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Abstract

Phytoplankton primary production (PP) in turbid estuaries is often limited by light-availability. Two important factors
altering light-climate are solar irradiance at the water surface and exponential light-extinction coefficient within the
water column. Additionally, the depth of the water body changes the light-climate and corresponding PP by altering the
ratio of the euphotic and mixing depth in a well-mixed estuary. These three parameters are highly variable yet are often
assumed to be constant by both experimental scientists and modelers because of a lack of data or to reduce complexity.
Because assuming constant parameters introduces an error, we utilize an idealized model of depth-integrated primary
production to analyze the (individual) impact of temporal variability in these three parameters. We only consider the
main tidal and solar constituents in temporal variability of the forcings and apply a second-order moment approximation
to analyze the bias introduced to time-averaged PP estimates by neglecting temporal fluctuations. We demonstrate that
the sign and magnitude of this bias are system-specific and depend on two non-dimensional parameters that characterize
the system. The first is equivalent to the ratio of mixing and photic depth. The second accounts for typical incident
irradiance and the photosynthetic parameters of the phytoplankton population present. To demonstrate the applicability
of our approach, we apply the model to two cases in the Scheldt estuary (Belgium) in the brackish and freshwater part.
In the first application, we study the impact of fluctuations on phytoplankton in dynamic equilibrium, where biomass
is assumed to be constant. We show that variability in solar irradiance has the largest impact on time-averaged PP
in dynamic equilibrium, resulting in a 30 percent decrease compared to time-invariant forcing. By comparing with a
numerical integrator, we show that a second-order moment approximation correctly predicts the order of magnitude
of the impact of temporal variability of the individual parameters. In the second application, we study the impact of
fluctuations on unbounded exponential phytoplankton growth. Also here, fluctuations in solar irradiance have the largest
impact and lead to a significant decrease in exponential growth. In this case study, we show that temporal fluctuations
delay the onset of the biomass by two weeks and decrease the biomass by a factor 14 after two weeks compared to time
invariant forcing. Additionally, we show that the temporal fluctuations induce low-frequency variability in phytoplankton
biomass with similar periodicity as the spring-neap cycle, making it difficult to observe these phenomena in real-world
time series.

Keywords: phytoplankton dynamics, light-limited productivity, dynamic model, Scheldt estuary, temporal variability,
turbidity

1. Introduction

Primary production (PP) in estuaries and the corre-
sponding phytoplankton biomass dynamics result from a
complex interaction of physical and biological processes
(Alpine and Cloern, 1992; Dijkstra et al., 2019). Ex-
amples of factors that directly impact PP and phyto-
plankton biomass dynamics are physical-chemical factors
such as river flushing (Filardo and Dunstan, 1985; Liu
and de Swart, 2015), temperature (Eppley, 1972), salin-
ity (Lucas et al., 1998), nutrients (Tilman et al., 1982;
Cira et al., 2016), and light availability (Sverdrup, 1953;
Desmit et al., 2005), or biological factors such as grazing

(Lionard et al., 2005). Due to these complex interactions,
we expect both strong high-frequency (∼hours−1-days−1)
and low-frequency (∼ weeks−1-months−1) dynamics gen-
erated by water flow and seasonality in, for example, water
temperature, light-availability, and freshwater discharge.

To acquire insight into the complex interacting pro-
cesses affecting PP and phytoplankton biomass dynamics,
both intensive monitoring campaigns (Maris and Meire,
2016) and a broad range of models have been set up,
ranging from numerically-costly three-dimensional mod-
els (Chen and Mynett, 2006; Chao et al., 2010), idealized
two-dimensional models (McSweeney et al., 2017), one-
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dimensional models (Brinkman, 1993; Soetaert and Her-
man, 1995; Vanderborght et al., 2002; Volta et al., 2016;
Liu et al., 2018) to zero-dimensional models (Desmit et al.,
2005; Cox et al., 2009).

Due to the high complexity of PP and phytoplank-
ton biomass dynamics, idealized models are particularly
well suited because they simplify the interpretation of the
model results and reduce computational costs, allowing for
long-term simulations and extensive sensitivity analyses.
More specifically, often model parameters are considered
constant to remove nonlinearities and allow for analytical
solution procedures (Dijkstra et al., 2017) instead of com-
putational costly iterative solution methods that tidally
resolve the phytoplankton dynamics (Arndt et al., 2011).
By using constant model parameters, the impact of tempo-
ral variability, which is clearly present in factors affecting
PP, is neglected. Only a few studies focus on the individ-
ual impact of this, sometimes neglected, high-frequency
temporal variability in the factors affecting PP and phy-
toplankton biomass dynamics. The few studies that do ex-
ists are limited to specific examples (Desmit et al., 2005).

Therefore, this study aims to construct a generic, ide-
alized model that allows us to study the impact of tem-
poral fluctuations of individual tidal and solar variables of
PP and the corresponding phytoplankton dynamics on an
hourly-daily timescale.

We focus on well-mixed, turbid- and nutrient-rich es-
tuarine systems, allowing to analytically compute depth-
averaged PP and only consider light-limitation, thereby
excluding nutrient depletion and temperature dependence.
The biological impact of grazing is implicitly included in
a constant mortality rate and calibrated to Chlorophyll-
a (Chl-a) observations. Moreover, we assume tide-
dominated systems and only include periodic temporal
variability due to the tides and solar cycle. We focus on
the three important factors altering the light-climate on
the hourly-daily timescale: solar irradiance at the water
surface, exponential light-extinction coefficient within the
water column, and depth of the water body, which changes
the ratio of euphotic and mixing depth in a well-mixed es-
tuary.

To model the impact of a changing light climate on
phytoplankton biomass growth, we use the Platt light-
limitation function (Platt et al., 1980). By assuming
a well-mixed estuary, we focus on depth-averaged Platt
light-limitation (DAP), allowing for an analytical solution
approach. Moreover, to explicitly compute the impact of
temporal variability of the individual parameters and cor-
rect for the usage of averaged parameter values, we use
the analytical, second-order up-scaling method often re-
ferred to as the moment approximation. This method is
based on a second-order Taylor expansion. In the past, the
moment approximation has been successfully applied to

terrestrial primary production (Bolker and Pacala, 1997;
Wirtz, 2000). However, terrestrial PP significantly dif-
fers from estuarine PP because the light climate in estuar-
ine systems also depends on the tidal variability in depth,
suspended sediment concentration, and its corresponding
complex temporal variability.

To show the applicability of our approach, we work out
two applications in the Scheldt estuary (Belgium). Firstly,
we apply our framework to a time-averaged production as-
suming dynamic equilibrium (application 1). This reflects
the situation where phytoplankton biomass is top-down
controlled by grazing organisms (e.g., zooplankton), which
is often the case in real ecosystems, and remains relatively
constant during a large part of the season when primary
productivity rates are positive. Such dynamic equilibrium
is commonly observed after an initial spring-bloom. Sec-
ondly, we utilize our idealized model to study phytoplank-
ton dynamics at the onset of a phytoplankton bloom with
unbounded biomass growth (application 2).

In this paper, we first introduce the phytoplankton
model and DAP function, the corresponding moment ap-
proximation, and the two applications in the Scheldt es-
tuary in Section 2. In Section 3, we present the generic
results of the moment approximation and apply these re-
sults to our two applications in the Scheldt estuary. Fi-
nally, we discuss our results in Section 4 and summarize
our conclusions in Section 5.

2. Material and methods

In this section, we first present the depth-integrated
model for phytoplankton biomass dynamics and corre-
sponding DAP function Λ that includes our three main
parameters of interest: the solar irradiance at the water
surface E0, exponential light-extinction coefficient kd, and
water depth d. Next, we apply a second-order moment ap-
proximation to the DAP function Λ, which forms the basis
of our subsequent analysis. Finally, we work out applica-
tions 1 and 2 in the Scheldt estuary using our framework
and present the corresponding observations. To acquire an
analytical solution in application 2, we only include sinu-
soidal (cf. periodic) temporal variability in E0, kd, and d
(see Section 2.4). A conceptual diagram of our approach
is presented in Fig. 1.

2.1. Phytoplankton model

To describe PP in a tidal, well-mixed system, we start
from the following one-dimensional, differential equation
for depth-averaged phytoplankton biomass concentration
growth rate (units kg m−3 s−1) (Langdon, 1993; Desmit
et al., 2005):
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(a) Conceptual diagram of the model set-up

Figure 1: Conceptual diagram of our idealized model. In a well-mixed, light-limited tidal system, gross primary production (GPP) is limited
by the DAP function Λ(t), which is influenced by solar irradiance and tides. The tides also directly alter biomass dynamics through advection
and diffusion in the longitudinal direction. We apply the moment approximation to Λ(t) and idealize the temporal variability in E0, kd, and
d. This results in an analytical expression that relates temporal variability of GPP and corresponding phytoplankton biomass dynamics to
variability in E0, kd, and d. We apply the idealized model to time-averaged GPP in dynamic equilibrium (application 1) and a phytoplankton
bloom (application 2) in the Scheldt estuary (Belgium).
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)−m
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]
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with B̃ the depth-averaged phytoplankton biomass con-
centration, x the distance from the mouth, z the dis-
tance from the water surface in the downward direction,
t the time, ρ the respiration and excretion coefficient, m
the mortality coefficient, Pm the maximum photosynthetic
rate, Λ̃ a GPP light-limitation function, ˜̃u the (vertically
homogeneous) water velocities in the longitudinal direc-
tion, and Kh the longitudinal eddy diffusivity coefficient.

In Eq. (1), we assume a vertically, well-mixed systems
resulting in a depth-independent phytoplankton biomass

concentration B̃(x, t). Furthermore, we exclude nutrient
limitation since we consider primary production in nu-
trient replete, light-limited systems. Moreover, we also
exclude temperature dependence and implicitly included
grazing of phytoplankton in the mortality coefficient m.
Crucially, we assume balanced-growth conditions: growth
and photosynthesis is assumed never to be decoupled on
the timescale of our application (i.e., hours-days). All pho-
tosynthesis is used for biomass production (Berman-Frank
and Dubinsky, 1999). Such decoupling is typical in nu-
trient limitation situations, which we assume not to oc-
cur in the turbid, nutrient replete estuaries under study.
Furthermore, we assume that phytoplankton species sur-
viving in turbid conditions are adapted to harvest every
photon possible and are thus able to store excess photosyn-
thesized material rather than excrete photosynthetically-
derived dissolved organic carbon compounds (PDOC).
Consequently, also during the short periods that cells re-
side in the upper part of the water column where light
availability is maximal, growth is balanced.

To model light-limitation, we use the Platt light-
limitation function Λ̃ (Platt et al., 1980):

Λ̃ =

{

1− exp

[

−
α

Pm
I

]}

, (2)

in which α is the photosynthetic efficiency and I is the
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light intensity. Using the Lambert-Beer expression for ex-
ponential light attenuation in a water body, Eq. (2) yields:

Λ̃(z, t) =
{

1− exp
[

−β̃ exp (−z̃)
]}

, (3)

in which β̃ and z̃ are dimensionless numbers defined as:

β̃ =
αE0

Pm
and z̃ = kd · z. (4)

Because the system is assumed to be well-mixed, the
total biomass production GPP(t) integrated over the water
depth at a fixed location x reads:

GPP(t) = B(t) · Pm · Λ(t), (5)

with Λ the depth-averaged Platt expression:

Λ(t) =
1

d

∫ d

0

Λ̃(z, t)dz. (6)

For an analytical solution of the DAP, the reader is re-
ferred to Appendix A.

In the following section, we apply the moment approxi-
mation to Λ(t) to study the impact of temporal variability
in the individual factors E0, kd, and d and their interac-
tions on PP.

2.2. Moment approximation

Temporal variability in E0, kd, and d impacts phyto-
plankton dynamics through the time integral of the DAP.
This is our starting point to assess the impact of tidal and
solar fluctuations on GPP using the moment approxima-
tion. In a first step, we add a (further unspecified) time
dependence to the variables in the DAP:

E0(t) =
〈
E0

〉
+ E′

0(t), (7)

kd(t) =
〈
kd
〉
+ k′d(t), (8)

d(t) =
〈
d
〉
+ d′(t), (9)

in which the brackets
〈〉

denote ‘time-averaged value of’.
This construction allows us to perform a Taylor expansion

of the DAP. Consequently, we can estimate the impact of
temporal variability of the individual parameters on phy-
toplankton dynamics and their interactions. Also, it is
easy to revert to the non-time-dependent result by mak-
ing E′

0(t), k
′
d(t), and d′(t) equal to zero.

Next, we apply a Taylor expansion to the analytic ex-
pression of the DAP around the time-averaged values in
Eqs. (8) and (9). For a detailed analysis, we refer the
reader to Appendix B. Until second-order, this Taylor
expansion reads:

Λ(t) ≈ mfun0(β, λ)×

{

1+

+mfunκ(β, λ) · [κ(t) + δ(t)]

+ mfunǫ(β, λ) · ǫ(t)

+ mfunκ2(β, λ) ·
[
κ2(t) + δ2(t)

]

+mfunǫ2(β, λ) · ǫ
2(t)

+ mfunǫκ(β, λ) · [ǫ(t) · κ(t) + ǫ(t) · δ(t)]

+ mfunκδ(β, λ) · [δ(t) · κ(t)]

}

, (10)

in which κ, ǫ, and δ are dimensionless relative fluctua-
tions defined as:

ǫ(t) =
E′

0(t)
〈
E0

〉 , κ(t) =
k′d(t)〈
kd
〉 ,

δ(t) =
d′(t)
〈
d
〉 (11)

and β and λ are defined as:

β =
α
〈
E0

〉

Pm
and λ =

〈
kd
〉
·
〈
d
〉
. (12)

The mfun functions determine the impact of temporal
variability in E0, kd, and d on the DAP until second order
and are defined in Appendix B (see the R-script mfun.R
in Supplementary material for an implementation in R).
By definition, the function mfun0 is the DAP without tem-
poral parameter fluctuations. The other terms in Eq. (10)
quantify the impact of temporal variability of the individ-
ual forcings (∼ mfunκ,mfunǫ,mfunκ2 ,mfunǫ2) and their
interactions (∼ mfunǫκ,mfunκδ). By construction of Λ, κ
and δ come with identical mfun functions:
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mfunδ = mfunκ, (13)

mfunδ2 = mfunκ2 , (14)

mfunδǫ = mfunκǫ. (15)

The mfun functions are determined by two dimension-
less numbers λ and β, which characterize the system un-
der study and have a clear physical interpretation. λ is
a measure for the photic properties of the water column.
Turbid and deep systems have a large λ, while transparent
and shallow systems correspond with a small λ. For fully
mixed systems, λ is proportional to the ratio of the mixing
depth and euphotic depth, the depth at which the light in-
tensity is one percent of the incident light (Sverdrup, 1953;
Kromkamp and Peene, 1995; Desmit et al., 2005). This ra-
tio determines the time phytoplankton spends in the dark
and thus affects (vertically integrated) net primary pro-
duction. Often a critical depth is defined: net positive
primary production can only occur when the depth of the
mixed layer is less than the critical value (Sverdrup, 1953).
Our results confirm that this ratio is an important charac-
teristic of the system, not only controlling the potential for
net primary production but also controlling the response
of primary production to temporal variability in light cli-
mate.
The second dimensionless number β increases with increas-
ing solar irradiance and photosynthetic efficiency. Conse-
quently, for a fixed Pm/α ratio, an equatorial system (more
solar irradiance) typically corresponds to a larger β than
a system in the northern hemisphere.

In the following, we apply our approach to two case
studies in the Scheldt estuary using real observations.

2.3. Application 1: time-averaged GPP

In the first application, we use our idealized model
to analyze the impact of temporal fluctuations on time-
averaged GPP in case phytoplankton biomass is top-down
controlled by grazing organisms (e.g. zooplankton) and
can be considered constant, although GPP > 0. Con-
sequently, time-averaged GPP becomes proportional to
time-averaged DAP:

〈
GPP(t)

〉
= B · Pm ·

〈
Λ(t)

〉
. (16)

We compute
〈
Λ(t)

〉
using Eq. (10):

〈
Λ(t)

〉
≈ mfun0(β, λ)

{

1+

+mfunκ2(β, λ)

[

Ṽar[kd(t)] + Ṽar[d(t)]

]

+mfunǫ2(β, λ) · Ṽar[E0(t)]

+ mfunǫκ(β, λ)

[

C̃ov[E0(t), kd(t)]

+ C̃ov[E0(t), d(t)]

]

+mfunκδ(β, λ) · C̃ov[kd(t), d(t)]

}

, (17)

in which Ṽar and C̃ov are the relative statistical identi-
ties variance and covariance, for example:

Ṽar[kd(t)] =
〈
κ2(t)

〉
, (18)

C̃ov[E0(t), kd(t)] =
〈
ǫ(t) · κ(t)

〉
. (19)

As a result of the definitions in Eqs. (8) and (9), the
time averages of the ∼ mfunκ- and mfunǫ-terms in Eq.
(10) disappear in Eq. (17).

Eq. (17) reveals an important interpretation of the
second-order mfun functions; variability in kd, d, and E0

results in a systematic upward or downward shift in its
time-average

〈
Λ(t)

〉
. The second-order mfun functions

represent the factors by which the variances and covari-
ances have to be multiplied to calculate the magnitude of
this shift. Moreover, the mfun functions define the sign of
the shift in

〈
Λ(t)

〉
and corresponding

〈
GPP

〉
. The magni-

tude is both determined by the average system character-
istics (λ, β) and the temporal variability in E0, kd, and d,
which define the magnitude of the variance and covariance
factors in Eq. (17), and is thus different when considering
typical summer or winter conditions.

Therefore, we apply our idealized model to both a sum-
mer (10-06-2013 until 02-07-2013) and winter (20-02-2013
until 13-03-2013) case in the Scheldt estuary. Fig. 2 and
3 show the high frequency observations of E0, turbidity,
and d we use in our first application. The observations
were measured in the Scheldt estuary in the brackish re-
gion at Kruibeke (∼85 km from the mouth). We choose
Kruibeke because here our assumptions (e.g., well-mixed,
light-limited) are valid and a long term record of continu-
ous time series of turbidity exists (Cox et al., 2015).

The turbidity time series were obtained using a YSI 6600
multiparameter probe, equipped with an optical turbidity
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sensor (YSI6136) . Turbidity is expressed in NTU (Neph-
elometric Turbidity Units). Light from the emitter enters
the sample and scatters off particles in the water. The
light, scattered at 90 degrees, enters a detector fiber and
is measured by a photodiode (YSI, 2017a). The turbidity
probe was calibrated in the laboratory using calibration
liquid YSI6074 and demineralized water as a zero refer-
ence. To compute kd [m−1] from turbidity [NTU], we used
the following expression (Cox et al., 2017):

kd = 0.39(2.1NTU−1 · turb.− 1.82)0.64 m−1. (20)

Data sets of turbidity and depth at Kruibeke were ob-
tained from waterinfo.be (De Vlaamse Milieumaatschap-
pij; Waterbouwkundig Laboratorium; Maritieme Dien-
stverlening en Kust, De Vlaamse Waterweg, 2013). We
used depth recordings from the tidal gauge at Hemiksem,
located approximately 4 km upstream from Kruibeke. In-
cident irradiance data E0(t) was obtained from the Royal
Meteorological Institute (RMI) of Belgium (RMI, 2013) in
Stabroek (∼25 km from Kruibeke and 50 km from Schelle-
belle, the other case study site, see below). The sampling
interval of E0, turbidity, and depth was 10, 15, and 15 min,
respectively. A summary of the parameter values corre-
sponding to the data sets is presented in Table 1. Other
parameter values used in our calculations are summarized
in Table 2. These parameters were based on the literature
(Kromkamp and Peene, 1995, 2005; Cox et al., 2010; Maris
and Meire, 2016). To assess the accuracy of the moment
approximation until second-order terms, we compare the
results to the output of a numerical integrator of DAP,
making use of the same time series.

2.4. Application 2: phytoplankton bloom

During typically observed phytoplankton spring-blooms
we cannot assume dynamic equilibrium of B̃(t, x) in Eq.
(1). In the following, we study the full solution of Eq. (1).

This spatio-temporal differential equation cannot be
solved analytically without further assumptions. There-
fore, we again focus on a specific location x = x∗ and as-
sume that B̃(t, x) evolves linearly along the estuarine axis
near x = x∗ and its shape in the longitudinal direction
is time-independent on the timescale of our application
(∼days):

B̃(x, t) = B(t)f(x), (21)

in which f(x) is a linear function of x. Furthermore, we
assume a phase of −π/2 between the longitudinal velocity

u(t) and the water elevation (cf. d) following van Rijn
(2010). For a detailed derivation, the reader is referred to
Appendix C. The solution of B(t) yields:

B(t) =Ãe−m∗·t+(1−ρ)·Pm

∫

Λ(t)dt

× e

[

γ
ωM2

·cos(ωM2·t+ΦM2+θ)
]

, (22)

with:

Ã = B0e
−(1−ρ)·Pm

∫

Λ(t)dt|t=0−
γ

ωM2
·cos(ΦM2+θ)

, (23)

and ωM2
the angular frequency corresponding to the

semi-diurnal lunar M2 tide and ΦM2
and θ phases cor-

responding to the idealized time dependence of the water
depth d [see below, Eq. (28)]. The coefficients m∗ and γ
are defined in Appendix C. The integrated loss rate m∗

incorporates losses due to grazing, mortality, and residual
water currents. γ is a measure of the amplitude of the
sinusoidal behavior due to advective transport of phyto-
plankton biomass [see Eq. (C.1)].

Again, we apply the moment approximation to the so-
lution of B(t) in Eq. (22):

∫

Λ(t)dt ≈ mfun0 · t×

{

1+

+
mfunκ(β, λ)

t
·

∫

[κ(t) + δ(t)] dt

+
mfunǫ(β, λ)

t
·

∫

ǫ(t) · dt

+
mfunκ2(β, λ)

t
·

∫
[
κ2(t) + δ2(t)

]
dt

+
mfunǫ2(β, λ)

t
·

∫

ǫ2(t)dt

+
mfunǫκ(β, λ)

t
·

∫

[ǫ(t) · κ(t)

+ ǫ(t) · δ(t)] dt

+
mfunκδ(β, λ)

t
·

∫

[δ(t) · κ(t)] dt

}

. (24)

To calculate the integrals in Eq. (24), we use approxi-
mate expressions for ǫ(t), κ(t), and δ(t). We assume that
solar irradiance E0 is given by a truncated sinusoid follow-
ing Cox et al. (2015):

E0(t) = max(0, a+ b cos(ωS1t)), (25)
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Figure 2: Turbidity and water depth measured in the Scheldt estuary at Kruibeke station (Belgium) in summer and winter. (a)-(b) Turbidity
in summer and winter, respectively. (c)-(d) Water depth in summer and winter, respectively.

Table 1: Summarized values corresponding to the time series from Fig. 2 and 3. N is the number of measurements of E0, kd, and d. Ṽar and
C̃ov are the relative variance and covariance as defined in Eqs. (18) and (19).

Summer case

N 3000
〈
E0

〉
171 J m−2 s−1 Ṽar[E0] 1.633 C̃ov[E0, kd] 0.043

λ 92.6
〈
kd
〉

10.8 m−1 Ṽar[kd] 0.099 C̃ov[kd, d] 0.036
β 3

〈
d
〉

8.60 m Ṽar[d] 0.049 C̃ov[E0, d] 0.002
Winter case

N 3000
〈
E0

〉
70.0 J m−2 s−1 Ṽar[E0] 2.704 C̃ov[E0, kd] -0.021

λ 95.2
〈
kd
〉

11.1 m−1 Ṽar[kd] 0.143 C̃ov[kd, d] 0.037
β 1.05

〈
d
〉

8.60 m Ṽar[d] 0.045 C̃ov[E0, d] -0.013
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Figure 3: Solar irradiance measured at Stabroek (Belgium) in summer and winter. Stabroek is located approximately 25 km from Kruibeke
station (a) Solar irradiance in summer. (b) Solar irradiance in winter.

Table 2: Overview of parameter values used in this paper. The values are based on the literature (Kromkamp and Peene, 1995, 2005; Cox
et al., 2010; Maris and Meire, 2016).

Pm 5 gC gChl−1 h−1 C:Chl 25 gC gChl−1

α 0.21 gC gChl−1h−1 · (J m−2 s−1)−1 B0 775 µg l−1

in which a and b are further unspecified parameters and
ωS1 is the diurnal angular frequency. Consequently, we ne-
glect aperiodic temporal variability in E0 over much more
rapid timescales (seconds to minutes, due to, for example,
cloud shading) and only include the dominant day-night
pattern. We simplify Eq. (25) by only including the first
three temporal terms of the Fourier series:

E0(t) =
〈
E0

〉
+

3∑

n=1

Ên cos(nωS1t)

︸ ︷︷ ︸

E′

0
(t)

. (26)

Similarly, we only consider the dominant and periodic
ωM2 and ωM4 = 2ωM2 temporal fluctuations in kd and d
and truncate frequencies larger than M4 (i.e., M6, M8, etc.
are neglected) following Chernetsky et al. (2010), Dijkstra
et al. (2017), and Horemans et al. (2020):

k′d(t) = K̂2 cos(ωM2t+ΦM2
) + K̂4 cos(ωM4t+ΦM4

),
(27)

d′(t) = D̂2 cos(ωM2t+ΦM2
+ θ), (28)

in which ΦM2
, ΦM4

, θ are the phases and we set ΦS1 = 0.

In Appendix D, Eqs. (26)-(28) are fitted to observed
time series at our case study site to obtain the amplitudes
(i.e., Ên, K̂2, K̂4, and D̂2) and phases (i.e., ΦM2

, ΦM4
, and

θ). We use time series measured in the Scheldt estuary in
the freshwater zone at Schellebelle (∼140 km from mouth)
during a spring bloom (29-03-2017 until 19-04-2017, Fig.
4). The same methodology and sensors as in application 1
were used. Chl-a concentration was measured using a flu-
orescence sensor [YSI6025, wavelength 435-470 nm (YSI,
2017b)] with a sampling interval of 5 minutes.

Parameters m∗, γ, and ρ are obtained by fitting Eq.
(22) to the observed Chl-a time series. We used a fixed
ratio of 25 gC gChl−1 to transform Chl-a concentration to
phytoplankton biomass concentration (Maris and Meire,
2016), assuming balanced-growth conditions. Table 3 sum-
marizes the resulting estimated parameters. The order of
magnitude of γ and m∗ corresponds to the estimated or-
der in Appendix C, i.e., O(10−1) h−1 and O(10−2) h−1,
respectively. The order of the fitted value for ρ agrees with
values found by Desmit et al. (2005).

The combination of the moment approximation in Eq.
(24) and idealized time-dependence in E0, kd, and d [Eqs.
(26)-(28)] allows us to analytically solve the time integral
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Figure 4: Turbidity, water depth, and Chl-a concentration measured in the Scheldt estuary at Schellebelle station (Belgium) in spring during
a phytoplankton bloom. The solar irradiance is measured at Stabroek (Belgium), located approximately 50 km from Schellebelle.(a) Turbidity
in spring. (b) Water depth in spring. (c) Solar irradiance in spring. (d) Chl-a concentration in spring.

Table 3: System parameter estimated by fitting the presumed idealized time dependencies for E0(t), kd(t), and d(t) [Eqs. (26)-(28)] and
analytical solution of B(t) to the corresponding data sets kd(t), E0(t), d(t), and B(t) measured in the Scheldt estuary at Schellebelle (Fig.
4a-4d).

J m−2 s−1 m−1 h−1

Ê1 142
〈

kd
〉

4.56
〈

d
〉

4.5 m ωS1
2π
24 ΦM2 -3.59

〈

E0

〉

168 J m−2 s−1

Ê2 75.3 K̂2 0.82 D̂2 1.36 m ωM2
2π

12.42 ΦM4 -0.253 m∗ 0.0834 h−1

Ê3 3.44 K̂4 0.43 ρ 0.837 ωM4 2·ωM2 θ -0.30 γ 0.156 h−1
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of Λ(t) and corresponding analytical solution of B(t) pre-
sented in Eq. (22). The main advantage of this approach
is that it enables us to directly analyze the propagation of
the dominant harmonics in forcings E0, kd, d, and advec-
tive water flow into the dynamics of B(t). The analytical
solution of

∫
Λ(t)dt is listed in Appendix E. For an im-

plementation of the analytical solution in R, we refer the
reader to the R-script timeIntegrationFunc.R in Supple-
mentary material.

3. Results

We first show the generic results of the moment ap-
proximation by presenting the mfun functions [see Eq.
(10)] which translate temporal variability in kd, E0, and
d to temporal variability in Λ, GPP, and phytoplankton
biomass dynamics. Next, using these mfun functions, we
present the results of our two applications in the Scheldt
estuary, i.e., time-averaged GPP in dynamic equilibrium
(application 1) and a phytoplankton bloom in dynamic
non-equilibrium (application 2).

3.1. Moment approximation: the mfun functions

3.1.1. mfun functions of the zeroth- and first-order terms

The zeroth-order mfun0 function is, by definition, equal
to the time-averaged DAP factor

〈
Λ
〉
in the absence of

temporal variability in E0, kd, and d. Fig. 5 shows mfun0
for various β and λ. mfun0 ranges from 0 (maximal light-
limitation, no GPP) to 1 (no light-limitation, maximal
GPP) and has a simple structure; it increases with in-
creasing β (cf. increasing solar irradiance/ PP efficiency)
and decreases with increasing λ (cf. increasing turbidi-
ty/depth).

The mfunκ and mfunǫ functions are plotted in Fig. 6a
and 6b, respectively. These first-order functions represent
the system-dependent multiplication factors that are re-
quired to compute the amplitude of different harmonics
in light-climate (cf. Λ), GPP, and corresponding biomass
dynamics from the respective amplitudes in E0, kd, and
d. mfunκ is negative for every value of λ and β (Fig. 6a),
simply reflecting the fact that an increase in kd (or d) leads
to a decrease in B(t). In contrast, mfunǫ is positive, re-
flecting the fact that increasing incident irradiance leads
to increasing B(t) (Fig. 6b).

3.1.2. mfun functions of the second-order terms

The second-order mfun functions represent the factors
by which the variances and covariances have to be multi-
plied to calculate the magnitude of a systematic upward

//10 50
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0
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0

2 4 6 8 70
λ
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0.50

0.75

Figure 5: The mfun0 corresponds to the DAP function Λ in the
absence of fluctuations. The averaged positioning of the Scheldt
estuary cases described in this paper is also illustrated (i.e. λ ≈
60, β ≈ 3)

or downward shift in its time-average
〈
Λ(t)

〉
[Eq. (17)].

They have a more interesting structure (Fig. 7).

Fig. 7b shows that mfunǫ2 is always negative. In con-
trast, the sign of the other second-order mfun functions
depends on the specific values of λ and β (Fig. 7a, 7c,
and 7d). This has a simple interpretation for the time-
averaged

〈
GPP

〉
[Eqs. (16) and (17)]. Indeed, temporal

variability in E0 always results in a decrease in
〈
GPP

〉
,

while variability in light attenuation and depth can lead
to both a decrease or an increase in

〈
GPP

〉
, depending on

the characteristics of the system under study. Here, we
assumed that the covariance terms due to E0 (∼ mfunǫκ)
are negligible compared to the variance term (∼ mfunǫ2) in
Eq. (17). Similarly, for phytoplankton in the exponential
growth phase (cf. bloom), second-order temporal variabil-
ity in E0 always result in a decrease of the exponential
growth, while variability in light attenuation and depth
can lead to both a decrease or an increase of the exponen-
tial growth. It must be noted that tidal systems for which
mfunκ2 is negative (λ . 5, Fig. 7a, 7c, and 7d), corre-
spond to shallow and clear systems which can be found in,
for example, the Dutch Wadden Sea or the Oosterschelde
(Rijkswaterstaat, 2018). These systems often experience
nutrient limitation, and thus the results presented here are
valid only during periods without nutrient limitation.

The results of the mfun functions show that the propa-
gation of temporal variability in the parameters affecting
the light-climate (i.e., E0, kd, and d) to temporal vari-
ability in GPP and phytoplankton biomass dynamics may
show opposing trends for the different parameters. More-
over, this propagation depends on the time-independent
characteristics of the system (i.e., λ and β) and may thus
differ for different systems and seasons. In the following
sections, we use these results to study our two applications
in the Scheldt estuary, covering different seasons.
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Figure 6: The first-order mfun functions. The averaged positioning of the Scheldt estuary cases described in this paper is also illustrated (i.e.,
λ ≈ 60, β ≈ 3). (a) Result of mfunκ. (b) Result of mfunǫ.

//10 50

β

.Scheldt

1
0

2
0

3
0

2 4 6 8 70
λ

0.0

0.5

1.0

(a) mfunκ2

//10 50

β

.Scheldt

1
0

2
0

3
0

2 4 6 8 70
λ

−0.3

−0.2

−0.1

(b) mfunǫ2

//10 50

β

.Scheldt

1
0

2
0

3
0

2 4 6 8 70
λ

−0.6

−0.3

0.0

(c) mfunκǫ

//10 50

β

.Scheldt

1
0

2
0

3
0

2 4 6 8 70
λ

−1.0

−0.5

0.0

0.5

1.0

(d) mfunκδ

Figure 7: The second-order mfun functions. The averaged positioning of the Scheldt estuary cases described in this paper is also illustrated
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3.2. Application 1: time-averaged GPP

In this section, we use the mfun function results from the
moment approximation presented in the previous section
to study the impact of temporal variability in light-climate
(cf. E0, kd, and d) on time-averaged

〈
GPP

〉
in dynamic

equilibrium for two cases in the brackish part of the Scheldt
estuary. Because we expect different results for different
seasons, we analyze both a summer and winter case.

At our relatively deep and turbid case study location,
mfunκ2 is always positive (Fig. 7a) and thus temporal
variability in kd and d lead to an increase in

〈
GPP

〉
. In

contrast, temporal variability in E0 decreases
〈
GPP

〉
(Fig.

7b).

Fig. 8 shows the results of
〈
GPP

〉
when including tem-

poral variability in all parameters (all var), normalized
with

〈
GPP

〉
with time-averaged parameters (i.e.,

〈
E0

〉
,

〈
kd
〉
, and

〈
d
〉
) for various integration times T (8.5 h-21

days) using the moment approximation (left) and the nu-
merical integrator (right), applied to a summer (top) and
winter (bottom) case. To compute the separate impact of
temporal variability in E0, kd, and d on

〈
GPP

〉
, we also

show the results exclusively including temporal variability
in the individual parameters E0 (E0 var), kd (kd var), and
d (d var).

3.2.1. Summer case

In summer, the relative impact of temporal variability
on
〈
GPP

〉
is < 10 percent for kd and d and 10-30 percent

for E0. Overall, Fig 8 shows good correspondence between
the moment approximation and the numerical integrator,
even for integration times T < 24 h, i.e., the period cor-
responding to the ωS1 angular frequency of temporal vari-
ability in E0. In this specific summer case study, excluding
temporal fluctuations in E0, kd, and d results in an error
of approximately 20 percent. Temporal variability in E0

(E0 var) has the largest impact on
〈
GPP

〉
.

3.2.2. Winter case

Also in the winter case, the moment approximation is in
good correspondence with the numerically integrated im-
pact of temporal variability in E0, kd, and d on

〈
GPP

〉
, re-

spectively approximately 20-50 percent, 5-20 percent, and
< 10 percent. However, we have a slight decrease in accu-
racy, which is due to the relatively large temporal fluctu-
ations in solar irradiance compared to the averaged solar
irradiance in winter. This results in a less accurate approx-
imation by sinusoids of the solar temporal fluctuations [Eq.
(26)].

The main difference with the summer case is an increase
in the relative importance of fluctuations in kd. This dif-
ference follows from the relative magnitude of temporal
variability in kd (cf. Ṽar[kd(t)]), which is in winter an or-
der of magnitude larger compared to summer (see Table
1).

Our analysis of the summer and winter case illus-
trate that the impact of fluctuations in light-climate on
〈
GPP

〉
in dynamic equilibrium may be important, season-

dependent, and that a careful analysis based on the ob-
served time series of E0, kd, and d is required.

3.3. Application 2: phytoplankton bloom

In this section, we apply our idealized model to study
B(t) in the exponential growth phase. Using our analytical
solution of B(t) and corresponding second-order approx-
imation and results of the mfun functions, our approach
allows for an extensive analysis by separating the indi-
vidual impact of temporal variability in E0, kd, and d and
their interactions on (exponential) phytoplankton biomass
growth. We analyze the time series of the onset of a phy-
toplankton bloom in spring in the Scheldt estuary in the
freshwater region.

Fig. 9 shows both the observed phytoplankton biomass
concentration B(t) (cf. Chl-a) and model result using our
idealized model [Eq. (22)] with fitted and idealized ex-
pressions of temporal fluctuations in E0, kd, and d [Eqs.
(26)-(28)]. Our model captures the exponential growth of
B(t): both the observed (data) and modeled (all var) B(t)
doubles over a time period of approximately two weeks
(∼750 µg l−1 to ∼1500 µg l−1). To study the impact
of individual temporal variability on B(t), Fig. 9 shows
modeled B(t) in which we only include specific temporal
variability. When B(t) is forced by time-invariant

〈
E0

〉
,

〈
kd
〉
, and

〈
d
〉
(Fig. 9, no fluct.), phytoplankton biomass

grows much faster than observed. After two weeks, the
phytoplankton biomass when no temporal fluctuations are
included is approximately a factor 14 larger than observed.
This illustrates the importance of the ∼ t terms generated
by temporal variability in E0, kd, and d (see Appendix E
for a definition of these terms). In particular, this over-
estimation is due to the absence of temporal variability
in E0, which again decreases phytoplankton growth. If
we solely include temporal variability in E0, the modeled
phytoplankton biomass is lower than observed (Fig. 9, E0

var). Including temporal fluctuations in E0, but exclud-
ing fluctuations in kd and d, leads to an underestimation
of phytoplankton biomass with a factor of 15 after two
weeks. In contrast, exclusively including temporal fluctu-
ations in d (Fig. 9, d var) and kd (Fig. 9, kd var) results in
an overestimation of phytoplankton biomass with respec-
tively a factor of 75 and 34 after two weeks. These results
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〈
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〉
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framework allows us to compute the impact of temporal variability in an individual parameter on
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Figure 9: Observed B(t) (data) and model result by including all
temporal fluctuations (all var) using our second-order approxima-
tion. Our approach allows us to easily identify and exclude indi-
vidual forcings. The dashed green line (no fluct.) shows the model
output for B(t) which is only forced by time-invariant

〈

E0

〉

,
〈

kd
〉

,

and
〈

d
〉

. We also show B(t) when we exclusively include temporal
fluctuations in d (d var), kd (kd var), E0 (E0 var), and temporal fluc-
tuations due to advective transport of phytoplankton biomass (adv.
var). The orange dashed graph (low freq.) shows B(t) when, on top
of the exponential growth, low frequency fluctuations due to interac-
tions between temporal variability in E0 and kd and d are included,
which results in exponential coefficients ∼ sin[(ωM2 − 2ωS1)t].

are consistent with the results from application 1, but show
that the accumulated impact is much larger than expected
from the calculations assuming dynamic equilibrium. Fi-
nally, temporal fluctuations due to advective transport of
phytoplankton biomass do not results in additional expo-
nential growth (Fig. 9, adv. var) when compared to B(t)
forced by time-invariant parameters

〈
E0

〉
,
〈
kd
〉
, and

〈
d
〉

(Fig. 9, no fluct.).

Temporal variability significantly reduces the exponen-
tial increase in our case study, which has important con-
sequences, particularly at the onset of phytoplankton
blooms. Indeed, during the onset of a phytoplankton
bloom, a slight change in growth rate can change the bal-
ance with loss terms (e.g., respiration, grazing and flush-
ing), and result in net growth. Thus, other characteristics
being equal, a system with fluctuating parameters has an
earlier/later onset of the spring phytoplankton bloom than
a system without fluctuations. In our case study, tempo-
ral fluctuations in E0, kd, and d delay the onset of the
bloom by approximately two weeks (see Appendix F for
a detailed derivation). Therefore, knowing the magnitude
of fluctuations in the forcings E0, kd, and d is at least as
important as having a good and realistic estimate of res-
piration, grazing, and flushing, which in our analysis are
included in m∗.

Temporal fluctuations in E0, kd, and d do not only re-
sult in additional ∼ t terms in the exponential in Eq.
(22), but also result in sinusoidal terms. Of particular
interest are the non-trivial interaction terms leading to
additional low frequency variability in B(t) (Fig. 9, low

freq.). These low frequency fluctuations have a frequency
similar to a spring-neap cycle of the horizontal tide (see
Appendix E for a definition of these low frequency fluc-
tuations ∼ sin[(ωM2 − 2ωS1)t]). This makes it difficult
to separate the effects of spring-neap cycles of the hori-
zontal tide from the interaction terms. The model seems
to overestimate the impact of interaction terms on B(t).
A potential explanation is that the idealized expressions
for temporal variability in kd and d do not include the
spring-neap cycle. These results highlight the need for
caution when interpreting low-frequency patterns in ob-
served Chl-a time series. As shown, these could both be
the result of the spring-neap cycle and interaction terms
in the light-limitation factor.

Our analysis of the phytoplankton bloom in spring
illustrates that the impact of temporal variability in
light-climate and advective water flow on phytoplankton
biomass in the exponential growth phase may have crucial
consequences: it may result in a 14 times lower phyto-
plankton biomass after two weeks, delay the onset of the
bloom by two weeks, and result in low-frequency tempo-
ral variability with similar periodicity as the spring-neap
cycle. As in application 1, temporal variability in kd and
d increases, whereas temporal variability in E0 decreases
phytoplankton growth.

4. Discussion

In this section, we first compare our case study results
of the impact of temporal variability on time-averaged pri-
mary production (application 1) and exponential phyto-
plankton growth (application 2) to the literature. Next,
we discuss the implications of our results for both modelers
and experimental scientists. Finally, we discuss the lim-
itations of our approach, focusing on non-local processes
and temporal variability in phytoplankton characteristics
affecting phytoplankton biomass dynamics.

4.1. The impact of temporal variability on phytoplankton
growth

We constructed an idealized model to study the impact
of temporal variability in light-climate and advective water
flow on time-averaged GPP and phytoplankton biomass
dynamics. Our approach allows for an extensive analysis
by separating the individual impact of temporal variability
in E0, kd, and d and their interactions on time-averaged
GPP and (exponential) phytoplankton biomass growth.

In our first application, we found that temporal fluctua-
tions in light-climate impact time-averaged GPP: temporal
variability in kd and d increase, whereas temporal variabil-
ity in E0 decrease time-averaged GPP and has a dominant
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impact (a decrease up to 50 %, depending on the season).
The dominant impact of temporal variability in E0 com-
plies with the results of Cox et al. (2015). They developed
a novel technique to estimate gross primary production us-
ing oxygen time series. A core assumption in this method
states that gross primary production follows a truncated
sinusoidal pattern over time with a 24 h period. Conse-
quently, the method assumes that the main contribution
of temporal variability in the forcings is due to temporal
variability in E0 (cf. the 24 h period).

In our second application, we studied the impact of tem-
poral variability in light-climate and advective water flow
on phytoplankton biomass dynamics in the exponential
growth phase (i.e., phytoplankton bloom). Our results
comply with the results of Desmit et al. (2005) who stud-
ied the impact of temporal variability in E0, kd, and d
within a 40-day time frame for a specific case in the Scheldt
estuary. Firstly, the exponential increase in phytoplank-
ton biomass is very sensitive to temporal variability in E0,
kd, and d (Fig. 9). Secondly, temporal variability in kd
and d increases the exponential growth, whereas temporal
variability in E0 decreases the exponential growth (Fig.
9). Moreover, the magnitude of the exponential increase
is determined by the ratio of time-averaged depth

〈
d
〉
and

corresponding temporal fluctuations
〈
d′(t)

〉
, which agrees

with our definition of δ(t) in Eq. (11). Last, a clear link ex-
ists between our implementation of advective transport of
phytoplankton biomass and the one presented in Desmit
et al. (2005). To include advective transport of phyto-
plankton biomass, Desmit et al. (2005) postulated an ad-
ditional term in Eq. (1) that is proportional to the deriva-
tive of d(t), which agrees with our result in Eq. (C.10)
[from Eq. (28) follows that ∂td(t) ∼ sin(t)]. However,
our approach generalizes the work of Desmit et al. (2005)
who only studied a specific case in the Scheldt estuary.
In contrast to Desmit et al. (2005), our approach is more
generic and can be applied to other estuarine well-mixed,
light-limited systems. Moreover, our framework allows us
to easily compute the impact of temporal fluctuations in
the individual parameters and their interactions on phyto-
plankton growth because we derived an explicit analytical
solution for phytoplankton growth and applied a second-
order moment approximation.

We thus conclude that our results of the impact of tem-
poral variability on time-averaged GPP and exponential
phytoplankton growth comply with results found in the
literature and that they allow for a more generic analysis
of various well-mixed, light-limited estuaries.

4.2. Implications of our findings for modelers and experi-
mental scientists

Our generic approach may be used to study present-day
challenges by both modelers and experimental scientists.

Modelers may use our approach to easily assess the error
made by neglecting temporal fluctuations in parameters af-
fecting phytoplankton biomass dynamics. As mentioned in
the introduction, various models have been used to model
phytoplankton biomass dynamics. Although complex tide-
explicit models exist (Arndt et al., 2011), various models
often keep certain parameters constant to reduce complex-
ity and allow for fast analytical solution procedures (Di-
jkstra et al., 2017). Examples are tidally-averaged and/or
daily-averaged numerical models to compute estuarine pri-
mary production (Brinkman, 1993; Soetaert et al., 1994).
The light-extinction coefficient kd, which is an important
parameter in light-limited estuarine systems, is one of the
main parameters which contributes to the complexity of
PP dynamics because it is affected by suspended partic-
ulate matter (SPM) dynamics. Modeling SPM dynam-
ics, even the corresponding large-scale estuarine turbid-
ity maxima, is difficult because it results from a complex
concurrence of ETM formation mechanisms [see Burchard
et al. (2018) for a recent review]. However, our analysis
framework provides a tool to assess the error made by ne-
glecting such complex temporal variability in parameters
affecting PP dynamics. As such it can help assess whether
a given model with given accuracy and performance is suf-
ficient to realistically simulate and study phytoplankton
dynamics. This is particularly important when strong spa-
tial and seasonal gradients in temporal variability in E0,
kd (cf. SPM), and d exist. After all, this temporal vari-
ability can falsely be attributed (cf. calibrated) to spatial
and seasonal variations in intrinsic features of phytoplank-
ton dynamics such as Pm, α, and m. Finally, to use our
framework for a model assessment, only basic knowledge
on time-average parameter values and corresponding S1,
M2, and M4 amplitudes is required.

Our results are also particularly useful for experimen-
tal scientists who are intereseted in data-based estimation
of GPP. Our resuls may partly answer the long-standing
question of why bottle incubations underestimate in-situ
GPP. Often, bottle incubations are used to estimate GPP
in estuaries and coasts. This means that the parameters
of the Platt equation α and Pm in Eq. (2) are determined
by incubating a sample in the lab at different light in-
tensities (Vegter and De Visscher, 1984; Kromkamp and
Peene, 1995). Consequently, the Platt equation needs to
be numerically integrated over depth and over time. This
requires time series of E0, kd, and d. Whereas time se-
ries of incident irradiance are often available, kd is often
estimated as an average on a short time interval during
sampling, and linearly interpolated between consecutive
sampling (Kromkamp and Peene, 2005). Our results show
that in systems with large temporal variability in kd, this
approach leads to a systematic underestimation of time-
averaged primary production. Indeed, temporal variability
in kd has a positive impact on GPP (Fig. 8). It has of-
ten been found that bottle incubations underestimate pri-
mary production when compared to in-site methods. The
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reason why this occurs is still poorly understood (West-
berry et al., 2012). In addition to so-called ‘bottle effects’
(Swaney et al., 1999) and physiological adaptation effects
(Halsey et al., 2010), our results show that large variability
in light attenuation can additionally result in an underes-
timation when this variability is not taken into account.

4.3. Non-local processes and temporal variability in phy-
toplankton characteristics affecting the phytoplankton
dynamics

Although our approach is generically applicable to well-
mixed, light-limited estuaries, an extrapolation of our find-
ings to other estuarine cases should be taken with care.

As a first step, we approximated the non-local processes
caused by advective and diffusive transport of phytoplank-
ton biomass by a term which is proportional to the deriva-
tive of the water depth. As mentioned above, this complies
with the postulation presented in Desmit et al. (2005).
By applying this idealization, we partly neglected the im-
pact of temporal variability caused by complex interac-
tions between the phytoplankton biomass and the water
flow. We assumed that phytoplankton biomass growth is
mainly caused by local processes, which complies with the
model study carried out by Dijkstra et al. (2019), who
focused on the phytoplankton dynamics in the Delaware
River Estuary. However, we are aware that this may not
be valid in the Scheldt estuary. To correct for complex,
non-local interactions between the water flow and phyto-
plankton biomass, our model can still be used by coupling
the model to a hydrodynamical model. By doing so, the
impact of individual temporal variability in light-climate
on the phytoplankton biomass growth can be investigated,
including these complex non-local phytoplankton biomass
and water flow interactions, as done by Dijkstra et al.
(2019).

Additionally, we focused on temporal variability in pa-
rameters affecting the light-climate on an hourly-daily
timescale E0, kd, and d and kept most other parameters
fixed. For example, we assumed balanced growth condi-
tions and the absence of significant temporal variations
in the phytoplankton characteristics on this hourly-daily
timescale (cf. Pm, α). In further research, the same ap-
proach as presented in this study can be applied assuming
temporal variability in the latter parameters. This may
cause additional (correlation) terms in the second-order
approximation of Λ [Eq. (10)] and thus alter time-averaged
GPP and phytoplankton biomass dynamics.

5. Conclusion

We constructed an idealized model to analyze the im-
pact of temporal variability in solar irradiance at the wa-
ter surface E0, exponential light-extinction coefficient kd,
and water depth d on B(t) and corresponding

〈
GPP

〉
in

light-limited, vertically well-mixed systems. Apart from
providing a full theoretical analysis, our approach allows
us to quantify the impact of the temporal variability with-
out a numerical model, to separate the impact of different
sources of the temporal variability and their covariance,
and it does so for a general light-limited, well-mixed tidal
system.

To present the applicability of our idealized model, we
applied the model to two cases in the Scheldt estuary. Our
results showed that temporal variability in E0, kd, and d
can have an important impact on

〈
GPP

〉
in dynamic equi-

librium and corresponding phytoplankton dynamics. In
the first application, we showed that

〈
GPP

〉
in dynamic

equilibrium is mainly impacted by temporal variability in
E0 and results in a 30 percent decrease. In contrast, tem-
poral variability in kd and d increased

〈
GPP

〉
. Further-

more, the results showed a seasonality; in winter, tempo-
ral variability in kd had a larger impact on

〈
GPP

〉
than in

summer, due to the larger tidal amplitude in kd in winter.
Finally, our idealized model correctly predicted the order
of magnitude of the impact of temporal variability of the
individual parameters.

In the second application, we showed that during a phy-
toplankton bloom, temporal variability significantly con-
tributes to the exponential phytoplankton growth and gen-
erates additional low-frequency fluctuations similar to the
spring-neap cycle. Moreover, we showed that temporal
variability can delay the onset of the phytoplankton bloom
by two weeks and can decrease the phytoplankton biomass
by a factor 14 after two weeks. Again, our approach al-
lowed us to apply an extensive analysis in which we showed
that these low-frequency fluctuations in B(t) are due to
covariance of temporal variability in E0 and kd, and d.

Appendix A. Analytical solution of DAP

Substitution of q = β̃ · exp (−kdz) in Eq. (6) allows us
to analytically solve the DAP:

1

d

d∫

0

Λ̃(z)dz = 1 +
1

d̃

[

E1(β̃)− E1(β̃ exp(−d̃))
]

, (A.1)

in which we used the definition of the exponential integral
E1(x) (Bender and Orszag, 2013):
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E1(x) =

∞∫

x

exp(−q)

q
dq (A.2)

and with:

d̃ = kd · d. (A.3)

Consequently, the DAP is defined by two dimensionless
numbers d̃ and β̃.

Appendix B. Application of a Taylor expansion to
Λ: definition of the mfun functions

Consider a function f which depend on a set of vari-
ables a = {kd, E0, d}. Furthermore, assume that the
variables are constructed as a mean value

〈
kd
〉
,
〈
E0

〉
,
〈
d
〉

plus a (small) variation k′d, E′
0, and d′, respectively.

Consequently, the Taylor expansion at the mean values
〈
kd
〉
,
〈
E0

〉
,
〈
d
〉
until second-order terms yields:

f
(〈
kd
〉
+ k′d(t),

〈
E0

〉
+ E′

0(t),
〈
d
〉
+ d′(t)

)
≈ f

(〈
a
〉)

+
∂f

∂kd

∣
∣
∣
∣
a=<a>

k′d(t) +
∂f

∂E0

∣
∣
∣
∣
a=<a>

E′
0(t) +

∂f

∂d

∣
∣
∣
∣
a=<a>

d′(t)

+
1

2

∂2f

∂k2d

∣
∣
∣
∣
a=<a>

[k′d(t)]
2 +

1

2

∂2f

∂E2
0

∣
∣
∣
∣
a=<a>

[E′
0(t)]

2

+
1

2

∂2f

∂d2

∣
∣
∣
∣
a=<a>

[d′(t)]2 +
∂2f

∂kd∂E0

∣
∣
∣
∣
a=<a>

k′d(t)E
′
0(t)

+
∂2f

∂kd∂d

∣
∣
∣
∣
a=<a>

k′d(t)d
′(t) +

∂2f

∂d∂E0

∣
∣
∣
∣
a=<a>

d′(t)E′
0(t). (B.1)

Application to the DAP using the following property of
the exponential integral E1 (Bender and Orszag, 2013):

dE1(x)

dx
= −

exp[−x]

x
, (B.2)

yields the definitions of the mfun functions presented in
Eqs. (B.3)-(B.9).

In the R programming language, the package expint can
be used to define the mfun functions (see the R-script
mfun.R in Supplementary material).

Appendix C. Solution of phytoplankton biomass
concentration

We rewrite Eq. (1) for depth-averaged phytoplankton
biomass concentration B̃(t):

∂B̃(t, x)

∂t
+

1

d

d∫

0

[
∂

∂x
(˜̃uB̃) +

∂

∂x

(

Kh
∂

∂x
B̃

)]

︸ ︷︷ ︸

change in B(t) due to transport

= B̃(x, t) · [Pm · Λ · (1− ρ)−m]. (C.1)

Scaling of the longitudinal terms in Eq. (C.1) shows
that the longitudinal diffusion term is 103 times smaller
than the longitudinal advection term. To obtain the latter
result, we assumed that typical scales for ˜̃u, x, and Kh are
1 m s−1, 105 m, and 102 m2 s−1, respectively (de Swart
et al., 2009). Consequently:

change in B̃(t) due to transport ≈
∂

∂x

[

ũ(x, t)B̃(x, t)

]

,

(C.2)

with ũ the depth-averaged velocity in the longitudinal
direction. This results in:

∂B̃(t, x)

∂t
=B̃(x, t) · [Pm · Λ · (1− ρ)−m]

−
∂

∂x

[

ũ(x, t)B̃(x, t)

]

. (C.3)

We need a further simplification to solve this differen-
tial equation analytically. The change in phytoplankton
biomass concentration due to advection is given by:

dB

dt

∣
∣
∣
∣
advection

= −
∂(ũ · B̃)

∂x

= −

[

ũ
∂B̃

∂x
+ B̃

∂ũ

∂x

]

. (C.4)

We assume:

B̃(x, t) = B(t) · f(x). (C.5)
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mfun0 =

(
E1(β)− E1

(
e−λβ

))

λ
+ 1, (B.3)

mfunκ/δ =
1

mfun0
·
[

−eβ(−e−λ) −mfun0 + 1
]

, (B.4)

mfunǫ =
1

mfun0
·

[

eβ(−e−λ) − e−β

λ

]

, (B.5)

mfunκ2/δ2 =
1

mfun0
·

[
βλ

2

(

−eβ(−e−λ)−λ
)

+ eβ(−e−λ) + mfun0 − 1

]

, (B.6)

mfunǫ2 =
1

mfun0
·
1

2

−βeβ(−e−λ)−λ − eβ(−e−λ) + e−ββ + e−β

λ
, (B.7)

mfunǫκ/ǫδ =
1

mfun0
·

[

βeβ(−e−λ)−λ −
eβ(−e−λ) − e−β

λ

]

, (B.8)

mfunκδ =
1

mfun0
·
[

βλ
(

−eβ(−e−λ)−λ
)

+ eβ(−e−λ) + mfun0 − 1
]

. (B.9)

Alternatively put, the phytoplankton biomass concen-
tration B̃(x,t) only scales to the magnitude of the biomass
B(t) in time. Here, B(t) is the local carbon biomass con-
centration at location x = x∗ where the Chl-a sensor is
deployed. The assumption states that the spatial distri-
bution f(x) of B̃(x, t) is time-independent. For example,
if f(x) is linear, we assume that it stays linear over time.
Because, in this paper, we are interested in high-frequency
dynamics (∼days−1), we argue that this assumption is
valid. Furthermore, we state that f(x) can be approxi-
mated by a linear function (first-order Taylor expansion);
We argue that the impact due to advection is a local phe-
nomenon near the location of the Chl-a sensor x∗:

∂B̃(x, t)

∂x
≈ B(t) ·

df(x)

dx

∣
∣
∣
∣
x=x∗

. (C.6)

Similarly, we assume:

∂ũ(x, t)

∂x
≈ u(t) ·

dg(x)

dx

∣
∣
∣
∣
x=x∗

, (C.7)

with u(t) the water velocity in the x-direction towards
the mouth. Furthermore, we assume that the water ve-
locity u(t) mainly consists of a subtidal and an M2 tidal
constituent:

u(t) = v0 +Av · sin(ωM2 · t+ΦM2 + θ), (C.8)

in which v0 > 0 is the residual velocity and Av is the am-
plitude of the M2 tidal constituent. To obtain Eq. (C.8),

we assumed a phase shift between the horizontal tide (cur-
rent velocity) and vertical tide (water level d) of approx-
imately −π/2 (van Rijn, 2010). If this is not valid, the
results can be generalized using an additional phase shift.
This is out of the scope of this paper. In Eq. (C.8), Av

has the same sign as D̂2. If we define Av as being positive,
we have:

u(t) = v0 + |Av| sign(D̂2) · sin(ωM2 · t+ΦM2 + θ),
(C.9)

with sign() the sign function.

Combining Eqs. (C.4), (C.6), (C.7), and (C.9), the
change in phytoplankton biomass concentration due to ad-
vection yields:

dB

dt

∣
∣
∣
∣
advection

=

−

[

ṽ∗0 + γ̃ · sin(ωM2 · t+ΦM2 + θ)

]

·B(t), (C.10)

in which:

γ̃ = |Av|sign(D̂2) ·

[

g(x)
df(x)

dx

∣
∣
∣
∣
x=x∗

+ f(x)
dg(x)

dx

∣
∣
∣
∣
x=x∗

]

, (C.11)

ṽ∗0 = v0 ·

[

g(x)
df(x)

dx

∣
∣
∣
∣
x=x∗

+ f(x)
dg(x)

dx

∣
∣
∣
∣
x=x∗

]

. (C.12)
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Filling in the latter results into the differential equation
for change in B(x, t) in Eq. (C.3) at x = x∗, we acquire:

∂B(t)

∂t
=B(t) · [Pm · Λ · (1− ρ)−m]+

B(t) ·

[

− v∗0 − γ · sin(ωM2 · t+ΦM2 + θ)

]

,

(C.13)

with:

γ = |Av|sign(D̂2) ·

[
df(x)

dx

∣
∣
∣
∣
x=x∗

+
dg(x)

dx

∣
∣
∣
∣
x=x∗

]

, (C.14)

v∗0 = v0 ·

[
df(x)

dx

∣
∣
∣
∣
x=x∗

+
dg(x)

dx

∣
∣
∣
∣
x=x∗

]

, (C.15)

in which we used f(x)
∣
∣
x=x∗

= 1 and g(x)
∣
∣
x=x∗

= 1.
The term due to advection in Eq. (C.13) is linear to B(t).
Consequently, this differential equation can be solved an-
alytically. Because the v∗0-term results in an exp (v∗0 · t)
factor, we define the mortality m∗ as:

m∗ = m+ v∗0 . (C.16)

In the following, we estimate the order of magnitude of
γ, v∗0 , andm∗ at our case study site. In the Scheldt estuary,
the water is pushed several kilometers∼ O(1) up and down
over the longitudinal direction every approximately 12.4 h.
So:

∫ 6.2h

0

Av sin(M2 · t)dt ∼ O(1),

⇒ Av ∼ O(1) km h−1. (C.17)

Furthermore, near our case study site, the phytoplank-
ton biomass concentration increases with a factor 1-10
∼ O(1) over a longitudinal distance of approximately 10
km (Maris and Meire, 2016). Consequently:

df(x)

dx
∼

O(1)

10 km
∼ O(10−1) km−1. (C.18)

Therefore, assuming that the longitudinal gradient in
velocity u is negligible (df/dx ≫ dg/dx), we have:

γ ≈ Av ·
df(x)

dx
∼ O(10−1) h−1. (C.19)

Similarly, if we assume v0 ∼ O(10−1) km h−1:

v∗0 ∼ O(10−2) h−1. (C.20)

Consequently, if we assume m∼ O(10−3) h−1 (Desmit
et al., 2005), we have:

m∗ ∼ O(10−2) h−1. (C.21)

Appendix D. Application 2: data fit

Application of data fits using the presumed expressions:

E′
0(t) =

3∑

n=1

Ên cos(nωS1t), (D.1)

k′d(t) = K̂2 cos(ωM2t+ΦM2
) + K̂4 cos(ωM4t+ΦM4

),
(D.2)

d′(t) = D̂2 cos(ωM2t+ΦM2
+ θ), (D.3)

to a subset of the data sets of E0, kd, and d at Schelle-
belle results in Fig. D.10a, D.10b, and D.10c, respectively.
We used the nls() function of the R programming language
to obtain these data fits.

We used subsets to diminish the impact of (low-
frequency) temporal variability we did not include in the
idealized time dependence in Eqs. (D.1)-(D.3). For ex-
ample, we excluded long term periodic temporal fluctua-
tions (e.g., spring-neap) and aperiodic temporal fluctua-
tions (e.g., impact of clouds).

Appendix E. Time integration of Λ(t)

For an implementation in R, we refer the reader to the
R-script timeIntegrationFunc.R in Supplementary mate-
rial.
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Figure D.10: The data fit of the postulated time dependencies to the data sets measured in the Scheldt estuary at Schellebelle (Belgium).
(a) The subset of kd(t) and the corresponding data fit. (b) The subset of E0(t) and the corresponding data fit. (c) The subset of d(t) and
the corresponding data fit.
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∫

κ(t)dt =
1
〈
kd
〉

[

K̂2 sin (ωM2 t+ ΦM2 )

ωM2

+

K̂4 sin (ωM4 t+ ΦM4 )

ωM4

]

(E.1)

∫

ǫ(t)dt =
1

〈
E0

〉

[
Ê1 sin (ωS1 t)

ωS1

+ 1/2
Ê2 sin (2ωS1 t)

ωS1

+ 1/3
Ê3 sin (3ωS1 t)

ωS1

]

(E.2)

∫

δ(t)dt =
1
〈
d
〉

[
D̂2 sin (ωM2 t+ΦM2 + θ)

ωM2

]

(E.3)

∫

ǫ2(t)dt =
1

〈
E0

〉2

[

1/2 Ê 2
1 t+ 1/2 Ê 2

2 t+ 1/2 Ê 2
3 t

+

(

Ê2 Ê1 + Ê3 Ê2

)

sin (ωS1 t)

ωS1

+ 1/2

(

1/2 Ê 2
1 + Ê3 Ê1

)

sin (2ωS1 t)

ωS1

+ 1/3
Ê2 Ê1 sin (3ωS1 t)

ωS1

+ 1/5
Ê3 Ê2 sin (5ωS1 t)

ωS1

+ 1/12
Ê 2
3 sin (6ωS1 t)

ωS1

+ 1/4

(

Ê3 Ê1 + 1/2 Ê 2
2

)

sin (4ωS1 t)

ωS1

]

(E.4)

∫

κ2(t)dt =
1

〈
kd
〉2

[

1/4
K̂ 2

2 sin (2ωM2 t+ 2ΦM2 )

ωM2

+ 1/2 K̂ 2
2 t

+
K̂2 K̂4 sin ((ωM2 − ωM4 ) t+ ΦM2 − ΦM4 )

ωM2 − ωM4

+
K̂2 K̂4 sin ((ωM2 + ωM4 ) t+ ΦM2 + ΦM4 )

ωM2 + ωM4

+ 1/4
K̂ 2

4 sin (2ωM4 t+ 2ΦM4 )

ωM4

+ 1/2 K̂ 2
4 t

]

(E.5)

∫

δ2(t)dt =
1
〈
d
〉2

[
D̂2

21/2 cos (ωM2 t+ ΦM2 + θ)

ωM2

× sin (ωM2 t+ ΦM2 + θ)

+ D̂2
2

ωM2 t+ ΦM2 + θ

2ωM2

]

(E.6)

∫

δ(t)ǫ(t)dt =
D̂2

〈
E0

〉〈
d
〉

[

1/2
Ê1 sin ((ωM2 − ωS1 ) t+ ΦM2 + θ)

ωM2 − ωS1

+ 1/2
Ê1 sin ((ωM2 + ωS1 ) t+ ΦM2 + θ)

ωM2 + ωS1

+ 1/2
Ê2 sin ((ωM2 − 2ωS1 ) t+ ΦM2 + θ)

ωM2 − 2ωS1

+ 1/2
Ê2 sin ((ωM2 + 2ωS1 ) t+ ΦM2 + θ)

ωM2 + 2ωS1

+ 1/2
Ê3 sin ((ωM2 − 3ωS1 ) t+ ΦM2 + θ)

ωM2 − 3ωS1

+ 1/2
Ê3 sin ((ωM2 + 3ωS1 ) t+ ΦM2 + θ)

ωM2 + 3ωS1

]

(E.7)

∫

κ(t)δ(t)dt =
1

〈
kd
〉〈
d
〉

[

D̂2

(

1/2 K̂2 cos (θ) t

+ 1/4
K̂2 sin (2ωM2 t+ 2ΦM2 + θ)

ωM2

+ 1/2
K̂4 sin ((ωM2 − ωM4 ) t+ ΦM2 − ΦM4 + θ)

ωM2 − ωM4

+ 1/2
K̂4 sin ((ωM2 + ωM4 ) t+ ΦM2 + ΦM4 + θ)

ωM2 + ωM4

)]

(E.8)
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∫

κ(t)ǫ(t)dt =
1

〈
E0

〉〈
kd
〉

[

1/2
K̂2 Ê1 sin ((ωM2 − ωS1 ) t+ ΦM2 )

ωM2 − ωS1

+ 1/2
K̂2 Ê1 sin ((ωM2 + ωS1 ) t+ ΦM2 )

ωM2 + ωS1

+ 1/2
K̂2 Ê2 sin ((ωM2 − 2ωS1 ) t+ ΦM2 )

ωM2 − 2ωS1

+ 1/2
K̂2 Ê2 sin ((ωM2 + 2ωS1 ) t+ ΦM2 )

ωM2 + 2ωS1

+ 1/2
K̂2 Ê3 sin ((ωM2 − 3ωS1 ) t+ ΦM2 )

ωM2 − 3ωS1

+ 1/2
K̂2 Ê3 sin ((ωM2 + 3ωS1 ) t+ ΦM2 )

ωM2 + 3ωS1

+ 1/2
K̂4 Ê1 sin ((ωM4 − ωS1 ) t+ ΦM4 )

ωM4 − ωS1

+ 1/2
K̂4 Ê1 sin ((ωM4 + ωS1 ) t+ ΦM4 )

ωM4 + ωS1

+ 1/2
K̂4 Ê2 sin ((ωM4 − 2ωS1 ) t+ ΦM4 )

ωM4 − 2ωS1

+ 1/2
K̂4 Ê2 sin ((ωM4 + 2ωS1 ) t+ ΦM4 )

ωM4 + 2ωS1

+ 1/2
K̂4 Ê3 sin ((ωM4 − 3ωS1 ) t+ ΦM4 )

ωM4 − 3ωS1

+ 1/2
K̂4 Ê3 sin ((ωM4 + 3ωS1 ) t+ ΦM4 )

ωM4 + 3ωS1

]

(E.9)

Appendix F. The impact of temporal variability
in light-climate on the onset of a
phytoplankton bloom

We estimate the impact of temporal fluctuations in E0,
kd, and d on the onset of a phytoplankton bloom using
our idealized model. After two weeks, the modeled phyto-
plankton biomass when no fluctuations would be present
is approximately a factor 14 larger than observed.

Using Eqs. (22) and (24), we estimate the difference
in β which is required to obtain the same difference in
phytoplankton biomass after 14 days:
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Figure F.11: Observed solar irradiance in 2016 at Stabroek (data)
and corresponding low frequency temporal variation (low freq. var).

Bno fluct.(t = 14 days, β +∆β)

Bno fluct.(t = 14 days, β)
= 14,

=⇒ mfun0(λ, β +∆β)−mfun0(λ, β) =

1

(1− ρ)Pm

log 14

14 days
,

=⇒ ∆β ≈ 1.3. (F.1)

Using Eq. (12), we compute the corresponding differ-
ence in solar irradiance ∆ < E0 >≈ 31 J s−1 m−2. We
use time series of E0 observed in 2016 at Stabroek (Fig.
F.11) to compute the number of days required to increase
the (daily-averaged) solar irradiance E0 (low freq. var in
Fig. F.11) by 31 J s−1 m−2 in April, which equals approx-
imately two weeks. Consequently, temporal variability in
light-climate can delay the onset of a phytoplankton bloom
by approximately two weeks.
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