),

mixed clay (Mi), and Calcium hydroxide (Ca). Kaolin is a

mixture of Aluminium silicate hydroxide and Silicon dioxide

while Roof clay, Red clay, and mixed clay mostly contain
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TABLE I: Summary of the clay mixtures of Kaolin (Ka),

Roof clay (Ro), Red clay (Re), mixed clay (Mi), and Calcium

hydroxide (Ca)

Mixture type Clay combinations

Binary 1) Ka-Ro; 2) Ka-Re; 3) Ka-Mi;

4) Ka-Ca; 5) Ro-Re; 6) Ro-Mi;

7) Ro-Ca; 8) Re-Mi; 9) Re-Ca;

10) Mi-Ca

Ternary 1) Ka-Ro-Re; 2) Ka-Ro-Mi;

3) Ka-Ro-Ca; 4) Ka-Re-Mi;

5) Ka-Re-Ca; 6) Ka-Mi-Ca;

7) Ro-Re-Mi; 8) Ro-Re-Ca;

9) Ro-Mi-Ca; 10) Re-Mi-Ca

Quaternary 1) Ka-Ro-Re-Mi; 2) Ka-Ro-Re-Ca;

3) Ka-Ro-Mi-Ca; 4) Ka-Re-Mi-Ca;

5) Ro-Re-Mi-Ca

Quinary 1) Ka-Ro-Re-Mi-Ca

Aluminium silicate hydroxide, Biotite, Goethite, and Silicon

dioxide. We sieved these clay samples with a sieve with 200

µm openings, hereby limiting the grain size of all samples to

less than 200 µm. We estimated the particle density of each

pure clay in the lab with a pycnometer, following the standard

soil particle density protocol [20].

We generated a total of 325 mixtures by mixing these

five pure clay powders. All possible clay combinations of

these powders were considered, i.e., 10 binary combinations,

10 ternary combinations, 5 quaternary combinations, and one

quinary combination (see Table I).

Within each clay combination, samples with different mix-

ture fractions are generated so that the ground truth fractional

abundances uniformly cover the five-dimensional simplex,

with a step size of 14.286 % mass ratios. In this way, 6 unique

mixtures are generated for each binary clay combination, 15

for each ternary clay combination, 20 for each quaternary clay

combination, and 15 for the combination of 5 clays, making

a total of 325 mixtures.

In Fig. 1 we display the uniformly sampled fractional

abundances for a ternary clay combination. The three clays

occupy the corners of the simplex, all binary mixtures lie

on the lines connecting two clay’s while ternary mixtures lie

inside the simplex.

Mixtures were produced by weighing and aggregating the

different clays. We fixed the weight of each mixture sample to

be a total of 10 g, the scale had a precision of 0.001 g. Each

10 g sample was placed in a glass bottle and a homogeneous

mixture was produced by rotating the bottle for approximately

five minutes.

Using the particle densities of the pure clays, we converted

the weight to volume fraction by:

aj =

Mj

ρj

∑p
j=1

Mj

ρj

, (1)

where p denotes number of pure materials, Mj is the mass

fraction of component j, and ρj is its density.

Fig. 1: The ternary diagram of clay mixtures.

Each sample was then placed in a clear plastic sample holder

with an inner diameter of 3.048 cm and a height of 1.524 cm.

Approximately 3 g of a mixture was required to fill the sample

holder. The samples were then compacted and smoothed using

a stamp compactor. In Fig. 2, the 40 samples of 2 quaternary

clay combinations (Ka-Re-Mi-Ca and Ro-Re-Mi-Ca) and all

15 samples of the quinary combination are shown.

The 325 mixtures and the 5 pure clay powders were scanned

using 13 different sensors covering a broad range between

the visible and the LWIR wavelength regions (350 nm to

15385 nm). For all samples, the ground truth composition is

given by construction, but to verify that the generated samples

are sufficiently homogeneous, X-ray powder diffraction and

X-ray fluorescence elemental analysis (Bruker Tornado M4)

were performed. Table II summarizes the properties of all the

sensors.

III. DATA ACQUISITION IN VNIR AND SWIR

WAVELENGTH REGIONS

A. Handheld spectroradiometers

We used two handheld spectroradiometers (ASD and PSR-

3500 spectral evolution) to acquire the spectral reflectance of

our 330 samples in the VNIR and SWIR wavelength regions.

We acquired the spectra in indoor environments, and the

illumination source for the ASD spectroradiometer is the ASD

Muglight. The PSR-3500 spectral evolution sensor contains an

illumination source attached to the sensor itself. Since these

sensors acquire radiance spectra, the spectral reflectance is

obtained according to the equation (2):

y =
Rsample −Rdark

Rwhite −Rdark

× yspec, (2)

where y is the calibrated spectral reflectance, Rsample is

the radiance of the sample, Rwhite is the radiance of a

white calibration panel, i.e., a highly reflecting surface (e.g.,

Spectralon), yspec is the reflectance of the Spectralon, and

Rdark is the radiance, acquired by the sensor when the light

source is turned off.
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TABLE II: Summary of sensors employed in this investigation.

Sensor Spectral range Bands/Channels Spatial resolution Spectral resolution

ASD Spectroradiometer 350 nm to 2500 nm 2151 - 3-6 nm

Senops HSC2 500 nm to 900 nm 50 1024 × 1024 pixels 10-16 nm

Specim sCMOS 400 nm to 1000 nm 238 2148 pixels 6 nm

Specim AisaFenix 400 nm to 2500 nm 450 1024 pixels 3.5-10 nm

Specim FX50 2700 nm to 5300 nm 308 640 pixels 35 nm

Specim AisaOwl 7600 nm to 12300 nm 96 385 pixels 100 nm

Telops MWIR 3000 nm to 9000 nm 110 320 pixels 20 cm−

1

Telops HyperCam 7400 nm to 12500 nm 128 320 × 256 pixels 2 cm−

1

Specim JAI(RGB) 440 nm to 630 nm 3 4096 × 8496 pixels -

PSR-3500 spectral evolution 350 nm to 2500 nm 1024 - 2.8-8 nm

Agilent 4300 FTIR 2500 nm to 15385 nm 7191 - 4-16 cm−

1

Cubert Ultris X20P 350 nm to 1000 nm 164 410 × 410 pixels 4 nm

Cubert panchromatic 350 nm to 1000 nm 1 1886 × 1886 pixels -

micro-X-ray fluorescence - - - -

spectrometer (Tornado)

Macro X-ray powder diffractometer - - - -

Since spectral reflectances of most of the natural materials

are dependent on the illumination and acquisition angles, for

both handheld sensors, the data is acquired approximately

orthogonal to the sample surface. The illumination angle is

kept constant for each sensor and was 350 and 00 for the

ASD spectroradiometer and the PSR-3500 spectral evolution,

respectively.

The spectral reflectance will also vary with the distance of

the sample to the sensor, described by the following equation:

ymeas =
y

(1 +
dsample−dref

dref
)2
, (3)

where ymeas is the measured spectral reflectance, dref is the

distance between the white calibration panel and the sensor,

and dsample is the distance between the sample and the sensor.

The distance variation is reflected in a scaling of the spectrum

(see equation 3). Samples height varied due to two main

reasons: variations in the compaction of each sample and the

difference in clay densities. Since the distance between the

sample and the sensors in the handheld devices is of the order

of a few centimeters, a variation of the height of the sample in

the order of a few millimeters can cause a significant scaling

effect. Our investigations did not include measurements of the

sample’s heights, hence the random scaling effect must be

regarded as external spectral variability.

B. Imaging sensors

Unlike handheld sensors that can only collect spectra from

one sample at a time, imaging sensors can collect images from

multiple samples simultaneously. The spectral reflectances

were acquired from the samples by 6 different imaging sen-

sors, using two different scanning setups, developed at the

Helmholtz Institute Freiberg for Resource Technology. The

first scanner is a drill core scanner (see figure 3), in which

a Specim AisaFenix hyperspectral camera and Specim JAI

RGB camera were mounted. This scanner carries samples

on a moving table under the field of view of these two

cameras. The distance between the Specim AisaFenix and the

moving table is approximately 0.93 m, while the Specim JAI

RGB is approximately 0.63 m away from the moving table.

The Specim AisaFenix hyperspectral camera contains two

different sensors that cover the VNIR and SWIR wavelength

regions, respectively. The spectral resolution of the sensors is

approximately 3.5 nm in the VNIR and 12 nm in the SWIR.

The ground sampling distance (GSD) of each hyperspectral

pixel is approximately 1.5 mm while each RGB pixel covers

approximately 0.1 mm on the ground.
The second scanner is a conveyor belt scanner (see Fig.

4), on which the following four sensors can be mounted:

Specim sCMOS, Cubert Ultris X20P, Cubert panchromatic,

and Senops HSC2. Only one sensor at a time can be mounted

on the scanner. Fig. 4 shows the Specim sCMOS. The distance

between the Specim sCMOS and the moving belt is approx-

imately 0.45 m. The characteristics of these four sensors are

summarized in Table II. This platform brings samples toward

the camera by moving the belt. Two halogen lamps were

installed to provide an artificial light source.
We placed our samples on wooden plates to minimize the

motion effects during the acquisition of the reflectance data

(see Fig. 2 as an example). Only three wooden plates were

needed to fit all 330 samples. After acquiring the images, a

rectangular bounding box with a limited number of pixels was

selected from the center of each sample. This procedure is

essential to remove unrelated objects (edges of the sample

holders) and shadow areas from the image. Due to variations

in the spatial resolution of the cameras, the final image size

of each sample ranges from 8 × 8 pixels to 56 × 66 pixels.

The radiance images acquired by these cameras have been

converted to reflectance using an internal workflow based on

Hylite [21]. Spectra are averaged over the entire sample image.

C. Spectral reflectance of pure clay samples

The spectral reflectances of the five pure clay samples ac-

quired by seven different sensors (all but the Cubert panchro-
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Fig. 2: The RGB image of 40 quaternary mixtures (Ka-Re-Mi-

Ca and Ro-Re-Mi-Ca) and all 15 quinary mixtures. Ka, Ro,

Re, Mi, and Ca refer to Kaolin, Roof clay, Red clay, Mixed

clay, and Calcium hydroxide respectively. Here, the labeled

numbers denote sample numbers.

matic) are shown in Fig. 5. The clay samples have spectral

features around 1400 nm, 1900 nm, and between 2100 and

2500 nm. These features indicate the presence of vibrational

hydroxyl processes ([18]). Kaolin (Fig. 5 (a)) and Ca(OH)2
(Fig. 5 (e)) are highly reflective. In contrast, roof clay (Fig. 5

(b)) has the lowest reflectance of the five pure clay samples.

Although the spectra of roof clay (Fig. 5 (b)), red clay

(Fig. 5 (c)) and mixed clay (Fig. 5 (d)) show similarities, in

general, the overall spectral shape and reflectance values of

the pure clay powders are distinctive. This is a prerequisite

for accurately estimating the composition of the mixtures.

It is interesting to note that there is a large spectral vari-

ability in the acquired spectra. The spectra acquired by the

PSR-3500 and the ASD spectroradiometers typically differ by

a global scale factor for the same sample. This variability

is likely introduced due to variations in illumination and

acquisition angle, and in the distances from the samples to

the sensors. In general, band-wise scaling differences can be

observed between the acquired spectral reflectances of the

different sensors. These effects are caused by variations in

illumination and acquisition conditions, the use of different

white calibration panels, and specific differences in the spectral

response function of the sensors.

D. Spectral reflectance of mixtures

In Fig. 6, the spectral reflectance of binary mixtures of

Kaolin and Mixed clay, acquired by seven different sensors,

is shown. As can be observed, the spectral features of both

Kaolin and Mixed clay are present in these spectra, and grad-

ually change when the fractional abundance of each mineral

changes in the mixture. For example, the spectral feature of

Kaolin around 1400 nm is clearly visible in the sample Ka-Mi

0.855-0.145 and gradually diminishes with a reduction of the

abundance of Ka. Again, due to spectral variability, the spectra

acquired by different sensors vary widely.

E. Spectral mixture analysis

It can be assumed that the spectral reflectances obtained

from the intimate mixtures are nonlinearly related to the

ground truth fractional abundances, due to higher-order scat-

tering of the light rays within the powders before reaching

the sensor. To demonstrate the impact of these effects on the

abundance estimation, the data are linearly unmixed and the

deviations of the linearly estimated fractional abundances from

the real ground-truth abundances are studied.

The linear mixing model assumes that the spectral re-

flectance of a mixture y is given by:

y =

p
∑

j=1

ajej + n, (4)

where ej are the endmember spectra of the pure clays, aj is

the fractional abundance of endmember j and n is gaussian

noise. To be physically interpretable, the fractional abundances

are generally assumed to be non-negative and sum-to-one.

The fully constrained least squares unmixing method (FCLSU)

minimizes
∥

∥

∥
y −

∑p
j=1 ajej

∥

∥

∥

2

s.t.
∑

j aj = 1, ∀j : aj ≥ 0.

In Fig. 7, Top row, we display the estimated fractional

abundances by FCLSU on the reflectance dataset in the

VNIR/SWIR, obtained from the binary and ternary mixtures

of the Red Clay, Mixed Clay, and Calcium hydroxide, overlaid

on the ternary diagram of the clay mixtures.

For comparison, the estimated fractional abundances by the

Hapke model (Fig. 7, Bottom row) are shown as well. The

Hapke model estimates the fractional abundances from the

spectral reflectance by minimizing the following equation:
∥

∥

∥

∥

y − Wa

(1+2cos(θe)
√
1−Wa)(1+2cos(θi)

√
1−Wa)

∥

∥

∥

∥

2

, s.t.
∑

j aj = 1,

∀j : aj ≥ 0, where θi and θe are the angles with the normal

of the incoming and outgoing radiation respectively and W

are the single scattering albedos of the endmembers.

In the figure, the blue dots denote the estimated abundances,

while the red arrows show the real position of the mixtures

in the ternary diagram. As can be observed, the error in

the estimated fractional abundances of the binary mixtures is

significant. Moreover, both the linear and the Hapke models
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(a)

(b)

Fig. 3: Drill-core scanner equipped with multiple sensors. (a) Entire drill-core scanner platform; (b) Drill-core scanner equipped

with four different sensors (Specim JAI, Specim AisaFenix, Specim FX50, and Specim AisaOwl).
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Fig. 4: Conveyor belt scanner with the Specim sCMOS camera

mounted on it.

project many of the ternary mixtures onto the faces of the

simplex leading to a significant error in the estimated fractional

abundances.

IV. DATA ACQUISITION IN MWIR AND LWIR

WAVELENGTH REGIONS

A. Handheld sensor

Spectral reflectances of all 330 samples were acquired in the

region (2500-15385) nm by the Agilent 4300 Handheld Fourier

transform infrared (FTIR) Spectrometer (Fig. 8). An FTIR has

an excitation source that illuminates the sample. The sensor

contains an interferometer (a configuration of 2 mirrors) that

periodically blocks or passes each wavelength of the incoming

light by moving one of the two mirrors. The raw data collected

by this sensor is often referred to as an interferogram. This

raw data is then converted onto reflectance by applying the

Fourier transform.

B. Imaging sensors

Hyperspectral images are acquired from all samples in

the MWIR and LWIR wavelength regions by four different

cameras: Specim FX50, Telops MWIR, Specim AisaOwl, and

Telops HyperCam (see Table II for detailed information). Both

the Specim FX50 and the Specim AisaOwl were mounted on

the drill-core scanner (Fig. 3) while the Telops MWIR was

mounted on the conveyor belt (Fig.4). The distance between

the Specim FX50 and the moving table is approximately 0.85

m, while the Specim AisaOwl is approximately 1.06 m away

from the moving table. The Telops HyperCam has its own

scanning platform. Due to this camera’s limited field of view

(140 x 110), each sample was scanned individually. As with

the VNIR and SWIR cameras, a limited number of pixels was

selected from the center of the sample using a rectangular

bounding box. The final image size of each sample is 8 ×

8 pixels for the Specim FX50, 8 × 8 pixels for the Specim

AisaOwl, and 18 × 18 pixels for the Telops HyperCam. All

spectra are averaged over the entire sample image. Due to the

sparse noise in data acquired by Specim AisaOwl, we applied

a mixed noise removal technique called hyperspectral mixed

Gaussian and sparse noise reduction on the dataset [22].

C. Spectral reflectance of pure clay samples

Fig. 9 shows the spectral reflectance of the pure clay sam-

ples acquired by three different sensors: Agilent 4300 FTIR,

Specim FX50, and Specim AisaOwl (datasets acquired by

Telops MWIR and Telops HyperCam are not shown here due

to low-quality spectral information). Most clay minerals have

multiple absorption bands in the MWIR and LWIR (2500 nm

to 25000 nm) that can be related to the fundamental stretching

and bending vibrations of their fundamental functional groups,

e.g., the OH and Si-O groups [23]. Apart from an intensity

difference, Kaolin, Roof clay, Red clay, and Mixed clay have

the same spectral shape between 2500 and 6000 nm, while

the Ca(OH)2 sample shows a significantly different spectral

shape (around 4000 nm) due to the presence of a large amount

of calcium carbonate. In general, the noise levels for the

LWIR appear to be greater than in the VNIR/SWIR domains,

especially after 10000 nm.

Unlike the VNIR/SWIR, there is not much spectral variabil-

ity in the MWIR/LWIR. The spectra of the pure clay powders

acquired by the Agilent 4300 Handheld FTIR and the Specim

FX50 are almost identical, while the spectra acquired by the

Specim AisaOwl differ only slightly.

D. Spectral reflectance of mixtures

Fig. 10 shows the spectral reflectance of the binary mixtures

of Kaolin and Roof clay, acquired by three different sensors in

the MWIR and LWIR. The spectral variability is much larger

for the binary mixtures than for the pure materials.

E. Spectral mixture analysis

Fig. 11 displays the estimated fractional abundances by

FCLSU (Top row) and the Hapke model (Bottom row) on

the reflectance dataset in the MWIR/LWIR, obtained from the

binary and ternary mixtures of the Red Clay, Mixed Clay, and

Calcium hydroxide, overlaid on the ternary diagram of the

clay mixtures. As can be observed, the estimated fractional

abundances deviate a lot from the true fractional abundances.

From Fig. 11, one can observe that the unmixing result is sen-

sor and wavelength-dependent. FCLSU projected most of the

ternary mixtures acquired by the Agilent 4300 FTIR dataset

onto the line connecting mixed clay and Ca(OH)2 while the
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Fig. 5: Spectra of pure clay samples acquired by seven different sensors in the VNIR and SWIR.

Hapke model underestimated the fractional abundances of

Mixed clay. On the other hand, both FCLSU and the Hapke

model underestimated the fractional abundance of Mixed clay

in the FX50 dataset. In contrast to datasets acquired by Agilent

4300 FTIR and FX50, both FCLSU and the Hapke model

underestimated the fractional abundance of Ca(OH)2 in the

AisaOWL dataset.

V. DATA ACQUISITION WITH X-RAY SENSORS

It is well-known that in clay samples, the information

depth (the distance below the surface from which information

is contributing to the spectral reflectance) is limited in the

optical wavelengths (400 nm to 2500 nm) ([24]). Although

our samples were more than 1 cm thick, the information depth

varies between a few micrometers and a few 100 micrometers,

depending on the chemical composition and the porosity of

the clay samples. The information contained in the reflectance

matches with the ground-truth mass ratio only when the

sample is sufficiently homogeneous. To verify if our samples

are sufficiently homogeneous, we performed X-ray fluores-

cence (XRF) atomic/elemental analysis. X-ray fluorescence

(XRF) is an analytical technique traditionally employed in

geological sciences for qualitative and quantitative assessment

of chemical elements in mineral samples [25]. The major

reason to choose XRF analysis is that it is non-destructive

and its information depth varies between a few micrometers

and a few 100 micrometers ([26]). However, to convert the

mass ratios of our mixtures into atomic concentrations, the

molecular composition of the pure clay samples is required.

For this, X-ray powder diffraction is applied.

A. X-ray powder diffractometer (XRPD)

In this work, we utilized a Huber G670 Guinier diffrac-

tometer (Cu Kα1 radiation (X-ray wavelength 1.5406 Å),

curved Ge(111) monochromator, transmission mode, image

plate) to acquire the diffraction spectra of our five pure clay

samples (see Fig. 12). For the measurement of the diffraction

pattern, the samples were dispersed in ethanol and spread

over a polymeric transparent film. The Guinier G670 Data

Acquisition Program read out the diffraction pattern generated

on the imaging plate during X-ray exposure. The program

enabled saving the data in intensity vs. 2θ format for further

treatment. In the next step, Profex (version 5.2.0) software

([27]) was applied to determine the molecular compositions

of the pure clay samples. The results are displayed in Table

III.

We then converted the ground truth mass ratios of the

pure clay powders onto ground truth atomic concentrations.

After estimating the molecular concentrations for the pure clay

powders, we used XRF spectroscopy to estimate the elemental

atomic concentrations of both pure clay powders and their

mixtures.

B. micro-X-ray fluorescence spectrometer

In this work, we employed a Bruker Tornado M4+ micro

XRF spectrometer (see Fig. 13) for elemental identification

and quantification. Recent advances in the optical field (e.g.

polycapillary lenses) allowed for the development of XRF

spectrometers with high spatial resolution, referred to as

micro-XRF (µXRF). The ability to focus on such small areas

is particularly interesting for this study, as we aim to determine
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Fig. 6: Spectra of binary mixtures (i.e., a mixture of Kaolin and Mixed clay) acquired by seven different sensors in the VNIR

and SWIR.

TABLE III: The molecular composition of the pure clay samples obtained by XRPD.

Molecule Molecular formula Kaolin Roof clay Red clay Mixed clay Ca(OH)2

Biotite Si1.36 Al1.24 Fe1.4 Mg0.71 Ti0.16 Na0.02 K0.98 O12 H1.64 0% 10.55% 3.76% 4.38% 0%

Calcium carbonate CaCO3 0% 0% 0% 0% 48.04%

Calcium hydroxide Ca(OH)2 0% 0% 0% 0% 51.96%

Goethite FeO(OH) 0% 1.91% 0.5% 0.27% 0%

Kaolinite Al2Si2O5(OH)4 87 .24% 45.32% 5.62% 39% 0%

Silicon dioxide SiO2 12.76% 42.23% 90.13% 56.35% 0%

the elemental composition of powders with grain sizes of less

than 200 µm.

Signal acquisition parameters were set as follows: a

Rhodium anode is used as an excitation source (50 kV, 600

µA = 30 W of total power), collimated by polycapillary lenses

and focused on the sample’s surface (spot size: 170 µm).

X-ray signals emitted by our sample were collected for 15

seconds by two silicon detectors with Beryllium windows

(XFlash®technology). The air pressure inside the analytical

chamber was reduced to 2 mBar, aiming to reduce signal

attenuation by atmospheric interactions and to increase de-

tection sensitivity for lighter elements. We performed 3-point

acquisitions on each sample to ensure the reproducibility and

consistency of results. Fig. 14 shows the mean spectra of

the pure clay powders acquired by the µXRF spectrometer.

Elemental identification and quantification were performed by

fundamental parameters algorithms derived from the Sherman

equation [28].

While analyzing the results, we observed a sensor-specific

bias in the atomic concentrations of the pure clays estimated

by µXRF, when compared to the results from XRPD. To solve

this issue, calibration is required. For this, we reconstruct the

atomic concentrations of the clay powder mixtures estimated

by µXRF as linear combinations of the atomic concentrations

of the pure clay powders, to obtain the relative contributions

of the pure clays in the mixtures (how much each pure clay

contributes to the atomic concentration of the mixtures). This

reconstruction comes down to applying FCLSU to the atomic
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(a) (b) (c)

(d) (e) (f)

Fig. 7: Unmixing results overlaid on the ternary diagram of the mixtures of three clays; Top row: Linear unmixing; Bottom row:

Hapke unmixing. In the figure, the blue dots denote the estimated positions of the mixtures while the red arrows show the real

positions of the mixtures; (a and d) ASD Spectroradiometer; (b and e) AisaFenix Camera; (c and f) PSR Spectroradiometer.

Fig. 8: Agilent 4300 FTIR.

concentrations of the mixtures. By multiplying these relative

contributions with the ground truth atomic concentrations of

the pure clay powders obtained by XRPD, bias-free atomic

concentrations of the clay powder mixtures are obtained.

In Fig. 15, a scatterplot displays the atomic concentration

of Aluminum, estimated by the calibrated µXRF versus the

ground truth, on several binary mixtures. As can be ob-

served, the atomic concentration estimated by µXRF perfectly

matches the ground truth atomic concentrations. This demon-

strates that our samples were quite homogeneous.

C. Macro X-ray powder diffractometer

Next to µXRF, we employed a macroscopic X-ray powder

diffractometer (MA-XRPD) to estimate the atomic concentra-

tions in all 330 samples. The MA-XRPD instrument employs

a low-power Cu-anode X-ray micro source (30 W, IµS–Cu,

Incoatec GmbH, DE) that delivers a monochromatic (Cu–Kα)

and focused X-ray beam (focal spot diameter, 400 µm; output

focal distance, 39.8 cm; divergence, 2.6 mrad). A PILATUS

200 K detector placed perpendicular to the source at the output

focal distance collects diffraction patterns in transmission

mode. The samples were positioned in front of the area

detector at a distance of 3 cm (Fig. 16). Because samples

had to be held vertically to measure transmitted radiation,
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Fig. 9: Spectra of pure clay samples acquired by three different sensors in the MWIR and LWIR.

Fig. 10: Spectra of binary mixtures (i.e., a mixture of Kaolin and Mixed clay) acquired by three different sensors in the MWIR

and LWIR.
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(a) (b) (c)

(d) (e) (f)

Fig. 11: Unmixing results overlaid on the ternary diagram of the mixtures of three clays; Top row: Linear unmixing; Bottom

row: Hapke unmixing. In the figure, the blue dots denote the estimated positions of the mixtures while the red arrows show

the real positions of the mixtures; (a and d) Agilent 4300 FTIR; (b and e) FX50 camera; (c and f) AisaOWL camera.
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Fig. 12: The X-ray powder diffraction (XRPD) patterns ob-

tained with a Huber G670 Guinier diffractometer.

a thin layer of a clay sample was prepared and attached

to a 3D-printed sample holder with an opening of 10× 15

mm. XY motorized stages (maximum travel ranges, 10 cm

× 25 cm; Newport Corporation, Irvine, CA) allow for the

movement of the samples during the imaging experiment while

the instrument remains stationary. The samples are positioned

by use of a video camera with a limited depth of field. The

entire scanning operation, including motor movements and

acquisitions, is controlled by in-house software. A LaB6 stan-

dard for powder diffraction (SRM 660, NIST) is used for the

calibration of the instrument. The analytical characteristics of

the MA-XRPD system have recently been reported elsewhere

([29]). From each sample, a minimum of six measurements

were taken.

The 2D diffraction patterns measured by MA-XRPD were

converted to 1D diffraction patterns by utilizing the XRDUA

software package [30]. Fig. 17 shows the mean 1D diffraction

patterns of the pure clay powders. Because most clay powders

contain Silicon dioxide (see peak around 26.5 2θ), its diffrac-

tion spectrum is shown as well. The diffraction patterns of the

pure clay powders and the clay mixtures were analyzed by

using the Profex (version 5.2.0) software to estimate atomic

concentrations. Similar to µXRF, we corrected for sensor-

specific bias to obtain bias-free atomic concentrations. Fig. 15

indicates that results of MA-XRPD are far less accurate than

µXRF at predicting the atomic concentrations of the pure and

mixed clay powders. This could be explained by the fact that

MA-XRPD only analyses the crystalline phases while µXRF

records the atomic concentrations of both the crystalline and
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Fig. 13: The micro-X-ray fluorescence spectrometer (Bruker

Tornado M4+).
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Fig. 14: Spectra of the pure clay powders acquired by the

micro-X-ray fluorescence spectrometer.

amorphous phases.

VI. DISCUSSION

From the experiments, the following general conclusions

can be drawn:

• The reflectance spectra of intimate mineral powder mix-

tures are highly dependent on the acquisition conditions,

i.e., variable illumination conditions, distance, and orien-

tation from the sensor, the use of different sensors, and

white calibration panels. In general, band-wise scaling

differences (see Fig. 5) can be observed between the

spectral reflectances acquired by the different sensors.

• The five clay powders studied in this work have spectral

features around 1400 nm, 1900 nm, and between 2100

and 2500 nm. These features indicate the presence of

vibrational hydroxyl processes. Although the spectra of

roof clay, red clay, and mixed clay showed similarities, in

general, the overall spectral shape and reflectance values

of the pure clay powders are distinctive (see Fig. 5). This

is a prerequisite for differentiating these five clay powders

in the mixtures.

• Both the linear mixing model and the Hapke model are

not suitable for accurately predicting the composition of

clay powder mixtures in the VNIR/SWIR wavelength

regions. The linear mixing model projected most of the

ternary mixtures onto the faces of the simplex leading to

a significant error in the estimated fractional abundances.

To accurately predict the fractional abundances of inti-

mate mixtures, advanced nonlinear unmixing algorithms

are required that can tackle both nonlinearity and spectral

variability.

• In MWIR/LWIR wavelength regions, the studied clay

powders have multiple absorption features (2500 nm

to 15385 nm) that can be related to the fundamental

stretching and bending vibrations of their fundamental

functional groups, i.e., the OH and Si-O group [23].

Besides an intensity difference, Kaolin, Roof clay, Red

clay, and Mixed clay have the same spectral shape

between 2500 nm and 6000 nm, while Ca(OH)2 shows a

significantly different spectral shape. The feature between

8000 nm and 10000 nm indicates the presence of the Si-O

group in roof clay, red clay, and mixed clay.

• The unmixing results on the dataset acquired in the

MWIR/LWIR are found to be sensor and wavelength-

dependent (see Fig. 11). The unmixing results are worse

than those estimated in the VNIR/SWIR wavelength

regions.

• Although our clay powders have specific absorption

features in the MWIR and LWIR, it is not clear to

what extent the MWIR and LWIR can contribute to the

estimation of the composition of intimate mixtures. This

has to be investigated in detail.

• Because the information depth of the optical wavelengths

(400 nm to 2500 nm) is limited in clay samples, the bulk

composition of the mixture matches the information con-

tained in the reflectance dataset, only when the sample is

sufficiently homogeneous. The high correlation between

the atomic concentration estimated by µXRF and the

ground truth (bulk) atomic concentrations demonstrates

that our samples were homogeneous.

• Although we acquired datasets by 13 different sensors,

the reflectance dataset acquired by the following five sen-

sors has to be adequately preprocessed before applying

them for spectral unmixing: a) Senops HSC2 reflectance

spectra are entirely different from those acquired by other

sensors in the VNIR wavelength region (see Fig. 5). This

might be due to inaccurate radiometric calibration; b)

Approximately 40 % of the spectral reflectance dataset

acquired by the Cubert Ultris X20P and the Cubert

panchromatic camera are over-saturated. This may be
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(a) (b)

(c) (d)

Fig. 15: Atomic concentration of Aluminium estimated by calibrated µXRF and MA-XRPD versus ground truth; (a) Kaolin

and roof clay mixtures; (b) Kaolin and red clay mixtures; (c) Kaolin and mixed clay mixtures; (d) Roof clay and red clay

mixtures.

(a) (b)

Fig. 16: (a) Schematic; (b) a photograph of the MA-XRPD

instrument in transmission geometry.

due to the workflow to convert the raw dataset to re-

flectance, and it has to be investigated in more detail; c)

We could not accurately convert the raw Telops MWIR

data into reflectance. In our opinion, the measurement

is inaccurate, so we will only upload the raw data; d)

The dataset acquired by the Telops Hypercam contains

a significant amount of emission information overlaid

onto diffuse reflection. To remove emission information,

a physical model has to be developed that can describe

the measured data as a mixture of diffuse reflection and

emission information; e) Although the dataset acquired by

Specim AisaFenix for most of the samples is accurate, the

spectral reflectance between 1500 nm and 1900 nm show

unnatural behavior (see Fig. 5). This unnatural behavior is

much more visible in the spectral reflectance of Ca(OH)2
(see Fig. 5 (e)). We could not find a proper explanation

for this distortion.



15

20 25 30 35 40 45 50 55

2

0

10

20

30

40
R

e
la

ti
v
e

 i
n

te
n

s
it
y
 (

%
)

Kaolin

Roof clay

Red clay

Mixed clay

Ca(OH)
2

SiO
2

Fig. 17: Spectra of the pure clay powders acquired by the

macroscopic X-ray powder diffractometer.

VII. CONCLUSIONS

In this work, we generated 325 samples by homogeneously

mixing five different clay powders (Kaolin, Roof clay, Red

clay, mixed clay, and Calcium hydroxide). Among the 325

samples, 60 mixtures were binary, 150 were ternary, 100

were quaternary, and 15 were quinary. These samples (and

pure clay powders) were scanned by 13 different sensors,

with a wavelength range between the visible and the long-

wavelength infrared regions (i.e., between 350 nm and 15385

nm) to produce a comprehensive hyperspectral dataset of

intimate mixtures. We verified that the generated samples

were sufficiently homogeneous by performing X-ray powder

diffraction and X-ray fluorescence elemental analysis. The

low performance of the linear mixing model to estimate

the composition of the mixtures demonstrates that advanced

hyperspectral unmixing methods are required that can tackle

both spectral variability and nonlinearity.
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