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Abstract

Motivation: Many popular clustering methods are not scale-invariant because they are based on Euclidean distan-
ces. Even methods using scale-invariant distances, such as the Mahalanobis distance, lose their scale invariance
when combined with regularization and/or variable selection. Therefore, the results from these methods are very
sensitive to the measurement units of the clustering variables. A simple way to achieve scale invariance is to scale
the variables before clustering. However, scaling variables is a very delicate issue in cluster analysis: A bad choice
of scaling can adversely affect the clustering results. On the other hand, reporting clustering results that depend on
measurement units is not satisfactory. Hence, a safe and efficient scaling procedure is needed for applications in bio-
informatics and medical sciences research.

Results: We propose a new approach for scaling prior to cluster analysis based on the concept of pooled variance.
Unlike available scaling procedures, such as the SD and the range, our proposed scale avoids dampening the benefi-
cial effect of informative clustering variables. We confirm through an extensive simulation study and applications to
well-known real-data examples that the proposed scaling method is safe and generally useful. Finally, we use our
approach to cluster a high-dimensional genomic dataset consisting of gene expression data for several specimens
of breast cancer cells tissue obtained from human patients.

Availability and implementation: An R-implementation of the algorithms presented is available at https://wis.

kuleuven.be/statdatascience/robust/software.
Contact: ruben@stat.ubc.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Every time cluster analysis is used to find homogeneous groups
in the data, we face the issue of how to scale the variables. The
choice of scaling (including the option of not scaling at all) has
practical implications because, in general, clustering methods are
not scale-invariant. Even those clustering methods that are scale-
invariant, become scale-dependent when they are combined with
variable selection or regularization. As a consequence, we may
get a different data partition if the variables in the data are
rescaled. Unfortunately, there is not a generally accepted way to
scale the variables for clustering (Jain, 2010; Jain and Dubes,
1988).

There are conflicting recommendations regarding the scaling of
the data in the clustering literature. For example, Milligan and
Cooper (1988)—often cited as the main benchmark study of this
topic in the context of hierarchical clustering—recommend scaling
the variables by their range. Steinley (2004) came to the same con-
clusion using k-means. On the other hand, Vesanto (2001) recom-
mends the use of the SD for k-means clustering. Schaffer and Green
(1996) studies clustering on real-data examples and argue against

scaling with the range or the SD. Stoddard (1979) also argued
against the use of the SD in the analysis of laboratory procedures.

While scaling may not always be necessary, it seems that in gen-
eral the most reliable approach is to use some sort of scaling for two
main reasons. The first reason is that scaling gets rid of the measure-
ment scales of the variables. These measurement scales may have a
strong influence on the clustering results, to the extent that a single
very large variable can solely determine the whole clustering out-
come. Furthermore, it can be of practical importance to get rid of
measurement scales, e.g. a variable measuring ‘height’ should have
the same effect on the clustering procedure when measured in centi-
meters or in meters. The second reason is that scaling becomes prac-
tically mandatory in the context of high-dimensional clustering with
variable selection. Variable selection is usually achieved through the
addition of a penalization term to the objective function. This penal-
ization is typically not scale-invariant and thus yields different out-
comes depending on the variables’ relative sizes. Therefore, without
scaling, the penalty acts differently on each variable, which will
often lead to ineffective variable selection. For these reasons, we
consider feature scaling as a necessary pre-processing step in cluster
analysis.
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Though the arguments in favor of scaling before cluster analysis
are clear, the issue of how to scale is delicate. The reason is that
there are two types of variables: informative variables and noise var-
iables. Informative variables help to separate clusters in the data
whereas noise variables do not. If an informative variable is scaled
with a very large scale, it will be compressed to a small size and thus
there is a risk that much of its clustering power will disappear. In
contrast, if a noise variable is scaled with a very small scale, it can
potentially be blown up to where it solely determines the clustering
outcome. Note that, this issue is even more pronounced in high-
dimensional datasets as they typically contain many noise variables.

Interestingly, most of the commonly used scale estimators, such
as the SD and the range have a tendency to yield large-scale esti-
mates on potentially very informative variables. More precisely,
these estimators may produce unduly large scales for a variable with
a multimodal distribution because of the dispersion between the
groups. Hence, a drawback of feature scaling by these estimates is
the possible undesirable reduction of the relative clustering import-
ance of features that clearly separate different groups. While these
features are not guaranteed to reveal the whole clustering structure
of the data, they show good potential and should be treated
carefully.

The discussion so far suggests that there is a need for further
study of both the effect of scaling and the best choice of scale estima-
tor in cluster analysis. Despite the considerable potential impact of
scaling on cluster outcomes, papers on this topic are scant, far apart
and lack consensus.

In Section 2, we introduce two new scale estimators specially
designed to scale variables before clustering: the pooled standard de-
viation (pSD) and the pooled absolute deviation. By using pooled
scale estimators, we aim to scale variables without destroying their
clustering power if they have any. If the marginal distribution of a
feature shows evidence of clustering, our proposed scaling will en-
hance its clustering importance. If the marginal distribution of a fea-
ture X does not show evidence of clustering, but the joint
distribution of some subset of features including X carries important
clustering information, our proposed scaling approach will have a
neutral effect on this variable. The proposed scaling approach can
be used as pre-processing before applying any clustering method,
including those with variable selection and subspace clustering, as
illustrated with several examples. To calculate our proposed scale,
we first run k-means clustering on each of the variables. In order to
choose the number of clusters used to estimate the pooled scales, we
use the Gap statistic (Tibshirani et al., 2001) with a sped-up boot-
strapping procedure that bypasses the otherwise unaffordable com-
putational burden of this approach.

The rest of the article is organized as follows. In Section 3, we
compare the new scale estimators with existing scaling procedures
in an extensive simulation study. Moreover, we show an application
of the pooled scale estimators prior to the hierarchical clustering of
gene expressions of breast cancer sample tissues (additional real-
data examples are presented in the Supplementary Material).
Finally, Section 4 concludes.

2 Materials and methods

2.1 Pooled scale estimators

Our starting point is the univariate k-means clustering. Assume we
have a univariate dataset x1,...,x,. The well-known k-means clus-
tering looks for the k cluster centers, which minimize the squared
deviations for every point in the dataset to the closest cluster center.
More precisely, the vector of cluster centers is defined as:

= (..., ) = argmin S(#),

where

and da;(t) = ming << ||x; — 4|3. Note that, Si(s) can be inter-
preted as an estimator of scale. In particular, if & = 1, then u is the
classical sample mean and Sy () reduces to the classical SD. If & > 1,
the squared scale can be interpreted as a pooled variance of the
points around their cluster centers. As an example, suppose that
k = 2 and that the sets C; and C, contain the indices of the points in
the two clusters. Moreover, let |A| represents the number of ele-
ments in the set A, so that |Ci|+|Cy| =n. We then have

1 2 2 _Ic
S3(w) :ﬁ_zldz,i(#) :%ZiEQ i = w2 +%ZiECZ [Ixi = mally = ‘nl‘
i=

Var(Cy) + %Var(Cz), where Var(C;) denotes the sample variance
of the elements belonging to cluster j. We thus obtain a weighted
mean of the within-cluster variances, with weights proportional to
the number of observations in each cluster.

Our idea is to use S, with an appropriate (variable depending)
value of k, for scaling the variables prior to the application of a clus-
tering procedure. We will refer to this scale estimator as the pSD.
The intuition for this scale estimator is the following. If a certain
variable appears to not separate any clusters in the data, we consider
the variability of this variable to be uninformative and we use the
largest scale, S; (i.e. the classical SD), to scale it before clustering.
However, when a variable does seem to separate, e.g. k clusters,
then S, will tend to be relatively small compared with Sy, and using
Sk in that case will avoid dampening the variability (i.e. information)
in this variable. This way, we hope to preserve as much of the clus-
tering information in each variable as possible, while still making
the variables unitless.

As an alternative to k-means, k-medians clustering can also be
used for the scaling of the variables. Using the notation introduced
above, the vector of cluster centers in k-medians is defined as:

#= (..., i) = argmin My (2),

t=(t1,...,t)

where
1 n
M(t) = ;Z dui(t)
=1

and dy;(t) = min; <; <, |x; — tj|. The cluster centers now correspond
to the median of the observations in each cluster. Note that once
again, My, can be interpreted as an estimator of scale. If k = 1, then
u is the classical sample median and M () is the mean absolute de-
viation (mad) (from the median). If & > 1, My, can be interpreted as
the pooled mean absolute deviation (pmad) of every point around
its cluster center, where the pooling is done by a weighted average
with weights determined by the number of observations in each clus-
ter. We will call My the pmad. The pmad is expected to be more ro-
bust against outliers compared with the pSD. This is consistent with
the results of the simulation study of Section 4.

Remark 1. Since we are using univariate k-means and k-medians
to obtain the pSD and pmad, it is worth noting that there is an algo-
rithm, which guarantees the convergence to a global optimum in-
stead of a local one. This algorithm uses dynamic programing, runs
in O(kn?) time and is implemented in the R-package
Ckmeans.1d.dp, see Wang and Song (2011).

2.2 Determining k

An important question regarding our proposed pooled scale estima-
tors is how to choose the appropriate number of clusters k* for each
variable in the dataset. There is a vast literature on how to choose
the appropriate number of clusters in cluster analysis. Relevant com-
parative studies giving a good overview of the most common techni-
ques are found in Milligan and Cooper (1985), Halkidi et al. (2001),
Maulik and Bandyopadhyay (2002), Brun et al. (2007) and
Arbelaitz et al. (2013). In the setting of pooled scale estimators, we
need a criterion that is relatively fast to compute and not too
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sensitive to spurious clusters. Most importantly, we need a criterion
that can distinguish between the ‘null-case’ of one-cluster versus the
alternative case of two or more clusters. This is an important point,
since especially in high-dimensional datasets, we expect that many
variables may not have interesting information for clustering the
data and thus should be scaled by the largest scale, i.e. the SD or
mad. Note that, this requirement makes many popular cluster valid-
ation indices unsuitable for us, since many of them do not yield a
reasonable comparative assessment of the one-cluster-case.

A well-known criterion that satisfies our needs is the Gap statis-
tic (Hastie et al., 2009; Tibshirani et al., 2001). Given a certain clus-
tering algorithm and the resulting partition of the data, the gap
statistic works as follows. For each value of the number of clusters
under consideration, the ‘tightness’ of the clusters in the found parti-
tion is compared with the tightness of clusters obtained by clustering
random datasets using the same algorithm. If this difference is large
for a given number of clusters, it indicates ‘stronger than random’
clustering structure and the gap statistic will pick that number of
clusters as the true number. A mathematical description of the gap
statistic is as follows. Suppose, we have clustered the data into k
clusters, Cy, ..., Cy, where C; denotes the indices of the observations
in cluster j. Let W, be the sum of the within-cluster sums of squares
akround their  corresponding cluster means, ie. W=

Z e, (xi — %;)* where x; = \C|Zt€C x; is the mean of the obser-

Vations in cluster j. In order to identify the number of clusters, the
value of log (W),) is compared to its expected value Ej[log(W})]
under a uniform reference distribution on the range of the dataset. If
this value deviates too much from its expected value under a uni-
form distribution, it indicates the existence of clusters in the data.
The intuition for the comparison with the uniform distribution is
that it is the distribution, which is most likely to generate spurious
clusters (within the family of log-concave densities) and will thus on
average provide the strongest evidence against the alternative
hypothesis.

In principle, the reference distribution of log (W) is determined
by generating bootstrap samples from the uniform distribution. As
we would like scale every variable in the dataset, this appears to
lead to a prohibitive computational cost, which would scale poorly
with the number of variables. Fortunately, there is an efficient way
to bypass this hindrance based on the results of Proposition 1 below.

In our case, the clusters are coming from the k-means (or k-
medians) clustering algorithm. This means that for a given clustering
Cy,...,Cy, we have

k
= Zdz,i(:ulv"'wuk) = nsi
r=1

in the computation of the pSD. For the pmad, we redefine W}, such
that it corresponds to the pooled within-cluster sum of absolute
deviations around the cluster medians:

k
Wi = dii(p, ... 1) = nMy.

Therefore, in our setting, the gap statistic will be large when
there is a ‘significant difference’ in the estimated pooled scale com-
pared with the pooled-scaled estimate on data coming from a uni-
form distribution.

In order to estimate E[log (W})] and Var),[log (W})], we apply
k-means to B bootstrap samples of size 7. The mean of these samples
serves as the estimate for E[log (W)})] and the appropriate scale,
which accounts for the simulation error in E}[log (W})], is then the
SD of the bootstrap samples multiplied by /1 + 1/B.

We now turn to speeding up the bootstrapping procedure for
scaling all the variables in a dataset. The speed-up is achieved by
exploiting the fact that we are in the univariate setting and by using
the properties of the proposed scaling methods established in the fol-
lowing proposition.

Proposition 1. Let x = x1, ... ,x, be a sample of univariate observations
and let Cy,. ..,
clustering problem. Denote the value of the objective function with Sy as
in Equation (1). Let s>0 and t € R consider z = z1,...,z, where z; =

(xi —t)/sfori=1,... ,n We then have:

Cy, be a partition of x resulting from solving the k-means

1. Shift and Scale invariance of k-means clusters:
Cy,..., Cy is a solution to the k-means clustering problem on z.

2. Shift invariance and Scale equivariance of k-means objective function:
The value of the objective function of this clustering is Sy, /s.

3. Shift and Scale invariance of gap statistic:
The number of clusters selected by the gap statistic is the same for x
and z.

The exact same result holds for clustering with k-medians. These results
are intuitive and follow from the fact that Manhattan and Euclidean dis-
tances are scale equivariant. We give the proof in the Supplementary
Material. Using this proposition, it becomes clear that we need to boot-
strap the reference distribution of log (W) only once, instead of for
every variable separately. The reason is that we can first rescale each
variable in the dataset by the range, so that all of them have the same
range of length one. Now the reference distribution of W, is the same
for each of these variables, allowing us to bootstrap once from the uni-
form distribution on [0, 1] to obtain the reference distribution for all var-
iables. Note that, it does not matter on which interval of length 1 the
variable takes its values, since the whole procedure is shift invariant as
well.

Remark 2. The uniform distribution is not the only possible ref-
erence distribution one can use. Another option briefly suggest by
Tibshirani et al. (2001) is to use log-concave density estimation,
which is possible for univariate distributions. This would yield a fit
of a log-concave density to every variable in the data from which
bootstrap samples can then be drawn. While this takes into account
the individual distributions of every variable, the drawback is that in
this case we have to take the slow approach of generating separate
reference distributions for every variable.

Remark 3. Instead of the gap statistic, the jump statistic (Sugar
and James, 2003) may be used as an alternative. In the univariate

setting, the jump statistic considers the ‘distortions’ d;, = $7 for sev-
eral numbers of clusters k. They then define the jumps as

Je = d, e dkjlz, where d = 0. Finally, the number of clusters is
estimated by taking K* = arg max;J,. One advantage of the jump
statistic over the gap statistic is that it faster to compute, since we do
not need to bootstrap a reference distribution. In our simulations
however, the gap statistic performed better.

2.3 Algorithm
We are now ready to describe the procedure; we propose for scaling
a dataset prior to clustering. For a p-variate dataset X1, ..., X, with

n observations per variable, we apply the following steps to scale all
the variables:

1. Generate B bootstrap samples of size n from the uniform
distribution on [0,1] and cluster each of them using k-means.
Retain all the values W, for k =1,... kmsx and b=1,...,B.

= (1/B) S, log (W), sde = [(1/B) Y2,
(log (W) — ) T

of log (W,,)", respectively. Finally, put s, = /1 + 1/B sd;.
2. Forall variables X;,j =1,...,p, do:
a. Rescale the variable with its range to obtain Z; = X;/r;, where
r; = range(X;).

Denote  with

, the estimates for the location and scale
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b. Cluster Z; using k-means for k =1,..., knax and retain the val-
ues Wy; = n Sz,

c. Calculate the values of the gap statistic:
Gap;(k) = my — log (Wg).

d. Choose the number of clusters k* by setting
k* = smallest k such that Gap;(k) > Gap;(k +1) — ¢ Si1.

e. Rescale the value of the objective function of the appropriate k,
r; S+, and use this pSD to scale X;.

The constant ¢ in the above procedure controls the rejection of the
null model. As ¢ goes up, it becomes less likely to reject the null model
of zero clusters. A default value is ¢ = 1, which works well according
to Breiman et al. (1984) and Tibshirani et al. (2001). For the number
of bootstrap samples, a default of B = 1000 yields almost no variance
in the resulting scale estimates in our experience. Replacing k-means
with k-medians yields the scaling procedure with My, the pmad.

Example 1: Fisher’s Iris data

As an illustrative example, we consider Fisher’s well-known Iris
dataset (Fisher, 1936), collected by Anderson (1935). This dataset
contains 50 samples from each of 3 types of iris: Iris setosa, versi-
color and virginica. Each flower is described by four variables,
which describe the dimensions of its sepal and petal. Table 1 illus-
trates the effect of scaling with the proposed pSD on this data and
compares with the SD and the range. For the first two variables, the
pSD is equal to the SD, because these variables do not seem to clear-
ly distinguish any groups in the data. However, variables 3 and 4
seem to both distinguish two clear groups, resulting in significantly
lower pSDs. The last row of the table reports the adjusted rand
index (ARI) (Hubert and Arabie, 1985) with respect to the true clas-
sification when performing k-means with & = 3 on the dataset after
scaling. The ARI takes on values between —1 and 1, where an ARI

Table 1. The effect of variable scaling on Fisher’s Iris data

Variables SD Range pSD
: 0.83 3.6 0.83
) ’ Sepali_ength ' '
0.44 2.4 0.44
b - S;:)al Widzr: ¢
" T m 1.77 5.9 0.40
‘ ’ 3Petal I‘_ength5 ' '
: H_H_H—m 0.76 24 0.18
¢ * I;aetal Wil:lsth ¢ “
k-means ARI 0.62 0.72 0.89

Note: The pSD produces smaller scales for variables 3 and 4 than the clas-
sical SD and the range. This results in a higher ARI when clustering the data

with the k-means algorithm after scaling.

of 1 indicates perfect agreement between partitions and the lower
the ARI, the higher the disagreement between the partitions. It is
clear that scaling with the pSD gives better results than scaling with
the SD or the range, since neither of these take into account the indi-
vidual separative power of the variables. As a reference, we mention
that k-means clustering without scaling gives an ARI of 0.73.

3 Results

3.1 Simulation study

The most well-known comparative study on the scaling of variables
in clustering is arguably the one by Milligan and Cooper (1988),
building on Milligan (1985). Recently, Qiu and Joe (2006) used the
design of this simulation study as a basis for a new algorithm to gen-
erate clusters with a specified degree of separation. The R-package
clusterGeneration (Qiu and Joe., 2015) contains an implementation
of their algorithm and it will be the basis of our simulation study.

We compare the following types of scaling in our simulation
study:

No scaling
The SD: SD = anl

n

> (i —x

The range: range = x(,,) — x1)

:

The mad: mad = ﬁ |x; — median,x;|
The pSD: psd = S, "~
The pmad: pmad = M.

AN

In order to get a complete picture of the different scaling meth-
ods, we perform an extensive simulation study. Each generated data-
set has an even number of clean variables, which we vary between 2
and 10. The clusters are generated from the multivariate standard
normal distribution. We consider equally sized clusters of size 100
each. The degree of separation between the clusters is either sepa-
rated (0.21) or well-separated (0.34), see Qiu and Joe (2006). We
then add a percentage of noise variables to the dataset varied be-
tween 0% and 2000% of the number of clean variables. The noise
variables can either be multivariate standard normal or uniform
over the range of the clean variables. The uniform-noise variables
are generated by adding a small Gaussian perturbation to an equally
spaced grid over the range of the signal variables to ensure that they
do not have any separative power. We did the simulation both on
clean data as well as contaminated data. For the contaminated data,
5% of the observations of each of the signal variables are replaced
with points sampled randomly from the uniform distribution on
[X; — 45(X;), X; +45(X;)], where X; and s(X;) denote the mean
and SD of the signal variable. Table 2 summarizes the factors of our
simulation study and their levels.

All together this gives 1280 different settings and for each of
these, we generate 100 datasets. Each generated dataset is scaled
using the six scale estimators described above. Afterwards we per-
form the most popular methods of connectivity-based clustering and
centroid-based clustering. More specifically, we use hierarchical
clustering (Anderberg, 2014; Hartigan, 1975) on the Euclidean dis-
tances with single, average, complete and Ward’s linkage functions
(Ward, 1963) as well as k-means (Lloyd, 1982; MacQueen et al.,
1967) and partitioning around medoids using the Manhattan

Table 2. Design factors of the simulation study

Factor Levels #
Number of clean variables 2,4, 6,8, 10 N
Number of clusters 2,3,4,5 4
Degree of separation separated, well-separated 2
% noise variables added 0, 50, 100, 150, 200, 500, 1000, 2000 8
Type of noise Gaussian, uniform 2
% outliers 0,5 2
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Fig. 1. Simulation results for hierarchical clustering with single (a), average (b),
complete (¢) AQ10and Ward (d) linkage functions on outlier-free data. The pooled
scale estimators are the least sensitive to an increasing number of noise variables
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Fig. 2. Simulation results for k-means (a) and partitioning around medoids (b) on
data without outliers. The pooled scale estimators are more resistant to the addition
of noise variables to the data

distance (Kaufman and Rousseeuw, 2009). For k-means, the algo-
rithm of Hartigan and Wong (1979) is used with 100 random starts
and 100 maximum iterations for each starting value.

We compare the results using the ARI (Hubert and Arabie,
1985), which lies between —1 and 1 where 1 indicates a perfect clus-
tering. We cluster each dataset for a variety of target clusters
k=1,...,3 x T, where T denotes the true number of clusters. For
k-means, this value is a direct input, whereas for hierarchical cluster-
ing, we cut the dendrogram at these various levels of k. We then
pick the optimal value of the ARI over these different clusterings.
The reason for this procedure is that we want to evaluate the effect
of scaling on clustering without any distortion from the question of
how to choose the optimal number of clusters. Furthermore, par-
ticularly in the case of hierarchical clustering, the clusterings result-
ing from a higher number of partitions are often more reflective of
the real underlying structure than cutting the dendrogram at the true
number of clusters, since single outlying observations can distort the
dendrogram significantly.

Figure 1 shows the big picture of the simulation results for hier-
archical clustering on data without outliers. For each type of

linkage, the graphs show the average ARI over all different settings
with the increasing number of noise variables on the x-axis. Several
interesting observations can be made from these plots. It is clear that
as the number of noise variables increases, the clustering gets more
difficult resulting in generally lower ARI values. However, scaling
with the SD or the mad is clearly more sensitive to noise variables
than the other methods. Scaling with the range does fairly well,
which is in line with the findings of Milligan and Cooper (1988).
The pooled scale estimators outperform all the other methods, espe-
cially when the number of noise variables is large. The difference be-
tween the pSD and the pmad seems very small and not significant in
these plots. Finally, not scaling appears to perform similarly to scal-
ing with either SD or mad. This is due to the particular simulation
setup and one must always take into account that the performance
of not scaling the variables can be completely destroyed by taking
one noise variable, which has a variance which is much larger than
the variance of the signal variables.

Figure 2 shows the results for k-means clustering and partition-
ing around medoids. The conclusions are largely the same as for the
case of hierarchical clustering. When scaling with the SD or mad,
the true clustering structure seems more difficult to retrieve. The
range preserves more of the cluster structure and performs better
than the SD and mad, which is in line with Steinley (2004).
However, the pooled scale estimators again outperform the
competitors.

The simulation results presented above only give a rough over-
view of the performance of the methods and do not show the per-
formance in the presence of outliers. The most interesting insight
from a more detailed analysis of the results is that the performance
of the methods is highly dependent on the type of noise variables,
which are added to the signal variables. Scaling with the range
works well when the noise variables are more Gaussian but fails
when the noise is more uniform. This can be explained by the fact
that uniform noise variables have a large variance given their range.
As a result, their impact on the clustering is large when scaling with
the range. Scaling with the SD and mad works much better when the
noise variables are more uniform than the case of Gaussian noise.
This in turn can be explained by the fact that the uniform noise vari-
ables have a high variance for their range compared with Gaussian
noise variables. Scaling them by their variance pushes the uniform
noise more toward the center, which limits their influence.

The effect of outliers is shown in Supplementary Figures S1 and
S2. These results expose the sensitivity of the range to the presence
of outliers. Other than that, the relative performance of the different
scaling methods is roughly the same as in the case of outlier-free
data. An interesting note is that the pmad is clearly more robust to
outliers than the pSD, which resembles the robustness of the mad
versus that of the SD in classical scale estimation.

3.2 Gene expression example

In a seminal paper, Perou ez al. (2000) analyzed gene expression pat-
terns of 65 surgical specimens of human breast tumors. The data are
publicly available at https://www.omicsdi.org/dataset. They identi-
fied 496 intrinsic genes, which had significantly larger variation be-
tween different tumors compared with the variation between paired
samples from the same tumor. Using hierarchical clustering with
Eisen linkage (Eisen et al., 1998), they clustered the tumors into four
different types: basal-like, Erb-B2+, normal-breast-like and luminal
epithelial/ ER+. We illustrate the effect of the pSD in hierarchical
clustering with average, complete and Ward linkage on these 496
genes.

Figure 3 shows the resulting dendrograms when applying each of
these clustering algorithms to the dataset after scaling it in various
ways. For average linkage, the pSD clearly outperforms the other
options. It only misclassifies two observations, whereas the other
methods split the large group of luminal epithelial/ER+ tumors (in
cyan) in two or more clusters and fail to identify the smallest group
(in green), which contains the Erb-B2+ tumors. Complete linkage
gives better results for all types of scaling. However, without scaling
or when using the range, the largest group of tumors gets split up
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Fig. 3. The effect of variable scaling on the gene expression data. The colors correspond to the tumor type: basal-like in red, Erb-B2+ in green, normal-breast-like in dark blue
and luminal epithelial/ER+ in cyan. The pSD generally yields superior recovery of the true clusters. (Color version of this figure is available at Bioinformatics online.)

Table 3. Genes for which the pSD is smaller than the SD

Variable Description SD/pSD
GF200: 96(8C12): 384(2F23) ESTROGEN REGULATED LIV-1 PROTEIN (LIV-1) MRNA, PARTIAL CDS H29407 45 3.5
GF201: 96(88H2): 384(1104) GROWTH FACTOR RECEPTOR-BOUND PROTEIN 7 H53703 224 2.4
PEROU: 96(7F8): 384(20L16) REGULATOR OF CHROMATIN, SUBFAMILY E, MEMBER 1 W63613 228 2.4

GF200: 96(13D9): 384(4G17) CYTOCHROME P450, SUBFAMILY IIA (PHENOBARBITAL-INDUCIBLE), POLYPEPTIDE 7 T73031 61 2.2

PEROU: 96(8A1): 384(20B1) 68400 T57034 226 2.2
PEROU: 96(6A1): 384(20A2) 68400 T57034 227 2.2
GF200: 96(14D12): 384(4G24) APOLIPOPROTEIN D H15842 2.2
PEROU: 96(9A9): 384(18B18) IMMUNOGLOBULIN J CHAIN H24896 325 2.1

Note: The third column shows the ratios of these two scales.

into two groups. This does not happen when scaling with the SD,
yet quite a few tumors are misclassified in this case. When scaling
with the pSD, only two tumors are misclassified using complete link-
age. Finally, with Ward’s linkage, both the pSD and scaling with the
range work well, with two and one misclassified tumor, respectively.
Without scaling and with the SD however, the largest cyan cluster
gets split up in two smaller clusters. In conclusion, the pSD yields
better recovery of the true clusters than the other scaling methods.

In addition to improved clustering results, the pooled scaling
procedure yields a diagnostic tool in the form of scale ratios. More
precisely, we can compare the SDs of the variables with their pooled
counterparts. Variables for which the ratio of these two scales is
large typically show a clear grouping of the data, whereas variables
for which this ratio is close to 1 do not distinguish clear groups.
These ratios can thus be used as a fast and intuitive variable-
screening procedure to identify potentially very informative varia-
bles, which is often a main research goal in this context.

In this example, only 8 of the 496 variables had a scale different
from the SD. The information on those eight variables is presented
in Table 3. Figure 4 shows the gene expressions for the four genes,
which had the highest scale ratio. The colors again correspond to
the four types of tumors. The top left panel shows the gene
GF200:96(8C12):384(2F23), which clearly groups the red and blue
points together and also shows high values for the majority of the

cyan group. The top right and bottom left panels show the genes
GF201:96(88H2):384(1104) and PEROU:96(7F8):384(20L16),
which distinctly separate the green tumors from the others. In the
bottom right panel, the red tumors seem to have slightly lower val-
ues than the others, the blue tumors are grouped very tightly to-
gether and the cyan tumors appear to contain a sub-cluster with
elevated values for this gene.

4 Discussion

We introduced a new approach to variable scaling prior to clus-
ter analysis, which we call pooled scale estimators. The per-
formance of pooled scaling is compared with the most common
competitors on several popular clustering techniques, with a par-
ticular focus on the case of high-dimensional data with many
uninformative noise variables. Scaling with the pooled scale esti-
mators yields superior cluster recovery on the different clustering
methods, in particular when the data contains a lot of noise
variables. Since this is a common theme in the clustering of
gene expression data, the performance was illustrated on breast
cancer gene expressions in which it also outperformed the com-
petition. The pooled scale estimates yield an additional diagnos-
tic tool in the form of the ratio between pooled scales and
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Fig. 4. Genes for which the pSD is smaller than the SD. These genes generally cluster
the majority of the true groups together while sometimes identifying potentially
interesting subclusters

default scales, which quantify the presence of cluster structure
in the individual variables.
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Abstract

This supplement contains the proof of proposition 1, the simulation results for the data with outliers and 4

additional real data examples.

1 Proof of Proposition 1

We prove the result in the case of k-means clustering. For k-medians
clustering, the proof is entirely analogous.

Proof. Part 1: effect of scaling on k-means clustering
Letx = x1,..
a fixed natural number and suppose we have a solution to the k-means
clustering problem for this value of k. Denote the centers of the clusters

., Tn be a sample of univariate observations, k > 0 be

in this solution by p = pu1, ..., g, the sets of indices of the clusters

by C1,...,Ck and the value of the objective function by Si(p) =
LS | di(p) where d; () = minj—1 g ||z — py]|3. Lets > 0

be a positive real number, ¢ € R a real number and consider the sample
z=2z1,...,2n Where z; = (x; — t)/s.

We show that the clustering given by C’; =Cjand p' = pf, ..., 1)
where p’; = (p; — t)/s is a solution to the k-means problem on z.
Note first of all that if C} = Cj, we have p; = (u; — t)/s since
the cluster centers are the sample means of the elements in the clusters
and the sample mean is affine equivariant. Therefore, we also have that
s Sp(K") = Sk ().

Suppose now that the clustering given by p’ does not solve the k-means
problem on 21, ..., zn, i.e. there exists a clustering given by the cen-
ters @ = 61,...,0 such that S} (8) < S} (u'). Denote d;(0)
minj—y . ||zi — 0;] |§ Now consider the partition of the original data-
setxy,..., Ty givenby the centers s@ +¢ = s 01 +t,...,s 0 +t. We
then have Si(s 0 +t) = /> 1 1 di(s 0 +t) = sy/> 1, d.(0) =
5 5,(0) < s S, (1) = Sk(n). This is a contradiction since p solves
the k-means clustering of 1, . .

., Tr, and thus we cannot have a clustering

with a lower objective function.

Part 2: scale invariance of the gap analysis
Let k be fixed and consider the pooled within-cluster sum of squares
Wi () = nS? of the k-means clustering of . Let z = (x — t)/s for
ascale s > 0 and location ¢ € R as before. Then W, (2) = Wy () /s>
and so

Gap,, (k) = Eylay) my] 1108 (W] = log (Wi (2)
= By o] 108 (Wk) —21og(s)] —
(log (Wi () — 2log(s))

Eyla iy ) 108 (Wr)] = log (W, (@) = Gapg (k).

Furthermore, we also have

VarU[ [log (Wy)] = VarU[z(l)’E(n)] [log (W) — 21og(s)]

[log (Wi)] -

#(1)%(m)]
= Var,
Ulz@ys@m)
So for every value of k, both the value of the gap statistic and the estimated
variance of log (W},) are invariant under the rescaling. Therefore, the
optimal number of clusters resulting from the analysis based on the gap
statistic is the same for « and z.

© The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1
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2 Additional simulation results
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Fig. 1: Simulation results for hierarchical clustering with single (a), ave-
rage (b), complete (c) and Ward (d) linkage functions on data with 5 %
outliers. The pooled scale estimators perform the best and the pmad is
more robust to outliers than the psd.
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Fig. 2: Simulation results for k-means (a) and partitioning around medoids
(b) on data with 5 % outliers. The pooled scale estimators perform better
than the alternatives and the pmad is clearly more robust to outliers than
the psd.
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3 Additional real data examples
3.1 Lymphoma data

We analyze the lymphoma dataset first studied in Alizadeh et al. (2000)
and publicly available in the R-package spls (Chung et al., 2019). The
dataset contains 4026 gene expression levels for 62 samples of 3 types of
lymphoma. More precisely, there are 42 samples of diffuse large B-cell
lymphoma, 9 samples of follicular lymphoma (FL), and 11 samples of
chronic lymphocytic leukemia (CLL). The data was preprocessed as in
Dettling and Bithlmann (2002).

We use the sparse hierarchical clustering with complete linkage of
Witten and Tibshirani (2010) to cluster the data after scaling them with
various estimators of scale. The dataset was also studied by Chung and
Keles (2010) in the context of sparse PLS. The two best performing meth-
ods suggested that 50 or 197 features contain most of the information
needed to find the groups in the data. We therefore cluster the dataset
twice and fix the number of selected features in the sparse hierarchical
clustering to be 50 and 197.

Figure 3 presents the result when choosing 50 features. Scaling with
the pooled standard deviation yields 8 misclassified samples, the classical
standard deviation gives 9 misclassified observations and the range 10.
Without scaling, very little of the true clustering structure is recovered.
When using 197 genes, the performance improves for the range and the
pooled standard deviation, with 8 and 6 misclassified samples respectively
(see Figure 4). The classical standard deviation fails to identify the smallest
group of follicular lymphoma and not scaling gives mixed clusters. In
summary, scaling with the pooled standard deviation yields the best cluster
recovery.

i

(a) No scaling

P N N o

(d) Pooled standard deviation

T

(b) Standard deviation

(c) Range

Fig. 3: Sparse hierarchical clustering with complete linkage on the lymph-
oma dataset using 50 features. Scaling with the pooled standard deviation
yields the lowest number of misclassified observations.

3.2 Volatile Organic Compound Metabolites data

This dataset contains levels of volatile organic compounds (VOCs) in
human urinary samples. The data was collected for the period 2015-2016
and is publicly available at the website of the National Health and Nutrition
Examination Survey (NHANES), see NHANES (2019). It is known that
long-term exposure to VOCs can lead to cancer and neurocognitive dysfu-
nction. One of the most common causes of suspicious levels of VOCs is
exposure to (tobacco) smoke. We therefore matched the patients in the data-
set of VOCs with the available background information on their smoking
behavior and defined two “true clusters’: heavy smokers and non-smokers.

TR p—

(a) No scaling (b) Standard deviation

Wﬁﬁm@ il

(d) Pooled standard deviation

(c) Range

Fig. 4: Sparse hierarchical clustering with complete linkage on the lymph-
oma dataset using 197 features. Again, scaling with the pooled standard
deviation yields the lowest number of misclassified observations.

The plot of the first two score vectors from a principal component analysis
shown in Figure 5 confirms that this grouping is in fact present in the data.
Before clustering, we preprocessed the data by removing the observations
which contained missing values as well as the variables with extremely
low variance. We obtained a dataset of 20 levels of different VOCs for 522
patients. The names of the VOCs are listed in Table 1

B non-smoker .
~ 71 B smoker
AN 0
o .
a © .
C\Il -
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T T T T T
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Fig. 5: Two first score vectors resulting from classical PCA on the VOC
data. The two groups of smokers vs. non-smokers are clearly visible.

The clustering was done using regular k-means clustering with k = 2.
Without scaling the data, the ARI value for the 2-means is 0.54. When
scaling with the standard deviation, this drops down to 0.37. Scaling with
the range yields an ARI of 0.47, while scaling with the pooled standard
deviation has an ARI of 0.55. Surprisingly, there is only one variable
for which the pooled standard deviation was smaller than the classical
standard deviation. This variable is “URXCYM?”, which is the variable
name for N-Acetyl-S-(2-cyanoethyl)-L-cysteine. It turns out that this is a
well-known bio-marker for exposure to smoke, see e.g. Chen et al. (2019),
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Variable Name VOC name

URX2MH 2-Methylhippuric acid

URX34M 3- and 4-Methylhippuric acid

URXAAM N-Acetyl-S-(2-carbamoylethyl)-L-cysteine

URXAMC N-Acetyl-S-(N-methylcarbamoyl)-L-cysteine

URXATC 2-Aminothiazoline-4-carboxylic acid

URXBMA N-Acetyl-S-(benzyl)-L-cysteine

URXBPM N-Acetyl-S-(n-propyl)-L-cysteine

URXCEM N-Acetyl-S-(2-carboxyethyl)-L-cysteine

URXCYM N-Acetyl-S-(2-cyanoethyl)-L-cysteine

URXDHB N-Acetyl-S-(3,4-dihydroxybutyl)-L-cysteine

URXHEM N-Acetyl-S-(2-hydroxyethyl)-L-cysteine

URXHP2 N-Acetyl-S-(2-hydroxypropyl)-L-cysteine

URXHPM N-Acetyl-S-(3-hydroxypropyl)-L-cysteine

URXIPM1 N-Acetyl- S- (4- hydroxy- 2- methyl- 2- butenyl)- L-cysteine
URXIPM3 N-Acetyl- S- (4- hydroxy- 2- methyl- 2- butenyl)-L-cysteine
URXMAD Mandelic acid

URXMB3 N-Acetyl-S-(4-hydroxy-2-butenyl)-L-cysteine

URXPHE N-Acetyl-S-(phenyl-2-hydroxyethyl)-L-cysteine

URXPHG Phenylglyoxylic acid

URXPMM N-Acetyl-S-(3-hydroxypropyl-1-methyl)-L-cysteine

Table 1. The volatile organic compounds in the VOC data.

since it typically results from the metabolization of acrylonitrile, a volatile
liquid present in tobacco smoke. As can be seen in Figure 6, this variable
indeed separates the majority of the smokers from the non-smokers. In
conclusion, not only does scaling with the pooled standard deviation yield
the best clustering results, it also flags a known important bio-marker for
exposure to smoking.

B non-smoker E smoker

URXCYM level

T T T T
0 100 200 300 400 500
Index

Fig. 6: The URXCYM variable for which the pooled standard deviation is
clearly lower than its classical counterpart plays an important role in the
clustering.

3.3 Leukemia data

We analyze the Leukemia data first studied by Golub et al. (1999). The
data consists of the gene expression levels of 3051 genes for 38 patients,
27 with acute myeloid leukemia (AML) and 11 with acute lymphobla-
stic leukemia (ALL). The dataset is publicly available in the R-package

plsgenomics (Boulesteix et al., 2018).

We apply hierarchical clustering to identify the two groups of patients
with a different type of leukemia and again use four different scale esti-
mators to scale the variables before clustering. Figure 7 shows the results
of hierarchical clustering with Ward’s linkage function. In this case, not
scaling, scaling with the range and scaling with the pooled standard devi-
ation perform equally well, misclassifying only 2 observations. Scaling
with the standard deviation however splits the group of patients with AML
in two and fails to recover the true clustering. Figure 8 shows the results
of clustering the leukemia data using complete linkage. While complete
linkage is clearly less suited to cluster these data, there are still notewor-
thy differences between the different scaling methods. No scaling gives 5
misclassified samples. Scaling with the range and pooled standard devi-
ation gives 4 misclassified samples, whereas scaling with the standard
deviation again messes up the clustering results. In summary, scaling with
the pooled standard deviation or the range yields the best results for this
dataset.

frmf

(a) No scaling (b) Standard deviation

(c) Range (d) Pooled standard deviation

Fig. 7: Hierarchical clustering with Ward linkage on the leukemia data. All
methods work equally well, with the exception of the classical standard
deviation.

(a) No scaling (b) Standard deviation

(c) Range (d) Pooled standard deviation

Fig. 8: Hierarchical clustering with complete linkage on the leukemia data.
Scaling with the pooled standard deviation and the range gives the lowest
number of misclassified patients.



“PVS_supplementary” — 2020/3/17 — 11:53 — page 5 — #5

Supplementary Material for the Bioinformatics submission “Pooled variable scaling for cluster analysis” 5

3.4 Colon cancer data

We now analyze a dataset containing gene expressions from normal colon
tissue samples as well as colon cancer samples. The data was collected from
two datasets in the Gene Expression Omnibus (Edgar et al., 2002) with
IDs GSE8671 and GSE4183, and is publicly available in the R-package
antiProfilesData (Bravo et al., 2019). The probesets annotated to
genes within blocks of hypomethylation in colon cancer defined in Hansen
etal. (2011).

The data contains the expression levels of 5339 genes for 15 healthy
patients and 23 patients with a tumor. We cluster the patients using hie-
rarchical clustering with complete linkage. Figure 9 shows the resulting
dendrograms, indicating that a perfect clustering is achieved without sca-
ling or when scaling using the pooled standard deviation. When scaling
with the standard deviation or range however, the true clusters are mixed
and the recovery is quite poor.

[

(b) Standard deviation

(a) No scaling

TR TR

(c) Range (d) Pooled standard deviation

Fig. 9: Hierarchical clustering with complete linkage on the colon cancer
data. Scaling with the pooled standard deviation and not scaling at all
yields the best recovery of the true clusters.

As an added feature of computing the pooled standard deviations, we
consider the 4 genes with the highest ratio of classical over pooled standard
deviation. The Affy ID’s of these genes are 207502_at, 206134_at,
207003_at and 213921 _at and they are displayed in Figure 10. It
is clear that all 4 of these genes clearly separate the patients with tumors
from the healthy ones, indicating their biological importance.
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