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ABSTRACT
Functional data analysis covers a wide range of data types. They all have in common that the observed
objects are functions of a univariate argument (e.g., time or wavelength) or a multivariate argument (say,
a spatial position). These functions take on values which can in turn be univariate (such as the absorbance
level) or multivariate (such as the red/green/blue color levels of an image). In practice it is important to be
able to detect outliers in such data. For this purpose we introduce a new measure of outlyingness that we
compute at each gridpoint of the functions’ domain. The proposed directional outlyingness (DO) measure
accounts for skewness in the data and only requires O(n) computation time per direction. We derive the
influence function of the DO and compute a cutoff for outlier detection. The resulting heatmap and func-
tional outlier map reflect local and global outlyingness of a function. To illustrate the performance of the
method on real data it is applied to spectra, MRI images, and video surveillance data.

1. Introduction

Functional data analysis (Ramsay and Silverman 2005; Ferraty
and Vieu 2006) is a rapidly growing research area. Often the
focus is on functions with a univariate domain, such as time
series or spectra. The function values may be multivariate, such
as temperatures measured at 3, 9, and 12 cm below ground
(Berrendero, Justel, and Svarc 2011) or human ECG data mea-
sured at eight different places on the body (Pigoli and Sangalli
2012). In this article we will also consider functions whose
domain is multivariate. In particular, images and surfaces are
functions on a bivariate domain. Our methods generalize to
higher-dimensional domains, for example the voxels of a three-
dimensional image of a human brain are defined on a trivariate
domain.

Detecting outliers in functional data is an important task.
Recent developments include the approaches of Febrero-Bande,
Galeano, and González-Manteiga (2008) and Hyndman and
Shang (2010). Sun and Genton (2011) proposed the functional
boxplot, and Arribas-Gil et al. (2014) developed the outlier-
gram. Our approach is somewhat different. To detect outlying
functions or outlying parts of a function (in a dataset consisting
of several functions) we will look at its (possibly multivariate)
function value in every time point/pixel/voxel/... of its domain.
For this purpose we need a tool that assigns a measure of
outlyingness to every data point in a multivariate nonfunctional
sample. A popular measure is the Stahel-Donoho outlyingness
(SDO) due to Stahel (1981) and Donoho (1982) which works
best when the distribution of the inliers is roughly elliptical.
However, it is less suited for skewed data. To address this issue,
Brys, Hubert, and Rousseeuw (2005) proposed the (skewness-)
adjusted outlyingness (AO) which takes the skewness of the
underlying distribution into account. However, the AO has two
drawbacks. The first is that the AO scale has a large bias as soon
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as the contamination fraction exceeds 10%. Furthermore, its
computation time isO(n log(n)) per direction due to its rather
involved construction.

To remedy these deficiencies we propose a new measure in
this article, the directional outlyingness (DO). The DO also takes
the skewness of the underlying distribution into account, by the
intuitive idea of splitting a univariate dataset in two half samples
around the median. The AO incorporates a more robust scale
estimator, which requires onlyO(n) operations.

Section 2 defines the DO, investigates its theoretical proper-
ties, and illustrates it on univariate, bivariate, and spectral data.
Section 3 derives a cutoff value for the DO and applies it to
outlier detection. It also extends the functional outlier map of
Hubert, Rousseeuw, and Segaert (2015) to the DO, and in it con-
structs a curve separating outliers from inliers. Section 4 shows
an application toMRI images, and Section 5 analyzes video data.
Section 6 contains simulations in various settings, to study the
behavior of DO and compare its performance to other methods.
Section 7 concludes.

2. A Notion of Directional Outlyingness

2.1. Univariate Setting

In the univariate setting, the Stahel-Donoho outlyingness of a
point y relative to a sampleY = {y1, . . . , yn} is defined as

SDO(y;Y ) = |y − med(Y )|
MAD(Y )

, (1)

where the denominator is the median absolute deviation
(MAD) of the sample, given by MAD(Y ) = medi(|yi −
med j(y j)|)/�−1(0.75) where � is the standard normal cdf.
The SDO is affine invariant, meaning that it remains the same
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when a constant is added to Y and y, and also when they are
multiplied by a nonzero constant.

A limitation of the SDO is that it implicitly assumes the inliers
(i.e., the nonoutliers) to be roughly symmetrically distributed.
But when the inliers have a skewed distribution, using theMAD
as a single measure of scale does not capture the asymmetry. For
instance, when the data stem from a right-skewed distribution,
the SDO may become large for inliers on the right-hand side,
and not large enough for actual outliers on the left-hand side.

This observation led to the (skewness-) adjusted outlyingness
(AO) proposed by Brys, Hubert, and Rousseeuw (2005). This
notion employs a robust measure of skewness called the med-
couple (Brys, Hubert, and Struyf 2004), which however requires
O(n log(n)) computation time. Moreover, we will see in the
next subsection that it leads to a rather large explosion bias.

In this article we propose the notion of directional outly-
ingness (DO) which also takes the potential skewness of the
underlying distribution into account, while attaining a smaller
computation time and bias. The main idea is to split the sample
into two half samples, and then to apply a robust scale estimator
to each of them.

More precisely, let y1 � y2 � · · · � yn be a univariate sam-
ple. (The actual algorithm does not require sorting the data.)We
then construct two subsamples of size h = ⌊ n+1

2

⌋
as follows. For

even nwe takeYa = {yh+1, . . . , yn} andYb = {y1, . . . , yh}where
the subscripts a and b stand for above and below the median.
For odd n we put Ya = {yh, . . . , yn} and Yb = {y1, . . . , yh} so
thatYa andYb share one data point and have the same size.

Next, we compute a scale estimate for each subsample.
Among many available robust estimators we choose a one-step
M-estimator with Huber ρ-function due to its fast computa-
tion and favorable properties. We first compute initial scale
estimates

so,a(Y ) = med(Za)/�
−1(0.75) and

so,b(Y ) = med(Zb)/�
−1(0.75),

where Za = Ya − med(Y ) and Zb = med(Y ) −Yb and where
�−1(0.75) ensures consistency for Gaussian data. The one-step
M-estimates are then given by

sa(Y ) = so,a(Y )

√√√√ 1
2αh

∑
zi∈Za

ρc

(
zi

so,a(Y )

)

sb(Y ) = so,b(Y )

√√√√ 1
2αh

∑
zi∈Zb

ρc

(
zi

so,b(Y )

)
, (2)

where again h = ⌊ n+1
2

⌋
and where α = ∫ ∞

0 ρc(x)d�(x).
Here ρc denotes the Huber rho function for scale ρc(t ) =
( tc )

21[−c,c] + 1(−∞,c)∪(c,∞) with c a tuning parameter regulating
the trade-off between efficiency and bias.

Finally, the DO of a point y relative to a univariate sample
Y = {y1, . . . , yn} is given by

DO(y;Y ) =
⎧⎨
⎩

y−med(Y )

sa(Y )
if y � med(Y )

med(Y )−y
sb(Y )

if y � med(Y ).
(3)

Figure . Scale estimates of the family incomedata. The SDO scale ismeasured sym-
metrically about the median, whereas the DO scales are not and reflect skewness.

Note that DO is affine invariant. In particular, flipping the
signs of Y and y interchanges sa and sb which results in
DO(−y;−Y ) = DO(y;Y ).

Figure 1 illustrates the denominators of the SDO and
DO expressions on the family income dataset from https://
psidonline.isr.umich.edu which contains 8962 strictly positive
incomes in the tax year 2012. Their histogram is clearly right-
skewed. The MAD in the denominator of SDO equals $42,650
and is used both to the left and to the right of the median, as
depicted by the orange arrows. For the DO the “above” scale
sa = $58,681 exceeds the “below” scale sb = $35,737 (blue
arrows). Therefore, a point to the right of the median will have
a lower DO than a point to the left at the same distance to the
median. This is a desirable property in view of the difference
between the left and right tails.

2.2. Robustness Properties

Let us now study the robustness properties of the scales sa and
sb and the resulting DO. It will be convenient to write sa and sb
as functionals of the data distribution F :

s2a(F ) = s2o,a(F )

α

∫ ∞

med(F )

ρc

(
x − med(F )

so,a(F )

)
dF(x)

s2b(F ) = s2o,b(F )

α

∫ med(F )

−∞
ρc

(
med(F ) − x

so,b(F )

)
dF(x), (4)

where ρc is the Huber ρ-function.
Wewill first focus on theworst-case bias of sa due to a fraction

ε of contamination, following Martin and Zamar (1993). At a
given distribution F , the explosion bias curve of sa is defined as

B+(ε, sa, F ) = sup
G∈Fε

(sa(G)),

where Fε = {G : G = (1 − ε)F + εH} in which H can be any
distribution. The implosion bias curve is defined similarly as

B−(ε, sa, F ) = inf
G∈Fε

(sa(G)).

https://psidonline.isr.umich.edu
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From here onward we will assume that F is symmetric
about some center m and has a continuous density f (x) which
is strictly decreasing in x > m. To derive the explosion and
implosion bias we require the following lemma (all proofs can
be found in the Appendix):

Lemma 1.
(i) For fixed μ it holds that t2

∫ ∞
μ

ρc(
x−μ

t ) dF(x) is strictly
increasing in t > 0.

(ii) For fixed σ > 0 it holds that σ 2 ∫ ∞
t ρc(

x−t
σ

)dF(x) is
strictly decreasing in t .

Proposition 1. For any 0 < ε < 0.25 the implosion bias of sa is
given by

B−(ε, sa, F )2 = 1
α
B−(ε, so,a, F )2

×
{
(1 − ε)

∫ ∞

B+(ε,med,F )

ρc

(
x − B+(ε,med, F )

B−(ε, so,a, F )

)
dF(x)

}
,

where

B+(ε,med, F ) = F−1
(

1
2(1 − ε)

)

B−(ε, so,a, F ) = 1
�−1

( 3
4

) {
F−1

(
3 − 4ε
4(1 − ε)

)
− F−1

(
1

2(1 − ε)

)}
.

In fact, the implosion bias of sa is reached when
H = �(F−1( 1

2(1−ε)
)) is the distribution that puts all its mass in

the point F−1( 1
2(1−ε)

). Note that the implosion breakdown value
of sa is 25% because for ε → 0.25 we obtain sa → 0.

Proposition 2. For any 0 < ε < 0.25 the explosion bias of sa is
given by

B+(ε, sa, F )2 = 1
α
B+(ε, so,a, F )2

×
{
(1 − ε)

∫ ∞

B+(ε,med,F )

ρc

(
x − B+(ε,med, F )

B+(ε, so,a, F )

)
dF(x) + ε

}
,

where

B+(ε, so,a, F )

= 1
�−1

( 3
4

) {
F−1

(
3

4(1 − ε)

)
− F−1

(
1

2(1 − ε)

)}
.

The explosion bias of sa is reached at all distributions
Fε = (1 − ε)F + ε�(d) for which d > B+(ε,med, F ) +
cB+(ε, so,a, F ) which ensures that d lands on the constant
part of ρc. For ε → 0.25 we find d → ∞ and sa → ∞, so the
explosion breakdown value of sa is 25%.

The blue curves in Figure 2 are the explosion and implosion
bias curves of sa when F = � is the standard Gaussian distri-
bution, and the tuning constant in ρc is c = 2.1 corresponding
to 85% efficiency. By affine equivariance the curves for sb are
exactly the same, so these are the curves of both DO scales.
The orange curves correspond to explosion and implosion of
the scales used in the adjusted outlyingness AO under the same
contamination. We see that the AO scale explodes faster, due
to using the medcouple in its definition. The fact that the DO
scale is typically smaller enables the DO to attain larger values
in outliers.

Figure . Comparison of explosion and implosion bias of the AO and DO scales.

Another tool tomeasure the (non-)robustness of a procedure
is the influence function (IF). Let T be a statistical functional,
and consider the contaminated distribution Fε,z = (1 − ε)

F + ε�(z). The influence function of T at F is then given by

IF(z,T, F ) = lim
ε→0

T (Fε,z) − T (F )

ε
= ∂

∂ε
T (Fε,z)

∣∣∣∣
ε=0

and basically describes how T reacts to a small amount of
contamination.

This concept justifies our choice for the function ρc.
Indeed, the IF of a fully iterated M-estimator of scale with
function ρ is proportional to ρ(z) − β with the constant
β = ∫ ∞

−∞ ρ(x)dF(x). We use ρ = ρc with c = 2.1. It was shown
in Hampel et al. (1986) that at F = � this ρc yields the M-
estimator with highest asymptotic efficiency subject to an upper
bound on the absolute value of its IF.

We will now derive the IF of the one-step M-estimator sa
given by (4).

Proposition 3. The influence function of sa is given by

2α
sa(F )

s2o,a(F )
IF(z, sa, F )

=
{

2
so,a(F )

∫ ∞

med(F )

ρc

(
x − med(F )

so,a(F )

)
dF(x)

−
∫ ∞

med(F )

xρ ′
c

(
x − med(F )

so,a(F )

)
dF(x)

+ med(F )

∫ ∞

med(F )

ρ ′
c

(
x − med(F )

so,a(F )

)
dF(x)

}
IF(z, so,a, F )

−
{∫ ∞

med(F )

ρ ′
c

(
x − med(F )

so,a(F )

)
dF(x)

}
IF(z,med, F )

+
{

1[med(F ),∞)
(z)ρc(z − med(F )) − α

}
,

where IF(z, so,a, F ) is the influence function of so,a.

The resulting IF of sa at F = � is shown in Figure 3. [Note
that IF(z, sb,�) = IF(−z, sa,�).] It is bounded, indicating
that sa is robust to a small amount of contamination even
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Figure . Influence function of sa at F = �.

when it is far away. Note that the IF has a jump at the third
quartileQ3 ≈ 0.674 due to the initial estimate so,a. If we were to
iterate (4) to convergence this jump would vanish, but then the
explosion bias would go up a lot, similarly to the computation
in Rousseeuw and Croux (1994).

Let us now compute the influence function of DO(x; F )

given by (3) for contamination in the point z, noting that x and
z need not be the same.

Proposition 4. When x > med(F ) it holds that

IF(z,DO(x), F ) = −1
s2a(F )

{IF(z,med, F )sa(F )

+ IF(z, sa, F )(x − med(F ))}
whereas for x < med(F ) we obtain

IF(z,DO(x), F ) = 1
s2b(F )

{IF(z,med, F )sb(F )

− IF(z, sb, F )(med(F ) − x)}.
For a fixed value of x the influence function of DO(x) is

bounded in z. This is a desirable robustness property. Figure 4
shows the influence function (which is a surface) when F is the
standard Gaussian distribution.

2.3. Multivariate Setting

In the multivariate setting we can apply the principle that a
point is outlying with respect to a dataset if it stands out in at
least one direction. Like the Stahel-Donoho outlyingness, the
multivariate DO is defined by means of univariate projections.
To be precise, the DO of a d-variate point y relative to a d-variate
sampleY = {y1, . . . , yn} is defined as

DO(y;Y ) = sup
v∈Rd

DO(yTv;YTv), (5)

where the right-hand side uses the univariate DO of (3).
To compute the multivariate DO we have to rely on approx-

imate algorithms, as it is impossible to project on all directions
v in d-dimensional space. A popular procedure to generate
a direction is to randomly draw d data points, compute the
hyperplane passing through them, and then to take the direc-
tion v orthogonal to it. This guarantees that the multivariate
DO is affine invariant. That is, the DO does not change when
we add a constant vector to the data, or multiply the data by a
nonsingular d × d matrix.

As an illustration we take the bloodfat dataset, which con-
tains plasma cholesterol and plasma triglyceride concentrations
(in mg/dl) of 320 male subjects for whom there is evidence
of narrowing arteries (Hand et al. 1994). Here n = 320 and
d = 2, and following Hubert and Van der Veeken (2008) we
generated 250d = 500 directions v. Figure 5 shows the contour
plots of both the DO and SDO measures. Their contours are
always convex. We see that the contours of the DO capture the
skewness in the dataset, whereas those of the SDO are more
symmetric even though the data themselves are not.

2.4. Functional Directional Outlyingness

We now extend the DO to data where the objects are functions.
To fix ideas we will consider an example. The glass dataset
consists of spectra with d = 750 wavelengths resulting from
spectroscopy on n= 180 archeological glass samples (Lemberge
et al. 2000). Figure 6 shows the 180 curves.

At each wavelength the response is a single number, the
intensity, so this is a univariate functional dataset. However,
we can incorporate the dynamic behavior of these curves
by numerically computing their first derivative. This yields

Figure . Influence function of DO(x) for F = �. Left: D, right: D seen from above. For a fixed point x it is bounded over all possible positions z of contamination.
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Figure . Bloodfat data with (a) SDO contours, and (b) DO contours. The DO contours better reflect the skewness in the data.

bivariate functions, where the response consists of both the
intensity and its derivative.

In general we write a functional dataset as Y = {Y1,
Y2, . . . ,Yn} where each Yi is a d-dimensional function. As
in this example, the Yi are typically observed on a discrete set
of points in their domain. For a univariate domain this set is
denoted as {t1, . . . , tT }.

Now we want to define the DO of a d-variate function X
on the same domain, where X need not be one of the Yi. For
this we look at all the domain points t j in turn, and define the
functional directional outlyingness (fDO) of X with respect to
the sampleY as

fDO(X;Y ) =
T∑
j=1

DO(X (t j);Y (t j))W (t j), (6)

where W (.) is a weight function for which
∑T

j=1W (t j) = 1.
Such a weight function allows us to assign a different impor-
tance to the outlyingness of a curve at different domain points.
For instance, one could downweight time points near the
boundaries if measurements are recorded less accurately at the
beginning and the end of the process.

Figure 7 shows the fDO of the 180 bivariate functions in
the glass data, whereW (.) was set to zero for the first 13 wave-
lengths where the spectra had no variability, and constant at the
remaining wavelengths. These fDO values allow us to rank the
spectra from most to least outlying, but do not contain much
information about how the outlying curves are different from
the majority.

Figure . Spectra of  archeological glass samples.

In addition to this global outlyingness measure fDO we also
want to look at the local outlyingness. To this end Figure 8 shows
the individual DO(Yi(t j);Y (t j)) for each of the 180 functions
Yi of the glass data at each wavelength t j. Higher values of DO
are shown by darker red in this heatmap. Now we see that there
are a few groups of curves with particular anomalies: one group
around function 25, one around function 60, and one with func-
tions near the bottom.Note that the global outlyingnessmeasure
fDO flags outlying rows in this heatmap, whereas the dark spots
inside the heatmap can be seen as outlying cells. It is also possible
to sort the rows of the heatmap according to their fDO values.
Note that the wavelength at which a dark spot in the heatmap
occurs allows to identify the chemical element responsible.

As in Hubert, Rousseeuw, and Segaert (2015) we can trans-
form the DO to the multivariate depth function 1/(DO + 1),
and the fDO to the functional depth function 1/(fDO + 1).

3. Outlier Detection

3.1. A Cutoff for Directional Outlyingness

When analyzing a real dataset we do not know its underlying
distribution, but still we would like a rough indication of which
observations should be flagged as outliers. For this purpose we
need an approximate cutoff value on the DO. We first consider

Figure . Functional DO (fDO) values of the  glass spectra. Higher fDO values
correspond to curves that are more outlying on average.
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Figure . Heatmap of DO of the glass data. Darker pixels indicate outlying behavior.

non-functional data, leaving the functional case for the next
subsection. Let Y = {y1, . . . , yn} be a d-variate dataset (d � 1)
with directional outlyingness values {DO1, . . . ,DOn}. The
DOi have a right-skewed distribution, so we transform them to
{LDO1, . . . , LDOn} = {log(0.1 + DO1), . . . , log(0.1 + DOn)}
of which the majority is closer to Gaussian. Then we center and
normalize the resulting values in a robust way and compare
them to a high gaussian quantile. For instance, we can flag yi as
outlying whenever

LDOi − med(LDO)

MAD(LDO)
> �−1(0.995) , (7)

so the cutoff for the DO values is c = exp
(
med(LDO) +

MAD(LDO)�−1(0.995)
) − 0.1. (Note that we can use the

same formulas for functional data by replacing DO by fDO.)
For an illustration we return to the family income data of

Figure 1. The blue vertical line in Figure 9 corresponds to the
DO cutoff, whereas the orange line is the result of the same
computation applied to the SDO. The DO cutoff is the more
conservative one, because it takes the skewness of the income
distribution into account.

Figure 10 shows the DO and SDO cutoffs for the bivariate
bloodfat data of Figure 5. The DO captures the skewness in the
data and flags only two points as outlying, whereas the SDO
takes a more symmetric view and also flags five of the presumed
inliers.

3.2. The Functional Outlier Map

When the dataset consists of functions there can be several
types of outlyingness. As an aid to distinguish between them,
Hubert, Rousseeuw, and Segaert (2015) introduced a graphical
tool called the functional outlier map (FOM). Here we will
extend the FOM to the new DO measure and add a cutoff to it,
to increase its utility.

Consider a functional dataset Y = {Y1,Y2, . . . ,Yn}. The
fDO [see (6)] of a functionYi can be interpreted as the “average

outlyingness” of its (possibly multivariate) function values. We
now also measure the variability of its DO values, by

vDO(Yi;Y ) = stdev j
(
DO(Yi(t j);Y (t j))

)
1 + fDO(Yi;Y )

. (8)

Note that (8) has the fDO in the denominator tomeasure relative
instead of absolute variability. This can be understood as follows.
Suppose that the functionsYi are centered around zero and that
Yk(t j) = 2Yi(t j) for all j. Then stdev j(DO(Yk(t j);Y (t j))) =
2stdev j(DO(Yi(t j);Y (t j))) but their relative variability is the
same. Because fDO(Yk;Y ) = 2fDO(Yi;Y ), putting fDO in the
denominator normalizes for this. In the numerator we could
also compute a weighted standard deviation with the weights
W (t j) from (6).

Figure . Outlier cutoffs for the family income data. The DO-based cutoff takes the
data skewness into account.
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Figure . Outlier detection on bloodfat data. The DO-based cutoff adapts to the
data skewness and flags fewer points as outlying.

The FOM is then the scatterplot of the points

(fDO(Yi;Y ), vDO(Yi;Y )) (9)

for i = 1, . . . , n. Its goal is to reveal outliers in the data, and
its interpretation is fairly straightforward. Points in the lower
left part of the FOM represent regular functions which hold a
central position in the dataset. Points in the lower right part are
functions with a high fDO but a low variability of DO values.
This happens for shift outliers, that is, functions which have a
regular shape but are shifted on the whole domain. Points in
the upper left part have a low fDO but a high vDO. Typical
examples are local outliers, that is functions which only display
outlyingness over a small part of their domain. The points in
the upper right part of the FOM have both a high fDO and a
high vDO. These correspond to functions which are strongly
outlying on a substantial part of their domain.

As an illustration we revisit the glass data. Their FOM in
Figure 11 contains a lot more information than their fDO
values alone in Figure 7. In the heatmap (Figure 8) we noticed
three groups of outliers, which also stand out in the FOM. The
first group consists of the spectra 20, 22, 23, 28, 30, 31, and

Figure . Functional outlier map (FOM) of the glass data, with cutoff curve.

33. Among these, number 30 lies furthest to the right in the
FOM. It corresponds to row 30 in Figure 8 which has a dark
red piece. It does not look like a shift outlier, for which the row
would have a more homogeneous color (hence a lower vDO).
The second group, with functions 57–63, occupies a similar
position in the FOM. The group standing out the most consists
of functions 143–174. They are situated in the upper part of
the FOM, indicating that they are shape outliers. Indeed, they
deviate strongly from the majority in three fairly small series of
wavelengths. Their outlyingness is thus more local than that of
functions 57–63.

We now add a new feature to the FOM, namely a rule to flag
outliers. For this we define the combined functional outlyingness
(CFO) of a functionYi as

CFOi = CFO(Yi;Y )

=
√

(fDOi/med(fDO))2 + (vDOi/med(vDO))2,

(10)

where fDOi = fDO(Yi;Y ) and med(fDO) = med(fDO1
, . . . , fDOn), and similarly for vDO. Note that the CFO charac-
terizes the points in the FOM through their Euclidean distance
to the origin, after scaling. We expect outliers to have a large
CFO. In general, the distribution of the CFO is unknown but
skewed to the right. To construct a cutoff for CFO we use the
same reasoning as for the cutoff (7) on fDO: First we compute
LCFOi = log(0.1 + CFOi) for all i = 1, . . . , n, and then we
flag functionYi as outlying if

LCFOi − med(LCFO)

MAD(LCFO)
> �−1(0.995) . (11)

This yields the dashed curve (which is part of an ellipse) in the
FOM of Figure 11.

4. Application to Image Data

Images are functions on a bivariate domain. In practice the
domain is a grid of discrete points, for example the horizontal
and vertical pixels of an image. It is convenient to use two
indices j = 1, . . . , J and k = 1, . . . ,K, one for each dimension
of the grid, to characterize these points. An image (or a surface)
is then a function on the J × K points of the grid. Note that
the function values can be univariate, like gray intensities, but
they can also be multivariate, for example the intensities of red,
green, and blue (RGB). In general we will write an image dataset
as a sample Y = {Y1,Y2, . . . ,Yn} where each Yi is a function
from {( j, k); j = 1, . . . , J and k = 1, . . . ,K} to Rd .

The fDO (6) and vDO (8) notions that we saw for func-
tional data with a univariate domain can easily be extended to
functions with a bivariate domain by computing

fDO(Yi;Y ) =
J∑

j=1

K∑
k=1

DO(Yi( j, k);Y ( j, k))Wjk, (12)

where the weightsWjk must satisfy
∑J

j=1
∑K

k=1Wjk = 1, and

vDO(Yi;Y ) = stdev j,k(DO(Yi( j, k);Y ( j, k)))
1 + fDO(Yi;Y )

, (13)
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Figure . Original MRI image of subject , and its derivatives in the horizontal and vertical direction.

where the standard deviation can also be weighted by theWjk.
(The simplest weight function is the constantWjk = 1/(JK) for
all j = 1, . . . , J and k = 1, . . . ,K.) Note that (12) and (13) can
trivially be extended to functions with domains in more than
2 dimensions, such as three-dimensional images consisting of
voxels. In each case we obtain fDOi and vDOi values that we
can plot in a FOM, with cutoff value (11).

As an illustration we analyze a dataset containing MRI brain
images of 416 subjects aged between 18 and 96 (Marcus et al.
2007), which can be freely accessed at www.oasis-brains.org.
For each subject several images are provided; we will use the
masked atlas-registered gain field-corrected images resampled
to 1mm isotropic pixels. The masking has set all non-brain
pixels to an intensity value of zero. The provided images are
already normalized, meaning that the size of the head is exactly
the same in each image. The images have 176 by 208 pixels, with
grayscale values between 0 and 255. All together we thus have
416 observed images Yi containing univariate intensity values
Yi( j, k), where j = 1, . . . , J = 176 and k = 1, . . . ,K = 208.

There is more information in such an image than just
the raw values. We can incorporate shape information by
computing the gradient in every pixel of the image. The gra-
dient in pixel ( j, k) is defined as the two-dimensional vector
∇Yi( j, k) = (

∂Yi( j,k)
∂ j ,

∂Yi( j,k)
∂k ) in which the derivatives have to

be approximated numerically. In the pixels at the boundary of
the brain we compute forward and backward finite differences,
and for the other pixels we employ central differences. In the
horizontal direction we thus compute one of three expressions:

∂Yi( j, k)
∂ j

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(−3Yi( j, k) + 4Yi( j + 1, k)
−Yi( j + 2, k))/2 (forward difference)

(Yi( j + 1, k) −Yi( j − 1, k))/2 (central difference)
(Yi( j − 2, k) − 4Yi( j − 1, k)

+ 3Yi( j, k))/2 (backward difference)

depending on where the pixel is located. The derivatives in the
vertical direction are computed analogously.

Incorporating these derivatives yields a dataset of dimensions
416 × 176 × 208 × 3, so the final Yi( j, k) are trivariate. For
each subject we thus have three data matrices which represent
the original MRI image and its derivatives in both directions.
Figure 12 shows these three matrices for subject number 387.

The functional DO of an MRI imageYi is given by (12):

fDO(Yi;Y ) = 1
176 × 208

176∑
j=1

208∑
k=1

DO(Yi( j, k);Y ( j, k))Wjk,

where DO(Yi( j, k);Y ( j, k)) is the DO of the trivariate point
Yi( j, k) relative to the trivariate dataset {Y1( j, k), . . . ,Y416
( j, k)}. In this example, we have set the weightWjk equal to zero
at the grid points that are not part of the brain, shown as the
black pixels around it. The grid points inside the brain receive
full weight.

Figure 13 shows the resulting FOM, which indicates the
presence of several outliers. Image 126 has the highest fDO
combined with a relatively low vDO. This suggests a shift
outlier, that is, a function whose values are all shifted relative
to the majority of the data. Images 29 and 92 have a large fDO
in combination with a high vDO, indicating that they have
strongly outlying subdomains. Images 108, 188, and 234 have
an fDO which is on the high end relative to the dataset, which
by itself does not make them outlying. Only in combination
with their large vDO are they flagged as outliers. These images
have strongly outlying subdomains which are smaller that
those of functions 29 and 92. The remaining flagged images are
fairly close to the cutoff, meaning they are merely borderline
cases.

To find out why a particular image is outlying it is instructive
to look at a heatmap of its DO values. In Figure 14 we compare
theMRI images (on the left) and theDOheatmaps (on the right)

Figure . Functional outlier map (FOM) of the MRI dataset, with cutoff curve.
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Figure . MRI image (left) and DO heatmap (right) of subjects  (top),  (middle), and  (bottom).

of subjects 387, 92, and 126. DO values of 15 or higher received
the darkest color. Image 387 has the smallest CFO value, and
can be thought of as the most central image in the dataset. As
expected, the DO heatmap of image 387 shows very few out-
lying pixels. For subject 92, the DO heatmap nicely marks the
region in which theMRI image deviates most from the majority
of the images. Note that the boundaries of this region have the
highest outlyingness. This is due to including the derivatives in
the analysis, as they emphasize the pixels at which the grayscale
intensity changes. The DO heatmap of subject 126 does not
show any extremely outlying region but has a rather high outly-
ingness over thewhole domain, which explains its large fDOand

regular vDO value. The actual MRI image to its left is globally
lighter than the others, confirming that it is a shift outlier.

5. Application to Video

We analyze a surveillance video of a beach, filmed with a
static camera (Li et al. 2004). This dataset can be found at
http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html and
consists of 633 frames.

The first 8 seconds of the video show a beach with a tree,
as in the leftmost panel of Figure 15. Then a man enters the
screen from the left (second panel), disappears behind the tree
(third panel), and then reappears to the right of the tree and

Figure . Frames number , , , and  from the video dataset.

http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html
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Figure . Functional outlier map of the video data.

stays on screen until the end of the video. The frames have
160 × 128 pixels and are stored using the RGB (Red, Green and
Blue) color model, so each frame corresponds to three matrices
of size 160 × 128. Overall we have 633 frames Yi contain-
ing trivariate Yi( j, k) for j = 1, . . . , J = 160 and k = 1, . . . ,
K = 128.

Computing the fDO (12) in this dataset is time consuming
since we have to execute the projection pursuit algorithm (5) in
R

3 for each pixel, so 160 × 128 = 20,480 times. The entire com-
putation took 25 minutes on a laptop. Therefore we switch to an
alternative computation.We define the componentwise DO of a
d-variate point y relative to a d-variate sampleY = {y1, . . . , yn}
as

CDO(y;Y ) =
√√√√ d∑

h=1

DO(yh;Yh)2, (14)

where DO(yh;Yh) is the univariate DO of the h-th coordinate of
y relative to the h th coordinate of Y . Analyzing the video data
with this componentwise procedure took 15 seconds, so it is a
100 times faster than with projection pursuit, and it produced
almost the same FOM. Figure 16 shows the FOM obtained from
the CDO computation.

The first 480 frames, which depict the beach and the tree with
only the ocean surface moving slightly, are found at the bottom
left part of the FOM. They fall inside the dashed curve that sepa-
rates the regular frames from the outliers. At frame 483 the man
enters the picture, making the standard deviation of the DO rise

Figure . Left: Frames , , , and  from the video. Middle: DO heatmaps of these frames. Right: FOMwith blue marker at the position of the frame.
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Figure . Percentage of outliers found in univariate lognormal samples of size n=  (left), n=  (middle), and n=  (right), with % (top) and % (bottom) of
outliers in x.

slightly. The fDO increases more slowly, as the fraction of the
pixels covered by theman is still low at this stage. This frame can
thus be seen as locally outlying. The subsequent frames 484–487
have very high fDO and vDO. In them the man is clearly visible
between the left border of the frame and the tree, so these frames
have outlying pixels in a substantial part of their domain. Frames
489–492 see the man disappear behind the tree, so the fDO goes
down as the fraction of outlying pixels decreases. From frame
493 onward the man reappears to the right of the tree and stays
on screen until the end. These frames contain many outlying
pixels, yielding points in the upper right part of the FOM.

In the FOM we also labeled frame 1, which lies close to
the outlyingness border. Further inspection indicated that this
frame is a bit lighter than the others, which might be due to the
initialization of the camera at the start of the video.

In addition to the FOM we can draw DO heatmaps of
the individual frames. For frames 100, 487, 491, and 500,
Figure 17 shows the raw frame on the left, the DO heatmap in
the middle and the FOM on the right, in which a blue circle
marks the position of the frame. In this figure we can follow
the man’s path in the FOM, while the DO heatmaps show
exactly where the man is in those frames. We have created
a video in which the raw frame, the DO heatmap and the
FOM evolve alongside each other. It can be downloaded from
http://wis.kuleuven.be/stat/robust/papers-since-2010.

6. Simulation Study

We would also like to study the performance of the DO when
the data generating mechanism is known, and compare it with
the AO measure proposed by Brys, Hubert, and Rousseeuw
(2005) and studied by Hubert and Van der Veeken (2008) and
Hubert, Rousseeuw, and Segaert (2015). For this we carried out
an extensive simulation study, covering univariate as well as
multivariate and functional data.

In the univariate case we generated m = 1000 standard log-
normal samples of size n = {200, 500, 1000} with 10% and 15%
of outliers at the position x, which may be negative. Figure 18
shows the effect of the contamination at x on our figure of
merit, the percentage of outliers flagged (averaged over the m
replications).

In the direction of the short left tail of the lognormal dis-
tribution we see that the adjusted outlyingness AO flags about
the same percentage of outliers as the DO. But the AO is much
slower in flagging outliers in the direction of the long right tail
of the lognormal. This is due to the relatively high explosion
bias of the scale used in the denominator of the AO for points
to the right of the median. The DO flags outliers to the right of
the median much faster, due to its lower explosion bias.

We have also extended the multivariate simulation of AO
in Hubert and Van der Veeken (2008). Our simulation consists
of m = 1000 samples in dimensions d = {2, 5, 10} and with
sample sizes n = {200, 500, 1000}. The clean data were gener-
ated from the multivariate skew normal distribution (Azzalini
and Dalla Valle 1996) with density f (y) = 2φd(y)�(αTy)
where � is the standard normal cdf, φp is the d-variate
standard normal density, and α is a d-variate vector which
regulates the shape. In our simulations α is a vector with
entries equal to 10 or 4. For d = 2 we used α = (10, 4)T , for
d = 5 we put α = (10, 10, 4, 4, 4)T , and for d = 10 we took
α = (10, 10, 10, 10, 10, 4, 4, 4, 4, 4)T . To this we added 10% of
contamination with a normal distribution N(x, Id/20) around
the point x = (x, . . . , x)T , where x is on the horizontal axis of
Figure 19. In d = 2 dimensions we see that AO flags the outliers
a bit faster in the direction of the shortest tail, but slower in the
direction of the longest tail. The latter is similar to what we saw
for univariate data, due to the higher explosion bias of the scale
used (implicitly) in the AO. When both the dimension d and
the sample size n go up, the DO and AO methods give more
similar results. This is because, in most directions, the scales

http://wis.kuleuven.be/stat/robust/papers-since-2010
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Figure . Percentage of outliers found in multivariate skew normal samples of size n =  (left), n =  (middle), and n =  (right), with % of outliers around
x = (x, . . . , x)T , in dimensions d =  (top), d =  (middle), and d =  (bottom).

sa and sb of the projected data get closer to each other. This
is because the projections of the good data (i.e., without the
outliers) tend to becomemore Gaussian as the dimension d and
the sample size n go up, as shown by Diaconis and Freedman
(1984) for random directions uniformly distributed on the unit
sphere and under moment conditions on the data distribution.

Figure . n = 1000 generated functions with % contamination.

We also carried out a simulation with functional data. We
have generated m = 1000 samples of n = {200, 500, 1000}
functions of the form

fi(t ) = sin(2πt ) + tLi + εi(t ) for 0 � t � 1, (15)

where ln(Li) ∼ N(0, 1) and εi(t ) ∼ N(0, ( 1
20 )

2). That is, the
base function is the sine and we add different straight lines of
which the slopes are generated by a lognormal distribution.
We then replace 10% of the functions by contaminated ones,
which are generated from (15) but where Li is taken higher or
lower than what one would expect under the lognormal model.
Figure 20 shows such a generated dataset of size n = 1000, with
outlying functions (with negative Li) in red.

In the simulation we used a single slope L for the 10% of
contaminated curves, and this L is shown on the horizontal axis
in Figure 21. When the outlying functions lie below the regular
ones (i.e., for negative L), we see that the DO and AO behave
similarly. On the other hand, when the outlying functions lie
above the regular ones (i.e., in the direction of the long tail), the
AO is much slower to flag them than DO.
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Figure . Percentage of outliers found in functional samples of size n=  (left), n=  (middle), and n=  (right), with % of contaminated curves with slope L.

Figure . Average computation time of DO and AO as a function of sample size.

These simulations together suggest that the DO outperforms
AO in directions where the uncontaminated data has a longer
tail, while performing similarly in the other directions.

Note that the DO requires only O(n) computation time per
direction, which is especially beneficial for functional data with
a large domain. In particular, DO is much faster than AO which
requires O(n log(n)) operations. Figure 22 shows the average
computation time (in seconds) of both measures as a function
of the sample size n, for m = 1000 samples from the standard
normal. The AO time is substantially above the DO time.

7. Conclusion

The notion of directional outlyingness (DO) is well-suited for
skewed distributions. It has good robustness properties, and
lends itself to the analysis of univariate, multivariate, and func-
tional data, in which both the domain and the function values
can be multivariate. Rough cutoffs for outlier detection are
available. The DO is also a building block of several graphical
tools like DO heatmaps, DO contours, and the functional out-
lier map (FOM). These proved useful when analyzing spectra,
MRI images, and surveillance video. In the MRI images we
added gradients to the data to reflect shape/spatial information.
In video data we could also add the numerical derivative in
the time direction. In our example this would make the frames
six-dimensional, but the componentwise DO in (14) would
remain fast to compute.

8. Available Software

The methods described in this article are available in R (R
core team 2016), in the package mrfDepth (https://CRAN.R-
project.org/package=mrfDepth). An R script and the data sets
for reproducing the examples in the article are available from
our website http://wis.kuleuven.be/stat/robust/software.

Appendix

Proof of Lemma 1(i). Let μ ∈ R be fixed. For the function ρc we have that

t2
∫ ∞

μ

ρc

(
x − μ

t

)
dF(x)

=
∫ ∞

μ

{(
x − μ

c

)2

1| x−μ

t |≤c + t21| x−μ

t |>c

}
dF(x)

=
∫ ∞

0

{(u
c

)2
10�u�ct + t21ct<u

}
dF(μ + u)

For all u � 0 it holds that ( u
c )

210�u�ct + t21ct<u is nondecreasing in t ,
and even strictly increasing in t at large enough u. This proves (i) since
f (x) > 0 in all x. �
Proof of Lemma 1(ii). Fix σ > 0. It follows from the Leibniz integral rule
that

∂

∂t

{
σ 2

∫ ∞

t
ρc

(
x − t

σ

)
dF(x)

}
= −σ

∫ ∞

t
ρ ′
c

(
x − t

σ

)
dF(x)

because ρc(0) = 0. Note now that

ρ ′
c

(
x − t

σ

)
> 0 for t � x < t + σ c

ρ ′
c

(
x − t

σ

)
= 0 for x > t + σ c.

This implies that ∂
∂t {σ 2 ∫ ∞

t ρc(
x−t
σ

)dF(x)} < 0 for all t . �
Proof of Proposition 1. Let 0 < ε < 0.25 be fixed and let Fε,H be a minimiz-
ing distribution, that is,

inf
Fε,G∈Fε,G

(sa(Fε,G)) = sa(Fε,H )

with Fε,G = (1 − ε)F + εG. Inserting the contaminated distribution Fε,H
into sa(Fε,H ) yields the scale

s2o,a(Fε,H )

α

{
(1 − ε)

∫ ∞

med(Fε,H )

ρc

(
x − med(Fε,H )

so,a(Fε,H )

)
dF(x)

+ ε

∫ ∞

med(Fε,H )

ρc

(
x − med(Fε,H )

so,a(Fε,H )

)
dH(x)

}
. (A.1)

https://CRAN.R-project.org/package=mrfDepth
http://wis.kuleuven.be/stat/robust/software
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For simplicity, put

W1(Fε,H ) =
∫ ∞

med(Fε,H )

ρc

(
x − med(Fε,H )

so,a(Fε,H )

)
dF(x)

W2(Fε,H ) =
∫ ∞

med(Fε,H )

ρc

(
x − med(Fε,H )

so,a(Fε,H )

)
dH(x). (A.2)

We then have the contaminated scale

s2o,a(Fε,H )

α

{
(1 − ε)W1(Fε,H ) + εW2(Fε,H )

}
. (A.3)

Denote by Q2,ε = F−1
ε,H (0.5) and Q3,ε = F−1

ε,H (0.75) the median and the
third quartile of the contaminated distribution.

For the distribution H it has to hold that H(Q3,ε ) = 1 and
limx→Q−

2,ε
H(x) = 0. This can be seen as follows. Suppose H(∞) − H

(Q3,ε ) = p ∈ (0, 1]. Then consider Fε,H∗ where

H∗(x) =
{
H(x) + p�(Q2,ε ) for x ∈ (−∞,Q3,ε]
1 else

and denote byQ∗
2,ε andQ∗

3,ε themedian and third quartile of Fε,H∗ . Note that
Q2,ε = Q∗

2,ε and Q3,ε > Q∗
3,ε . Therefore, we have so,a(Fε,H ) > so,a(Fε,H∗ ).

It then follows from Lemma 1(i) that so,a(Fε,H )2(1 − ε)W1(Fε,H ) >

so,a(Fε,H∗ )2(1 − ε)W1(Fε,H∗ ) and W2(Fε,H ) > W2(Fε,H∗ ) = 0. There-
fore, so,a(Fε,H )2εW2(Fε,H ) > so,a(Fε,H∗ )2εW2(Fε,H∗ ). It now follows that
sa(Fε,H∗ ) < sa(Fε,H ), which is a contradiction since H minimizes sa.
Therefore, H(∞) − H(Q3,ε ) = 0. A similar argument can be made to
show that limx→Q−

2,ε
H(x) = 0. It follows that H(Q3,ε ) = 1 and H(x) = 0

for all x < Q2,ε , so all the mass of H is inside [Q2,ε , Q3,ε].
We can now argue that H must have all its mass in Q2,ε . Note that if

H(Q3,ε ) = 1 and limx→Q−
2,ε
H(x) = 0 we have Q2,ε = F−1( 1

2(1−ε)
) and

Q3,ε ∈ [F−1( 3−4ε
4(1−ε)

), F−1( 3
4(1−ε)

)], depending on limx→Q−
3,ε
H(x). Given

that Q2,ε is fixed, we can minimize W1(Fε,H ) by minimizing Q3,ε . Now
Q3,ε is minimal forH = �(F−1( 1

2(1−ε)
)) as this yieldsQ3,ε = F−1( 3−4ε

4(1−ε)
).

Note that this choice of H to minimize Q3,ε is not unique as any H which
makes limx→Q−

3,ε
H(x) = 1 does the job. Note finally thatW2(Fε,H ) is also

minimal for H = �(F−1( 1
2(1−ε)

)) as ρc(t ) is nondecreasing in |t|, and this
choice of H yieldsW2(Fε,H ) = 0.

We now know that H = �(F−1( 1
2(1−ε)

)) minimizes sa(Fε,H ).
Furthermore, we have Q2,ε = F−1( 1

2(1−ε)
) = B+(ε,med, F ) and

Q3,ε = F−1( 3−4ε
4(1−ε)

). Therefore, the implosion bias of sa is

B−(ε, sa, F )2 = B−(ε, so,a, F )2

α

×
{
(1 − ε)

∫ ∞

B+(ε,med,F )

ρc

(
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)
dF(x)

}
,

where

B+(ε,med, F ) = F−1
(

1
2(1 − ε)

)

B−(ε, so,a, F ) =
(
F−1

(
3 − 4ε
4(1 − ε)

)
− F−1

(
1

2(1 − ε)

))
/�−1(0.75).

�
Proof of Proposition 2. Let 0 < ε < 0.25 be fixed and let Fε,H be a maxi-
mizing distribution, that is,

sup
Fε,G∈Fε,G

(sa(Fε,G)) = sa(Fε,H )

with Fε,G = (1 − ε)F + εG. Inserting the contaminated distribution Fε,H
into sa(Fε,H ) yields the scale (A.1), which can be rewritten as in (A.2) and
(A.3).

For the distribution H it has to hold that H(Q3,ε ) = limx→Q−
2,ε
H(x).

This can be seen as follows. Suppose H(Q3,ε ) − limx→Q−
2,ε
H(x) = p ∈

(0, 1]. Now put e = B+(ε,med, F ) + cB+(ε, so,a, F ) and consider the
distribution Fε,H∗ where

H∗(x) =
⎧⎨
⎩
H(x) for x ∈ (−∞,Q2,ε )

limx→Q−
2,ε
H(x) for x ∈ [Q2,ε,Q3,ε]

H(x) − p+ p�(e) for x ∈ (Q3,e,∞)

and denote by Q∗
2,ε and Q∗

3,ε the median and third quartile of Fε,H∗ . Note
that Q2,ε = Q∗

2,ε and Q3,ε < Q∗
3,ε . Therefore so,a(Fε,H ) < so,a(Fε,H∗ ) and

thus so,a(Fε,H )2(1 − ε)W1(Fε,H ) < so,a(Fε,H∗ )2(1 − ε)W1(Fε,H∗ ) because
of Lemma 1(i). Furthermore, W2(Fε,H ) < W2(Fε,H∗ ) because ρc(t ) is
nondecreasing in |t|, thus so,a(Fε,H )2εW2(Fε,H ) < so,a(Fε,H∗ )2εW2(Fε,H∗ ).
It now follows that sa(Fε,H∗ ) > sa(Fε,H ), which is a contradiction since
H maximizes sa. Therefore H(Q3,ε ) = limx→Q−

2,ε
H(x), so H has no mass

inside [Q2,ε , Q3,ε].
Without loss of generality we can thus assume that H is of the form

H = d�(e1) + (1 − d)�(e2) with e1 = B−(ε,med, F ) − cB+(ε, so,a, F )

and e2 = B+(ε,med, F ) + cB+(ε, so,a, F ) where d ∈ [0, 1]. This
choice of e1 and e2 is not unique but it maximizes sa(Fε,H ) because
ρc(t ) is nondecreasing in |t|. Inserting the distribution Fd := Fε,H
yields

s2a(Fd ) = s2o,a(Fd )
α

{
(1 − ε)

∫ ∞

Q2,d

ρc

(
x − Q2,d

so,a(Fd )

)
dF(x) + ε(1 − d)

}
,

(A.4)

where Q2,d = F−1( 1−2dε
2(1−ε)

), Q3,d = F−1( 3−4dε
4(1−ε)

), and so,a(Fd ) = (Q3,d −
Q2,d )/�

−1(0.75). Note that this expression depends on d but no longer on
e1 and e2. We will show that this expression is maximized for d = 0.

First we show that so,a(Fd ) is maximized for d = 0. Let

g(d) := so,a(Fd ) = (Q3,d − Q2,d )/�
−1(0.75) (A.5)

for any d ∈ [0, 1]. Note that ξ = 3−4εd
4(1−ε)

− 2−4εd
4(1−ε)

= 1
4(1−ε)

does not depend
on d. Therefore, we can write g(d) = (F−1(v + ξ ) − F−1(v ))/�−1(0.75)
where v = 2−4εd

4(1−ε)
is a strictly decreasing function of d. Note that we can

write g(d) = (�−1(0.75))−1 ∫ v+ξ

v
du

f (F−1(u))
. The density f is symmetric

about some m, and by affine equivariance we can assume m = 0 w.l.o.g.
Since f is unimodal with f (x) > 0 for all x, the function u → 1

f (F−1(u))
is

strictly decreasing up to its minimum (corresponding to the mode of f )
and then strictly increasing. Therefore, g(d) is maximal for v as large as
possible, that is, for d = 0. In that case, we have v = Q2,o = 2

4(1−ε)
> 0.5.

Next, we maximize

h(σ, d) := σ 2

α

{
(1 − ε)

∫ ∞

Q2,d

ρc

(
x − Q2,d

σ

)
dF(x) + ε(1 − d)

}
(A.6)

for any fixed σ > 0. This is equivalent to maximizing

∫ ∞

q
ρc

(
x − q

σ

)
dF(x) + ε

1 − ε
(1 − d), (A.7)

where q is such that F(q) ∈ [ 1−2ε
2(1−ε)

, 1
2(1−ε)

] = 1
2 ± ε

1−ε
. Note that

ε
1−ε

(1 − d) = F(q) + 1−2ε
2(1−ε)

, where the second term doesn’t depend
on q. Maximizing (A.7) with respect to q is therefore equivalent to
maximizing

∫ q+cσ
q (

x−q
cσ )2dF(x) − ∫ q+cσ

q dF(x). Note that this is equal

to
∫ cσ
0 ( x

cσ )2dF(q + x) − ∫ cσ
0 dF(q + x) = ∫ cσ

0
x2−σ 2c2

σ 2c2 f (q + x)d(x).
For all x in [0, cσ ] it holds that x2−σ 2c2

σ 2c2 ≤ 0, hence the latter integral
is maximized by minimizing f (q + x) for all x ∈ [0, cσ ]. For this q
must take on its highest possible value q = F−1( 1

2 + ε
1−ε

), because
we then have f (q + x) ≤ f (q2 + x) for all x in [0, cσ ] and all q2 in
[F−1( 1

2 − ε
1−ε

), F−1( 1
2 + ε

1−ε
)]. Therefore, (A.6) is maximized for d = 0.
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We now know that (A.5) and (A.6) satisfy maxd g(d) = g(0) and
maxd h(σ, d) = h(σ, 0) for all σ > 0. By Lemma 1(i), h(σ, 0) is increasing
in σ . Combining these results yields

max
d

s2a(Fd ) = max
d

h(g(d), d)

� max
d1

max
d2

h(g(d1), d2)

= max
d1

h(g(d1), 0)

= h(g(0), 0),

so s2a(Fd ) is maximized for d = 0. Therefore, s2a(Fε,H ) is maximized
for H = �(e2), hence Q2,ε = F−1( 1

2(1−ε)
) = B+(ε,med, F ) and

Q3,ε = F−1( 3
4(1−ε)

). The explosion bias is thus

B+(ε, sa, F )2

= s2o,a
α

{
(1 − ε)

∫ ∞

B+(ε,med,F )

ρc

(
x − B+(ε,med, F )

so,a

)
dF(x) + ε

}
,

where

so,a =
{
F−1

(
3

4(1 − ε)

)
− F−1

(
1

2(1 − ε)

)}/
�−1(0.75).

�
Proof of Proposition 3. Plugging the contaminated distribution
Fε,z = (1 − ε)F + ε�z into the functional form (4) of sa yields

s2a(Fε,z ) = s2o,a(Fε,z )

α

∫ ∞

med(Fε,z )

ρc

(
x − med(Fε,z )

so,a(Fε,z )

)
dFε,z(x).

We take the derivative with respect to ε and evaluate it in ε = 0.
Note that ρc(t ) is not differentiable at t = c and t = −c, but as
these two points form a set of measure zero this does not affect
the integral containing ρ ′

c(t ). We also use that ρc(0) = 0 and
IF(z, s2a, F ) = 2sa(F )IF(z, sa, F ) yielding the desired expression.
For F = � we have IF(z, so,a,�) = (1{[0,∞)}(z)sign(z − �−1( 3

4 )) +
IF(z,med,�){φ(0) − 2φ(�−1( 3

4 ))})/(2φ(�−1( 3
4 ))). �

Proof of Proposition 4. We show the proof for x > med(F ), the
other case being analogous. Plugging the contaminated distribution
Fε,z = (1 − ε)F + ε�z into DO(x, F ) = (x − med(F ))/sa(F ) yields

IF(z,DO(x), F ) = ∂

∂ε
(DO(x, Fε,z ))

∣∣∣∣
ε=0

= 1
s2a(Fε,z )

(
− ∂

∂ε

(
med(Fε,z )

)

× sa(Fε,z ) − ∂

∂ε
(sa(Fε,z ))(x − med(Fε,z ))

)∣∣∣∣
ε=0

= 1
s2a(F )

(−IF(z,med, F )sa(F )

− IF(z, sa, F )(x − med(F ))).

�
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