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Fast Robust Correlation for High-Dimensional Data

Jakob Raymaekers and Peter J. Rousseeuw

Department of Mathematics, KU Leuven, Leuven, Belgium

ABSTRACT
The product moment covariance matrix is a cornerstone of multivariate data analysis, from which one can
derive correlations, principal components, Mahalanobis distances and many other results. Unfortunately,
the product moment covariance and the corresponding Pearson correlation are very susceptible to outliers
(anomalies) in the data. Several robust estimators of covariance matrices have been developed, but few are
suitable for the ultrahigh-dimensional data that are becoming more prevalent nowadays. For that one needs
methods whose computation scales well with the dimension, are guaranteed to yield a positive semidefinite
matrix, and are sufficiently robust to outliers as well as sufficiently accurate in the statistical sense of low
variability. We construct such methods using data transformations. The resulting approach is simple, fast,
and widely applicable. We study its robustness by deriving influence functions and breakdown values, and
computing the mean squared error on contaminated data. Using these results we select a method that
performs well overall. This also allows us to construct a faster version of the DetectDeviatingCells method
(Rousseeuw and Van den Bossche 2018) to detect cellwise outliers, which can deal with much higher
dimensions. The approach is illustrated on genomic data with 12,600 variables and color video data with
920,000 dimensions. Supplementary materials for this article are available online.
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1. Introduction

The most widely used measure of correlation is the product-
moment correlation coefficient. Its definition is quite simple.
Consider a paired sample, that is {(x1, y1), . . . , (xn, yn)} where
the two numerical variables are the column vectors Xn =
(x1, . . . , xn)T and Yn. Then the product moment of Xn and Yn
is just the inner product

PM(Xn, Yn) = 1
n
〈
Xn, Yn

〉 = 1
n

XT
n Yn = aven

i=1 xiyi. (1)

When the (xi, yi) are iid observations of a stochastic vector
(X, Y) the population version is the expectation E[XY]. The
product moment (1) lies at the basis of many concepts. The
empirical covariance of Xn and Yn is the “centered” product
moment

cov(Xn, Yn) = n
n − 1

PM(Xn − ave(Xn), Yn − ave(Yn)), (2)

with population version E[(X − E[X])(Y − E[Y])] . Therefore,
(1) can be seen as a “covariance about zero.” And finally, the
product-moment correlation is given by

cor(Xn, Yn) = n
n − 1

PM(z(Xn), z(Yn)), (3)

where the z-scores are defined as z(Xn) = (Xn −
ave(Xn))/ Stdev(Xn) with the standard deviation Stdev(Xn) =√

var(Xn) = √
cov(Xn, Xn) .
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The product-moment quantities (1)–(3) satisfy
PM(Xn, Yn) = PM(Yn, Xn) and PM(Xn, Xn) � 0 . They
have several nice properties. The independence property states
that when X and Y are independent we have cov(X, Y) = 0
(assuming the variances exist). Second, when our dataset Xn,d
has n rows (cases) and d columns (variables, dimensions), we
can assemble all the product moments between the variables in
a d × d matrix

PM(Xn,d) = 1
n

XT
n,dXn,d. (4)

The PSD property says that the matrix (4) is positive semidefi-
nite, which is crucial. For instance, we can carry out a spectral
decomposition of the covariance (or correlation) matrix, which
forms the basis of principal component analysis. When d < n
the covariance matrix will typically be positive definite hence
invertible, which is essential for many multivariate methods
such as the Mahalanobis distance and discriminant analysis. The
third property is speed: the product moment, covariance, and
correlation matrices can be computed very fast, even in high
dimensions d.

Despite these attractive properties, it has been known for a
long time that the product-moment covariance and correlation
are overly sensitive to outliers in the data. For instance, adding
a single far outlier can change the correlation from 0.9 to 0 or to
−0.9.

Many robust alternatives to the Pearson correlation have
been proposed in order to reduce the effect of outliers. The first
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one was probably Spearman’s (1904) correlation coefficient, in
which the xi and yi are replaced by their ranks. Rank-based cor-
relations do not measure a linear relation but rather a monotone
one, which may or may not be preferable in a given application.

A second approach is based on the identity

cor(X, Y) = var(X̃ + Ỹ) − var(X̃ − Ỹ)

var(X̃ + Ỹ) + var(X̃ − Ỹ)
, (5)

where X̃ = X/
√

var(X) and Ỹ = Y/
√

var(Y). Gnanade-
sikan and Kettenring (1972) proposed to replace the nonrobust
variance by a robust scale estimator. This approach is quite
popular; see, for example, Shevlyakov and Oja (2016). It does not
satisfy the independence property however, and the resulting
correlation matrix is not PSD so it needs to be orthogonalized,
yielding the OGK method of Maronna and Zamar (2002).

Third, one can start by computing a robust covariance
matrix C such as the minimum covariance determinant (MCD)
method of Rousseeuw (1984). Then we can define a robust
correlation measure between variables Xj and Xk by

R(Xj, Xk) := Cjk/
√

CjjCkk . (6)

In this way we do produce a PSD matrix, but we lose the inde-
pendence property. In fact, here the robust correlation between
two variables depends on the other variables, so adding or
removing a variable changes it. Also, the computational require-
ments do not scale well with the dimension d, making this
approach infeasible for high dimensions.

Another possibility is to start from the spatial sign covariance
matrix (SSCM) of Visuri et al. (2000). This method first com-
putes the spatial median μ̂ of the data points xi by minimizing∑

i ||xi − μ||. It then computes the product moment of the so-
called spatial signs (xi − μ̂)/||xi − μ̂||. Then (6) can be applied.
The result is PSD but does not satisfy the independence property
either.

For high-dimensional data, the product-moment technol-
ogy is computationally attractive. This suggests using the idea
underlying Spearman’s rank correlation, which is to transform
the variables first. We do not wish to restrict ourselves to ranks
however, and we want to explore how far the principle of robust-
ness by data transformation can be pushed.

In general, we consider a transformation g applied to the
individual variables, and we define the resulting g-product
moment as

PMg(Xn, Yn) := PM(g(Xn), g(Yn)) , (7)

and similarly for covg and corg . Choosing g(xi) = xi yields
the usual product moment, and setting g(xi) equal to its

rank yields the Spearman correlation. The g-product moment
approach satisfies all three desired properties. First of all, if we
use a bounded function g the population version E[g(X)g(Y)]
always exists and covg satisfies the independence property with-
out any moment conditions. Second, the resulting matrices
PMg(Xn,d) = PM(g(X.1), . . . , g(X.d)) always satisfy the PSD
property. And finally, this method is very fast provided the
transformation g can be computed quickly (which could even
be done in parallel over variables).

Note that the bivariate winsorization in Khan et al. (2007)
is a transformation g̃(Xn, Yn) that depends on both arguments
simultaneously, unlike (7). It yields a good robust bivariate
correlation but without the multivariate PSD property.

Our present goal is to find transformations g for (7) that yield
covariance matrices that are sufficiently robust and at the same
time sufficiently efficient in the statistical sense.

Table 1 lists some computation times (in seconds) of the
robust correlation methods mentioned above for n = 1000
generated data points in various dimensions d, as well as the
classical correlation matrix. (The times were measured on a
laptop with Intel Core i7-5600U CPU at 2.60 GHz.) The fifth
column is the g-product moment method that will be proposed
in this article. Note that the MCD cannot be computed when
d ≥ n, and that the computation times of MCD and OGK
become infeasible at high dimensions. The next three methods
are faster, and their robustness will be compared later on.

The remainder of the article is organized as follows. In
Section 2, we explore the properties of the g-product moment
approach by means of influence functions, breakdown values
and other robustness tools, and in Section 3 we design a new
transformation g based on what we have learned. Section 4 com-
pares these transformations in a simulation study and makes
recommendations. Section 5 explains how to use the method in
higher dimensions, illustrated on some real high-dimensional
datasets in Section 6.

2. General Properties of g-Product Moments

The oldest type of robust g-product moments occur in rank
correlations. Define a rescaled version of the sample ranks as
Rn(xi) = (Rank(xi) − 0.5)/n where Rank(xi) denotes the rank
of xi in {x1, . . . , xn}. The population version of Rn(xi) is the
cumulative distribution function (cdf) of X. Then the following
functions g define rank correlations:

• g(xi) = Rn(xi) yields the Spearman rank correlation (Spear-
man 1904).

• g(x) = sign(Rn(xi) − 0.5) gives the quadrant correlation.

Table 1. Computation times (in seconds) of various correlation matrices as a function of the dimension d, for n = 1000 observations.

Dimension MCD OGK SSCM Spearman Wrapping Classic

10 0.319 0.022 0.004 0.002 0.003 0.001
50 6.222 0.426 0.009 0.009 0.012 0.002

100 24.76 2.089 0.031 0.019 0.027 0.008
500 1599 44.78 0.678 0.226 0.281 0.171

1000 – 166.7 3.107 0.774 0.836 0.685
5000 – 4389 129.1 17.11 17.39 16.81

10, 000 – – 568.9 68.24 68.78 67.27
20, 000 – – 2448 278.4 274.9 273.6
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• g(x) = �−1(Rn(x)) (where � is the standard Gaussian cdf)
yields the normal scores correlation.

• g(x) := �−1 ([Rn(x)]1−α
α

)
with the notation [y]b

a :=
min(b, max(a, y)) is the truncated normal scores function,
first proposed on pages 210–211 of Hampel et al. (1986) in
the context of univariate rank tests.

Kendall’s tau is of a somewhat different type as it replaces each
variable Xn by a variable with n(n−1)/2 values, but we compare
with it in Section 4.

A second type of robust g-product moments goes back to
Section 8.3 in the book of Huber (1981) and is based on M-
estimation. Huber transformed xi to

g(xi) = ψ((xi − μ̂)/σ̂ ) , (8)

where μ̂ is an M-estimator of location defined by
∑

i ψ((xi −
μ̂)/σ̂ ) = 0 and σ̂ is a robust scale estimator such as the MAD
given by MAD(Xn) = 1.4826 mediani |xi −medianj(xj)| . Note
that (xi − μ̂)/σ̂ is like a z-score but based on robust analogs
of the mean and standard deviation. For ψ(z) = sign(z) this
yields μ̂ = medianj(xj) so we recover the quadrant correla-
tion. Another transformation is Huber’s ψb function given by
ψb(z) = [z]b

−b for a given corner point b > 0. One can
also use the sigmoid transformation ψ(z) = tanh (z). Note
that the transformation (8) does not require any tie-breaking
rules, unlike the rank correlations. Huber (1981) derived the
asymptotic efficiency of the ψ-product moment. We go further
by also computing the influence function, the breakdown value
and other robustness measures. Our goal is to find a function ψ

that is well-suited for correlation.

2.1. Influence Function and Efficiency

Note that the g-product moment PMg(Xj, Xk) between two
variables Xj and Xk in a multivariate dataset does not depend on
the other variables, so we can study its properties in the bivariate
setting.

For analyzing the statistical properties of the ψ-product
moment, we assume a simple model for the “clean” data, before
outliers are added. The model says that (X, Y) follows a bivariate
Gaussian distribution Fρ given by

Fρ = N
([

0
0

]
,
[

1 ρ

ρ 1

])
(9)

for −1 < ρ < 1, so F0 is just the bivariate standard Gaussian
distribution. We restrict ourselves to odd functions ψ so that
E[ψ(X)] = 0 = E[ψ(Y)], and study the statistical properties
of Tn = 1

n
∑n

i=1 ψ(xi)ψ(yi) with population version Tψ =
E[ψ(X)ψ(Y)]. Note that Tψ maps the bivariate distribution of
(X, Y) to a real number, and is therefore called a functional. It
can be seen as the limiting case of the estimator Tn for n → ∞.
On the other hand, a finite sample Zn = {(x1, y1), . . . , (xn, yn)}
yields an empirical distribution Fn(x, y) = 1

n
∑n

i=1 I(xi ≤
x, yi ≤ y) and we can define an estimator Tn(Zn) as Tψ(Fn), so
there is a strong connection between estimators and functionals.
Whereas the usual consistency of an estimator Tn requires that
Tn converges to ρ in probability, there exists an analogous
notion for functionals: Tψ is called Fisher-consistent for ρ iff
Tψ(Fρ) = ρ.

We will start with the influence function (IF) of Tψ . Fol-
lowing Hampel et al. (1986), the raw influence function of the
functional Tψ at Fρ is defined in any point (x, y) as

IFraw((x, y), Tψ , Fρ) = ∂

∂ε
Tψ((1 − ε)Fρ + ε	(x,y))|ε=0, (10)

where 	(x,y) is the probability distribution that puts all its mass
in (x, y). Note that (10) is well-defined because (1 − ε)Fρ +
ε	(x,y) is a probability distribution so Tψ can be applied to
it. The IF quantifies the effect of a small amount of contam-
ination in (x, y) on Tψ and thus describes the effect of an
outlier on the finite-sample estimator Tn. It is easily verified that
IFraw((x, y), Tψ , F0) = ψ(x)ψ(y).

However, we cannot compare the raw influence function (10)
across different functions ψ since Tψ is not Fisher-consistent,
that is, Tψ(Fρ) �= ρ in general. For non-Fisher-consistent
statistics T we follow the approach of Rousseeuw and Ronchetti
(1981) and Hampel et al. (1986) by defining

ξ(ρ) := T(Fρ) and U(F) := ξ−1(T(F)), (11)

so U is Fisher-consistent, and putting

IF((x, y), T, F) := IFraw((x, y), U, F) = IFraw((x, y), T, F)

ξ ′(ρ)
.

(12)

Proposition 1. When ψ is odd [i.e., ψ(−z) = −ψ(z)] and
bounded, we have ξ ′(0) = E[ψ ′]2; hence, the influence function
of Tψ at F0 becomes

IF((x, y), Tψ , F0) = ψ(x)ψ(y)
E[ψ ′]2 . (13)

The proof can be found in Section A.1 of the supplementary
material. The influence function at Fρ for ρ �= 0 derived in
Section A.2 has the same overall shape.

Since the IF measures the effect of outliers we prefer bounded
ψ , unlike the classical choice ψ(z) = z. Note that (13) is the
raw influence function of T∗ = E[ψ∗(X)ψ∗(Y)] at F0, where
ψ∗(u) = ψ(u)/E[ψ ′]. As ψ is bounded T∗ is integrable, so
by the law of large numbers T∗

n is strongly consistent for its
functional value: T∗

n = 1
n

∑n
i=1 ψ∗(xi)ψ∗(yi)

a.s.−→ T∗(Fρ) for
n → ∞. By the central limit theorem, T∗ is then asymptotically
normal under F0:

√
n(T∗

n − 0) → N(0, V) ,

where

V = E[ψ2]2

E[ψ ′]4 =
(

E[ψ2]
E[ψ ′]2

)2
. (14)

From this we obtain the asymptotic efficiency eff =
(E[ψ ′]2/E[ψ2])2 .

Note that the influence function of Tψ at F0 factorizes as
the product of the influence functions of the M-estimator Lψ

of location with the same ψ-function:

IF((x, y), Tψ , F0) = IF(x, Lψ , �) IF(y, Lψ , �) , (15)

because IF(x, Lψ , �) = ψ(x)/E[ψ ′] . This explains why the effi-
ciency of Tψ satisfies eff(Tψ) = (eff(Lψ))2 . We are also inter-
ested in attaining a low gross-error sensitivity γ ∗(Tψ), which
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is defined as the supremum of |IF((x, y), Tψ , F0)| and therefore
equals (γ ∗(Lψ))2 . It follows from (Rousseeuw 1981) that the
quadrant correlation ψ(z) = sign(z) has the lowest gross-error
sensitivity among all statistics of the type Tψ = E[ψ(X)ψ(Y)].
In fact, IF((x, y), Tψ , F0) = (π/2) sign(x) sign(y) yielding γ ∗

T =
π/2. However, the quadrant correlation is very inefficient as
eff = 4/π2 = 40.5%.

The influence functions of rank correlations are obtained
by Croux and Dehon (2010) and Boudt et al. (2012). Note
that for some rank correlations the function ξ of (11) is
known explicitly, in fact ξ(ρ) = sin(ρπ/2) for the quad-
rant correlation, ξ(ρ) = (6/π) arcsin(ρ/2) for Spearman and
ξ(ρ) = ρ for normal scores. It turns out that these IF at
F0 match the expression in Proposition 1 if ψ corresponds
to the population version of the transformation g in the rank
correlation, as explained in Section A.3 of the supplementary
material.

The influence functions of rank correlations at F0 also fac-
torize as in Equation (15). Figure 1 plots these location influence
functions for several choices of the transformation g. We see that
the Pearson and normal scores correlations have the same influ-
ence function (the identity), which is unbounded. On the other
hand, the IF of Huber’s ψb stays constant outside the corner
points −b and b. The truncated normal scores (“Norm05”) has
the same IF as Huber’s ψb provided α = �(−b) . The Spearman
rank correlation and the sigmoid transformation have smooth
influence functions.

2.2. Maxbias and Breakdown Value

Whereas the IF measures the effect of one or a few outliers, we
are now interested in the effect of a larger fraction ε of contam-
ination. For the uncontaminated distribution of the bivariate
(X, Y) we take the Gaussian distribution F = Fρ given by (9).
Then we consider all contaminated distributions of the form

FH,ε = (1 − ε)F + εH, (16)

where ε � 0 and H can be any distribution. This ε-
contamination model is similar to the contaminated distribu-
tions in (10) and (20), but here H is more general.

Figure 1. Location influence functions at ρ = 0 for different transformations g.

A fraction ε of contamination can induce a maximum pos-
sible upward and downward bias on Tψ = cor(ψ(X), ψ(Y))

denoted by

B+(ε, Tψ , F) = sup
G∈Fε

(Tψ(G) − Tψ(F)) and

B−(ε, Tψ , F) = inf
G∈Fε

(Tψ(G) − Tψ(F)), (17)

where Fε = {G; G = (1 − ε)F + εH for any distribution H} .
The proof of the following proposition is given in Section A.4 in
the supplementary material.

Proposition 2. Let ε ∈ [0, 1] be fixed and ψ be odd and bounded.
Then the maximum upward bias of Tψ at F is given by

B+(ε, Tψ , F) = (1 − ε) varF(ψ(X)) Tψ(F) + εM2

(1 − ε) varF(ψ(X)) + εM2 − Tψ(F),

(18)
with M := supx |ψ(x)|, and the maximum downward bias is

B−(ε, Tψ , F) = (1 − ε) varF(ψ(X)) Tψ(F) − εM2

(1 − ε) varF(ψ(X)) + εM2 − Tψ(F).

(19)

The breakdown value ε∗ of a robust estimator is loosely
defined as the smallest ε that can make the result useless.
For instance, a location estimator μ̂ becomes useless when
its maximal bias tends to infinity. But correlation estimates
stay in the bounded range [−1, 1] hence the bias can never
exceed 2 in absolute value, so the situation is not as clear-
cut and several alternative definitions could be envisaged.
Here, we will follow the approach of Capéraà and Garralda
(1997) who defined the breakdown value of a correlation esti-
mator as the smallest amount of contamination needed to
give perfectly correlated variables a negative correlation. More
precisely:

Definition 1. Let F be a bivariate distribution with X = Y , and
R be a correlation measure. Then the breakdown value of R is
defined as

ε∗(R) = inf{ε > 0 ; inf
G∈Fε

R(G) � 0}.

The breakdown value of Tψ then follows immediately from
Proposition 2.

Corollary 1. When ψ is odd and bounded the breakdown value
ε∗ of Tψ equals

ε∗(Tψ) = varF(ψ(X))

varF(ψ(X)) + M2 .

The breakdown values of rank correlations were obtained
in Capéraà and Garralda (1997) and Boudt et al. (2012). They
used a different contamination model, but their results still
hold under ε-contamination as shown in Section A.5 in the
supplementary material.
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3. The Proposed Transformation

The change-of-variance curve (Hampel et al. 1981; Rousseeuw
1981) is given by

CVC(z, Tψ , F) = ∂

∂ε

[
log V

(
Tψ , (1 − ε)F

+ ε(	z + 	−z)/2
)]∣∣∣∣

ε=0
(20)

and measures how stable the variance of the method is when
the underlying distribution is contaminated, which may make it
longer tailed. We do not want the variance to grow too much,
as is measured by the change-of-variance sensitivity κ∗(Tψ),
which is the supremum of the CVC. (On the other hand, neg-
ative values of the CVC indicate a lower variance and are not a
concern.) Since the asymptotic variance of Tψ satisfies V(Tψ) =
(V(Lψ))2, we obtain CVC(z, Tψ , F0) = 2 CVC(z, Lψ , �) and
κ∗(Tψ) = 2 κ∗(Lψ) . Therefore, we inherit all the results about
the CVC from the location setting. For instance, the quadrant
correlation [with ψ(z) = sign(z)] has the lowest possible
κ∗(Tψ) .

Now suppose one wants to eliminate the effect of far outliers,
say those that lie more than c robust standard deviations away.
This can be done by imposing

ψ(z) = 0 whenever |z| > c. (21)

Such functions ψ can no longer be monotone, and are called
redescending instead. They were first used for M-estimation of
location, and performed extremely well in the seminal simu-
lation study of Andrews et al. (1972). They have been used in
M-estimation ever since. More on redescending estimators can
be found in Rousseeuw and Leroy (1987) and Maronna et al.
(2006).

In the context of location estimation, Hampel et al. (1981)
show that the ψ-function satisfying (21) with the highest effi-
ciency subject to a given κ∗(Tψ) is of the following form:

ψb,c(z) =

⎧⎪⎨
⎪⎩

z if 0 � |z| � b,
q1 tanh

(
q2(c − |z|)) sign(z) if b � |z| � c,

0 if c � |z| .
(22)

For any combination 0 < b < c the values of q1 and q2 can
be derived as in Section A.6 of the supplementary material. Our
default choice is b = 1.5 and c = 4 as in Figure 2. As we will
see in Table 2, this choice strikes a good compromise between
robustness and efficiency. Note that the b in ψb,c plays the same
role as the “corner value” in the Huber ψb function for location

Figure 2. The proposed transformation (22) with default constants b = 1.5 and
c = 4.

Table 2. Correlation measures based on transformations g with their breakdown
value ε∗ , efficiency, gross-error sensitivity γ ∗ , rejection point δ∗ , and correlation
between X and g(X).

corg ε∗(%) eff (%) γ ∗ δ∗ cor

Pearson 0 100 ∞ ∞ 1

Quadrant 50 40.5 1.57 ∞ 0.798
Spearman (SP) 20.6 91.2 3.14 ∞ 0.977
Normal scores (NS) 12.4 100 ∞ ∞ 1
Truncated NS, α = 0.05 16.3 95.0 3.34 ∞ 0.987
Truncated NS, α = 0.1 20.7 88.9 2.57 ∞ 0.971

Sigmoid 28.3 86.6 2.73 ∞ 0.965
Huber, b = �−1(0.95) ≈ 1.64 23.5 95.0 3.34 ∞ 0.987
Huber, b = �−1(0.9) ≈ 1.28 29.2 88.9 2.57 ∞ 0.971
Wrapping, b = 1.5, c = 4 25.1 89.0 3.16 4.0 0.971
Wrapping, b = 1.3, c = 4 28.1 84.4 2.79 4.0 0.958

estimation. In that setting, b = 1.5 has been a popular choice
from the beginning. The value c = 4 reflects that we do not trust
measurements that lie more than 4 standard deviations away.
The form of ψb,c(z) for b � |z| � c is the result of solving a
differential equation.

A nice property of ψb,c is that under normality a large major-
ity of the data values (in fact 86.6% of them for b = 1.5) are
left unchanged by the transformation, and only a minority is
modified. Leaving the majority of the data unchanged has the
advantage that we keep much information about the distribu-
tion of a variable and the type of association between variables
(e.g., linear), unlike rank transforms.

Interestingly, ψb,c pushes values between b and c closer to the
center so intermediate outliers still play some smaller role in the
correlation, whereas far outliers do not count. For this reason,
we refer to ψb,c as the wrapping function, as it wraps the data
around the interval [−b, b] . Indeed, the points on the interval
are mapped to themselves, whereas the other points are wrapped
around the corners, as in Figure 3.

Another way to describe this is to say that wrapping multi-
plies the variable z by a weight w(z), where w(z) := 1 when
|z| ≤ b and w(z) := ψb,c(z)/z for |z| > b.

The influence function (15) contains IF(z, Lψ , �) =
ψb,c(z)/E[ψ ′

b,c], which has the shape of ψb,c in Figure 2. The
bivariate influence function IF((x, y), Tψ , Fρ) is continuous and
bounded, and shown in Figure 13 in Section A.6 of the supple-
mentary material.

Figure 3. Illustration of wrapping a standardized sample {z1, . . . , zn} . Values in the
interval [−b, b] are left unchanged, whereas values outside [−c, c] are zeroed. The
intermediate values are “folded” inward so they still play a role.
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Table 2 lists some correlation measures based on transfor-
mations g that either use ranks or ψ-functions. For each the
breakdown value ε∗ and the efficiency and gross-error sensitiv-
ity γ ∗ at ρ = 0 are listed. The rejection point δ∗ says how far
an outlier must lie before the IF is zero. The last column shows
the product-moment correlation between a Gaussian variable X
and its transformed g(X) . The correlation is quite high for most
transformations studied here, providing insight as to why this
approach works.

In Table 2, we see that the quadrant correlation has the
highest breakdown value but the lowest efficiency. The Spear-
man correlation reaches a much better compromise between
breakdown and efficiency. Normal scores have the asymptotic
efficiency and IF of Pearson but with a breakdown value of
12.4%, a nice improvement. Truncating 5% improves its robust-
ness a bit at the small cost of 5% of efficiency, whereas truncating
10% brings its performance close to Spearman.

Both the Huber and the wrapping correlation have a param-
eter b, the corner point, which trades off robustness and effi-
ciency. A lower b yields a higher breakdown value and a bet-
ter gross-error sensitivity, but a lower efficiency. Note that the
Huber correlation looks good in Table 2, but in the simulation
study of Section 4 it performs less well than wrapping in the
presence of outliers, and the same holds in the real data appli-
cation in Section 6.2. The reason is that wrapping gives a lower
weight w(z) := ψb,c(z)/z to outliers and even w(z) = 0 for
|z| > c, whereas the Huber weight wb(z) := ψb(z)/z is higher
for outliers and always nonzero, so even far outliers still have an
effect.

Note that whenever two random variables X and Y are inde-
pendent the correlation between the wrapped variables gX(X)

and gY(Y) is zero, even if the original X and Y did not satisfy
any moment conditions. This follows from the boundedness of
ψb,c in (22).

It is well known that the reverse is not true for the classical
Pearson correlation, but that it holds when (X, Y) follow a
bivariate Gaussian distribution. This is also true for the wrapped
correlation.

Proposition 3. If the variables (X, Y) follow a bivariate Gaussian
distribution and the correlation between the wrapped variables
gX(X) and gY(Y) is zero, then X and Y are independent.

Another well-known property says that the Pearson correla-
tion of a dataset Z = {(x1, y1), . . . , (xn, yn)} equals 1 if and only
if there are constants α and β with β > 0 such that

yi = α + βxi (23)

for all i (perfect linear relation). The wrapped correlation satis-
fies a similar result.

Proposition 4. (i) If (23) holds for all i and we transform the data
to gX(xi) = ψb,c((xi−μ̂X)/σ̂X) and gY(yi) = ψb,c((yi−μ̂Y)/σ̂Y)

then cor(gX(xi), gY(yi)) = 1.
(ii) If cor(gX(xi), gY(yi)) = 1, then Equation (23) holds for

all i for which |xi − μ̂X|/σ̂X � b and |yi − μ̂Y |/σ̂Y � b.

In part (ii), the linearity has to hold for all points with
coordinates in the central region of their distribution, whereas

far outliers may deviate from it. In that case, the points in
the central region are exactly fit by a straight line. The proofs
of Propositions 3 and 4 can be found in Section A.7 of the
supplementary material.

Remark. Whereas Proposition 3 requires bivariate Gaussianity,
the other results in this article do not. In fact, Propositions 1, 2,
and 4 as well as Corollary 1 still hold when the data are generated
by a symmetric and unimodal distribution. The corresponding
proofs in the supplementary material are for this more general
setting.

4. Simulation Study

We now compare the correlation by transformation methods
in Table 2 for finite samples. For all of these methods, the
correlation between two variables does not depend on any other
variable in the data, so we only need to generate bivariate data
here.

For the non-rank-based methods, we first normalize each
variable by a robust scale estimate, and then estimate the loca-
tion by the M-estimator with the given function ψ . Next, we
transform xi to x∗

i = ψ((xi − μ̂X)/σ̂X) and yi to y∗
i =

ψ((yi − μ̂Y)/σ̂Y) and compute the plain Pearson correlation of
the transformed sample {(x∗

1 , y∗
1), . . . , (x∗

n, y∗
n)}.

4.1. Clean Data

Let us start with uncontaminated data distributed as F = Fρ

given by (9) where the true correlation ρ ranges over
{0, 0.05, 0.10, . . . , 0.95}. For each ρ, we generate m = 5000
bivariate datasets Zj with sample size n = 100. (We also
generated data with n = 20 yielding the same qualitative
conclusions.) We then estimate the bias and the mean squared
error (MSE) of each correlation measure R by

biasρ(R) = avem
j=1

(
R(Zj) − ρ

)
and (24)

MSEρ(R) = avem
j=1

(
R(Zj) − ρ

)2 . (25)

The bias is shown in the left part of Figure 4. The vertical
axis has flipped signs because the bias was always negative,
so ρ is typically underestimated. Unsurprisingly, the Pearson
correlation has the smallest bias (known not to be exactly zero).
The normal scores correlation and the Huber ψ with b = 1.5
are fairly close, followed by truncated normal scores, Spearman
and the sigmoid. Wrapping with b = 1.5 and b = 1.3
(both with c = 4) comes next, still with a fairly small bias.
The bias of the quadrant correlation is much higher. Note that
we could have reduced the bias of all of these methods by
applying the consistency function ξ−1 of (11), which can be
computed numerically. But such consistency corrections would
destroy the crucial PSD property for the higher-dimensional
data that motivate the present work, so we will not use them
here.

The right panel of Figure 4 shows the MSE of the same
methods, with a pattern similar to that of the bias. Even for
n = 20, the bias dominated the variance (not shown).
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Figure 4. Bias and MSE of correlation measures based on transformation, for uncontaminated Gaussian data with sample size 100.

4.2. Contaminated Data

To compare the robustness of these correlation measures, we
now add outliers to the data. Since the true correlation ρ ranges
over positive values here, we will try to bring the correlation
measures down. From the proof of Proposition 2 in Section A.4,
we know that the outliers have the biggest downward effect when
placed at points (k, −k) and (−k, k) for some k. Therefore, we
will generate outliers from the distribution

H = 1
2

N
([

k
−k

]
, 0.012I

)
+ 1

2
N

([−k
k

]
, 0.012I

)

for different values of k. The simulations were carried out for
10%, 20%, and 30% of outliers, but we only show the results for
10% as the relative performance of the methods did not change
much for the higher contamination levels.

The results are shown in Figure 5 for k = 3 and k = 5.
For k = 3, we see that the Pearson correlation has by far
the highest MSE, followed by normal scores (whose breakdown
value of 12.4% is not much higher than the 10% of contami-
nation). The 5% truncated normal scores and the Huber with
b = 1.5 do better, followed by the Spearman, the sigmoid,

the 10% truncated normal scores and the Huber with b =
1.3. The quadrant correlation does best among all the methods
based on a monotone transformation. However, wrapping still
outperforms it, because it gives the outliers a smaller weight.
Even though wrapping has a slightly lower efficiency for clean
data than Huber’s ψb with the same b, in return it delivers more
resistance to outliers further away from the center.

For k = 5 the pattern is the same, except that the Pearson
correlation is affected even more and wrapping has given a
near-zero weight to the outliers. For k = 2 (not shown) the
contamination is not really outlying and all methods performed
about the same, whereas for k > 5 the curves of the non-
Pearson correlations remain as they are for k = 5 since all of
our transformations g are constant in that region.

4.3. Comparison With Other Robust Correlation Methods

As described in the introduction, several good robust alterna-
tives to the Pearson correlation exist that do not fall in our
framework. We would like to find out how well wrapping stacks
up against the most well known of them, such as Kendall’s

Figure 5. MSE of the correlation measures in Figure 4 with 10% of outliers placed at k = 3 (left) and k = 5 (right).
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tau. We also compare with the Gnanadesikan–Kettenring (GK)
approach (5) in which we replace the variance by the square of a
robust scale, in particular the MAD and the scale estimator Qn
of Rousseeuw and Croux (1993).

For the approach starting with the estimation of a robust
covariance matrix, we consider the MCD method (Rousseeuw
1985) using the algorithm in (Hubert et al. 2012), and the SSCM
of Visuri et al. (2000). In both cases, we compute a correlation
measure between variables X1 and X2 from the estimated scatter
matrix C by (6). For our bivariate generated data, the matrix C
is only 2 × 2, but if the original data have more dimensions, the
estimated correlation between X1 and X2 now also depends on
the other variables. To illustrate this we computed the MCD and
the SSCM also in d = 10 dimensions where the true covariance
matrix is given by �jk = ρ for j �= k and 1 otherwise. The
simulation then reports the result of (6) on the first two variables
only.

The left panel of Figure 6 shows the bias of all these methods,
in the same setting as Figure 4. The two GK methods and the
MCD computed in 2 and 10 dimensions have the smallest bias,
followed by wrapping. The Kendall bias is substantially larger,
and in fact looks similar to the bias of the quadrant correlation

in Figure 6, which is not so surprising since they possess the
same function ξ(ρ) = 2 arcsin(ρ)/π in (11). The bias of the
SSCM is even larger, both when computed in d = 2 dimensions
and in d = 10. The MSE in the right panel of Figure 6 shows a
similar pattern.

Figure 7 shows the effect of 10% of outliers, using the same
generated data as in Figure 5. The left panel is for k = 3. The
scale of the vertical axis indicates that the outliers have increased
the MSE of all methods. The MCD in d = 2 dimensions is
the least affected, whereas the GK methods, the SSCM with
d = 2 and Kendall’s tau are more sensitive. Note that the data
in d = 10 dimensions was only contaminated in the first 2
dimensions, and the MCD still does quite well in that setting.
On the other hand, the MSE of the SSCM in d = 10 is now much
higher.

To conclude, wrapping holds its own even among well-
known robust correlation measures outside our transformation
approach. Wrapping was not the overall best method in our
simulation, that would be the MCD, but the latter requires much
more computation time which goes up a lot in high dimensions.
Moreover, the highly robust quadrant transformation yields a
low efficiency as it ignores much information in the data.

Figure 6. Bias and MSE of other robust correlation measures, for uncontaminated Gaussian data with sample size 100.

Figure 7. MSE of the correlation measures in Figure 6 with 10% of outliers placed at k = 3 (left) and k = 5 (right).
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Therefore, wrapping seems a good choice for our purpose,
which is to construct a fast robust method for fitting high-
dimensional data. Some other methods like the MCD perform
better in low dimensions (say, up to 20), but in high dimensions
the MCD and related methods become infeasible, whereas the
SSCM does not perform well any more.

5. Use in Higher Dimensions

5.1. Methodology

So far the illustrations of wrapping were in the context of bivari-
ate correlation. In this section, we explain its use in the higher
dimensional context for which it was developed. Our approach
is basically to wrap the data first, carry out an existing estimation
technique on the wrapped data, and then use that fit for the
original data. We proceed along the following steps.

Step 1: Estimation. For each of the (possibly many) continu-
ous variables Xj with j = 1, . . . , d, we compute a robust initial
scale estimate σ̂j such as the MAD. Then we compute a one-step
location M-estimator μ̂j with the wrapping function ψb,c with
defaults b = 1.5 and c = 4. We could take more steps or iterate
to convergence, but this would lead to a higher contamination
bias (Rousseeuw and Croux 1994).

Step 2: Transformation. Next we wrap the continuous vari-
ables. That is, we transform any xij to

x∗
ij = g(xij) = μ̂j + σ̂j ψb,c

(xij − μ̂j

σ̂j

)
. (26)

Note that avei(x∗
ij) is a robust estimate of μj and stdevi(x∗

ij) is a
robust estimate of σj . The wrapped variables X∗

j do not contain
outliers, and when the original Xj is Gaussian over 86% of its
values remain unchanged, that is x∗

ij = xij . If xij is missing
we have to assign a value to g(xij) in order to preserve the
PSD property of product moment matrices, and g(xij) = μ̂j
is the natural choice. We do not transform discrete variables—
depending on the context one may or may not leave them out of
the subsequent analysis.

Step 3: Fitting. We then fit the wrapped data x∗
ij by an existing

multivariate method, yielding for instance a covariance matrix
or sparse loading vectors.

Step 4: Using the fit. To evaluate the fit we will look at the
deviations (e.g., Mahalanobis distances) of the wrapped cases x∗

i
as well as the original cases xi .

Note that the time complexity of Steps 1 and 2 for all d
variables is only O(nd). Any fitting method in Step 3 must read
the data so its complexity is at least O(nd). Therefore, the total
complexity is not increased by wrapping, as illustrated in Table 1.

5.2. Estimating Covariance and Precision Matrices

Covariance Matrices
The covariance matrix of the wrapped variables has the entries

C(j, k) = cov(X∗
j , X∗

k ) (27)

= σ̂j σ̂k cor
(
ψb,c

(xij − μ̂j

σ̂j

)
, ψb,c

(yik − μ̂k
σ̂k

))
,

for j, k = 1, . . . , d. The resulting matrix is clearly PSD. We
also have the independence property: if variables Xj and Xk
are independent so are X∗

j = g(Xj) and X∗
k = g(Xk), and

as these are bounded their population covariance exists and is
zero.

Öllerer and Croux (2015) defined robust covariances with a
formula like (27) in which the correlation on the right was a
rank correlation. They showed that the explosion breakdown
value of the resulting scatter matrix (i.e., the percentage of
outliers required to make its largest eigenvalue arbitrarily high)
is at least that of the univariate scale estimator S yielding σ̂j
and σ̂k , and their proof goes through without changes in our
setting. Therefore, the robust covariance matrix (27) also has an
explosion breakdown value of 50%.

The scatter matrix given by (27) is easy to compute, and can
for instance be used for anomaly detection. In Section A.8 of
the supplementary material, it is illustrated how robust Maha-
lanobis distances obtained from the estimated scatter matrix
can detect outlying cases. The scatter matrix can also be used
in other multivariate methods such as canonical correlation
analysis, and serve as a fast initial estimate in the computation
of other robust methods such as (Hubert et al. 2012).

Precision Matrices and Graphical Models
The precision matrix is the inverse of the covariance matrix,
and allows to construct a Gaussian graphical model of the vari-
ables. Öllerer and Croux (2015) and Tarr et al. (2016) estimated
the covariance matrix from rank correlations, but one could
also use wrapping for this step. When the dimension d is too
high the estimated covariance matrix cannot be inverted, so
these authors construct a sparse precision matrix by applying
GLASSO. Öllerer and Croux (2015) showed that the breakdown
value of the resulting precision matrix, for both implosion and
explosion, is as high as that of the univariate scale estimator.
This remains true for wrapping, so the resulting robust precision
matrix has breakdown value 50%.

5.3. Distance Correlation

There exist measures of dependence which do not give rise to
PSD matrices but are used as test statistics for dependence, such
as mutual information and the distance correlation of Székely
et al. (2007), which yield a single nonnegative scalar that does
not reflect the direction of the relation if there is one. The
theory of distance correlation only requires the existence of first
moments. The distance correlation dCor between random vec-
tors X and Y is defined through the Pearson correlation between
the doubly centered interpoint distances of X and those of Y . It
always lies between 0 and 1. The population version dCor(X, Y)

can be written in terms of the characteristic functions of the joint
distribution of (X, Y) and the marginal distributions of X and Y .
This allows Székely et al. (2007) to prove that dCor(X, Y) = 0
implies that X and Y are independent, a property that does not
hold for the plain Pearson correlation.

The population dCor(X, Y) is estimated by its finite-sample
version dCor(Xn, Yn) which is used as a test statistic for depen-
dence. For a sample of size n this would appear to require O(n2)
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computation time, but there exists an O(n log(n)) algorithm
(Huo and Székely 2007) for the bivariate setting.

By itself distance correlation is not robust to outliers in
the data. In fact, we illustrate in Section A.9 of the supple-
mentary material that the distance correlation of indepen-
dent variables can be made to approach 1 by a single out-
lier among 100,000 data points, and the distance correlation
of perfectly dependent variables can be made to approach
zero. On the other hand, we could first transform the data
by the function g of (26) with the sigmoid ψ(z) = tanh(z),
and then compute the distance covariance. This combined
method does not require the first moments of the original
variables to exist, and the population version is again zero if
and only if the original variables are independent (since g is
invertible). Figure 8 illustrates the robustness of this combined
statistic.

The data for Figure 8 were generated following Example
1(b) in (Székely et al. 2007), where X and Y are multivariate
and all their components follow t(1), the Student t-distribution
with one degree of freedom. The null hypothesis states that
X and Y are independent. We investigate the power of the
test for dependence under the alternative that all components
of X and Y are independent except for X1 = Y1. For this
we use the permutation test implemented as dcor.test in the R
package energy. As in Székely et al. (2007), we set the signifi-
cance level to 0.1. The empirical power of the test is then the
fraction of the 1000 replications in which the test rejects the null
hypothesis.

In the left panel of Figure 8, we see the empirical power as a
function of the sample size when X and Y are both bivariate. The
power of the original dCor (dashed black curve) starts around
0.6 for n = 20 and approaches 1 when n = 200. This indicates
that for small sample sizes the components X2 and Y2, even
though they are independent of everything else, have added
noise in the doubly centered distances. In contrast, the power
of the robust method (solid blue curve) is close to 1 overall. No
outliers were added to the data, but the underlying distribution
t(1) is long-tailed.

The right panel of Figure 8 shows the effect of increasing the
dimension d of X and Y , for fixed n = 100. At dimension d = 1,
we only have the components X1 = Y1 and both methods have
power 1. At dimension d = 2, dCor has power 0.9 and the robust
version has power 1. When increasing the dimension further,
the power of dCor goes down to about 0.3 around dimension
d = 8, whereas the power of the robust method only starts
going down around dimension d = 17 and is still reasonable at
dimension d = 30. This illustrates that the transformation has
tempered the effect of the d − 1 independent variables on the
doubly centered distances, delaying the curse of dimensionality
in this setting.

5.4. Fast Detection of Anomalous Cells

Wrapping is a coordinatewise approach which makes it espe-
cially robust against cellwise outliers, that is, anomalous cells
xij in the data matrix. In this paradigm, a few cells in a row
(case) can be anomalous whereas many other cells in the same
row still contain useful information, and in such situations we
would rather not remove or downweight the entire row. The
cellwise framework was first proposed and studied by Alqallaf
et al. (2002, 2009).

Most robust techniques developed in the literature aim to
protect against rowwise outliers. Such methods tend not to work
well in the presence of cellwise outliers, because even a relatively
small percentage of outlying cells may affect a large percentage of
the rows. For this reason, several authors have started to develop
cellwise robust methods (Agostinelli et al. 2015). In the bivariate
simulation of Section 4 we generated rowwise outliers, but the
results for cellwise outliers are similar (see Section A.10 in the
supplementary material).

Actually, detecting outlying cells in data with many dimen-
sions is not trivial, because the correlation between the vari-
ables plays a role. The DetectDeviatingCells (DDC) method
of Rousseeuw and Van den Bossche (2018) predicts the value
of each cell from the columns strongly correlated with that
cell’s column. The original implementation of DDC required

Figure 8. Left panel: power of dCor (dashed black curve) and its robust version (blue curve) for bivariate X and Y with distribution t(1) and independence except for
X1 = Y1 versus the sample size n. Right panel: power of dCor and its robust version for d-dimensional X and Y with distribution t(1) and n = 100, as a function of the
dimension d.
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computing all O(d2) robust correlations between the d variables,
yielding total time complexity O(nd2) which grows fast in high
dimensions.

Fortunately, the computation time can be reduced a lot by
the wrapping method. This is because the product moment
technology allows for nice shortcuts. Let us standardize two
column vectors (i.e., variables) Xn = (x1, . . . , xn)T and Yn to
zero mean and unit standard deviation. Then it is easy to verify
that their correlation satisfies

cor(Xn, Yn) = 1
n − 1

〈
Xn, Yn

〉 = 1 − ||Xn − Yn||2
2(n − 1)

, (28)

where || . . . || is the usual Euclidean distance. This monotone
decreasing relation between correlation and distance allows us
to switch from looking for high correlations in d dimensions to
looking for small distances in n dimensions. When n << d,
this is very helpful, and used for example in Google Correlate
(Vanderkam et al. 2013).

The identity (28) can be exploited for robust correlation by
wrapping the variables first. In the (ultra)high-dimensional case
we can thus transpose our dataset, so it becomes d × n. If
needed we can reduce its dimension even more to some q << n
by computing the main principal components and projecting
on them, which preserves the Euclidean distances to a large
extent.

Finding the k variables that are most correlated to a variable
Xj therefore comes down to finding its k nearest neighbors in
q-dimensional space. Fortunately, there exist fast approximate
nearest neighbor algorithms (Arya et al. 1998) that can obtain
the k nearest neighbors of all d points in q dimensions in
O(qd log(d)) time, a big improvement over O(nd2). Note that we
want to find both large positive and large negative correlations,
so we look for the k nearest neighbors in the set of all variables
and their sign-flipped versions.

Using these shortcuts we constructed the method FastDDC
which takes far less time than the original DDC and can there-
fore, be applied to data in much higher dimensions. The detec-
tion of anomalous cells will be illustrated in the real data exam-
ples in Section 6. In both applications, finding the anomalies is
the main result of the analysis.

6. Real Data Examples

6.1. Prostate Data

In a seminal article, Singh et al. (2002) investigated the pre-
diction of two different types of prostate cancer from genomic
information. The data is available as the R file Singh.rda
in http://www.stats.uwo.ca/faculty/aim/2015/9850/microarrays/
FitMArray/data/ and contains 12,600 genes. The training set
consists of 102 patients and the test set has 34. There is also a
response variable with the clinical classification, −1 for tumor
and 1 for nontumor.

With the fast version of DDC introduced in Section 5.4, we
can now analyze the entire genetic dataset with n = 136 and
d = 12600, which would take very long with the original DDC
algorithm. Now it takes under 1 min on a laptop. In this analysis
only the genetic data is used and not the response variable, and
the DDC method is not told which rows correspond to the

Figure 9. Prostate data: cellmap of the genes with the largest number of flagged
cells.

training set. Out of the 136 rows 33 are flagged as outlying,
corresponding to the test set minus one patient. The entire
cellmap of size 136 × 12,600 is hard to visualize. Therefore,
we select the 100 variables with the most flagged cells, yielding
the cellmap in Figure 9. The flagged cells are colored red when
the observed value (the gene expression level) is higher than
predicted, and blue when it is lower than predicted. Unflagged
cells are colored yellow.

The cellmap clearly shows that the bottom rows, correspond-
ing to the test set, behave quite differently from the others.
Indeed, it turns out that the test set was obtained by a different
laboratory. This suggests to align the genetic data of the test set
with that of the training set by some form of standardization,
before applying a model fitted on the training data to predict
the response variable on the test data.

6.2. Video Data

For our second example, we analyze a video of a parking
lot, filmed by a static camera. The raw video can be found
on http://imagelab.ing.unimore.it/visor in the category Videos
for human action recognition in videosurveillance. It was orig-
inally analyzed by Ballan et al. (2009) using sophisticated

http://www.stats.uwo.ca/faculty/aim/2015/9850/microarrays/FitMArray/data/
http://www.stats.uwo.ca/faculty/aim/2015/9850/microarrays/FitMArray/data/
http://imagelab.ing.unimore.it/visor
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computer vision technology. The video is 23 sec long and
consists of 230 Red/Green/Blue (RGB) frames of 640 by 480
pixels, so each frame corresponds with 3 matrices of size
640 × 480. In the video we see two men coming from oppo-
site directions, meeting in the center where they talk, and
then running off one behind the other. Figure 10 shows 3
frames from the video. The men move through the scene,
so they can be considered as outliers. Therefore, every frame
(case) is contaminated, but only in a minority of pixels
(cells).

We treat the video as a dataset X with 230 row vectors xi
of length 921, 600 = 640 · 480 · 3, and we want to carry
out a PCA based on the robust covariance matrix between the
921, 600 variables. When dealing with datasets this large one
has to be careful with memory management, as a covariance

matrix between these variables has nearly 1012 entries which is
far too many to store in RAM memory. Therefore, we proceed
as follows:

1. Wrap the 230 data values of each RGB pixel (column) Xj
which yields the wrapped data matrix X∗ and its centered
version Z∗ = X∗ − x∗ .

2. Compute the first k = 3 loadings of cov(X∗) =
n

n−1 PM(Z∗) . We cannot actually compute or store this
covariance matrix, so instead we perform a truncated singu-
lar value decomposition (SVD) of Z∗ with k = 3 compo-
nents, which is mathematically equivalent. For this we use
the efficient function propack:svd() from the R package svd
with option neig = 3, yielding the loading row vectors vj for
j = 1, 2, 3.

Figure 10. Frames 60, 100, and 200 of the video data.

Figure 11. First loading vector of the video data, for classical PCA (upper left), Spearman correlation (upper right), Huber’s ψ (lower left), and wrapping (lower right).
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3. Compute the three-dimensional robust scores ti by project-
ing the original data on the robust loadings obtained from the
wrapped data, that is, ti = (xi − x∗)(vT

1 , vT
2 , vT

3 ) .

The classical PCA result can be obtained by carrying out
Steps 2 and 3 on Z = X − x without any wrapping.

We also want to compare with other robust methods. For the
Spearman method, we first replace each column Xj by its ranks,
that is, Rij is the rank of xij among all xhj with h = 1, . . . , n.
We also compute σ̂j = MAD(Xj). Then we transform each
xij to (Rij − aveh(Rhj))σ̂j/ stdevh(Rhj) yielding a matrix whose
columns have mean zero and standard deviation σ̂j to which we
again apply Step 2. Another method is to transform the data as
in (26) but using Huber’s ψ function ψb(z) = [z]b

−b with the
same b = 1.5 as in wrapping.

Figure 11 shows the first loading vector v1 displayed as an
image, for all 4 methods considered. Positive loadings are shown
in red, negative ones in blue, and loadings near zero look white.
For wrapping the loadings basically describe the background,
whereas for classical PCA they are affected by the moving parts
(mainly the men and some leaves) that are outliers in this
setting. The Spearman loadings resemble those of the classical
method, whereas those with Huber’s ψ are in between. Similar
conclusions hold for the second and third loading vectors (not
shown).

We can now compute a fit to each frame. For wrapping this is
x̂i = ti (vT

1 , vT
2 , vT

3 )T +x∗ . The residual of the frame is then ri =

xi − x̂i whose 921,600 components (pixels) we can normalize
by their scales. This allows us to keep those pixels of the frame
where the absolute normalized residuals exceed a threshold, and
turn the other pixels gray. For wrapping, this procedure yields
a new video which only contains the men. This method has
thus succeeded in accurately separating the movements from the
background.

The lower right panel of Figure 12 shows the result for the
central part of frame 100. The corresponding computation for
classical PCA is shown in the upper left panel, which has sepa-
rated the men less well: many small elements of the background
are marked as outlying, whereas parts of the man on the left
are missing. We conclude that in this dataset wrapping is the
most robust, classical PCA the least, and the other methods are
in between.

Note that the entire analysis of this huge dataset of size 1.6 Gb
in R took about two minutes on a laptop for wrapping (the times
for the other three methods were similar). This is much faster
than one would expect from the computation times in Table 1,
which are quadratic in the dimension since they calculate the
entire covariance matrix.

Of course, in real-time situations one would estimate the
robust loadings on an initial set of, say, 100 frames and then
process new images while they are recorded, which is very
fast as it only requires a matrix multiplication. In parallel
with this the robust loadings can be updated from time to
time.

Figure 12. Residuals of the video data, for classical PCA (upper left), Spearman correlation (upper right), Huber’s ψ (lower left), and wrapping (lower right).
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7. Software Availability

The wrapping transform is implemented in the R package
cellWise (Raymaekers et al. 2019) on CRAN, which now also
provides the faster version of DDC used in the first example. The
package contains two vignettes with examples. The video data of
the second example, its analysis and the video with results can be
downloaded from https://wis.kuleuven.be/stat/robust/software.

8. Conclusions

Multivariate data often contain outlying (anomalous) values, so
one needs robust methods that can detect and accommodate
such outliers. The underlying assumption is that the variables
are roughly Gaussian for the most part, with some possible
outliers that do not follow any model and could be anywhere. (If
necessary some variables can be transformed first, e.g., by taking
their logarithms.)

For multivariate data in low dimensions, say up to 20, there
exist robust scatter matrix estimators such as the MCD method
that can withstand many rowwise outliers, even those that are
not visible in the marginal distributions. We recommend to use
such high-breakdown methods when the dimension allows it.
But in higher dimensions, these methods would require infeasi-
ble computation time to achieve the same degree of robustness,
and then we need to resort to other methods.

It is not easy to construct robust methods that simultaneously
satisfy the independence property, yield positive semidefinite
matrices, and scale well with the dimension. We achieve this by
transforming the data first, after which the usual methods based
on product moments are applied.

Based on statistical properties such as the influence function,
the breakdown value and efficiency we selected a particular
transform called wrapping. It leaves over 86% of the data intact
under normality, which preserves partial information about
the data distribution, granularity, and the shape of the relation
between variables. Wrapping performs remarkably well in sim-
ulation. It is especially robust against cellwise outliers, where
it outperforms typical rowwise robust methods. This made it
possible to construct a faster version of the DDC method. The
examples show that the wrapping approach can deal with very
high-dimensional data.

Supplementary Materials

These consist of a text with the proofs referenced in the article, and an R
script that illustrates the approach and reproduces the examples.

Funding

This research has been supported by projects of Internal Funds KU Leuven.

References

Agostinelli, C., Leung, A., Yohai, V. J., and Zamar, R. H. (2015), “Robust
Estimation of Multivariate Location and Scatter in the Presence of
Cellwise and Casewise Contamination,” Test, 24, 441–461. [10]

Alqallaf, F., Konis, K., Martin, R. D., and Zamar, R. H. (2002), “Scalable
Robust Covariance and Correlation Estimates for Data Mining,” in

Proceedings of the Eighth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’02, New York, NY: ACM,
pp. 14–23. [10]

Alqallaf, F., Van Aelst, S., Yohai, V. J., and Zamar, R. H. (2009), “Propagation
of Outliers in Multivariate Data,” The Annals of Statistics, 37, 311–331.
[10]

Andrews, D. F., Bickel, P. J., Hampel, F. R., Huber, P. J., Rogers, W. H., and
Tukey, J. W. (1972), Robust Estimates of Location: Survey and Advances,
Princeton, NJ: Princeton University Press. [5]

Arya, S., Mount, D. M., Netanyahu, N. S., Silverman, R., and Wu, A. Y.
(1998), “An Optimal Algorithm for Approximate Nearest Neighbor
Searching in Fixed Dimensions,” Journal of the ACM, 45, 891–923.
[11]

Ballan, L., Bertini, M., Del Bimbo, A., Seidenari, L., and Serra, G. (2009),
“Effective Codebooks for Human Action Categorization,” in Proceedings
of ICCV International Workshop on Video-Oriented Object and Event
Classification, Kyoto, Japan, pp. 506–513. [11]

Boudt, K., Cornelissen, J., and Croux, C. (2012), “The Gaussian Rank
Correlation Estimator: Robustness Properties,” Statistics and Computing,
22, 471–483. [4]

Capéraà, P., and Garralda, A. I. (1997), “Taux de Résistance des tests de
Rang d’Indépendance,” The Canadian Journal of Statistics, 25, 113–124.
[4]

Croux, C., and Dehon, C. (2010), “Influence Functions of the Spearman
and Kendall Correlation Measures,” Statistical Methods & Applications,
19, 497–515. [4]

Gnanadesikan, R., and Kettenring, J. (1972), “Robust Estimates, Residuals,
and Outlier Detection With Multiresponse Data,” Biometrics, 28, 81–
124. [2]

Hampel, F., Ronchetti, E., Rousseeuw, P. J., and Stahel, W. (1986), Robust
Statistics: The Approach Based on Influence Functions, New York, NY:
Wiley. [3]

Hampel, F., Rousseeuw, P. J., and Ronchetti, E. (1981), The Change-of-
Variance Curve and Optimal Redescending M-Estimators,” Journal of
the American Statistical Association, 76, 643–648. [5]

Huber, P. (1981), Robust Statistics, New York, NY: Wiley. [3]
Hubert, M., Rousseeuw, P. J., and Verdonck, T. (2012), “A Deterministic

Algorithm for Robust Location and Scatter,” Journal of Computational
and Graphical Statistics, 21, 618–637. [8,9]

Huo, X., and Székely, G. J. (2016), “Fast Computing for Distance Covari-
ance,” Technometrics, 58, 435–447. [10]

Khan, J., Van Aelst, S., and Zamar, R. H. (2007), “Robust Linear Model
Selection Based on Least Angle Regression,” Journal of the American
Statistical Association, 102, 1289–1299. [2]

Maronna, R., Martin, D., and Yohai V. (2006), Robust Statistics: Theory and
Methods, New York: Wiley. [5]

Maronna, R., and Zamar, R. (2002), “Robust Estimates of Location and
Dispersion for High-Dimensional Data Sets,” Technometrics, 44, 307–
317. [2]

Öllerer, V., and Croux, C. (2015), “Robust High-Dimensional Precision
Matrix Estimation,” in Modern Nonparametric, Robust and Multivariate
Methods, eds. K. Nordhausen, and S. Taskinen, Cham: Springer Interna-
tional Publishing, pp. 325–350. [9]

Raymaekers, J., Rousseeuw, P. J., Van den Bossche, W., and Hubert, M.
(2019), Cellwise: Analyzing Data With Cellwise Outliers. R package 2.1.0,
CRAN. [14]

Rousseeuw, P. J. (1981), “A New Infinitesimal Approach to Robust Estima-
tion,” Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete,
56, 127–132. [4,5]

(1984), “Least Median of Squares Regression,” Journal of the
American Statistical Association, 79, 871–880. [2]

(1985), “Multivariate Estimation With High Breakdown Point,” in
Mathematical Statistics and Applications (Vol. B), eds. W. Grossmann,
G. Pflug, I. Vincze, and W. Wertz, Dordrecht: Reidel Publishing Com-
pany, pp. 283–297. [8]

Rousseeuw, P. J., and Croux, C. (1993), “Alternatives to the Median Absolute
Deviation,” Journal of the American Statistical Association, 88, 1273–
1283. [8]

(1994), “The Bias of k-Step M-Estimators,” Statistics & Probability
Letters, 20, 411–420. [9]

https://wis.kuleuven.be/stat/robust/software


TECHNOMETRICS 15

Rousseeuw, P. J., and Leroy, A. (1987), Robust Regression and Outlier Detec-
tion, New York, NY: Wiley. [5]

Rousseeuw, P. J., and Ronchetti, E. (1981), “Influence Curves of General
Statistics,” Journal of Computational and Applied Mathematics, 7, 161–
166. [3]

Rousseeuw, P. J., and Van den Bossche, W. (2018), “Detecting Deviating
Data Cells,” Technometrics, 60, 135–145. [1,10]

Shevlyakov, G., and Oja, H. (2016), Robust Correlation: Theory and Appli-
cations, New York: Wiley. [2]

Singh, D., Febbo, P., Ross, K., Jackson, D., Manola, J., Ladd, C., Tamayo,
P., Renshaw, A., D’Amico, A., Richie, J., Lander, E., Loda, M., Kantoff, P.,
Golub, T., and Sellers, W. (2002), “Gene Expression Correlates of Clinical
Prostate Cancer Behavior,” Cancer Cell, 1, 203–209. [11]

Spearman, C. (1904), “General Intelligence, Objectively Determined and
Measured,” The American Journal of Psychology, 15, 201–292. [2]

Székely, G. J., Rizzo, M. L., and Bakirov, N. K. (2007), “Measuring and Test-
ing Dependence by Correlation of Distances,” The Annals of Statistics,
35, 2769–2794. [9,10]

Tarr, G., Muller, S., and Weber, N. (2016), “Robust Estimation of Precision
Matrices Under Cellwise Contamination,” Computational Statistics and
Data Analysis, 93, 404–420. [9]

Vanderkam, S., Schonberger, R., Rowley, H., and Kumar, S. (2013), Nearest
Neighbor Search in Google Correlate, Google, http://www.google.com/
trends/correlate/nnsearch.pdf . [11]

Visuri, S., Koivunen, V., and Oja, H. (2000), “Sign and Rank Covariance
Matrices,” Journal of Statistical Planning and Inference, 91, 557–575. [2,8]

http://www.google.com/trends/correlate/nnsearch.pdf
http://www.google.com/trends/correlate/nnsearch.pdf


A Supplementary Material

Here the proofs of the results are collected.

A.1 Proof of Proposition 1

We can generate (X, Y ) ∼ Fp for ρ > 0 byX
Y

 = A


U

V

W

 (A.1)

where U, V,W follow a symmetric unimodal distribution G and are i.i.d., and

A =

√1− ρ 0
√
ρ

0
√

1− ρ √ρ

 .
For G = N(0, 1) the distribution of (A.1) equals (9). We now obtain ξ(ρ) = E[ψ(u

√
1− ρ+

w
√
ρ)ψ(v

√
1− ρ+w

√
ρ)]. Since we are interested in ρ ≈ 0, we can use the Taylor expansion

(derived with δ =
√
ρ) to obtain ψ(u

√
1− ρ+w

√
ρ) = ψ(u) +w

√
ρψ′(u) + w2ρ

2
ψ′′(u) + o(ρ)

and similarly for the second factor, yielding 9 terms of which only one term remains, the

others being o(ρ) or zero since ψ is odd:

ξ(ρ) = E

[
ψ(u)

{
ψ(v) + w

√
ρψ′(v) +

w2ρ

2
ψ′′(v)

}
+ w
√
ρψ′(u)

{
ψ(v) + w

√
ρψ′(v) +

w2ρ

2
ψ′′(v)

}
+
w2ρ

2
ψ′′(u)

{
ψ(v) + w

√
ρψ′(v) +

w2ρ

2
ψ′′(v)

}]
=ρE

[
w2ψ′(u)ψ′(v)

]
+ o(ρ)

=ρE[ψ′(u)]E[ψ′(v)] + o(ρ)

Therefore ξ′(0) = E[ψ′(u)]2 and we obtain IF((x, y), T, F0) = ψ(x)ψ(y)/E[ψ′]2.

A.2 Influence function for general ρ

We first consider the non Fisher-consistent functional Tψ = E[ψ(X)ψ(Y )]. The raw influ-

ence function of Tψ under the distribution Fρ generated as in (A.1) is then

IFraw((x, y), Tψ, Fρ) = ψ(x)ψ(y)− EFρ [ψ(X)ψ(Y )] .

1



Proof. Let Fε = (1− ε)Fρ + ε∆(x,y). Then

Tψ(Fε) = (1− ε)EFρ [ψ(X)ψ(Y )] + εE∆(x,y)
[ψ(X)ψ(Y )] .

Differentiating with respect to ε at ε = 0 yields −EFρ [ψ(X)ψ(Y )] + ψ(x)ψ(y).

Now denote the finite sample version of Tψ by Tn = 1
n

∑n
i=1 ψ(xi)ψ(yi). From the law of

large numbers we have that Tn is strongly consistent for its functional value: Tn
a.s.−−→ Tψ(Fρ)

for n→∞. By the central limit theorem, we also have asymptotic normality of Tψ:

√
n(Tn − Tψ(Fρ))→ N(0, Vraw)

where the asymptotic variance Vraw is given by

Vraw = Eρ[IFraw((X, Y ), Tψ, Fρ)
2]

= Eρ
[
(ψ(X)ψ(Y )− Eρ[ψ(X)ψ(Y )])2]

= Eρ
[
ψ(X)2ψ(Y )2

]
− Eρ[ψ(X)ψ(Y )]2 .

Now we switch to the Fisher-consistent functional Uψ(F ) := ξ−1(Tψ(F )) given in (11).

The general influence function defined in (12) then becomes

IF((x, y), Tψ, Fρ) := IFraw((x, y), Uψ, Fρ)

=
IFraw((x, y), Tψ, F )

ξ′(ρ)

=
ψ(x)ψ(y)− Eρ[ψ(X)ψ(Y )]

ξ′(ρ)

hence

IF((x, y), Tψ, Fρ) =
ψ(x)ψ(y)− Cρ

Dρ

(A.2)

where Cρ := Eρ[ψ(X)ψ(Y )] and Dρ := ξ′(ρ) can be computed numerically to any given

precision. For ρ = 0 this simplifies to the formula in Proposition 1. Note that the influence

function has the same shape for all values of ρ (including ρ = 0), only the constants Cρ

and Dρ differ which amounts to shifting and rescaling the IF along the vertical axis.

Now consider the estimator T ∗n = ξ−1(Tn) corresponding to the functional Uψ . Since

Tn is asymptotically normal, we can apply the delta method to establish the asymptotic

normality of T ∗n . Using (ξ−1(x))′ = 1/ξ′(ξ−1(x)) we obtain

√
n(T ∗n − ρ)→ N (0, V )

2



where V = Vraw/(ξ
′(ρ))2 with Vraw as above. At ρ = 0 this corresponds to (14).

A.3 Relation with influence functions of rank correlations

At the model distribution F0 of (9) the influence functions of the Quadrant and Spearman

correlation (Croux and Dehon, 2010) and the normal scores (Boudt et al., 2012) correspond

to those of certain ψ-product moments. This is not a coincidence, because if we write

the rank transform as g(xi) = h(Rn(xi)) it tends to the function g̃(x) = h(Φ(x)) when

n → ∞. If we put ψ(x) := h(Φ(x)) we observe that (15) indeed holds, with IF(x, h,Φ) =

h(Φ(x))/
∫

(h(Φ))′dΦ = ψ(x)/E[ψ′].

For the quadrant correlation h(u) = sign(u− 1/2) we get the IF of the median:

IF(x, Lh,Φ) =
sign(x)

2Φ′(0)
=

√
π

2
sign(x)

and so γ∗ = π/2 and eff = 4/π2.

For the normal scores rank correlation we have h(u) = Φ−1(u) hence IF(x, Lh,Φ) = x

which is the influence function of the mean and thus unbounded, yielding γ∗ = ∞ and

eff = 1. The truncated normal scores h(u) = Φ−1 ([u]1−αα ) = [Φ−1(u)]b−b where α = Φ(−b)

yields IF(x, Lh,Φ) = ψb(x)/E[ψ′b], which is the influence function of Huber’s ψb function.

For the Spearman correlation (h(u) = u− 1/2) we obtain

IF(x, Lh,Φ) =
Φ(x)− 1/2

E[(Φ′)2]
= 2
√
π

(
Φ(x)− 1

2

)
which is also the influence function of the Hodges-Lehmann estimator and the Mann-

Whitney and Wilcoxon tests (Hampel et al., 1986). It yields γ∗ = π and eff = 9/π2.

A.4 Proof of Proposition 2 and Corollary 1

Proof of Proposition 2. We give the proof for the maximum upward bias (the result for the

maximum downward bias then follows by replacing Y by −Y ). The uncontaminated dis-

tribution of (X, Y ) is F = Fρ from (A.1). Since ψ(X) and ψ(Y ) have the same distribution

and ψ is odd and bounded we find EF [ψ(X)] = EF [ψ(Y )] = 0 and EF [ψ(X)2] = EF [ψ(Y )2] .

Now consider the contaminated distribution G = (1−ε)Fρ+εH where H is any distribution.

At G we obtain

CorG(ψ(X), ψ(Y )) =
EG[(ψ(X)− EG[ψ(X)])(ψ(Y )− EG[ψ(Y )])]√

EG[(ψ(X)− EG[ψ(X)]2)]EG[(ψ(Y )− EG[ψ(Y )])2]

3



which works out to be

(1− ε) CovF (U, V ) + εEH [UV ]− ε2EH [U ]EH [V ]√
((1− ε)VF + εEH [U2]− ε2EH [U ]2)((1− ε)VF + εEH [V 2]− ε2EH [V ]2)

(A.3)

where we denote U := ψ(X) and V := ψ(Y ) to save space, as well as VF := VarF (U) =

EF [ψ(X)2] = EF [ψ(Y )2] = VarF (V ).

We will show the proof for ρ = 0 which implies that U and V are independent hence

CovF (U, V ) = 0 as this reduces the notation, but the proof remains valid if the term

(1 − ε) CovF (U, V ) = (1 − ε)VFTψ(F ) is kept. The proof consists of two parts. We first

show that the contaminated correlation (A.3) is bounded from above by

C(ε) :=
εM2

(1− ε)VF + εM2
(A.4)

and then we provide a sequence of contaminating distributions Hn for which (A.3) tends

to this upper bound.

1. Suppose first that EH [U ]EH [V ] 6 0. Then we have for the numerator of (A.3):

EH [UV ]− εEH [U ]EH [V ] 6 EH [UV ]− EH [U ]EH [V ]

6
√

(EH [U2]− EH [U ]2)(EH [V 2]− EH [V ]2) .

Now consider the denominator of (A.3) and note that√
((1− ε)VF + ε(EH [U2]− εEH [U ]2))((1− ε)VF + ε(EH [V 2]− εEH [V ]2)) >√

((1− ε)VF + ε(EH [U2]− EH [U ]2))((1− ε)VF + ε(EH [V 2]− EH [V ]2))

because EH [U2]−EH [U ]2 > 0, EH [U2] > 0, EH [U ]2 > 0 and 0 6 ε 6 1. Therefore, we can

bound (A.3) from above by

ε
√

(EH [U2]− EH [U ]2)(EH [V 2]− EH [V ]2)√
((1− ε)VF + ε(EH [U2]− EH [U ]2))((1− ε)VF + ε(EH [V 2]− EH [V ]2))

and this quantity is maximal when (EH [U2]−EH [U ]2) and (EH [V 2]−EH [V ]2) are as large

as possible. Their supremum is in fact M2. Therefore, (A.3) is less than or equal to (A.4).

2. Suppose now that EH [U ]EH [V ] > 0. We will first show that the numerator is

bounded as follows:

EH [UV ]− εEH [U ]EH [V ] 6
√

(EH [U2]− εEH [U ]2)(EH [V 2]− εEH [V ]2) . (A.5)
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By squaring both sides we find that this is equivalent to showing

EH [UV ]2 − 2εEH [U ]EH [V ]EH [UV ]

6 EH [U2]EH [V 2]− ε(EH [U2]EH [V ]2 + EH [U ]2EH [V 2])

which is equivalent to

EH [U2]EH [V 2]−EH [UV ]2+ε(2EH [U ]EH [V ]EH [UV ]−EH [U2]EH [V ]2−EH [U ]2EH [V 2]) > 0.

(A.6)

We know that (A.5) holds for ε = 1 as it is equivalent to CovH(U, V ) 6
√

VarH(U) VarH(V )

so (A.6) is true in that case.

The general version of (A.6) with ε 6 1 equals the LHS for ε = 1, plus (1− ε) times

EH [U ]2EH [V 2]− 2EH [U ]EH [V ]EH [UV ] + EH [U2]EH [V ]2 . (A.7)

Therefore, it would suffice to prove that (A.7) is nonnegative. We know that |EH [UV ]| 6√
EH [U2]EH [V 2] by Cauchy-Schwarz. Since EH [U ]EH [V ] > 0 we obtain

EH [U ]2EH [V 2]− 2EH [U ]EH [V ]EH [UV ] + EH [U2]EH [V ]2

> EH [U ]2EH [V 2]− 2EH [U ]EH [V ]
√
EH [U2]EH [V 2] + EH [U2]EH [V ]2

=
(
EH [U ]

√
EH [V 2]− EH [V ]

√
EH [U2]

)2

> 0 .

Now that we have shown (A.5) we can proceed as in part 1, since (A.3) is bounded from

above by

ε
√

(EH [U2]− εEH [U ]2)(EH [V 2]− εEH [V ]2)√
((1− ε)VF + ε(EH [U2]− εEH [U ]2))((1− ε)VF + ε(EH [V 2]− εEH [V ]2))

and this quantity is maximal when (EH [U2] − εEH [U ]2) and (EH [V 2] − εEH [V ]2) are as

large as possible. Their supremum is again M2, so (A.3) is less than or equal to (A.4).

3. Now all that is left to show is that the upper bound (A.4) is sharp. Let (kn)n∈N

be a sequence such that limn→∞ ψ(kn) = supx |ψ(x)| = M and consider the sequence of

‘worst-placed’ contaminating distributions

Hn =
1

2
∆(kn,kn) +

1

2
∆(−kn,−kn) . (A.8)
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For the numerator of (A.3) we have lim
n→∞

εEHn [UV ]− ε2EHn [U ]EHn [V ] = εM2 since EHn [U ] =

0 = EHn [V ], and for the denominator we obtain analogously

lim
n→∞

√
((1− ε)VF + εEHn [U2])((1− ε)VF + εEHn [V 2]) = (1− ε)VF + εM2

so we reach the upper bound (A.4). The proof for the maximum downward bias is en-

tirely similar, and there the worst placed contaminating distributions are of the form

Hn = 1
2
∆(kn,−kn) + 1

2
∆(−kn,kn) . QED.

Proof of Corollary 1. For the breakdown value we start from F = F1 , that is ρ = 1

and X = Y , so CovF (ψ(X), ψ(Y )) = VarF (ψ(X)) hence Tψ(F ) = 1. From Proposition 2

we know that

inf
G∈Fε

Tψ(G) =
(1− ε) VarF (ψ(X))Tψ(F )− εM2

(1− ε) VarF (ψ(X)) + εM2
.

For this to be nonpositive the numerator has to be, i.e. (1 − ε) VarF (ψ(X)) − εM2 6 0.

The smallest ε for which this holds is indeed VarF (ψ(X))/(VarF (ψ(X)) +M2) . QED.

Note that we can rewrite the breakdown value as ε∗ = 1 − (EF [(ψ/M)2] + 1)−1 so it

is a strictly increasing function of EF [(ψ/M)2]. This implies that the maximizer of the

breakdown value is ψ(x) = sign(x) which maximizes EF [(ψ/M)2] = 1, hence ε∗ = 0.5

(this yields the quadrant correlation). Interestingly, the breakdown value of the scale M-

estimator S defined by avei ρ(xi/S) = EF [ρ] where ρ(z) := ψ2(z) is also determined by the

ratio EF [ρ]/M2 = EF [(ψ/M)2], see e.g. Maronna et al. (2006).

A.5 Relation with breakdown values of rank correlations

The breakdown values of the rank correlations in Table 2 were derived by Capéraà and

Garralda (1997) and Boudt et al. (2012), but not for the ε-contamination model (16).

Instead they used replacement contamination, which means you can take out a certain

fraction of the observations and replace them by arbitrary points. In fact ε-contamination

is a special case of this, which corresponds to replacing a mass ε distributed exactly like

the original distribution F , whereas in general one could replace an arbitrary part of F .

Therefore the breakdown value for replacement is always less than or equal to that for
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ε-contamination. However, in many situations the result turns out to be the same, as is

the case here.

For rank correlations in the replacement model, Capéraà and Garralda (1997) and Boudt

et al. (2012) showed that given a sorted sample (x1, y1), . . . , (xn, yn) where x1 < · · · < xn

and xi = yi for all i ∈ {1, . . . , n}, the worst possible bias is reached by replacing the highest

and the lowest yi by values beyond the other end of the range.

We can in fact obtain the same type of configuration through the ε-contamination

model. Let us start from perfectly correlated data, that is xi = yi for all i ∈ {1, . . . , n}.

Then choose a sequence of contaminating distributions Hn = 1
2
∆(−kn,kn) + 1

2
∆(kn,−kn) in

which the kn are positive and tend to infinity, so the horizontal and vertical coordinates of

the outliers move outside the range of the original data values. The resulting rank pairs

then have the same configuration as was constructed for breakdown under replacement.

Therefore the ε-contamination breakdown values of rank correlations equal those under

replacement.

A.6 Construction of the optimal transformation

Theorem 3.1 in (Hampel et al., 1981) says that for any 0 < c <∞ and large enough k > 0

there exist positive constants 0 < b < c, A and B such that ψ̃ defined by

ψ̃(z) =


z if 0 6 |z| 6 b√
A(k − 1) tanh

(
B
2

√
k−1
A

(c− |z|)
)

sign(z) if b 6 |z| 6 c

0 if c 6 |z|

(A.9)

satisfies

b =
√
A(k − 1) tanh

(
1

2

√
(k − 1)B2

A
(c− b)

)
,

A =
∫ c
−c ψ̃(x)2dΦ(x) , B =

∫ c
−c ψ̃

′(x)dΦ(x) and κ∗(ψ̃) = k . Theorem 4.1 then says that this

function ψ̃ minimizes the asymptotic variance among all odd functions ψ satisfying (21)

subject to κ∗(ψ) 6 k, and that this optimal solution is unique (upto a positive nonzero

factor). It can be verified that for a given value of c there is a strictly monotone relation

between k and b, so we have decided to parametrize ψ̃ by the easily interpretable tuning

constants b and c. A short R-script is available that for any b and c derives the other

7



constants A, B and k, in turn yielding q1 =
√
A(k − 1) and q2 = (B/2)

√
(k − 1)/A . For

instance, for b = 1.5 and c = 4 we obtain A = 0.7532528, B = 0.8430849 and k = 4.1517212

hence q1 = 1.540793 and q2 = 0.8622731, yielding the gross-error-sensitivity (b/B)2 = 3.16

and the efficiency (B2/A)2 = 0.890.

x

y

IF
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−2

−1

0

1

2

Figure 13: Influence function of Tψ at Fρ for ρ = 0.5.

Figure 13 shows the influence function (A.2) at ρ = 0.5 for the psi-function ψb,c of (22).

The influence function has the same shape at other values of ρ, up to shifting and rescaling

the surface along the vertical axis, as shown in Section A.2.

A.7 Proof of Propositions 3 and 4

Proof of Proposition 3. It is assumed that (X, Y ) follows a bivariate Gaussian distribu-

tion. Due to the invariance properties of correlation, we can assume w.l.o.g. that the

distribution is Fρ with center 0, unit variances and true correlation −1 < ρ < 1. The

assumption that Cor(gX(X), gY (Y )) = 0 is equivalent to its numerator being zero, i.e.
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T (Fρ) = Eρ[ψ(X)ψ(Y )] = 0. We need to show that this implies ρ = 0, from which

independence between the components follows.

We first show that ρ > 0 implies that T (Fρ) = Eρ[ψ(X)ψ(Y )] > 0. Denote A =

{(x, y) ∈ R2; xy > 0} and B = {(x, y) ∈ R2; xy < 0}. We then have:

Eρ[ψ(X)ψ(Y )] =

∫
R2

ψ(x)ψ(y)fρ(x, y)dxdy

=

∫
A

ψ(x)ψ(y)fρ(x, y)dxdy +

∫
B

ψ(x)ψ(y)fρ(x, y)dxdy

=

∫
A

ψ(x)ψ(y)fρ(x, y)dxdy +

∫
A

ψ(x)ψ(−y)fρ(x,−y)dxdy

=

∫
A

ψ(x)ψ(y)fρ(x, y)dxdy −
∫
A

ψ(x)ψ(y)fρ(x,−y)dxdy

=

∫
A

ψ(x)ψ(y) {fρ(x, y)− fρ(x,−y)} dxdy .

In the third equality we have changed the integration variables from (x, y) to (x,−y). This

transformation has Jacobian 1 and maps B to A. In the fourth equality we have used that

ψ is odd so ψ(−y) = −ψ(y). Now note that fρ(x, y) > fρ(x,−y) for all (x, y) ∈ A since

ρ > 0. We conclude that T (Fρ) > 0. The proof that T (Fρ) < 0 for ρ < 0 follows by

symmetry. Therefore, T (Fρ) = 0 implies ρ = 0 .

Proof of Proposition 4.

(i) From (23) and equivariance it follows that µ̂Y = α + βµ̂X and σ̂Y = βσ̂X hence

gY (yi) = (yi − µ̂Y )/σ̂Y = (xi − µ̂X)/σ̂X = gX(xi) for all i.

(ii) From Cor(gX(xi), gY (yi)) = 1 and avei(gX(xi)) = 0 and avei(gY (yi)) = 0 it follows

that there is a constant γ > 0 such that gY (yi) = γgX(xi) for all i. For the i for which

|xi−µ̂X |/σ̂X 6 b and |yi−µ̂Y |/σ̂Y 6 b it holds that gY (yi) = (yi−µ̂Y )/σ̂Y and gX(xi) = (xi−

µ̂X)/σ̂X hence (yi− µ̂Y )/σ̂Y = γ(xi− µ̂X)/σ̂X which implies (23) with α = µ̂Y −γµ̂X σ̂Y /σ̂X
and β = γσ̂Y /σ̂X .

A.8 Illustration of anomaly detection based on robust location

and scatter

To visualize things we consider a small bivariate data set, about the star cluster CYG OB1

consisting of 47 stars in the direction of Cygnus. Their Hertzsprung-Russell diagram is a
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Figure 14: Plot of the 47 stars with their classical tolerance ellipse (red) and the one based

on wrapped covariance (blue).

plot of the logarithm of each star’s light intensity versus the logarithm of its temperature.

The data can be found on page 27 of (Rousseeuw and Leroy, 1987) and is plotted in Figure

14. We see that the majority of the stars (the so-called main sequence stars) follows a

certain upward trend, whereas there are four anomalous stars in the upper left corner.

These are red giant stars. In this data set the anomalies are measured correctly, but they

belong to a different population.

The classical correlation between the variables is −0.21 which would indicate a negative

relation. However, this decreasing trend is caused by the four outliers, and without them

the trend would be increasing. Indeed, the wrapped correlation is 0.57 indicating a positive

relation. Figure 14 shows the 99% tolerance ellipse derived from the classical mean and

covariance matrix, in red. The four outliers have pulled the ellipse toward them, making

them lie on its boundary. In contrast, the tolerance ellipse from the wrapped mean and

covariance (in blue) fits the majority of the stars, leaving aside the four outliers.

Of course, in higher dimensions we can no longer plot the data points or draw the

tolerance ellipsoids. But in that case we can still look at the classical Mahalanobis distance
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of each case xi given by

MD(xi) =

√
(xi − µ̂)′Σ̂−1(xi − µ̂) , (A.10)

in which µ̂ is the arithmetic mean and Σ̂ the empirical covariance matrix. The left panel of

Figure 15 plots MD(xi) versus the case number i. In this plot the four giant stars lie close

to the cutoff value
√
χ2
d,0.99 for dimension d = 2. But they are easily detected in the right

hand panel, which plots the robust distances given by (A.10) where this time µ̂ and Σ̂ are

the location and scatter matrix obtained from the wrapped data. These robust estimates

have thus allowed us to detect the anomalies.
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Figure 15: Classical distances of the stars (left) and their robust distances based on wrapped

location and covariance (right).

A.9 Distance correlation after transformation

The distance correlation dCor between random vectors X and Y is defined by the Pearson

correlation between the doubly centered interpoint distances of X and those of Y (Székely

et al., 2007). It always lies between 0 and 1. Interestingly, dCor(X,Y ) can also be

written in terms of the characteristic functions of the joint distribution of (X,Y ) and the

marginal distributions of X and Y . Using this result Székely et al. (2007) prove that
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dCor(X,Y ) = 0 implies that X and Y are independent, which is not true for the plain

Pearson correlation (except for multivariate Gaussian data).

The population dCor(X,Y ) is estimated by its finite-sample version dCor(Xn,Yn)

which is a test statistic for dependence. Unfortunately this statistic is very sensitive to

outliers. To illustrate this we first generate n = 100, 000 data points from the standard bi-

variate Gaussian distribution, which has dCor(X,Y ) = 0, and replace a single observation

by an outlier in the point (a, a). The left panel of Figure 16 shows dCor(Xn,Yn) as a func-

tion of a. For this we used the fast algorithm of Huo and Székely (2007) as implemented

in the function dcor2d in the R package energy, which can handle such a large sample size

n. For a = 0 we obtain dCor(Xn,Yn) ≈ 0 but by letting a increase we can bring the result

close to 1, even though the remaining 99, 999 points were generated independently.
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Figure 16: Left panel: distance correlation (black curve) and its robust version (blue curve)

of a data set with 99, 999 standard Gaussian data points and one outlier at (a, a) versus

a. Right panel: distance correlation of data with 99, 999 data points (xi, xi) with standard

Gaussian xi and one outlier at (a, 0).

We can also do the opposite, by starting from a perfectly dependent setting. For this

we generate Xn from the univariate standard Gaussian distribution, and take Yn := Xn

so that dCor(Xn,Yn) = 1. Then we replace a single observation by an outlier in the point

(a, 0). In the right panel of Figure 16 we now see that we can bring dCor(Xn,Yn) close to
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0 by this single outlier out of 100, 000 data points.

We now apply our methodology of first transforming the individual variables. For this

we use the function g of (25) where µ̂j is the sample median and σ̂j is the median absolute

deviation. For the ψ-function we use the sigmoid ψ(z) = tanh(z). After this transformation

we compute the distance correlation. This combined method no longer requires the first

moments of the original variables to exist because ψ is bounded, and its population version

is again zero if and only if the original X and Y are independent, since ψ is invertible.

The blue lines in Figure 16 are the result of applying the combined method, which by

construction is insensitive to the outlier.

The robustness of the proposed method can help even when no outliers are added but

distributions are long-tailed, as illustrated in Figure 8.

A.10 Simulation with cellwise outliers

This section repeats the simulation in Section 4 for cellwise outliers. The clean data are

exactly the same, but now we randomly select data cells and replace them by outliers

following the distributionN(k, 0.012) when they occur in the x-coordinate andN(−k, 0.012)

when they occur in the y-coordinate. The simulation was run for 10%, 20% and 30% of

cellwise outliers, but the patterns were similar across contamination levels.

Figure 17 shows the MSE of the same transformation-based correlation measures as in

Figure 4, with 10% of cellwise outliers for k = 3 and k = 5. Within this class Pearson

again has the worst MSE, followed by normal scores. The quadrant correlation is next,

and does not look as good here as for rowwise outliers. Wrapping has the lowest MSE,

and again outperforms Spearman, sigmoid and Huber because it moves the outlying cells

to the central part of their variable.

Figure 18 compares wrapping to the correlation measures in Figure 7 in the presence

of these cellwise outliers. Also here the SSCM has the largest bias, especially in d = 10

dimensions, followed by Kendall’s tau. Wrapping does well but not as well as MCD and

GK when k = 3, and their performance is similar for k = 5. But in higher dimensions

wrapping still has the redeeming feature that it yields a PSD correlation matrix unlike the

GK method, whereas the MCD suffers from the propagation of cellwise outliers and a high

computation time.
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Figure 17: MSE of the correlation measures in Figure 4 with 10% of cellwise outliers placed

with k = 3 (left) and k = 5 (right).
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Figure 18: MSE of the correlation measures in Figure 6 with 10% of cellwise outliers placed

with k = 3 (left) and k = 5 (right).
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