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ABSTRACT
Classification by neural nets and by tree-based methods are powerful tools of machine learning. There exist
interesting visualizations of the inner workings of these and other classifiers. Here we pursue a different
goal, which is to visualize the cases being classified, either in training data or in test data. An important
aspect is whether a case has been classified to its given class (label) or whether the classifier wants to assign
it to a different class. This is reflected in the (conditional and posterior) probability of the alternative class
(PAC). A high PAC indicates label bias, that is, the possibility that the case was mislabeled. The PAC is used
to construct a silhouette plot which is similar in spirit to the silhouette plot for cluster analysis. The average
silhouette width can be used to compare different classifications of the same dataset. We will also draw
quasi residual plots of the PAC versus a data feature, which may lead to more insight in the data. One of
these data features is how far each case lies from its given class. The graphical displays are illustrated and
interpreted on datasets containing images, mixed features, and tweets. Supplementary materials for this
article are available online.
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1. Introduction

Classification by neural nets and by tree-based methods are
powerful tools of machine learning. Hastie, Tibshirani, and
Friedman (2017) give a broad overview of classification meth-
ods. There exist interesting visualizations of the inner workings
of classification by neural nets; see, for example, Shahroudnejad
(2021) and the references cited therein. Classification trees such
as those produced by CART (Breiman et al. 1984) and the cor-
responding R package rpart (Therneau, Atkinson, and Ripley
2019) can plot the tree and list its decision rules, which makes
the classification explainable. The random forest classifier
(Breiman 2001) can be understood as an ensemble of such trees.

In this article we propose visualizations of the cases being
classified, rather than the mechanism of the classifier. We are
convinced that visualizing the objects being classified is equally
useful, and can reveal different and very relevant aspects of the
classification task. The visualization of cases is well-established
for regression tasks, with for example, residual plots, whereas it
is lagging behind for classification. The purpose of the new visu-
alizations is to draw our attention to interesting aspects of the
data that we might not have known otherwise or did not expect.
Examples are the strength of the classification per label, noticing
patterns in subsets of the data, detecting mislabeled instances,
and discovering overlap between classes. Interpreting such clues
may provide insight into the structure and quality of the data.
The graphical displays can also reveal underlying causes of mis-
classifications, telling us something about the appropriateness
of the classifier. This will be illustrated in various examples
throughout the article.

CONTACT Peter J. Rousseeuw peter@rousseeuw.net Section of Statistics and Data Science, Department of Mathematics, KU Leuven, Leuven, Belgium.
Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JCGS.

In classification, a key concept is the conviction with which
an observation is assigned to its own class or a different class.
This information is captured by the probability of the alternative
class (PAC) which is fundamental to our visualizations. We use
the PAC to construct a silhouette plot which is similar in spirit to
the silhouette plot for unsupervised classification (Rousseeuw
1987). The average silhouette width (on test data or cross-
validated) can be used to compare different classifiers applied
to the same dataset. We will also draw quasi residual plots of
the PAC versus a data feature. Patterns in such plots may reveal
interesting trends, and may help unearth factors explaining why
some cases are easier to classify correctly than others, potentially
informing model choice.

In Section 4.1 we will focus on neural nets, and analyze
the results of a classification of images from 10 categories.
Section 4.2 applies the general principles to classification by
CART, and Section 4.3 does the same for random forests, each
illustrated on a well-known dataset. Section 5 concludes and
describes the available software.

2. Silhouette Plots for Classification

The silhouette plot of Rousseeuw (1987) is a graphical display
of a clustering (unsupervised classification) in k clusters. The
silhouette width

s(i) := b(i) − a(i)
max

(
a(i), b(i)

) (1)

describes how well case i is clustered. Here a(i) is the average
interpoint dissimilarity of case i to the members of its own
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cluster. In contrast, b(i) is the smallest average dissimilarity of
case i to a nonself cluster. That cluster can be considered the
“best alternative” cluster for case i. From (1) we see that s(i) is
between −1 and 1. When s(i) is high (close to 1) it means that
case i has much more in common with its own cluster than with
any other cluster, so it was clustered well. On the other hand,
an s(i) close to −1 means that case i would much prefer to be
assigned to its best alternative cluster.

The silhouette plot displays the s(i) values, ranked in decreas-
ing order in each cluster. The silhouette of a cluster reflects how
well its members are clustered. The left panel of Figure 1 shows
the silhouettes of a partition with k = 3 of a toy dataset. The s(i)
are on the horizontal axis. For instance, in the second cluster
from the top the cases range from well-clustered (high s(i)) to
poorly clustered (low s(i)). The silhouette of the third cluster is
the widest, and indeed the average of its s(i), shown on the left
as s̄ = 0.75, is the highest. The overall average silhouette width of
0.63 listed at the bottom is the average s(i) over all cases i in the
dataset. Usually the number of clusters k is not given in advance,
and then one often selects the value of k that makes the overall
average silhouette width the highest.

In our setting of supervised classification, the situation is
somewhat different. Not all classifiers are based on interpoint
dissimilarities; in particular, neural nets combine the outputs of
cells in neurons, and tree-based classifiers use variable splits. We
denote a class (label, group) by the letter g, with g = 1, . . . , G.
Consider a case i = 1, . . . , n in the training set or a test set.
Typically, a classifier will provide posterior probabilities p̂(i, g)

of object i belonging to each of the classes g, with
∑G

g=1 p̂(i, g) =
1 for each i. The object i is then classified according to the
maximum a posteriori rule

assign object i to class argmaxg=1,...,G p̂(i, g) . (2)

Now consider the object i with its known given label gi . In
analogy with the s(i) above, we want to measure to what extent
the given label gi agrees with the classification of i. For this
purpose we define the highest p̂(i, g) attained by a class different
from gi as

p̃(i) := max{p̂(i, g) ; g �= gi} . (3)

The class attaining this maximum can be seen as the best alter-
native class, so it plays the same role as the class yielding b(i) in
clustering. If p̂(i, gi) > p̃(i) it follows that gi attains the overall
highest value of p̂(i, g), so the classifier agrees with the given
class gi . On the other hand, if p̂(i, gi) < p̃(i) the classifier will
not assign object i to class gi .

We now compute the conditional posterior probability of the
best alternative class when comparing it with the given class gi
as

PAC(i) = p̃(i)
p̂(i, gi) + p̃(i)

. (4)

The abbreviation PAC stands for Probability of the Alternative
Class. It always lies between 0 and 1, and smaller values are better
than larger values. When PAC(i) < 0.5 the classifier does pre-
dict the given class gi, whereas PAC(i) > 0.5 indicates that the
best alternative class outperforms gi in the eyes of the classifier.
PAC(i) ≈ 0 indicates that the given class fits very well, and
PAC(i) ≈ 1 means the given class fits very badly. The PAC can

be seen as a continuous alternative to the more crude distinction
between “correctly classified” and “misclassified” that is used in
the misclassification rate.

In order to draw the silhouette plot of a classification, we put

s(i) := 1 − 2 PAC(i) . (5)

Like (1) this s(i) again ranges from −1 to 1, with high values
reflecting that the given class of case i fits very well, and negative
values indicating that the given class fits less well than the best
alternative class. The actual silhouette plot is then drawn as
before, for example in the right panel of Figure 1 with G = 4
classes shown in different colors. The fact that the s(i) have a
continuous range allows us to see finer detail than if we would
only display whether a case is classified correctly or not.

The data and the classifier leading to this plot will be
explained in Section 4.3, but the display alone already tells
us a lot. The silhouettes have unequal heights, which are
proportional to the number of cases in each given class. Each
class has several cases with high s(i), that are predicted strongly
in it, but also some cases with negative s(i), which the classifier
predicts in a different class. The overall silhouette width is 0.79 .
Class “fear” has the highest average silhouette width (s̄ = 0.84),
similar to that of class “joy” (0.82), and followed by classes
“anger” (0.76) and “sadness” (0.71). This indicates that classes
“fear” and “joy” are fit best by this particular classifier.

In supervised classification the number of classes G is known
in advance, so the overall average silhouette width cannot play
the same role as in cluster analysis, where it is used to select the
number of clusters. But when different classifiers are applied to
the same dataset, it measures the quality of each classification,
so one could select the classification with the highest overall
average silhouette width.

3. Quasi Residual Plots

Another graphical display is obtained by plotting the PAC versus
a relevant data variable. This is not unlike plotting the absolute
residuals in regression, since small values of PAC(i) indicate
that the model fits the data point nearly perfectly, whereas a
high PAC(i) alerts us to a poorly fitted data point. We call it a
quasi residual plot because of this analogy. The data feature on
the horizontal axis does not have to be part of the classification
model, and it could also be a quantity derived from the data
features such as a principal component score or a prediction,
or just the index i of the data point if the data were recorded
sequentially.

Figure 2 shows two quasi residual plots. The data will be
described in Section 4.1, and consists of 10,000 color images
with G = 10 classes. The classifier has operated on the pixels of
each image, yielding the PAC on the vertical axis. The variables
on the horizontal axis were not in the classification model. The
left panel plots the PAC versus the intensity of each image, which
was averaged over all pixels and the three colors (red, green,
and blue). Note that the bottom half of the plot has a light gray
background. Points in this region have PAC(i) < 0.5, meaning
that they are predicted in their given class, whereas the classifier
would put the points in the top half in a different class.

Since the density on the horizontal axis is far from uniform,
three curves were superimposed. The red curve is the average
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Figure 1. Silhouette plots of (left) a partitioning of a toy dataset in three clusters, and (right) a classification with four classes.

Figure 2. Quasi residual plots of images versus their intensity and hue.

PAC on 10 equispaced intervals, positioned in the midpoint of
each interval, after which the averages were connected by line
segments. The blue curves correspond to the average plus or
minus one standard error. We see that higher intensities tend to
yield lower PAC, meaning that the classifier did a better job on
them. In the right hand panel we see a similar effect in function
of the hue of each image.

A possible strategy is to record, collect, or construct a
number of features and to run a regression method with the
PAC as response variable. This may tell the user which factors
affect the precision of the classifier. With that information one
could finetune the classifier, or select additional features for the
classification.

3.1. Class Maps

Class maps (Raymaekers, Rousseeuw, and Hubert 2022)
are quasi residual plots versus a feature reflecting how far
each case is from its class. This is based on some distance
measure D(i, g) of a case i relative to a class g. For each
classifier in Section 4 we will specify an appropriate measure
D(i, g).

Next we estimate the cumulative distribution function of
D(x, g) where x is a random object generated from class g . The
farness of the object i to the class g is then defined as

farness(i, g) := P[D(x, g) � D(i, g)] . (6)
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Therefore, farness(i, g) lies in the [0, 1] range, just like PAC(i).
The computation of (6) is described in section A.1 of the sup-
plementary material.

The class map plots PAC(i) versus farness(i, g) for all cases
i with given label g. The colors of the points are those of the
predicted class. Points with high farness to all classes are marked
by a black border, as in Figure 4.

4. Silhouette and Quasi Residual Plots Applied to
Classifiers

The silhouette plot, quasi residual plot, and class map can be
drawn for training data as well as labeled test data, with the same
interpretation. But the motives for looking at them are slightly
different. Plots of the training data can help to assess whether
the classifier is appropriate, discover overlap between classes,
and find mislabeled points so their labels can be corrected to
improve the trained model. Making plots of the test data can
yield the same type of conclusions, but can also highlight aspects
specific to the test data, such as differences between training and
test data. They can also help identify gaps in the training data.
If a test image of a cat in the snow is classified as a dog because
only dogs appeared in the snow in the training data, it might be
good to add images of cats in the snow to the training data.

4.1. Neural Nets

In this section we illustrate the proposed graphical displays in
the setting of classification by a neural network. Neural networks
encompass a broad class of classifiers which are based on a
structure with an input layer, hidden layers, and an output layer,
each consisting of a number of nodes. For a classification into G
groups based on p-variate data, the input layer has p nodes, each
corresponding to one input variable, and the output layer has G
nodes, one for each class. The number and sizes of hidden layers
and their connections determine the structure of the network
and have to be fixed beforehand.

For an introduction to neural networks we refer to Hastie,
Tibshirani, and Friedman (2017). In its simplest form, a neural
network classifier has one hidden layer with M nodes. Case i is
described by a p-dimensional vector xi of input variables. The
response is its given class gi . This is encoded as a G-variate vec-
tor yi which has 1 in the position gi and 0 in all other positions.
(This is called “one-hot encoding.”) We aim to approximate the
response by a function f , that is, yi ≈ f (xi). The neural network
will then create M new features in the intermediate layer, given
by

(zi)m = σ(α0m + α′
mxi) for m = 1, . . . , M.

For the activation function σ one often takes the rectified linear
unit σ(t) := max(0, t). Next, G-variate vectors vi are obtained
as linear combinations of the vectors zi by

(vi)g = β0g + β ′
gzi for g = 1, . . . , G. (7)

These vectors vi do not yet contain probabilities. To that end one
applies the G-variate softmax function h given by

(h(vi))g = e(vi)g∑G
j=1 e(vi)j

. (8)

Figure 3. Silhouette plot on the CIFAR-10 test data.

The end result is the vector f (xi) := h(vi) with positive entries.
These can be seen as posterior probabilities p̂(i, g) := f (xi)g .
They indeed satisfy

∑G
g=1 p̂(i, g) = 1 by virtue of (8) in the final

layer of the network. The PAC can then be calculated from (3)
and (4).

In practice most neural networks have multiple hidden lay-
ers, that are chained to each other to allow more complex
structures to be learned from the data. These hidden layers are
connected in the same way as the layers above, that is, by apply-
ing a nonlinear activation function on a linear combination
of the outputs of the previous layer. Some of these layers can
have specialized connections depending on the classification
task at hand. For instance, for classifying images, convolutional
neural networks (CNNs) are very popular. They incorporate
“convolutional layers” and “pooling layers” that combine the
information in nearby pixels (“local connectivity”) to capture
spatial information and reduce the dimension. Neural networks
are most commonly trained by backpropagation, which allows
gradient-based optimization of a loss function. The model is
good when the fitted vectors f (xi) are close to the response
vectors yi . Training can take long, but for a new case x the
prediction f (x) is fast.

As an illustration we use the well-known CIFAR-10 bench-
mark dataset. It consists of 60,000 color images with 32 × 32
pixels. They depict objects from 10 classes, with 6000 images per
class. There are 50,000 training images and 10,000 test images.

The CIFAR-10 data have been classified by the residual neu-
ral network with 56 layers (ResNet-56) of He et al. (2016). We
have looked at the proposed graphical displays on the training
data (not shown), but they are not very eventful because the
model obtains a perfect classification on the training data. On
the test data the accuracy is a realistic 94%, allowing for more
interesting visualization. Figure 3 shows the silhouette plot of
the test data. With an overall average silhouette width of 0.87,
we can conclude that the test data is classified quite well. We
also see clear differences between the classes. The class of auto-
mobiles has the highest average silhouette width s̄ = 0.95, so

https://doi.org/10.1080/10618600.2022.2050249
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Figure 4. Class map of the airplane class in the test data, with the images corresponding to the marked points.

the classifier did best on this class. Animals seem to be harder
to classify, with cats and dogs obtaining an average silhouette
width s̄ below 0.8. Also note that this classifier often had a high
conviction, with many s(i) ≈ 1 (when classified correctly) or
s(i) ≈ −1 (when misclassified).

Now we turn to quasi residual plots. For image data, it would
not be natural to plot the PAC versus a single input feature, since
this would correspond to the red, green or blue value in one
pixel. Instead, we used the summary properties of intensity and
hue of an image in Figure 2, already shown in Section 3.

For the class maps described in Section 3 we start by com-
puting the Mahalanobis distance D(i, g) of each case i relative to

each class g, given by

D(i, g) :=
√

(vi − v̄g)′̂�
−1
g (vi − v̄g) (9)

where vi is given by (7), v̄g is the average of all vj in class g in the
training data, and ̂�g is their covariance matrix. This requires
that all the G×G matrices ̂�g are nonsingular, which is typically
the case when each class has many members compared to G. The
resulting farness is then given by (6).

Figure 4 is the class map of airplane images in the test data.
We see that most of the images get classified correctly, as the
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Figure 5. Class map of the cat class in the test data, with the corresponding images.

majority of points have a PAC below 0.5 and are shown in red,
the color of this class. The misclassified cases are the points with
PAC(i) above 0.5, with many purple points being classified as
ships and some yellow points as birds. These unusual cases stood
out in the class map, and deserve to be looked at. The images
corresponding to the marked points are shown below the class
map. Images a, c–e and g assigned to class “ship” have water in
them. Three of these are seaplanes (c–e), and g contains both
an airplane and a ship. Image b is classified as a bird, which is
not too surprising as it does look like one. The object covers so
few pixels that it is hard to classify, even for a human. Finally,
points i and j are correctly classified as airplanes, but with high
farness. The first is an airplane photographed from an unusual

angle, with a city as background. The second has a strange shape,
and could be a stealth plane.

The farness probabilities on the horizontal axis are not equi-
spaced: they are shown on the scale of quantiles of the standard
Gaussian distribution restricted to the interval [0,4]. This makes
high farness values stand out more. The vertical dashed line is
at a cutoff value, which can be chosen by the user and is 0.99
by default. Cases which are far from every class in the data, that
is with farness(i, g) above the cutoff for all g, are called farness
outliers and plotted with a black border in the class map. Such
cases do not lie well within any class, for example the images
c, e, and h–j. Note that class maps are similar in spirit to the
regression outlier maps of Rousseeuw and van Zomeren (1990)
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and Rousseeuw et al. (2004), which plot residuals versus farness
to the entire dataset.

As a second example we consider the class map of cat images,
shown in Figure 5. As could be expected, there is some confu-
sion with the dog class. Not only do cats and dogs often have
similar features, they also tend to be photographed with similar
backgrounds, as illustrated in the images a, b, and f. Point
c has both a very high farness and the highest PAC. This is
clearly a mislabeled image, which should belong to the frog class!
We detected this image because of its extremely high PAC and
farness, whereas it would have been harder to find if we only had
a long list of misclassified cases. Image d is classified as deer, but
flagged as a farness outlier, suggesting that this image does not
lie well within any class. Images e and h are misclassified as a
truck and a ship, respectively. The first may be explained by the
straight lines in the image, whereas the second is of a cat in a
blue container. As both of these are farness outliers, they are not
close to any of the classes, making them hard to classify. Finally,
images i and j are farness outliers but classified correctly. They
contain cats, but the images are dominated by other objects.

In both class maps, higher PAC values are associated with
higher farness. This suggests that in the CIFAR-10 dataset, the
inaccuracy of the neural net classifier is caused more by feature
noise (atypical images) than by label noise (randomness in the
response).

Some other classes are shown in section A.2 of the supple-
mentary material.

4.2. Classification Trees

In this section we will visualize the cases in a tree-based clas-
sification. Here we use CART (Breiman et al. 1984), for which
many implementations exist such as the R package rpart
(Therneau, Atkinson, and Ripley 2019), but other tree-based
classifiers such as C4.5 (Quinlan 1993) can be visualized as well.
As an illustrative example we analyze the Titanic data. This
dataset is freely available on https://www.kaggle.com/c/titanic/
data. The data contains information on the passengers of the
RMS Titanic. The binary response variable indicates whether
the passenger survived or was a casualty. It also contains a mix
of nominal, ordinal and numerical variables describing several
characteristics. Strong points of CART are its ability to deal with
features of mixed types as well as missing values, which are
abundant in these data. We train the classification tree predict-
ing the survival of the passengers from the features Pclass,
Sex, Sibsp, Parch, Fare, and Embarked. Pclass is an
ordinal variable ranging from 1 (first class) to 3 (third class),
Sex is male or female, and Fare is in British Pounds. The vari-
ables Sibsp and Parch count the number of siblings+spouses
and parents+children aboard. Embarked is the port (out of
three) at which the passenger got on the ship. The resulting tree
is shown in Figure 6, drawn with the rpart.plot package
(Milborrow 2020). We see that only 4 out of 6 variables are
actually used in the model, and that the tree starts with a very
crude split which predicts all males as casualties. This tree has
an accuracy of about 82% on the training data.

At the bottom of the tree in Figure 6 we see the leaves. The
leftmost leaf contains all males, which make up 65% of the
passengers, with the probability of survival being 19%. So for

all cases i that end up in this leaf, the posterior probabilities are

p̂(i, survived) = 0.19 and p̂(i, casualty) = 1−0.19 = 0.81.

The classification by the maximum a posteriori rule (2) thus
assigns all objects in this leaf to the casualty class, which is
listed as the top line inside the leaf. Analogously, the rightmost
leaf represents 19% of all passengers, its posterior probability
of survival is 95%, so all members of this leaf are predicted as
survived.

Now that we know the posterior probabilities for each case
i in the dataset, it is trivial to compute the probability of the
alternative class PAC(i) from (4). Next, (5) immediately yields
the silhouette plot, shown in Figure 7. With an average silhouette
width of 0.44, we conclude that this classification of the Titanic
data is far from perfect, but it may be hard to do much better
given the presumably chaotic decision making at the time of the
disaster. By comparing the average silhouette widths, we see that
the class of survived passengers (in blue) is hardest to predict.
But the correct predictions in this class are made with a relatively
high conviction (s(i) ≈ 1). This is in contrast to the predictions
of the casualty class which contains fewer misclassified cases,
but the correct classifications for this class are made with only
moderate conviction.

Figure 8 shows an interesting quasi residual plot, of PAC
versus age for the males in the data. The PAC only takes two
values in this subset of the data, corresponding to the leftmost
leaf in Figure 6. As a visual aid the loess curve (Cleveland 1979)
was superimposed, using the loess function in base R with
default settings. This indicates that the PAC values (here linked
to survival) for very young males are substantially higher than
for older males. The graph thus uncovered a phenomenon in a
subset of the data.

Note that each leaf of a classification tree such as Figure 6
corresponds to a number of splits in the features, so its domain
in feature space can be called “rectangular.” The region that is
assigned the same prediction is thus a union of such “rectangles,”
which does not need to be connected. Therefore, a tree-based
classifier takes a completely different view of the data than, for
instance, linear discriminant analysis. In order to construct class
maps, we need a measure of farness in feature space which
is in line with how the classifier looks at the data. Therefore,
it is natural to take a distance measure that is additive in the
features. Moreover, the distance measure needs to be able to
handle features of mixed types, as well as missing values. For
these reasons we elect to use the daisy function introduced by
Kaufman and Rousseeuw (1990), which is a dissimilarity version
of the similarity coefficient of Gower (1971) for nominal, asym-
metric binary, and numerical variables, extended to encompass
ordinal variables. It is implemented as the function daisy in
the R package cluster (Maechler et al. 2019).

Simply applying daisy to the set of features would ignore
an important property of tree-based classifiers, which is that
they do not consider all features equally important. To take
this aspect into account, we use a weighted daisy dissimilarity
where the weights are equal to each variable’s importance. The
variable importance is a standard output of rpart, computed
as described in (Breiman et al. 1984). The weighted daisy com-
putation provides us with a dissimilarity d(i, j) between all cases
i and j. When computing the farness of a case i to a class g, we

https://doi.org/10.1080/10618600.2022.2050249
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Figure 6. CART classification tree trained on the Titanic data.

Figure 7. Silhouette plot of the CART classification on the Titanic training data.

need to take into account the local nature of classification trees.
To this end we use a nearest-neighbors type approach, described
in detail in section A.3, supplementary material.

Figure 9 shows the class maps of the Titanic training data, in
which we note a few extreme points. Cases a and b have the
highest PAC in the casualty class, combined with a relatively
high farness. These are a woman and female child traveling
in first class, for which the classifier predicted survival. The
elevated farness is due to some unusual characteristics for the
casualty class, such as a high fare for the child, the gender
and traveling class of both subjects, and an uncommon port of
embarkation for the woman. Passenger c has a low PAC but a

Figure 8. Quasi residual plot of male passengers versus their age, with loess curve
in red.

rather high farness. This is a male passenger who was correctly
predicted as a casualty. His high farness is caused by paying a
huge fare (in the top 1%), traveling in first class, and having as
many as 4 children+parents traveling with him.

The class map of the survived passengers is shown in the right
hand panel of Figure 9. Case d is a woman who traveled in third
class and is misclassified as a casualty. Her relatively high farness
is caused by the fact that she was traveling with as many as 5
parents+children. Passengers e and f are two males, and thus
predicted as casualties with high PAC. Their substantial farness

https://doi.org/10.1080/10618600.2022.2050249
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Figure 9. Titanic training data: class maps of casualties (left) and survivors (right).

Figure 10. Quasi residual plots, with their medians (red) and 75th percentiles (orange).

is explained by having paid a high fare. Point g is a woman
traveling first class, correctly predicted as survived, with much
conviction since her PAC is close to zero. She paid the highest
fare of all passengers in the training data, causing her relatively
high farness.

In Figure 9 we note that high PAC values occur over the
whole farness range, telling us that for the Titanic data the
misclassifications were mainly caused by label noise, that is,
much randomness in the survival label. Section A.4 in the
supplementary material shows the corresponding class maps for
the Titanic test data, where again some individuals stand out.

4.3. Random Forests

Random forests were introduced by Breiman (2001) and are
based on an ensemble of decision trees. The idea is to train
many different classification trees for the same task. In order to

generate sufficiently diverse trees, two techniques are exploited.
The first is bagging, which means that only a subsample of the
observations is used when training a single tree. The second is
the random sampling of potential variables at each split. This
forces the various trees to use a wide variety of variables. To
classify case i, we let it go down all of the trees in the forest. Its
posterior probability p̂(i, g) in class g is then the number of trees
that assigned it to class g, divided by the total number of trees.
These posterior probabilities clearly add up to 1. Applying the
maximum a posteriori rule (2), we then assign case i to the class
with highest p̂(i, g). Random forests often perform well in real
world classification problems. Here we use the implementation
in the R package randomForest by Liaw and Wiener (2018).

As an illustration we analyze the emotion dataset of Moham-
mad and Bravo-Marquez (2017). It contains a training set of
3613 tweets and a test set of 3142 tweets, which have been
labeled with the four classes anger, fear, joy, and sadness. The

https://doi.org/10.1080/10618600.2022.2050249
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Figure 11. Class map of the anger class, with the corresponding tweets.

goal is to train a random forest to predict the emotion of a tweet.
We preprocessed the data by removing word contractions and
elongations using the R package textclean (Rinker 2018).
We also replaced the emojis with unique words. Finally, we
used the R package text2vec (Selivanov, Bickel, and Wang
2020) to convert these texts into numerical data based on n-
grams of at most length 3. This procedure leaves us with a
3613×2705 training data matrix. The class anger has 857 tweets,
fear has 1147, joy has 823, and sadness has 786. We then ran
randomForest()with its default options. The trained forest
achieves an accuracy of 97.6% on the training data, and 80.8%
on the test data. Since each case i gets posterior probabilities
p̂(i, g) for each class g, we can easily compute the probability of
the alternative class PAC(i) from (3) and (4). The silhouette plot
for the training data was shown in Figure 1.

The left panel of Figure 10 is the quasi residual plot of PAC
versus the number of characters in each tweet, with the median
(in red) and 75th percentile (orange) on 10 equispaced intervals.
As most tweets are classified correctly with low PAC values,
these trend lines are near the bottom of the plot. But we still
see an upward trend, which indicates that longer tweets were
somewhat harder to classify, perhaps due to containing words
linked with more than one class. The quasi residual plot in the
right hand panel is versus the number of hashtags (0, 1, 2, 3, and
4+). This time we see a downward trend, suggesting that tweets
with more hashtags are typically easier to classify. Both plots
revealed an effect that we could not have predicted beforehand.

We now turn to the class maps of the emotion data. The
farness is computed along the same lines as in the previous
section, starting from a weighted daisy dissimilarity between
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Figure 12. Class map of the joy class, with the corresponding tweets.

cases. The weights are again given by each variable’s importance,
corresponding to the total decrease of the Gini index by splitting
on the variable, and averaged over all trees in the forest. This is a
standard output of the function randomForest(). Deriving
the farness of case i from class g is also done in the same way,
described in section A.3 of the supplementary material.

Figure 11 shows the class map of the anger class. Only a few
points aren’t red, meaning they are assigned to a different class.
We marked some points that jump out, and the corresponding
tweets are listed below the class map. Pointahas the highest PAC
in this class. It corresponds to the uninformative tweet “testing”
which does not contain any word in the constructed vocabulary,
so it gets assigned to the fear class simply because that class has
the most members. The class map drew our attention to this
atypical tweet. Tweets b and c are assigned to sadness. The first
might indeed be sad, but the context is lacking. The second does
not seem to carry a clear emotion. We also look at some tweets
that are classified correctly, but lie far from their given class.
Tweet d seems more sad than angry, and contains a lot of words
which would not immediately be associated with anger. Tweet
e is in fact part of a song lyric. Finally, f, g, and h have a black
border which indicates that their farness to all classes is above

the cutoff value, so they do not lie well within any class. Indeed,
they refer to emotions belonging to none of the classes, such as
bitterness and feeling offended.

The class map of the joy class is shown in Figure 12. There
are only a few misclassified points, as well as a handful of
farness outliers on the bottom right. Tweet i contains the word
gleesome, which does suggest joy, but this word only occurs once
in the dataset so it is not in the constructed vocabulary, leading
i to be assigned to the largest class (fear). Tweet j appears
to be mislabeled, as it suggests sadness instead of joy. Tweet
k is classified as angry, but not with high conviction since its
PAC(i) is only slightly above 0.5 . It also has a rather high farness,
indicating that it doesn’t lie well within the joy class. The text is a
proverb about two emotions. Tweets l to n have a black border
indicating farness outliers, which suggests that they do not lie
well within any of the classes. Tweet l is indeed strange with
many repetitions, and m mixes emotions so it is hard to give it a
single label. Tweet n is definitely in the joy class, but contains an
unusual number of joy-related words compared to other tweets
of this class.

In both class maps the PAC > 0.5 values are not associated
with high farness. This suggests that the misclassifications are

https://doi.org/10.1080/10618600.2022.2050249


JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 1343

mainly driven by label noise, caused by the difficulty of labeling
the emotion of some tweets. The class maps of the remaining
emotions fear and sadness are discussed in section A.5 of the
supplementary material.

5. Conclusions

The proposed visualizations focus on the cases in a classifi-
cation. The examples illustrated the benefits of this approach.
The new silhouette plot describes the strength of each object’s
classification, grouped by class. For instance, we noticed that
images of mechanical objects were typically classified more reli-
ably than images of animals. Quasi residual plots yielded other
insights, such as trends in subsets of the data like the effect of age
for male passengers on the Titanic. They also revealed factors
affecting the classification accuracy, such as the length of tweets
and their number of hashtags. The class map provides additional
information, as it can tell us which cases lie between classes,
which cases are far from their given class, and some cases may
be far from all classes. The class map allowed us to distinguish
between feature noise and label noise in the examples: in the
image data the misclassifications were mainly driven by atypical
images, whereas in the other examples the dominant effect was
some randomness in the response (the labels), such as survival
in the Titanic data. The displays also drew our attention to
atypical cases that were inspected in more detail, providing
further insights in the data.

The visual displays in this article were produced with
the R package classmap (Raymaekers and Rousseeuw
2021) on CRAN. Its vignettes Neural_net_examples,
Rpart_examples and Random_forest_examples
correspond to the classifiers in Section 4. Note that all three
visualizations make use of the posterior probabilities that
a case belongs to the available classes (labels). Since most
classifiers provide such probabilities, the graphical displays
can be employed not only with neural nets and tree-based
classifiers, but also with other methods such as discriminant
analysis, k-nearest neighbors, and support vector machines.
The displays for these methods are also available in the classmap
package.

Supplementary Materials

These consist of a text with additional information and figures, and an R
script that reproduces the examples in the article.
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