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HOMOCLINIC FLOER HOMOLOGY VIA DIRECT LIMITS

SONJA HOHLOCH

Abstract. Let (Mω) be a two dimensional symplectic manifold, φ : M → M a sym-

plectomorphism with hyperbolic fixed point x and transversely intersecting stable and

unstable manifolds W s(φ, x) ∩ Wu(φ, x) =: H(φ, x). The intersection points are called

homoclinic points, and the stable and unstable manifold are in this situation Lagrangian

submanifolds. For this Lagrangian intersection problem with its infinite number of in-

tersection points and wild oscillation behavior, we first define a Floer homology gen-

erated by finite sets of so-called contractible homoclinic points. This generalizes very

significantly the Floer homologies generated by (semi)primary points defined by us in

earlier works. Nevertheless these Floer homologies only consider quite ‘local’ aspects of

W s(φ, x)∩ Wu(φ, x) since their generator sets are finite, but the number of all contractible

homoclinic points is infinite.

To overcome this issue, we construct a direct limit of these ‘local’ homoclinic Floer

homologies over suitable index sets. These direct limits thus accumulate the information

gathered by the finitely generated local’ homoclinic Floer homologies.

1. Introduction

In the 1960s, V. I. Arnold conjectured that the number of fixed points of a nondegener-

ate Hamiltonian diffeomorphism (= a time-1 map of a nonautnomous Hamiltonian flow)

on a closed symplectic manifold (M, ω) is greater or equal to the sum over the Betti num-

bers of this manifold. For the 2n-dimensional torus, it was proven by Conley and Zehnder

in 1983. Floer [Fl1, Fl2, Fl3] turned the fixed point problem into an intersection problem

which allowed him to prove it on more general classes of manifolds. More precisely, he

considered the fixed points of the Hamiltonian diffeomorphism as intersection points of

the graph of the Hamiltonian diffeomorphism with the diagonal in the symplectic mani-

fold (M × M, ω ⊕ (−ω)). The diagonal and the graph are Lagrangian submanifolds, i.e.,

the symplectic form vanishes on them and they have half the dimension of the underly-

ing manifold. The intersection points of the graph and the diagonal can be seen as critical

points of the so-called symplectic action functional. Considering this functional as ‘Morse

function’, Floer devised some kind of ‘infinite dimensional Morse theory’ for the sym-

plectic action functional. This theory and its generalizations are nowadays called Floer

theory and the associated homology theory is called Floer homology. Floer theory turned

out to be a very powerful tool and gave rise to many other applications in symplectic

geometry, dynamical systems and other fields of mathematics and physics.

1.1. History and background of homoclinic points. In order to motivate the construc-

tion of Floer homology generated by so-called homoclinic points we first need some no-

tations and background from homoclinic dynamics: Given a manifold N and a diffeo-

morphism f ∈ Diff(N), we call x ∈ N an m-periodic point if there exists m ∈ N with
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2 SONJA HOHLOCH

f m(x) = x. For m = 1, such a point x is usually called a fixed point and the set of fixed

points of f is denoted by Fix( f ). A fixed point x is hyperbolic if the modulus of the eigen-

values of the derivative D f (x) of f in x differs from 1. The stable manifold of a hyperbolic

fixed point x is defined as

W s( f , x) := {p ∈ N | lim
n→∞

f n(p) = x}

and the unstable manifold as

Wu( f , x) := {p ∈ N | lim
n→−∞

f n(p) = x}.

We call the connected components of W s( f , x)\{x} resp. Wu( f , x)\{x} the branches of

W s( f , x) resp. Wu( f , x). The homoclinic points of x are the intersection points of the stable

and unstable manifold of x. The set of homoclinic points of x is denoted by

H( f , x) := W s( f , x) ∩Wu( f , x).

In this convention, we consider the fixed point x also as homoclinic point. In Figure 1,

the complicated intersection behaviour of transversely intersecting stable and unstable

manifolds is sketched. It is often referred to as ‘homoclinic tangle’.

Figure 1. The intersection behaviour (‘homoclinic tangle’) of transversely

intersecting stable (= continuous line) and unstable (= dotted line) mani-

fold of a hyperbolic fixed point (= bold black dot).

The orbit of a point p ∈ N is given by the set { f n(p) | n ∈ Z}. Note that the stable and

unstable manifolds are invariant under the action

Z × N → N, (m, p) 7→ f m(p)

such that being periodic or homoclinic is in fact a property shared by all points in the

orbit.

Intuitively, homoclinic points are the ‘next more complicated’ orbit type after fixed

points and periodic points. (Transverse) homoclinic points were discovered by Poincaré

[Poi1], [Poi2] around 1890 while studying the n-body problem. In 1935, Birkhoff [Bi]

described the existence of high-periodic points near homoclinic ones, but only Smale’s

horseshoe in the 1960s explained the implied dynamics precisely. Although homoclinic

points have been studied by now by various methods like calculus of variations, perturba-

tion theory, and numerical approximation, many questions are still open.
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1.2. Challenges concerning Floer homology generated by homoclinic points. If we

work with symplectomorphisms instead of diffeomorphisms, the (un)stable manifolds are

in fact Lagrangian submanifolds, i.e., the symplectic form vanishes along the (un)stable

manifolds and their dimensions equal half of the dimension of the underlying symplectic

manifold. This prompts the question if it is possible to construct a Floer homology gen-

erated by homoclinic points, i.e., if the intersection points of the Lagrangian (un)stable

manifolds admit the construction of Floer homology.

The main problem is the abundance of homoclinic points due to the wild oscillation

and accumulation behaviour of the only injectively immersed (un)stable manifolds. This

causes tremendous problems in particular for the welldefinedness of the Floer boundary

operator which relies, among others, on Fredholm analysis and regularity of solutions of

a Cauchy-Riemann type PDE (so-called pseudoholomorphic curves).

If we restrict the dimension of the underlying symplectic manifold to two, we may re-

place the involved analysis of pseudoholomorphic curves by combinatorics (see de Silva

[dS], de Silva & Robbin & Salamon [dSRS], Felshtyn [Fe], Gautschi & Robbin & Sala-

mon [GaRS]). Note that, in dimension two, being symplectic is the same as being volume

preserving w.r.t. the symplectic form and, moreover, that any one dimensional submani-

fold of a two dimensional symplectic manifold is Lagrangian.

While focussing on two dimensional symplectic manifolds avoids all analysis troubles,

the problems caused by the infinite number of homoclinic points persist: Homoclinic

points are intended to play the role of generators of a chain complex. Thus the infinite

number of homoclinic points makes defining chain groups of finite rank a tricky task, not

to speak of the welldefinedness of the boundary operator between the chain groups. . .

Now let (M, ω) be a two dimensional symplectic manifold, φ : (M, ω) → (M, ω) a

symplectomorphism, and x a hyperbolic fixed point of φ. Given p, q ∈ H := H(φ, x),

denote by [p, q]i the (one dimensional!) segment between p and q in W i := W i(φ, x) for

i ∈ {s, u}. Let cp : [0, 1] → Wu ∪ W s be a continuous curve with cp(0) = x = cp(1) that

runs first from x through [x, p]u to p and then through [p, x]s back to x. The homotopy

class of p is given by [p] := [cp] ∈ π1(M, x). Then

H[x] := {p ∈ H | [p] = [x]}

is said to be the set of contractible homoclinic points. It is invariant under the Z-action

induced by φ. We define

Hpr := Hpr(φ, x) := {p ∈ H[x] | ]p, x[s∩ ]p, x[u∩ H[x] = ∅},

Hs := Hs(φ, x) := {p ∈ H[x] | ]p, x[s∩ ]p, x[u= ∅}

and the elements of Hpr are referred to as primary homoclinic points and those of Hs as

semiprimary homoclinic points. Geometrically, homoclinic points are primary if getting

from p to x via the stable and unstable manifold has no contractible intersection points.

They are semiprimary if the ways back do not intersect at all.

Note that |Hpr/Z| < ∞ and |Hs/Z| < ∞, i.e., modulo Z-action of φ, the sets of primary

and semiprimary points are finite. This was the motivation to construct Floer homol-

ogy in dimension two generated by (semi)primary homoclinic points in our earlier work

[Ho1]. Note that these (semi)primary points form a sort of ‘skeleton’ within the inter-

secting stable and unstable manifolds and the associated (semi)primary homoclinic Floer
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homologies have interesting links to known quantities in dynamical systems, geometry,

and algebra, see Hohloch [Ho2, Ho3].

1.3. New approach via local homoclinic Floer homology and direct limit. Let (M, ω)

be a two dimensional symplectic manifold, φ : (M, ω) → (M, ω) a symplectomorphism,

and x a hyperbolic fixed point of φ with transversely intersecting stable and unstable

manifolds W s(φ, x) ∩ Wu(φ, x) =: H(φ, x) =: H .

The aim of this paper is to define a Floer homology for significantly larger and more

general sets of homoclinic points than the set of (semi)primary homoclinic points used in

Hohloch [Ho1] to define (semi)primary Floer homology.

To construct a Floer homology, we first of all need chain groups to set up the chain

complex. The general idea in this paper is to take a finite set of contractible homoclinic

points and figure out how to generalize the construction from Hohloch [Ho1] to this much

more general setting.

Consider the set of contractible homoclinic pointsH[x] (which contains the fixed point

x). It can be endowed (see Section 2.1 for details) with the Maslov grading µ : H[x] → Z

and natural convention µ(x) = 0. Set

E := {E ⊂ H[x] | E finite}

and let E ⊂ E. Then the Maslov index induces a grading on the elements of E so that the

free abelian group ZE := Span
Z
{p | p ∈ E} generated by the elements of E can be written

as

ZE =
⊕

k∈Z

ZEk

with Ek := {p ∈ E | µ(p) = k}. Since E is finite only finitely many of the Ek are nontrivial.

Hence our candidates for the chain groups of the desired homoclinic Floer chain complex

generated by E are

C(E) := ZE =
⊕

k∈Z

ZEk =:
⊕

k∈Z

Ck(E).

Now we need to define a boundary operator between the chain groups. Let E ∈ E and

consider p, q ∈ E with µ(p)− 1 = µ(q). Classical Lagrangian Floer homology would now

count the number of certain pseudoholomorphic strips from p to q, but, on two dimension

manifolds, one may replace the analysis by combinatorics (see de Silva [dS], de Silva

& Robbin & Salamon [dSRS], Felshtyn [Fe], Gautschi & Robbin & Salamon [GaRS])

and work with certain ‘compatible signs’ n(p, q) ∈ {−1, 0,+1} instead. For the precise

definition of n(p, q) see Section 2.4 in general and Equation (1) in particular. This suggests

to define as candidate for the boundary operator

∂E : ZE → ZE, ∂E p :=
∑

q∈E

µ(q)=µ(p)−1

n(p, q) q

on the generators and to extend it to ZE in a linear way. ∂E maps ZEk to ZEk−1 and thus

gives rise to a family ∂E
k

: CFk(E) → CFk−1(E) for all k ∈ Z. To be a boundary operator,

∂E needs to satisfy ∂E
k−1
◦ ∂E

k
= 0 for all k ∈ Z, briefly ∂E ◦ ∂E = 0. Unfortunately there are

sets E ∈ E where this is simply not true, see Example 3.2, item 3).
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To overcome this problem, we proceed as follows: a set E ∈ E is said to be ∂-complete

if ∂E ◦ ∂E = 0, and otherwise ∂-incomplete. Now set

E := {E ∈ E | E ∂-complete}.

Then we obtain (for details see Section 3):

Theorem 1.1. For all E ∈ E, setting

(
C(E), ∂E) :=

(
ZE, ∂E)

yields a welldefined chain complex. Its induced homology is called (local) homoclinic

Floer homology of E and denoted by

H(E) =
⊕

k∈Z

Hk(E) :=
⊕

k∈Z

ker ∂E
k / Im ∂E

k+1

Note that representatives of the generators of (semi)primary homoclinic Floer homol-

ogy form a ∂-complete set, so (semi)primary homoclinic Floer homology as defined in

Hohloch [Ho1] is included in the statement above.

There is also a way to assign a Floer homology to ∂-incomplete sets as proven in

Section 3.4.2:

Proposition 1.2. Let E ∈ E. Then the pruning algorithm (see Section 3.4.2) turns E into

a ∂-complete set E ⊆ E. If E is already ∂-complete then E = E, otherwise E ⊂ E is a

strict subset. Thus H(E) := H(E) is welldefined and coincides for ∂-complete sets with

the definition in Theorem 1.1.

Now we want to overcome the still ‘very local’ nature of the Floer homology defined

in Theorem 1.1 in the sense that we want to see it as one in a sequence of homologies

that gather more and more information about the underlying homoclinic tangle. We will

do so by defining a suitable index set over which we can take the direct limit of local

homoclinic Floer homologies.

For the setting of a direct limit we need a partially ordered index set and a so-called

direct system consisting of objects of a category together with transition functions, both

indexed by the index set. Moreover, when compatibility with short exact sequences is

necessary then the index set should in addition be directed. For precise definitions, we

refer the reader to Section 4.

Intuitively, our candidate for the index set should be E with partial order induced by

the inclusion ⊆ since we would like to take the direct limit over H(E) for all E ∈ E.

The transition functions H(IDE) : H(D) → H(E) in this setting would arise from the

inclusions D ֒→ E for D, E ∈ Ewith D ⊆ E and their extension to mapsIDE : ZD ֒→ ZE.

Unfortunately this does not work without further conditions since IDE : ZD ֒→ ZE is

an inclusion of graded Z-modules but not necessarily a chain map, i.e., it does not always

satisfy IDE ◦ ∂D = ∂E ◦ IDE, see Lemma 5.6.

To overcome this problem, we proceed as follows: a pair (D, E) with D, E ∈ E and

D ⊆ E is called chain compatible if IDE ◦ ∂D = ∂E ◦ IDE. Moreover, a subset Ẽ ⊂ E is

chain compatible if, for all D, E ∈ Ẽ with D ⊆ E, the pair (D, E) is chain compatible.
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Proposition 1.3. Let D, E ∈ E with D ⊆ E and (D, E) chain compatible. Then the chain

map IDE : ZD → ZE gives rise to a map in homology H(IDE) : H(D) → H(E). More-

over, for all D, E, F ∈ E with D ⊆ E ⊆ F and (D, E), (E, F), (D, F) chain compatible, we

have

H(IEF) ◦ H(IDE) = H(IDF).

This is proven in Proposition 5.12. Now we are ready to pass to the direct limit:

Theorem 1.4. Let Ẽ ⊂ (E,⊆) be chain compatible. Then, for all k ∈ Z,

HẼk :=
(
{Hk(D) | D ∈ Ẽ}, {H(IDE

k ) | D, E ∈ Ẽ, D ⊆ E}
)
,

HẼ :=
(
{H(D) | D ∈ Ẽ}, {H(IDE) | D, E ∈ Ẽ, D ⊆ E}

)

with (partially ordered) index set Ẽ are direct systems of graded Z-modules in the category

of Z-moduls. In particular, both are direct systems of abelian groups and therefore admit

direct limits. If the chain compatible set Ẽ ⊂ (E,⊆) is not only partially ordered but in fact

directed then both direct systems allow passing to the direct limit of short exact sequences

and we can assign a welldefined homology via direct limit to Ẽ:

Hk(Ẽ) := lim
−−→

HẼk ∀ k ∈ Z and H(Ẽ) :=
⊕

k∈Z

Hk(Ẽ).

This is proven in Theorem 5.13. Since a direct limit is by construction ‘quite small’

compared to the vastness of the set of homoclinic points there is still much to discover

within and around homoclinic tangles!

1.4. Organization of this paper. Section 1 consists of the introduction. Section 2 re-

calls the necessary background from combinatorial Floer homology. Section 3 contains

the construction and discussion of (local) homoclinic Floer homology for finite sets of

contractible homoclinic points. Section 4 summarizes necessary notions from homologi-

cal algebra and category theory. Section 5 contains the discussion and construction con-

cerning the direct limit of (local) homoclinic Floer homologies.

Acknowledgements. The author wishes to thank Wendy Lowen and Julia Ramos for

helpful explanations and references. The research for this article was partially funded

by the UA BOF DocPro4 project with Antigoon-ID 31722, the FWO-FNRS EoS project

G0H4518N titled Symplectic techniques in differential geometry, and FWO-FNRS EoS

project 40007524 titled Beyond symplectic geometry.

2. Maslov index, cutting and gluing, and orientations

Assume M to be R2 or a closed surface of genus g ≥ 1 and ω a symplectic form on M.

Note that, in dimension two, being a symplectic form is the same as being a volume form.

Consider φ ∈ Symp(M, ω) with hyperbolic fixed point x and transversely intersecting

(un)stable manifolds W s := W s(φ, x) and Wu := Wu(φ, x). This implies in particular that

the (un)stable manifolds are one dimensional. Abbreviate by

H := H(φ, x) := W s(φ, x) ∩Wu(φ, x)
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the set of homoclinic points which includes the fixed point x. The symplectomorphism φ

induces the Z-action

Z ×H → H , (n, p) 7→ φn(p)

on the set of homoclinic points of x. Note that for transversely intersecting W s ∩Wu, the

setsH andH/Z are both infinite as a simple glance at Figure 1 shows.

2.1. Maslov index and grading. Given p, q ∈ H , denote by [p, q]i the (one dimen-

sional!) segment between p and q in W i for i ∈ {s, u}. Let cp : [0, 1] → Wu ∪ W s be a

continuous curve with cp(0) = x = cp(1) that runs first from x through [x, p]u to p and

then through [p, x]s back to x. The homotopy class of p is given by [p] := [cp] ∈ π1(M, x).

ThenH[x] := {p ∈ H | [p] = [x]} is said to be the set of contractible homoclinic points. It

is invariant under the action of φ.

In Hohloch [Ho1, Section 2.1], we showed that there is a (relative) Maslov index

µ(p, q) ∈ Z for p, q ∈ H if [p] = [q]. Intuitively, it can be seen as follows: If we

assume the intersections of the Lagrangians to be perpendicular and if we flip +90◦

at the ‘vertex’ q and −90◦ at the ‘vertex’ p we can identify µ(p, q) in our two dimen-

sional setting with twice the winding number of the unit tangent vector of a loop start-

ing in p, running through [p, q]u to q and through [p, q]s back to p. Moreover, we have

µ(p, q) = µ(φn(p), φn(q)) for n ∈ Z and p, q ∈ H[x]. For contractible homoclinic points,

the (relative) Maslov index yields a natural grading

µ : H[x] → Z, µ(p) := µ(p, x)

where we use the convention µ(x) = µ(x, x) = 0. Thus we get for contractible homoclinic

points p and q

µ(p, q) = µ(p, x) + µ(x, q) = µ(p, x) − µ(q, x) = µ(p) − µ(q).

If p and q have the same homotopy class but are not contractible, i.e. [p] = [q] , [x],

then we still can define a grading within this homotopy class by picking a base point x0

with [x0] = [p] = [q], but there is no ‘natural’ choice for x0. Changing the base point

will change the grading by a constant integer. For noncontractible homoclinic points, the

relative Maslov index needs not be preserved under iteration.

2.2. Immersions, di-gons and hearts. In this section, we recall the definitions and re-

sults of Hohloch [Ho1, Section 2.2].

A di-gon is the polygon D ⊂ R2 sketched in Figure 2 (a), having precisely two vertices,

both convex and located at (−1, 0) and (1, 0). Denote its upper boundary by Bs and its

lower boundary by Bu. A heart is either the polygon Db of Figure 2 (b) or the polygon Dc

of Figure 2 (c). It is characterized by two vertices at (−1, 0) and (1, 0), one is convex and

one concave. Denote their upper boundaries by Bs and their lower boundaries by Bu.

In the following, immersions of di-gons and hearts are to be immersions also on the

boundaries and vertices. This means in particular that the image of a small neighbourhood

of a convex (concave) vertex of a polygon is a wedge-shaped region with angle smaller

(larger) than π. Let p, q ∈ H with µ(p, q) = 1. We define M(p, q) to be the space

of smooth, immersed di-gons v : D → M that are orientation preserving and satisfy

v(Bu) ⊂ Wu, v(Bs) ⊂ W s, v(−1, 0) = p and v(1, 0) = q. Now denote by G(D) the group
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Bs
Bs

Bs

-1 1

Bu Bu

Bu

Dc
D

-1 1 -1 1

(a) (c)

Db

(b)

Figure 2. Di-gon and hearts.

of orientation preserving diffeomorphisms of D which preserve the vertices. Then we call

M̂(p, q) :=M(p, q)/G(D) the space of unparametrized immersed di-gons.

We remark that |M̂(p, q)| ∈ {0, 1} for p and q with µ(p, q) = 1 since there is exactly one

segment [p, q]i, i ∈ {s, u}, joining p, q ∈ H because of π2(M) = 0.

Now let p, q ∈ H with µ(p, q) = 2. We defineNb(p, q) resp.Nc(p, q) to be the space of

smooth immersed hearts w : Db → M resp. w : Dc → M that are orientation preserving

and satisfy w(Bu) ⊂ Wu, w(Bs) ⊂ W s, w(−1, 0) = p and w(1, 0) = q. We set N(p, q) :=

Nb(p, q) ∪̇ Nc(p, q). Now denote by G(Db) resp. G(Dc) the group of orientation preserving

diffeomorphisms of Db resp. Dc that preserve the vertices. Call N̂b(p, q) := Nb(p, q)/

G(Db) resp. N̂c(p, q) := Nc(p, q)/G(Dc) and N̂(p, q) := N̂b(p, q) ∪̇ N̂c(p, q) the spaces of

unparametrized immersed hearts.

When working withM(p, q) andN(p, r) we always implicitly assume p, q, r ∈ H with

[p] = [q], [p] = [r], µ(p, q) = 1 and µ(p, r) = 2.

2.3. Cutting and gluing. We now recall some results from Hohloch [Ho1, Section 2.4]

that are necessary for the construction and welldefinedness of the boundary operator

later on. Intuitively, gluing of two immersed di-gons v ∈ M̂(p, q) and v̂ ∈ M̂(q, r) with

µ(p, q) = 1 = µ(q, r) and thus µ(p, r) = 2 is the procedure that recognizes the tupel (v, v̂) as

an element of N̂(p, r). The cutting procedure, on the other side, is the ‘inverse’ procedure

that starts with w ∈ N̂(p, r) and locates two points qa, qb ∈ H such that w can be ideniti-

fied with either a tupel (v, v̂) ∈ M̂(p, qa)×M̂(qa, r) or a tupel (v′, v̂′) ∈ M̂(p, qb)×M̂(qb, r).

The geometric intuition of gluing and cutting is sketched in Figure 3.

Theorem 2.1 (Hohloch [Ho1], Theorem 14, ‘Gluing’). Let p, q, r ∈ H with [p] = [q] =

[r] and µ(p, q) = 1 = µ(q, r). Consider v ∈ M̂(p, q) and v̂ ∈ M̂(q, r). Then the gluing

construction # for v and v̂ yields an immersed heart w := v̂#v ∈ N̂(p, r).

The two connected components of W s\{x} resp. Wu\{x} are called the branches of the

(un)stable manifolds. Wu and W s are said to be strongly intersecting (w.r.t. x) if each

branch of Wu intersects each branch of W s, meaning W i
+ ∩ W+

j , ∅ , W i
− ∩ W+

j for

i, j ∈ {0, 1} and i , j. For a discussion when strongly intersecting is a generic property,

see Section 2.4 in Hohloch [Ho1].

Theorem 2.2 (Hohloch [Ho1], Theorem 15, ‘Cutting’). Let Wu and W s be strongly inter-

secting and let all their intersections be transverse. Consider p, r ∈ H with [p] = [r]
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(b)(a)

p

r

r

p

r

p

q qb

qa

qa

qb

Figure 3. Geometric intuition for gluing in (a) and cutting with the two

placements of the concave and convex vertices in (b). The unstable mani-

fold Wu is drawn with a dotted line and the stable manifold W s with a full

line.

and µ(p, r) = 2 and w ∈ N(p, r). Then there are distinct, unique qa, qb ∈ H with

µ(p, qi) = 1 = µ(qi, r) and vi ∈ M(p, qi), v̂i ∈ M(qi, r) such that v̂i#vi = w for i ∈ {a, b}.

The points qa and qb are called cutting partners.

This implies that the map

(p, r) as in Theorem 2.2 7→ their cutting partners (qa, qb)

is welldefined. Note that this map is not injective since (qa, qb) may appear also as cutting

partners of a different tuple (p, r′), see Figure 4. Moreover, note that the shape of the

immersions inN(p, r) andN(p, r′) disagree since they are determined by their boundaries

[p, r]s ∪ [p, r]u resp. [p, r′]s ∪ [p, r′]u which do not coincide.

p

qb

qa

qb

qa

p

r′

rr

Figure 4. The points qa and qb may appear as cutting partners for two

different tuples (p, r) and (p, r′) that satisfy both the requirements of The-

orem 2.2.

2.4. Signs and coherent orientations. In order to define the chain groups over the ring

Z instead of the field Z/2Z, we have to show that cutting and gluing are behaving ‘co-

herently’ when we endow M̂(p, q) with an ‘orientation’, i.e., when we, instead of just

counting |M̂(p, q)| mod 2, assign to M̂(p, q) an integer n(p, q) ∈ Z. We recall the neces-

sary definitions and refer to Hohloch [Ho1, Section 3.2] for details.

Now let φ be a symplectomorphism on a two dimensional manifold with hyperbolic

fixed point x and stable and unstable manifolds W s and Wu. Such a φ is either orientation

preserving on W s and Wu or orientation reversing on both. In the first case, φ is said to be

W-orientation preserving and in the latter W-orientation reversing.
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Consider Wu and endow it with an orientation denoted by ou. Moreover, for all p, q ∈ H

with µ(p, q) = 1, endow the segment [p, q]u with the orientation given by the ‘direction’

from p to q and denote this orientation by opq. If φ is W-orientation preserving, we set

(1) n(p, q) :=



+1 if M̂(p, q) , ∅ and opq = ou,

−1 if M̂(p, q) , ∅ and opq , ou,

0 if M̂(p, q) = ∅.

Using −ou instead of ou flips the sign of n(p, q). The same happens if we use the orienta-

tion oqp = −opq instead of opq. Note that n(p, q) could also be defined using an orientation

on W s. This also results in sign flips, for details we refer to Hohloch [Ho1, Section 3.2].

Remark 2.3. In case φ is W-orientation reversing, we have to count modulo 2, i.e. using

signs of the form n2(p, q) := n(p, q) mod 2.

For details we refer again to Hohloch [Ho1, Section 3.2]. Now we explain what we

mean with signs being ‘coherent’ w.r.t. gluing and cutting:

Lemma 2.4 (Hohloch [Ho1], Lemma 21). Consider p, r ∈ H with µ(p, r) = 2 and

w ∈ N(p, r). For i ∈ {a, b}, let qi ∈ H with µ(p, qi) = 1 = µ(qi, r) and v̂i ∈ M(p, qi) and

vi ∈ M(qi, r) such that v̂i#vi = w. Then

n(p, qa) · n(qa, r) = −n(p, qb) · n(qb, r)

and this relation also is true for n2.

3. Local homoclinic Floer homology

In this section, we aim to define a Floer homology generated by a finite set of ‘arbitrary’

homoclinic points in order to generalize the type of generators which, in previous versions

of homoclinic Floer homology (see Hohloch [Ho1, Ho2, Ho3]), were always required to

be (semi)primary.

Within this section, let the symplectic manifold (M, ω) be R2 or a closed surface of

genus g ≥ 1 both endowed with a volume form. Let φ : M → M be a W-orientation

preserving symplectomorphism with hyperbolic fixed point x whose stable and unstable

manifolds W s := W s(φ, x) and Wu := Wu(φ, x) are strongly and transversely intersecting.

3.1. Basic notions and notations. Consider the set

E := {E ⊆ H[x] | |E| < ∞}

of finite sets of contractible homoclinic points. For each E ∈ E, there exist

k+ := k+(E) := max{ µ(p) | p ∈ E} and k− := k−(E) := min{ µ(p) | p ∈ E}.

For E ∈ E and k ∈ Z, we define

Ek := {p ∈ E | µ(p) = k}.

Therefore, we have

E =
⋃

k∈Z

Ek =
⋃

k−≤k≤k+

Ek for all E ∈ E.
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Given E ∈ E, define

ZE := Span
Z
{ p | p ∈ E }

which decomposes into

ZE =
⊕

k∈Z

ZEk =
⊕

k−≤k≤k+

ZEk

where we set ZEk =: {0} whenever Ek = ∅. Note that, for D, E ∈ E with D ⊆ E, we have

also Dk ⊆ Ek for all k ∈ Z and thus in fact

ZD ⊆ ZE and ZDk ⊆ ZEk.

Hence the grading by the Maslov index is compatible with the structure as freely gener-

ated abelian group or Z-module, i.e., we obtained in fact graded Z-modules.

3.2. Welldefinedness of the boundary operator. If we want to define a Floer homology

generated by E ∈ E, then we first need to define a (candidate for a) boundary operator

on the (candidate for our) chain complex and then show that it actually is a boundary

operator so that we may pass to homology.

Let ZE =
⊕

k∈Z
ZEk be our chain group generated by E. Now define

(2) ∂E : ZE → ZE, ∂E p :=
∑

q∈E

µ(q)=µ(p)−1

n(p, q) q

on the generators and extend ∂E by linearity to ZE. This is the intuitive generalization of

the boundary operator of primary homoclinic Floer homology from Hohloch [Ho1]. Since

|E| < ∞ and n(p, q) ∈ {±1, 0}, the sum is finite and welldefined. The map ∂E decomposes

in fact as ∂E = (∂E
k
)k∈Z with

∂E
k : ZEk → ZEk−1, ∂E

k p =
∑

q∈Ek−1

n(p, q) q.

Note that ∂E
k
= 0 for all k ≤ k−(E) and all k > k+(E). To obtain a chain complex we need

the concatenation ∂E ◦ ∂E to be welldefined and to yield ∂E ◦ ∂E = 0, more precisely, we

need ∂E
k−1
◦ ∂E

k
= 0 for all k ∈ Z so that the sequence below induced by ZE =

⊕
k∈Z
ZEk

. . .
∂E

k+1

−→ ZEk

∂E
k

−→ ZEk−1

∂E
k−1

−→ ZEk−2

∂E
k−2

−→ . . .

give rise to a chain complex with boundary operator ∂E.

Note that we work with finite sets of homoclinic points for the following reason:

Example 3.1. If we admit E ⊆ H[x] with |E| = ∞, then ∂E p may be an infinite sum, see

the choice of p and some of the (infinitely many) q with n(p, q) , 0 in Figure 5.

An infinite sum may cause problems in particular for the welldefinedness of the double

sum arising from ∂E ◦ ∂E. We avoid this problem by working with finite sets.

We will now observe that there are sets E ⊂ E where the above approach leads to a

welldefined boundary operator as can be seen in items 1) and 2) of Example 3.2. Unfor-

tunately there are also sets where ∂E ◦ ∂E , 0, see Example 3.2, item 3).

Example 3.2.
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q2

q1

q3

q4

x

p

Figure 5. The unstable manifold is drawn with a dotted line and the stable

manifold with a continuous line. Given a homoclinic point p as chosen in

the figure, then we find |{q ∈ H | n(p, q) , 0}| = ∞ since n(p, qi) , 0 for

at least q1, q2, q3, q4, . . .

1) Consider the set E := {p, qa, qb, r} in the left part of Figure 3 (b) and endow Wu

with an orientation ‘pointing’ from qa to r. Then we obtain ∂E p = −qa + qb and

∂Eqa = r = ∂Eqb and ∂Er = 0 and thus (∂E ◦ ∂E)p = ∂E(−qa + qb) = −r + r = 0

and (∂E ◦ ∂E)qa = 0 and (∂E ◦ ∂E)qb = 0 and (∂E ◦ ∂E)r = 0 implying ∂E ◦ ∂E = 0

on ZE.

2) Considering the right part of Figure 3 (b), an analogous calculation also shows

∂E ◦ ∂E = 0 on E := {p, qa, qb, r}.

3) Consider the set E := {p, q, r} in Figure 3 (a) and endow Wu with an orientation

‘pointing’ from p to r. Then we find ∂E p = q and ∂Eq = r implying (∂E ◦ ∂E)p =

∂E(∂E p) = ∂E(−q) = r , 0. Thus ∂E ◦ ∂E , 0 on ZE.

Thus we either have to exclude all E ∈ E with ∂E ◦ ∂E , 0 or find a way to assign to E

a unique set on which the square of the boundary operator vanishes.

Definition 3.3. E ∈ E is said to be ∂-complete if ∂E ◦ ∂E = 0 on ZE. Otherwise E is

referred to as ∂-incomplete. We call ZE ∂-complete if the underlying E ∈ E is ∂-complete

and otherwise ∂-incomplete. Moreover, we set

E := {E ∈ E | E is ∂-complete}.

Example 3.2 b) and c) show that E , ∅ for strongly and transversely intersecting ho-

moclinic tangles since these ‘heart shaped’ constellations of points appear naturally. Ge-

ometrically, being ∂-complete means the following.
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Lemma 3.4. The following two statements are equivalent:

1) E ∈ E is ∂-complete.

2) Given E ∈ E, then, for all k ∈ {k+(E), . . . , k−(E) + 2} and all triple (p, q, r) ∈

Ek × Ek−1 × Ek−2 which give rise to an immersed heart in the sense of Theorem

2.1, the cutting partner of q in the sense of Theorem 2.2 is contained in Ek−1.

Proof. Let E ∈ E and p ∈ E. We calculate for p ∈ Ek

∂E
k−1 ◦ ∂

E
k (p) = ∂E

k−1


∑

q∈Ek−1

n(p, q) q

 =
∑

q∈Ek−1

∑

r∈Ek−2

n(p, q) n(q, r) r.

This expression vanishes if and only if for every q ∈ Ek−1 with n(p, q) n(q, r) , 0 there

exists precisely one q̃ ∈ Ek−1 with n(p, q̃) n(q̃, r) , 0 and

n(p, q) n(q, r) = −n(p, q̃) n(q̃, r).

According to Lemma 2.4, this is precisely the case when q and q̃ are cutting partners in the

sense of Theorem 2.2. Since the cutting and gluing operation in Theorem 2.2 and Theorem

2.1 are inverse operations, the cutting partner of a given triple (p, q, r) ∈ Ek × Ek−1 × Ek−2

is unique. □

3.3. Homoclinic Floer homology of ∂-complete sets. Now we associate with each ∂-

complete set a welldefined Floer homology before we will come up with a solution for

∂-incomplete sets.

Let E ∈ E and consider ZE =
⊕

k∈Z
ZEk and endow it with the boundary operator

defined in Equation (2). Since E is ∂-complete, we have ∂E
k−1
◦ ∂E

k
= 0 for all k ∈ Z in

(3) . . .
∂E

k+1

−→ ZEk

∂E
k

−→ ZEk−1

∂E
k−1

−→ ZEk−2

∂E
k−2

−→ . . .

so that (ZE, ∂E) is a chain complex. This observation gives rise to

Definition 3.5. The Floer chain groups of E ∈ E are given by

Ck(E) := Ck(φ, x, E) := ZEk for all k ∈ Z

and the boundary operator ∂E
k

: Ck(E)→ Ck−1(E) is defined on the generators p ∈ Ek by

∂E
k (p) :=

∑

q∈Ek−1

n(p, q) q

and is extended to Ck(E) by linearity. The homology H(E) := H(φ, x, E) of the chain

complex (C(E), ∂E) is given in each degree by

Hk(E) := Hk(φ, x, E) :=
ker
(
∂E

k
: Ck(E)→ Ck−1(E)

)

Im
(
∂E

k+1
: Ck+1(E)→ Ck(E)

)

and is called (local) homoclinic Floer homology of E ∈ E.

Remark 3.6. Choosing a different orientation on Wu or working instead with orienta-

tions on W s may flip the sign of n(p, q), i.e., instead of working with ∂ we may end up

working with −∂. Since the kernel and image of ∂ and −∂ coincide, the resulting ho-

mology is independent of the choice of orientation. This also holds true when working

with W-orientation reversing symplectomorphisms and n2(p, q). For more details see also

Hohloch [Ho1, Section 3.3].
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3.4. Pruning algorithm and Floer homology of ∂-incomplete sets. When a set E ∈ E

is ∂-incomplete then, according to Lemma 3.4, there are cutting partners missing in E.

3.4.1. First idea (unsuccessful): add missing cutting partners. When cutting partners are

missing, a natural idea is to add them to the original set to obtain a new set that is ∂-

complete. The main problem with this approach is that adding all missing cutting points

may not be a finite process:

Let E ∈ E be ∂-incomplete and consider its points with top Maslov degree k+ := k+(E)

so the first Maslov degree potentially containing cutting partners is k+ − 1. Now assume

that there are cutting partners missing in degree k+ − 1. Now add them, thus making all

hearts arisen from points of Maslov degrees (k+, k+ − 1, k+ − 2) ∂-complete, and denote

the new set by A1(E).

Now look in A1(E) for hearts with points of Maslov degrees (k+−1, k+−2, k+−3) with

missing cutting partner in degree k+−2. Add the necessary cutting partners and thus obtain

a new set A2(E). The problem now is that these new points in degree k+−2 may cause again

trouble in degree k+ − 1 by forming ∂-incomplete hearts of degree (k+, k+ − 1, k+ − 2). But

by creating the set A1(E) the ∂-completeness in Maslov level k+−1 was already supposed

to be solved! Fixing this issue now may again create problems in Maslov level k+ − 2 etc.

Similar problems arise analogously in Maslov levels lower than k+−1 and k+−2. Thus

there is no guarantee that the process of adding missing cutting partners terminates within

a finite number of steps. So we have to come up with a different idea how to obtain a

∂-complete set from a ∂-incomplete one.

3.4.2. Second idea (successful): delete points without cutting partners. Since adding the

missing cutting points does not (yet) work, see Section 3.4.1, let us now try to remove

cutting points that do not have an associated cutting partner. Since there are only finitely

many points in any given set E ∈ E \ Ē, this procedure certainly will terminate within

finitely many steps.

Pruning algorithm:

1) Let E ∈ E with k+ := k+(E) and k− := k−(E). If E ∈ E then E is already ∂-

complete and nothing further needs to be done. If E ∈ E \ E then proceed to the

following step.

2) Since the boundary operator of a chain complex (and of a homology) always low-

ers the degree by one, we start from the top degree level downwards. Now go

systematically through all triples (p, q, r) ∈ Ek+ × Ek+−1 × Ek+−2 check if they give

rise to a heart and, if yes, check wether the associated cutting partner q′ exists,

i.e., if there is a triple (p, q′, r) ∈ Ek+ × Ek+−1 × Ek+−2 that give rise to the same

heart. If the triple gives rise to a heart, but there is no cutting partner q′ then delete

q. Otherwise proceed until all triples have been checked once. Call the resulting

set P1(E). Note that we have 0 ≤ |P1(E)| ≤ |E| < ∞.

3) Repeat the previous step for the set P1(E). If there were no additional points

deleted then call the unchanged set P(E, k+) and continue to the next step. Other-

wise call the set P2(E) and repeat this step (calling the new sets P3(E) etc.) until

there are no points deleted any more. Note that we have 0 ≤ |P(E, k+)| ≤ |E| < ∞
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and in particular 0 ≤ |(P(E, k+))k+−1| ≤ |Ek+−1| ≤ |E| < ∞. Thus there can only be

finitely many repetitions.

4) Now repeat the two previous steps for all triples in Ek+−k × Ek+−(k+1) × Ek+−(k+2)

starting with k = 1, then considering k = 2 etc. until k = k+ − k− − 2 is reached,

i.e., until all triples including those in Ek−+2 × Ek−+1 × Ek− are processed. Since

0 ≤ |P(E, k−+2)| ≤ |P(E, k+−k)| ≤ |P(E, k+)| ≤ |E| < ∞ for all k+ ≥ k ≥ k+−k−−2

there can only be finitely many repetitions.

5) Write E := P(E, k− + 2) to shorten notation.

This yields

Theorem 3.7. Let E ∈ E. Then the set E obtained by the pruning algorithm is finite, ∂-

complete, and unique in the sense that checking, per level, the triples in a different order

does not lead to a set E
′

different from E.

Proof. Finiteness: The set E := P(E, k−+2) resulting from the pruning algorithm is finite

since

0 ≤ |E| = |P(E, k− + 2)| ≤ |E| < ∞.

∂-completeness: After completing the pruning algorithm at level k+ − k, any heart formed

by a triple (p, q, r) ∈ Ek+−k ×Ek+−(k+1)×Ek+−(k+2) gives rise to another triple (p, q′, r) where

q′ is the cutting partner of q. Thus Lemma 3.4 is valid.

Moreover, when proceeding to level k+− (k+1) and performing the pruning algorithm,

then maybe certain r ∈ Ek+−(k+2) will be deleted. But this does not destroy the property

∂k+−k ◦ ∂k+−(k+1) = 0 as we will see: consider a a heart containing (p, q, r) and (p, q′, r),

i.e., q and q′ are cutting partners. Restricted to this heart, the boundary operator vanishes

since

∂k+−k ◦ ∂k+−(k+1)(p) = ∂k+−k(q − q′) = ∂k+−k(q) − ∂k+−k(q
′) = r − r = 0.

After deleting the point r, we still find

∂k+−k ◦ ∂k+−(k+1)(p) = ∂k+−k(q − q′) = ∂k+−k(q) − ∂k+−k(q
′) = 0 − 0 = 0.

Uniqueness: According to Theorem 2.2, cutting partners are unique. We now show that

it does not matter when a point without cutting partner gets deleted: Assume that there is

a heart formed by triples (p, q, r) and (p, q′, r) containing the cutting partners q and q′ and

assume further that q also appears in the heart formed by a triple ( p̃, q, r̃), but does not

have a cutting partner q̃ forming the heart (p̃, q̃, r̃).

If the algorithm happens to check first (p, q′, r) for potential lack of cutting partners,

then, due to the existence of (p, q, r), the point q′ is not deleted. But when ( p̃, q, r̃) is

checked then the lack of the cutting partner q̃ causes the deletion of q. Then, when going

though the next round of the pruning algorithm, (p, q′, r) now lacks its cutting partner

(p, q, r) so that q′ gets deleted, i.e., now q and q′ are deleted.

If the algorithm happens to check (p, q, r) first, then due to the existence of (p, q′, r),

the point q is not deleted. But when ( p̃, q, r̃) is checked the lack of the cutting partner q̃

causes the deletion of q. Then, in the next round of the pruning algorithm, (p, q′, r) lacks

its cutting partner (p, q, r) so that q′ gets deleted, i.e., now q and q′ are deleted.

If the pruning algorithm happens to check ( p̃, q, r̃) first then q gets deleted since ( p̃, q, r̃)

has no cutting partner. Thus (p, q′, r) now lacks its cutting partner (p, q, r) so that q′ gets

deleted, i.e., now q and q′ are deleted. □
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Moreover

Remark 3.8. Since the pruning algorithm deletes precisely those points that cause a set

to be ∂-incomplete, the resulting set is the larges ∂-complete set contained in the original

set.

Since the pruning algorithm assigns to a ∂-incomplete set E a unique ∂-complete set E,

we can now define Floer homology also for ∂-incomplete sets:

Definition 3.9. The Floer chain groups of E ∈ E are given by

Ck(E) := Ck(φ, x, E) := Ck(φ, x, E) = ZEk for all k ∈ Z

and the boundary operator ∂E
k

:= ∂E
k

: Ck(E) → Ck−1(E) is defined on the generators

p ∈ Ek by

∂E
k (p) := ∂E

k (p) =
∑

q∈Ek−1

n(p, q) q

and is extended to Ck(E) by linearity. The homology H(E) := H(φ, x, E) of the chain

complex (C(E), ∂E) is given in each degree by

Hk(E) := Hk(φ, x, E) :=
ker
(
∂E

k
: Ck(E)→ Ck−1(E)

)

Im
(
∂E

k+1
: Ck+1(E)→ Ck(E)

)

and is called (local) homoclinic Floer homology of E ∈ E. Note that this definition agrees

for ∂-complete sets E with the original Definition 3.5.

Since H(E) only takes the homoclinic points in E resp. E into account, these chain

groups and homology groups measure only ‘local’ properties of H , namely ‘behaviour

near’ E resp. E which are ‘very small’ subsets ofH .

4. Background from homological algebra

In what follows, we summerize some definitions and facts from homological algebra

that we will need later on. We refer to Rotman’s [Ro] and Weibel’s [We] text books for

details. Whereas the first book mainly works with directed sets and systems, the latter one

formulates it more generally for filtered categories.

4.1. Left R-modules. Since we are later on mainly interested in freely generated groups

and their quotients it suffices to recall notions from homological algebra within the fol-

lowing setting.

Definition 4.1. Let R be a ring with multiplicative identity 1R. A left R-module T consists

of an abelian group (T,+) endowed with an operation R× T → T, (r, p) 7→ r.p satisfying

for all r, s ∈ R and all p, q ∈ T

1) r.(p + q) = r.p + r.q,

2) (r + s).p = r.p + s.p,

3) (rs).p = r.(s.p),

4) 1R.p = p.

Thus, intuitively, a module is a ‘vector space over a ring’.
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Remark 4.2. Let (T,+) be an abelian group and Z the ring of integers. By means of

Z × T → T, (n, p) 7→ n.p :=



p + · · · + p︸       ︷︷       ︸
n

, for n ∈ Z≥0,

− ((−n).p), for n ∈ Z<0

we turn T into a Z-modul, i.e., every abelian group can be seen as a Z-module.

4.2. Direct limit. Let us fix some notions and notations.

Definition 4.3. A set I with a binary relation ⪯ is said to be a partially ordered set, briefly

called a poset, if

1) ⪯ is reflexive, i.e., ∀ i ∈ I : i ⪯ i.

2) ⪯ is antisymmetric, i.e., if i ⪯ j and j ⪯ i then i = j.

3) ⪯ is transitive, i.e., ∀ i, j, k ∈ I with i ⪯ j and j ⪯ k follows i ⪯ k.

A partially ordered set (I,⪯) is said to be directed if for all i, j ∈ I, there exists k = k(i, j) ∈

I such that i ⪯ k and j ⪯ k, i.e., each pair of elements has a ‘common upper bound’.

Definition 4.4. Let (I,⪯) be a partially ordered set and C a category. A direct system in

C is an indexed family

{Ci, γi j} :=

(
(Ci)i∈I , (γ

i j)i, j∈I

i⪯ j

)

where Ci ∈ Obj(C ) for all i ∈ I and γi j ∈ Morph(Ci,C j) for all i, j ∈ I with i ⪯ j satisfying

in addition

1) γii = IdCi for all i ∈ I.

2) γ jk ◦ γi j = γik for all i, j, k ∈ I with i ⪯ j ⪯ k.

Given such a direct system, we are interested in the following.

Definition 4.5. Let (I,⪯) be a partially ordered set, C a category, and {Ci, γi j} a direct

system in C . The associated direct limit (if it exists) is given by an object lim
−−→

Ci ∈ Obj(C )

together with a family of morphisms γk ∈ Morph(Ck, lim
−−→

Ci) for all k ∈ I such that

1) γ j ◦ γi j = γi for all i, j ∈ I with i ⪯ j.

2) Given C̃ ∈ Obj(C ) with γ̃i ∈ Morph(Ci, C̃) for all i ∈ I and satisfying γ̃ j ◦ γi j = γ̃i

for all i, j ∈ I with i ⪯ j then there exists a unique θ ∈ Morph(lim
−−→

Ci, C̃) such that

θ ◦ γi = γ̃i for all i ∈ I.

The direct limit is often also called inductive limit or colimit.

If the direct limit exists it is therefore unique up to (unique) isomorphism. Rotman

shows in [Ro, Proposition 5.23, Lemma 5.30, Corollary 5.31] the following.

Proposition 4.6. Let R be a ring, (I,⪯) a partially ordered set and {Ci, γi j} a direct system

of left R-modules. For i ∈ I, denote by λi : Ci →
⊕

i∈I
Ci the insertion morphisms.

1) Then the direct limit lim
−−→

Ci exists and is given by

lim
−−→

Ci =


⊕

i∈I

Ci


/

S

where S is the submodule of
⊕

i∈I
Ci generated by all elements of the form

λ j(γi j(ci)) − λi(ci) with i, j ∈ I and i ⪯ j.
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2) If (I,⪯) is in addition directed, then the following holds true:

• Each element of lim
−−→

Ci has a representative of the form λi(ci) + S (instead of∑
i λ

i(ci) + S ) where ci ∈ Ci.

• For all i ∈ I and all ci ∈ Ci, we have λi(ci) + S = 0 if and only if there exists

k = k(i) ∈ I with i ⪯ k such that γik(ci) = 0.

• Given ci ∈ Ci and c j ∈ C j for i, j ∈ I, we define ci ∼ c j if and only if

there exists k = k(i, j) ∈ I with i ⪯ k and j ⪯ k such that γik(ci) = γ jk(c j).

This is an equivalence relation on the disjoint union
⊔

i∈I Ci giving rise to the

isomorphism

lim
−−→

Ci ≃


⊔

i∈I

Ci


/
∼

Thus elements of lim
−−→

Ci can be seen as equivalence classes ⟦ci⟧ where ci ∈ Ci

with addition defined by

⟦ci
⟧ + ⟦c j

⟧ = ⟦γik(ci) + γ jk(c j)⟧.

Definition 4.7. Let (I,⪯) be a partially ordered set and A := {Ai, αi j} and B := {Bi, βi j}

direct systems over (I,⪯). A morphism of direct systems is a map g : A→ B consisting of

maps gi : Ai → Bi for all i ∈ I such that the following diagram commutes for all i, j ∈ I

with i ⪯ j:

Ai
gi

−→ Bi

αi j ↓ ↓ βi j

A j
g j

−→ B j

Remark 4.8. Let (I,⪯) be a partially ordered set and A := {Ai, αi j} and B := {Bi, βi j}

direct systems over (I,⪯). Recall from Proposition 4.6 the notations lim
−−→

Ai =
(
⊕i∈IA

i
)
/S A

and lim
−−→

Bi =
(
⊕i∈I B

i
)
/S B and the insertion morphisms λi

A
: Ai → ⊕i∈IA

i and λi
B

: Bi →

⊕i∈I B
i. Then a morphism of direct systems g : A→ B gives rise to a morphism

g
−→

: lim
−−→

Ai → lim
−−→

Bi, g
−→

(∑
λi

A(ai) + S A
)

:=
∑
λi

B(gi(ai)) + S B.

Moreover, we will need the following important property of the direct limit within the

category of left R-modules when taken over directed sets:

Proposition 4.9 ([Ro], Proposition 5.33). Let (I,⪯) be a directed set and A := {Ai, αi j}

and B := {Bi, βi j} and C := {Ci, γi j} direct systems of left R-modules over (I,⪯). Let

g : A→ B and h : B→ C be morphisms of direct systems forming a short exact sequence

of direct systems

0→ A
g
→ B

h
→ C → 0,

i.e., for all i ∈ I,

0→ Ai
gi

→ Bi hi

→ Ci → 0

is a short exact sequence. Then there is the short exact sequence

0 −→ lim
−−→

Ai
g
−→

−→ lim
−−→

Bi
h
−→

−→ lim
−−→

Ci −→ 0
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We note

Lemma 4.10. Let (I,⪯) be a directed set. Let A := {Ai, αi j} and B := {Bi, βi j} be direct

systems of left R-modules over (I,⪯) such that there is a morphism of direct systems

g : A→ B with gi : Ai → Bi injective for all i ∈ I. Then

1) 0 → Ai
gi

→ Bi
hi

→ Bi/gi(Ai) → 0 is a short exact sequence for all i ∈ I where

hi : Bi → Bi/gi(Ai) is given by hi(bi) := bi + gi(Ai).

2) B/g(A) := {Bi/gi(Ai), γi j} with transition maps γi j : Bi/gi(Ai)→ B j/g j(A j) defined

by γi j(bi + gi(Ai)) := βi j(bi) + g j(A j) is a direct system over (I,⪯).

This gives rise to a morphism of direct systems h : B→ B/g(A) and a short exact sequence

of direct systems

0→ A
g
→ B

h
→ B/g(A)→ 0

Proof. 1) is clear.

2) We have γii = IdBi/gi(Ai) for all i ∈ I and we compute for all i, j, k ∈ I with i ⪯ j ⪯ k:

γ jk(γi j(bi + gi(Ai))) = γ jk(βi j(bi) + g j(A j)) = β jk(βi j(bi)) + gk(Ak) = βik(bi) + gk(Ak)

= γik(bi + gi(Ai)).

Moreover, we find for all i, j ∈ I with i ⪯ j

h j(βi j(bi)) = βi j(bi) + g j(A j) = γi j(bi + gi(Ai)) = γi j(hi(bi)).

□

This implies in particular

Corollary 4.11. Let (I,⪯) be a directed set. Let A := {Ai, αi j} and B := {Bi, βi j} direct

systems of left R-modules over (I,⪯) such that there is a morphism of direct systems

g : A→ B such that gi : Ai → Bi is injective for all i ∈ I. Then, up to unique isomorphism,

we have

lim
−−→

(
Bi/gi(Ai)

)
= lim
−−→

Bi/ lim
−−→

gi(Ai)

Proof. Completing the sequence of direct systems 0→ A
g
→ B to the short exact sequence

of direct systems 0→ A
g
→ B

h
→ B/g(A)→ 0 as in Lemma 4.10, Proposition 4.9 implies

the existence of the short exact sequence

0→ lim
−−→

Ai
g
−→

−→ lim
−−→

Bi
h
−→

−→ lim
−−→

(Bi/gi(Ai))→ 0

On the other hand, completing the sequence 0 → lim
−−→

Ai
g
−→

−→ lim
−−→

Bi to a short exact

sequence yields

0→ lim
−−→

Ai
g
−→

−→ lim
−−→

Bi −→ lim
−−→

Bi/ lim
−−→

gi(Ai)→ 0

Since the direct limit is unique up to unique isomorphism this yields the claim. □
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5. Homoclinic Floer homology via direct limit

In Section 3, we defined local Floer homology generated by finite sets of homoclinic

points. In this section, we will use this ‘local’ notion in order to define a ‘more global’

version by passing to the direct limit. This significantly generalizes (semi)primary homo-

clinic Floer homology (cf. Hohloch [Ho1, Ho2, Ho3]) that is generated by the finite set

of (semi)primary homoclinic orbits.

5.1. Direct systems of Z-modules generated by homoclinic points.

Lemma 5.1. Endow the set E with the inclusion ⊆ as binary relation. Then (E,⊆) is a

directed set.

Proof. (E,⊆) is clearly a partially ordered set. Given E1, E2 ∈ E, we note that E1, E2 ⊆

(E1 ∪ E2) ∈ E so that (E,⊆) is in fact a directed set. □

For D, E ∈ (E,⊆) with D ⊆ E, denote the inclusion induced on the Z-modules by

IDE : ZD→ ZE.

Lemma 5.2. The family

ZE :=
(
{ZE | E ∈ E}, {IDE | D, E ∈ E, D ⊆ E}

)

with index set E is a direct system of Z-modules in the category of Z-moduls. In particular,

it is a direct systems of abelian groups.

Proof. We have IEE = IdZE for all E ∈ E and, for sets D, E, F ∈ E with D ⊆ E ⊆ F we

find moreover IEF ◦ IDE = IDF . □

As discussed in Section 3.2, not all sets in E admit a welldefined boundary operator,

only ∂-complete sets do. So it is of interest if (E,⊆) ⊂ (E,⊆) is also partially ordered and

directed.

Lemma 5.3. (E,⊆) is a partially ordered set.

Proof. The claim is true since (E,⊆) induces a partial order on E ⊂ E. □

We note

Example 5.4. There exist subsets of (E,⊆) that are directed.

Proof. Using the notation from Figure 4, a very easy (finite) example is given by{
{p}, {r}, {qa, qb}, {p, qa, qb, r}

}
⊂ E. □

We strongly suspect that (E,⊆) is also directed, i.e., that for every D, E ∈ E there is

F ∈ Ewith D, E ⊆ F, but we have been so far unable to prove it. Note that if the procedure

in Section 3.4.1 (which adds cutting partners in order to achieve ∂-completeness) could

be made to work then taking F to be the ∂-completion of D ∪ E would do the trick. But

there may be other ways to ∂-compete a set.

Proposition 5.5.
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1) The family ZE :=
(
{ZE | E ∈ E}, {IDE | D, E ∈ E,D ⊆ E}

)
with index set E is a

direct system of Z-moduls in the category of Z-moduls. Therefore the direct limit

of ZE with index set E exists in the category of Z-moduls. Note that, in particular,

ZE is a direct system of abelian groups.

2) Let Ẽ ⊂ E be directed. Then the family

ZẼ :=
(
{ZE | E ∈ Ẽ}, {IDE | D, E ∈ Ẽ,D ⊆ E}

)

with index set Ẽ is a direct system of Z-moduls in the category of Z-moduls and, in

particular, a direct system of abelian groups. Moreover, since Ẽ is directed, there

is a more explicit expression for the direct limit of ZẼ in the category of Z-moduls

and, in addition, compatibility with taking short exact sequences and quotients of

direct limits.

Proof. Since (E,⊆) is a partially ordered set, the family ZE indexed by E is a directed

system. The existence of the direct limit follows from Proposition 4.6. The corresponding

claim concerning ZẼ follows analogously.

Since the index set Ẽ is directed, Proposition 4.6 provides not only the existence of a

direct limit, but also a more explicit form of it. Proposition 4.9 now provides the ability

to pass to the direct limit of short exact sequences and Corollary 4.11 the compatibility of

taking a quotient and passing to the direct limit when working with short exact sequences.

□

5.2. Passing from Z-modules to chain complexes. Unfortunately, without additional

assumptions, Lemma 5.5 only holds for (graded) Z-modules, but does not extend to chain

complexes in general, more precisely

Lemma 5.6.

1) There are D, E ∈ E with D ⊂ E where IDE : ZD → ZE does not induce a chain

map IDE : (ZD, ∂D)→ (ZE, ∂E), i.e, where we have

IDE ◦ ∂D
, ∂E ◦ IDE.

2) There exist D, E ∈ E with D ⊂ E such that there is no nontrivial linear map from

ZD to ZE giving rise to a chain map from (ZD, ∂D) to (ZE, ∂E).

Examples for Lemma 5.6 are sketched in Figure 6.

Proof of Lemma 5.6: Examples for both statements are sketched in Figure 6: Consider

the sets D := {p, s} in subfigure (a) and E := {p, q, r, s} in subfigure (b) and consider their

chain complexes (ZD, ∂D) and (ZE, ∂E). We note µ(p) = µ(r) = µ(q) + 1 = µ(s) + 1 and

abbreviate µ(p) = µ(r) =: k.

1) Now have a look at the following (noncommutative!) diagram of chain complexes

where the vertical arrows are induced by the inclusion IDE : ZD→ ZE, i.e., are given by
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p

r sq
p

s

(a) (b)

Figure 6. The stable manifold is drawn with a continuous lijn and the

unstable manifold with a dotted line and the latter is oriented ‘from left to

right’. Subfigure (a) displays D := {p, s} with µ(p) = µ(q) + 1. The set

D is ∂-complete due to ∂D p = 0 and ∂Ds = 0. Subfigure (b) shows the

set E := {p, q, r, s} with µ(p) = µ(r) = µ(q) + 1 = µ(s) + 1. This set is

∂-complete due to ∂E p = q and ∂Er = s − q and ∂Eq = 0 and ∂E s = 0.

the family (IDE
k

)k∈Z with IDE
k

: ZDk → ZEk:

. . .
∂D

k+2

−→ 0
∂D

k+1

−→ Z{p}
∂D

k

−→ Z{s}
∂D

k−1

−→ 0
∂D

k−2

−→ . . .

↓ IDE
k+1

↓ IDE
k

↓ IDE
k−1

↓ IDE
k−2

. . .
∂E

k+2

−→ 0
∂E

k+1

−→ Z{p, r}
∂E

k

−→ Z{q, s}
∂E

k−1

−→ 0
∂E

k−2

−→ . . .

It is noncommutative since for example

IDE
k−1(∂D

k (p)) = IDE(0) = 0 , q = ∂E
k (p) = ∂E

k (IDE
k (p))

i.e., IDE is no chain map.

2) Consider the grading preserving linear map g = (gk)k∈Z : ZD → ZE given on the

generators by gk(p) := αp+βr with α, β ∈ R and (α, β) , (0, 0) and gk−1(s) ∈ ZE arbitrary

and gℓ = 0 for all ℓ < {k, k + 1}. Again, the induced diagram of chain complexes will not

commute since

gk−1(∂D
k (p)) = gk−1(0) = 0 , αq + β(s − q) = ∂E

k (p + r) = ∂E
k (gk(p)).

Thus there is in fact no grading preserving nontrivial linear map from ZD to ZE that gives

rise to a chain map from (ZD, ∂D) to (ZE, ∂E). □

Thus, if we want to work with chain complexes and not just Z-modules, we have to use

direct systems where the transition maps are chain maps.

Definition 5.7. Let D, E ∈ E with D ⊆ E. The pair (D, E) is said to be chain compatible

if IDE
k−1
◦ ∂D

k
= ∂E

k
◦ IDE

k
for all k ∈ Z, i.e., if the inclusion IDE is a chain map.

The set of chain compatible pairs is not empty. A very simple example is

Example 5.8. Let D, E ∈ E with D ⊆ E and ∂D = 0 = ∂E. Then the pair (D, E) is chain

compatible. An explicit example for such a situation is any pair (D, E) with D ⊆ E and

D = Dk and E = Ek for a given k ∈ Z.
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To be able to formulate a criterion for chain compatibility let us fix the following nota-

tion. Consider D, E ∈ E with D ⊆ E. Then we get for p ∈ E

∂E p =
∑

q∈E

µ(q)=µ(p)−1

n(p, q) q =
∑

q∈D

µ(q)=µ(p)−1

n(p, q) q +
∑

q∈E\D

µ(q)=µ(p)−1

n(p, q) q =: ∂ED(p) + ∂EE\D(p),

i.e., the boundary operator splits into ∂E = ∂ED + ∂EE\D .

Lemma 5.9 (Criterion). Let D, E ∈ E with D ⊆ E. Then

The pair (D, E) is chain compatible ⇔ ∂EE\D ◦IDE = 0, i.e., ∂EE\D vanishes on D ⊆ E.

Proof. We have to check when IDE is a chain map, i.e., when we have IDE
k−1
◦∂D

k
= ∂E

k
◦IDE

k

for all k ∈ Z. We compute for p ∈ D ⊆ E

IDE(∂D(p)) = IDE



∑

q∈D

µ(q)=µ(p)−1

n(p, q) q


=

∑

q∈D

µ(q)=µ(p)−1

n(p, q) q

and compare it with

∂E(IDE(p)) = ∂ED(IDE(p)) + ∂EE\D(IDE(p)) =
∑

q∈D

µ(q)=µ(p)−1

n(p, q) q +
∑

q∈E\D

µ(q)=µ(p)−1

n(p, q) q

which yields the claim. □

Now we extend the notion of chain compatibility to direct systems.

Definition 5.10. Ẽ ⊂ (E,⊆) is said to be chain compatible if, for all D, E ∈ Ẽ with D ⊆ E,

the pair (D, E) is chain compatible.

The set of chain compatible direct systems is not empty. A very simple example is

Example 5.11. Let E′ ⊂ (E,⊆) be a subset satisfying ∂E = 0 for all E ∈ E′. Let D, E ∈ E′

with D ⊆ E. Since 0 = ∂E = ∂ED + ∂EE\D we get ∂EE\D = 0 so that E′ is chain compatible.

Note that having ∂E = 0 for all E ∈ E′ is, for example, the case if E = Ek for all E ∈ E′

and a given k ∈ Z.

5.3. Passing from chain complexes to direct limits of homoclinic Floer homology.

The first aim of this subsection is to obtain direct systems of (local) homoclinic Floer

homologies of which later the direct limit can be taken.

Proposition 5.12. Let D, E ∈ E with D ⊆ E and (D, E) chain compatible. Then the chain

map IDE : ZD → ZE gives rise to a map in homology H(IDE) : H(D) → H(E). More-

over, for all D, E, F ∈ E with D ⊆ E ⊆ F and (D, E), (E, F), (D, F) chain compatible, we

have

H(IEF) ◦ H(IDE) = H(IDF).

Proof. Let D, E ∈ E with D ⊆ E and (D, E) chain compatible. Due to the chain com-

patibility of (D, E), the map IDE : ZD → ZE is in fact a chain map, i.e., equipping

the Z-modules with differentials (ZD, ∂D) =: (C(D), ∂D) and (ZE, ∂E) =: (C(E), ∂E) the

map IDE satisfies ∂E
k
◦ IDE

k
= IDE

k−1
◦ ∂D

k
for all k ∈ Z and is therefore also a chain
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complex map ID,E = C(ID,E) : (C(D), ∂D) → (C(E), ∂E). Moreover, being an inclusion,

C(ID,E) : (C(D), ∂D) ֒→ (C(E), ∂E) extends to a short exact sequence of chain complexes

0→ (C(D), ∂D)
C(ID,E)
֒→ (C(E), ∂E) ↠ (C(E,D), ∂(E,D)) → 0

This gives rise to a long exact sequence of homology groups

· · · → Hk+1(E,D)→ Hk(D)
Hk(IDE)
→ Hk(E)→ Hk(E,D)→ Hk−1(D)

Hk−1(IDE)
→ · · ·

with maps Hk(I
DE) : Hk(D)→ Hk(E) for all k ∈ Z, i.e., we obtain a map

H(IDE) : H(D)→ H(E).

Now consider D, E, F ∈ E with D ⊆ E ⊆ F and (D, E), (E, F), (D, F) being chain com-

patible. Recall that passing from the category of short exact sequences of chain complexes

in an abelian category by taking the homology to the category of long exact homology

sequences is a functor. This means that a morphism between chain complexes is mapped,

when passing to the homology sequence, to a morphism between long exact sequences

(cf. Weibel [We, Theorem 1.3.4]). Thus the following commutative diagram of chain

complexes

0 → (C(D), ∂D)
C(IDE)
֒→ (C(E), ∂E) ↠ (C(E,D), ∂E,D) → 0

∥ ∥ ↓ C(IEF) ↓ ∥

0 → (C(D), ∂D)
C(IDF )
֒→ (C(F), ∂F) ↠ (C(F,D), ∂F,D) → 0

can be seen as morphism between two short exact sequences of chain complexes. It gives

rise to a morphism between the long exact sequences, namely the following commuting

diagram of long exact sequences

· · · −→ Hk+1(D,C) −→ Hk(C)
Hk(ICD)
−→ Hk(D) −→ Hk(D,C) −→ · · ·

↓ ↓ Id ↓ Hk(I
DE) ↓

· · · −→ Hk+1(C, E) −→ Hk(C)
Hk(ICE)
−→ Hk(E) −→ Hk(E,C) −→ · · ·

This shows H(IEF) ◦ H(IDE) = H(IDF). Moreover, we also have IdHk(D) = Hk(I
DD). □

Since the local homoclinic Floer homology assigned to a ∂-complete, finite set E only

can observe a very small part of the information contained in the full set of homoclinic

points H itself, it is a natural idea to make the set E ‘bigger’ in order to gather more of

the information stored in H . So opting for taking a direct limit over a suitable directed

index set is a logical choice. It also would be compatible with the (so far not yet working)

procedure of ‘adding cutting points to make ∂-incomplete sets ∂-complete’ discussed in

Section 3.2.
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Theorem 5.13. Let Ẽ ⊂ (E,⊆) be chain compatible. Then, for all k ∈ Z,

HẼk :=
(
{Hk(D) | D ∈ Ẽ}, {H(IDE

k ) | D, E ∈ Ẽ, D ⊆ E}
)
,

HẼ :=
(
{H(D) | D ∈ Ẽ}, {H(IDE) | D, E ∈ Ẽ, D ⊆ E}

)

with (partially ordered) index set Ẽ are direct systems of graded Z-modules in the category

of Z-moduls. In particular, both are direct systems of abelian groups and therefore admit

direct limits. If the chain compatible set Ẽ ⊂ (E,⊆) is not only partially ordered but in fact

directed then both direct systems allow passing to the direct limit of short exact sequences

and we can assign a welldefined homology via direct limit to Ẽ:

Hk(Ẽ) := lim
−−→

HẼk ∀ k ∈ Z and H(Ẽ) :=
⊕

k∈Z

Hk(Ẽ).

Proof. Let Ẽ ⊂ (E,⊆) be chain compatible and consider D, E ∈ Ẽ with D ⊆ E. Then, by

definition, the map IDE : (ZD, ∂D)→ (ZE, ∂E) is a chain map, i.e., ∂E
k
◦ IDE

k
= IDE

k−1
◦ ∂D

k

for all k ∈ Z. This implies in particular that, for all k ∈ Z, its restriction to the images

Im ∂D
k

and kernels ker ∂D
k

satisfies

IDE
k−1|Im ∂D

k
: Im ∂D

k → Im ∂E
k and IDE

k |ker ∂D
k

: ker ∂D
k → ker ∂E

k .

Therefore

kerẼk := (kerk,Ik) :=
(
{ker ∂E

k | E ∈ Ẽ}, {I
DE
k | D, E ∈ Ẽ,D ⊆ E}

)
,

ImẼk := (Imk,Ik) :=
(
{Im ∂E

k | E ∈ Ẽ}, {I
DE
k | D, E ∈ Ẽ,D ⊆ E}

)

are, for all k ∈ Z, direct systems over the partially ordered, chain compatible index set

Ẽ. Since Ẽ is chain compatible, Hk(E) = ker ∂E
k
/ Im ∂E

k+1
, the kth (local) homoclinic Floer

group of E ∈ Ẽ (see Definition 3.5), is welldefined. Moreover, according to Proposition

5.12,

HẼk :=
(
{Hk(E) =

(
ker ∂E

k / Im ∂E
k+1

)
| E ∈ Ẽ}, {Hk(I

DE) | D, E ∈ Ẽ,D ⊆ E}
)

with

Hk(I
DE) : Hk(D) = ker ∂D

k / Im ∂D
k+1 −→ Hk(E) = ker ∂E

k / Im ∂E
k+1

is a direct system. Note that, for all k ∈ Z and all E ∈ Ẽ, we have short exact sequences

0→ Im ∂E
k+1 ֒→ ker ∂E

k ↠ ker ∂E
k / Im ∂E

k+1 = Hk(E)→ 0

that give rise to two short exact sequences of direct systems:

0→ ImẼk+1 ֒→ kerẼk ↠ kerẼk / ImẼk+1 → 0 and 0→ ImẼk+1 ֒→ kerẼk ↠ HẼk → 0

These two short exact sequences coincide if Ẽ is not only partially ordered but in fact

directed since then we have according to Proposition 4.9 and Corollary 4.11

lim
−−→

HẼk = lim
−−→

Hk(E) = lim
−−→

(
ker ∂E

k / Im ∂E
k+1

)

=
(
lim
−−→

ker ∂E
k

) / (
lim
−−→

Im ∂E
k+1

)
= lim
−−→

kerk

/
lim
−−→

Imk
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Thus, to a directed and chain compatible set Ẽ ⊂ E, we can assign a welldefined homology

via taking the direct limit:

Hk(Ẽ) := lim
−−→

HẼk ∀ k ∈ Z and H(Ẽ) :=
⊕

k∈Z

Hk(Ẽ).

□

Remark 5.14. In the huge set E, there are — or probably rather must be — many dif-

ferent directed, chain compatible subsets Ẽ ⊂ E since the complexity of the underlying

homoclinic tangle cannot be caught by ‘just one (or maybe several) direct limits’ which

are in essence ‘quite finitely generated objects’ due to their nature as direct sum. So there

is still a lot of structure to be detected and studied!

5.4. Comments on inverse limits. In Section 3.4.1, we saw that the ‘add cutting points

to make a ∂-incomplete set ∂-complete’ procedure does not (yet) work, but, in Section

3.4.2, that the pruning algorithm works well. Pruning all cutting points that do not have

cutting partners means that the set in question becomes potentially smaller. Unfortunately

this does not fit well together with direct limits since the partial order of the underlying

index set maps given sets into larger sets.

Thus one may wonder about the dual procedure, i.e., working with restric-

tions/projections instead of inclusions and then taking the inverse limit, i.e., one would

replace the inclusions IDE : ZD → ZE associated with D, E ∈ E satisfying D ⊆ E by

restrictions RE′D′ : ZE′ → ZD′ associated with E′,D′ ∈ E with E′ ⊇ D′. More explicitly,

define the Kronecker symbol onH by

⟨·, ·⟩ : H ×H → {0, 1}, ⟨p, p′⟩ :=

{
1, if p = p′,

0, if p , p′

and, for E′,D′ ∈ E with E′ ⊇ D′, define the restriction RE′D′ : ZE′ → ZD′ on the

generators by

RE′D′(p) := p −
∑

p′∈E′\D′

µ(p′)=µ(p)

⟨p, p′⟩ p′ =

{
p, if p ∈ D′,

0, if p ∈ E′ \ D′,

and extend it by linearity. A calculation shows that, for all D′, E′, F′ ∈ E with F′ ⊇ E′ ⊇

D′, we have RF′E′ ◦ RE′D′ = RF′D′ . Now recall the splitting of ∂E′ = ∂E′
D′ + ∂

E′
E′\D′ from

Lemma 5.9. By definition, RE′D′ : ZE′ → ZD′ is a chain map if

(4) RE′D′

k−1 ◦ ∂
E′

k = ∂
D′

k ◦ R
E′D′

k .

So, when is this the case?

Lemma 5.15 (Criterion). Let E′,D′ ∈ E with E′ ⊇ D′. Then

RE′D′ : (ZE′, ∂E′) → (ZD′, ∂D′) is a chain map ⇔ ∂E′
D′ vanishes on E′ \ D′.

Proof. Let E′,D′ ∈ E with E′ ⊇ D′ and consider the disjoint union E′ = D′ ∪ (E′ \ D′).

When evaluating Equation (4) on p′ ∈ D′ seen as point in E′ we find for all k ∈ Z

∂D′

k ◦ R
E′D′

k |D′ = R
E′D′

k−1 ◦ ∂
E′ |D′ ,
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i.e., here the chain map property is always true. Now we do the same with a point p′ ∈

E′ \ D′ and find for all k ∈ Z

∂D′

k ◦ R
E′D′

k |E′\D′ = 0 and RE′D′

k−1 ◦ ∂
E′ |E′\D′ = R

E′D′

k−1 ◦ ∂
E′

D′ |E′\D′ .

Thus, for RE′D′ to be a chain map, we need RE′D′

k−1
◦ ∂E′

D′ |E′\D′ = 0 which is equivalent with

requiring ∂E′
D′ |E′\D′ = 0, i.e., ∂E′

D′ must vanish on E′ \ D′. □

So the framework of a inverse limit can be set up analogously to the direct limit. But

since the partially ordered set underlying an inverse limit proceeds by restrictions, i.e., the

sets ‘become smaller’ along the way, this is counterintuitive to what we actually want: We

want to enlarge the sets and accumulate more information, not make them smaller. Thus,

for this geometric-dynamically reason we did not further pursue the approach via inverse

limits.
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