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Abstract

We study a framework for performing regularized K-means, based on direct penalization of
the size of the cluster centers. Different penalization strategies are considered and compared
in a theoretical analysis and an extensive Monte Carlo simulation study. Based on the
results, we propose a new method called hard-threshold K-means (HTK-means), which uses
an `0 penalty to induce sparsity. HTK-means is a fast and competitive sparse clustering
method which is easily interpretable, as is illustrated on several real data examples. In this
context, new graphical displays are presented and used to gain further insight into the data
sets.
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1. Introduction

Clustering is one of the most commonly used unsupervised learning techniques. The goal
of clustering is to partition the data into homogeneous groups. We focus on K-means, a
method introduced by Steinhaus (1956) and popularized by MacQueen et al. (1967). We
assume that we observe an n × p data matrix x, of which each row xi is a p-dimensional
observation (i = 1, . . . , n). The K-means clustering algorithm tries to find a K × p matrix
µ containing K cluster centers µ

1
, . . . , µ

K
in its rows that minimize the within-cluster sum

of squares (WCSS) defined as

WCSS =
1

n

n∑
i=1

min
k∈{1,...,K}

||xi − µk||
2
2. (1)

Based on these centers, the data can be partitioned into K clusters by assigning each obser-
vation to the cluster corresponding to the nearest (in Euclidean distance) center. Despite
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being over 50 years old, the K-means algorithm is still very popular and widely used in a
variety of scientific fields. See Jain (2010) for a recent overview.

Whereas in classical K-means all p features are used to partition the data, it might be
desirable to identify a subset of features that partitions the data particularly well. This
feature selection may lead to a more interpretable partitioning of the data and more accurate
recovery of the “true” clusters. We note that feature selection is not only relevant for
scenarios where p >> n, but also when p < n. The former scenario, with (many) more
variables than observations, is likely to include many uninformative variables which do not
contribute to clustering the data and are better left out of the analysis. The latter scenario
is typically easier to work with, but may also produce data sets with variables which do
not contribute to (and rather difficult) the partitioning of the data. To illustrate this, we
consider the classical example of Fisher’s Iris data (Fisher, 1936), collected by Anderson
(1935). The data consists of 150 iris flowers which are described by 4 variables characterizing
the dimensions of their sepal and petal. The flowers can be subdivided in 50 samples of
each of three types of iris: Iris setosa, versicolor, and virginica. Figure 1 shows a plot
of the data in which the different iris types appear in different colors. From this plot it
is clear that not all the variables separate the flowers equally well. This becomes more
evident after we cluster this data set using the K-means algorithm on all possible subsets of
variables. Table 1 shows the adjusted rand index (ARI) for each of these clusterings. The
ARI measures the agreement between two partitions, in our case an estimated partition
and the “true” partition. An ARI of 1 corresponds to a perfect clustering. Interestingly,
K-means performs best (ARI = 0.89) when variable 4 alone or variables 3 and 4 are used for
the clustering. This ARI value is substantially higher than 0.73, the ARI obtained when we
use all 4 variables. This example illustrates that even for data sets with very few variables,
feature selection can be very useful.

The previous paragraph illustrates our general objective: we aim to find subspaces
spanned by a number of original variables which yield “interesting” partitions of the data.
Note that by “interesting” we do not necessarily mean that the partition resembles the
solution to the classical K-means problem on the data. This is in stark contrast with a
large body a research, driven mainly by the computer science community, which aims to
approximate this classical K-means solutions while clustering on a reduced data set. Bout-
sidis et al. (2009, 2014); Cohen et al. (2015); Moshkovitz et al. (2020) are prime examples
of methodological and theoretical developments which build on the result that a constant-
factor approximation to the optimal K-means solution can be achieved by using only O(K)
of the initial features. A general overview of several of these approaches can be found in
Alelyani et al. (2018). If the initial features need not be preserved, it has been shown that
O(log(K)) variables suffice to obtain a reliable partitioning of the data (see Makarychev
et al., 2019; Becchetti et al., 2019). This body of research allows for greatly speeding up
K-means clustering, thereby opening the door for the application of the method to data
sets many times the size of what was previously possible. However, it evidently assumes
that the classical K-means solution is the gold standard as otherwise there would be no
point in trying to approximate it.

The approach we adopt is more common in the statistics community and leads to very
different algorithms, theoretical results and applications. In particular, the approaches we
consider become interesting precisely when the classical K-means solution does not provide
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Figure 1: Pairs plot of the Iris data. Not
all the variables separate the three
different types of Iris equally well.

Used variables ARI
(1) 0.38
(2) 0.15
(3) 0.85
(4) 0.89
(1, 2) 0.6
(1, 3) 0.7
(1, 4) 0.57
(2, 3) 0.8
(2, 4) 0.8
(3, 4) 0.89
(1, 2, 3) 0.7
(1, 2, 4) 0.61
(1, 3, 4) 0.73
(2, 3, 4) 0.87
(1, 2, 3, 4) 0.73

Table 1: ARI of the clustering
of the Iris data using
subsets of variables.

the most relevant partition of the data. As we will illustrate, the classical K-means solution
can be pulled towards a random partition of the data by adding noise variables. One can
imagine practical situations where many variables may not be relevant for the partitioning
of the data, and in that case one should not fully trust the solution (or an approximation
thereof) of the classical K-means.

When it comes to the K-means algorithm, an influential reference for the practice of
combining feature selection with clustering is the paper by Witten and Tibshirani (2010)
called sparse K-means. In this approach, the K-means objective function of Equation 1 is
rewritten as a maximization problem, in which a vector of feature weights is introduced. An
appropriate penalization strategy applied to the vector of feature weights induces sparsity
in the variables and shrinkage in the estimated cluster centers. The new objective function
can be optimized by iteratively maximizing it with respect to the cluster centers and the
cluster memberships. Sun et al. (2012) proposed another regularized K-means approach
based on direct penalization of the size of the cluster centers using an adaptive group-lasso
penalty. This penalty also induces sparsity in the features and shrinkage in the estimated
cluster centers.

Our main contributions are outlined in the following paragraph. We conduct a careful
theoretical and empirical study of the regularized K-means approach and build a general
regularization framework based on direct penalization of the size of the cluster centers, in
which we consider lasso, ridge, group-lasso and `0-type penalties. We present a general
iterative algorithm with a sparse starting value for the estimation of the cluster centers for
each of these penalties, which gives insight into the effect of the different penalties on the
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estimated cluster centers. Based on this study, we propose the use of the `0 penalty, which
results in our proposal of the hard-thresholding K-means algorithm (HTK-means). Some
theoretical advantages of the `0 penalty when compared with the other penalties under
consideration are:

1. HTK-means can achieve consistency and variable selection consistency in a finite
dimensional setting without shrinkage for a non-vanishing value of the regularization
parameter (Corollary 8 of Section 3)

2. HTK-means can achieve
√
n/p-consistency and variable selection consistency in a

high-dimensional regime where p is allowed to diverge at a rate slower than n1/3

(Theorems 9 and 10 of Section 3)

3. the justified use of regularization parameter selection techniques based on the AIC
and BIC criteria (Sections 4 and 5.5)

The complementary empirical studies indicate that:

1. the `0 penalty of HTK-means generally outperforms the lasso, ridge and group-lasso
penalties in terms of cluster recovery and speed of computation (Section 5.2)

2. the absence of shrinkage in the estimated cluster centers allows for intuitive visualiza-
tions (Section 6)

The rest of the paper is organized as follows. Section 2 introduces the proposed framework
for regularized K-means clustering and the penalties under consideration. It also presents
the algorithm for the implementation of the clustering method for the different penalties.
A theoretical analysis of the proposed method is presented in Section 3. Section 4 discusses
different existing methods for selection of the regularization parameter. The results of four
simulation studies are presented in Section 5. Finally, Section 6 introduces newly proposed
graphical displays and illustrates the application of HTK-means on a number of real data
examples. Finally, Section 7 concludes.

2. Methodology

In this section, we first introduce a general framework for regularized K-means clustering.
We then describe the penalty functions considered throughout the paper. Next, we introduce
an algorithm for computing the solution to the regularized K-means objective function and
we end the section by briefly discussing the extension to model-based clustering.

2.1 Regularized K-means Clustering

We assume that we observe an n×p data matrix x, of which each row xi is a p-dimensional
observation (i = 1, . . . , n). Suppose we want to cluster x1, . . . , xn in K clusters and that
the variables are standardized so we have 1

n

∑n
i=1 xi,j = 0 and 1

n

∑n
i=1 x

2
i,j = 1 for every j.

We consider the following general form of a regularized K-means objective function. Given
the number of clusters K, let µ ∈ RK×p be a K × p matrix of cluster centers and C =
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{C1, . . . , CK} a collection of K disjoint sets of cluster indices satisfying
K⋃
k=1

Ck = {1, . . . , n}.

We look for µ̂ and Ĉ = {Ĉ1, . . . , ĈK} which minimize

1

n

K∑
k=1

∑
i∈Ck

||xi − µk||
2
2

+ λP(µ), (2)

where λ ≥ 0 is a tuning parameter and P(µ) is a penalty that depends on the cluster
centers µ. The first term in Equation 2 is the classical K-means objective (see Equation
1). Depending on how P is defined, different optimization problems arise. The important
point in Equation 2 is that the penalization is based on µ, which is not always the case in
existing proposals (see, for example, Witten and Tibshirani, 2010).

The intuition for penalizing the size of the cluster centers stems from the fact that we
expect that when a variable does not contribute to the partitioning of the data, its estimated
cluster centers will be close to the overall mean of the variable (which is 0). The following
proposition may add to the intuition. Consider the optimal population value of the classical
K-means objective function of Equation 1: obj =

∫
mink∈{1,...,K} ||x− µk||

2
2Q(dx), where Q

denotes the distribution of the m-variate random vector X, where m < p. In this setting
each cluster corresponds to a region in Rm. Let R1, . . . , RK be these regions. Now suppose
we add a variable to obtain the (m + 1)-dimensional random vector X∗ = (X,Y ) with
distribution Q∗. We have the following proposition.

Proposition 1 Denote with obj and obj∗ the optimal values of the K-means objective func-
tion on Q and Q∗ respectively. Assume that the added variable is uninformative and inde-
pendent from the original vector X. More specifically, assume that:

1. R∗k = Rk×R for all k = 1, . . . ,K (The value of Y doesn’t affect the cluster assignment)

2. dQ∗(y|x) = dQ∗(y) (Y and X are independent)

Then we have that:

1. obj∗ = 1 + obj

2. The optimal center of the added variable is 0 for every cluster k = 1, . . . ,K

A proof can be found in Section A.1 of the Appendix. Of course, this is a simplified
argument as it assumes that the cluster assignments do not change when adding the extra
variable. The asymptotic assignments may in fact change if the added variable dominates
the clustering structure but this is rather unlikely under the assumption that at least a few
informative variables are already present and that the variables are standardized.

2.2 Penalty Functions

Throughout the paper we will consider several options for the penalty type which we name
after their familiar counterparts from regularized regression:
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`0: P0(µ) =
∑p

j=1 1||µ·,j ||2 > 0

lasso: P1(µ) =
∑p

j=1 ||µ·,j ||1
ridge: P2(µ) =

∑p
j=1 ||µ·,j ||

2
2

group-lasso: P3(µ) =
∑p

j=1 ||µ·,j ||2

where µ·,j denotes the jth column of the matrix of cluster centers µ. The penalty on µ

balances the size of the cluster centers and their contribution to the objective function.
Essentially, it implies that the cluster centers can be large only if they reduce the WCSS
sufficiently. When a certain variable has only zero cluster centers, this variable becomes
redundant in the clustering. An algorithm to optimize the objective of Equation 2 is derived
in the next section. This algorithm also helps to better understand the effect of the different
penalties on the clustering results.

2.3 Computation

In order to compute the cluster centers and indices resulting from the optimization in Equa-
tion 2, we use an adaptation of Lloyd’s algorithm (Lloyd, 1982) for classical K-means:

Given an initial set of cluster centers:

1. Update the cluster indices Ĉ by minimizing Equation 1 with respect to the cluster
indices while keeping the cluster centers fixed.

2. Update the cluster centers µ̂ by minimizing Equation 2 with respect to the cluster
centers while keeping the cluster indices fixed.

3. Repeat 1. and 2. until convergence.

Like the classical K-means problem, the regularized version is NP-hard (Dasgupta, 2008;
Aloise et al., 2009) and Lloyd’s algorithm yields only locally optimal solutions. Therefore,
the K-means algorithm is typically run using several starting values, after which the solution
yielding the lowest objective function is retained. For the regularized K-means problem,
one could take the starting centers as those resulting from the classical K-means algorithm.
However, given that there is also a variable selection aspect to the clustering, these starting
values may not perform well, especially when there are many uninformative variables. In
order to incorporate the potential sparsity in the starting values, we use the following
procedure:

(i) Cluster the data using classicalK-means, obtainingK initial cluster centers µ
1
, . . . , µ

K
.

(ii) Compute the Euclidean norm for each variable center: dj = ||µ·,j ||2 for j = 1, . . . , p

and order them in descending order.
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(iii) Execute K-means on the subset of variables corresponding to the 1, 2, 5, 10, 25 and 50
% largest dj .

(iv) Use the cluster indices of each of these K-means runs as an input for the regularized
K-means version of Lloyd’s algorithm, and choose the one yielding the lowest objective
function.

The procedure outlined above allows the algorithm to start from several sparse solutions.
The selection of the initial sparse solutions is based on the (Euclidean) norm of the variable
centers, which is precisely what is penalized in regularized K-means clustering. The use
of the proposed initialization slightly slows down our procedure, but does not increase its
overall complexity. We have empirically evaluated this procedure. More precisely, we have
compared it with a random initialization strategy, as well as starting from the classical
K-means solution. These experiments showed that the proposed initialization strategy is
distinctly superior to the alternatives. We refer to Section B of the Appendix for more
details on these results.

Reconsidering the iterative algorithm, it is clear that in step 1, each point is assigned to the
cluster corresponding with the nearest cluster center (in Euclidean distance), since keeping
the cluster centers fixed also implies that the penalty term of Equation 2 is fixed. This is
similar to the classical K-means objective function and the corresponding Lloyd’s algorithm
(Lloyd, 1982). Step 2 minimizes the objective function with respect to the cluster centers
while keeping the cluster indices fixed. The penalty parameter is now dependent on the
cluster centers µ, and the resulting updated centers are therefore no longer necessarily
equal to the cluster means. The following proposition presents the updating equations for
the different penalties under consideration. The proof can be found in Section A.2 of the
Appendix.

Proposition 2 Suppose that we have an assignment of the elements into K clusters C1, . . . ,
CK . Let |Ck| be the number of elements in cluster k. Let m be a n×K matrix with elements
mi,k = 1 if the ith observation belongs to cluster k (i = 1, . . . , n and k = 1, . . . ,K), and
mi,k = 0 otherwise. Let µ∗ be the corresponding K × p matrix of cluster means. Keeping
this assignment fixed, minimizing the objective function in Equation 2 with respect to the
K × p matrix of cluster centers µ gives the following expressions.

P(µ) = P0(µ) yields µ
k,j

=

{
µ∗
k,j

if ||x·,j ||22 > ||x·,j −m µ∗·,j ||
2
2 + nλ

0 else

P(µ) = P1(µ) yields µ
k,j

= max

0, 1− nλ

2|Ck|
∣∣∣µ∗

k,j

∣∣∣
µ∗

k,j

P(µ) = P2(µ) yields µ
k,j

=
1

1 + nλ
|Ck|

µ∗
k,j

P(µ) = P3(µ) yields µ
k,j

=
1

1 + nλ
(2|Ck|||µ·,j ||2)

µ∗
k,j

if µ·,j 6= 0
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Remark 3 (Penalty effects) These updating equations provide additional insight into the
effect of the different penalty types. P0 leads to hard thresholding. It is the literal translation
of “include a variable in the clustering if it sufficiently reduces the WCSS”. If the variable is
included (that is, the corresponding vector of cluster centers is non-zero), the cluster centers
are given by the cluster means of each cluster as in classical K-means. P1 is a lasso-type
penalty. It sets some of the coefficients to exactly zero, and others are shrunk towards 0.
The updating equation uses a soft-thresholding operator, and bears strong resemblance to
the solution of lasso regression with orthonormal covariates. P2 is a ridge-type penalty and
shrinks all the cluster centers towards zero without setting them to zero exactly. Like in
regression, it does not induce any sparsity and the shrinkage is proportional to 1/λ. P3

is the only penalty which does not have an explicit updating equation, as the right hand
side contains the euclidean norm of the vector of centers ||µ·,j ||2. The solution is thus im-

plicit and can be found through an iterative algorithm. This penalty induces sparsity in the
cluster centers, while shrinking in a ridge-type fashion each center that is not shrunk to zero.

Remark 4 (Size-dependent penalties) Note that the cluster sizes play a role in the
update steps of penalties P1, P2 and P3. These seem to be somewhat unnatural and can
be removed by including penalties which depend linearly on the size of the clusters. For
example, if we replace λ by λi = λ |Ci|n , we would obtain more elegant expressions as both
n and |Ci| would disappear in the updating equations. For model-based clustering, this was
done by Bhattacharya and McNicholas (2014). We did not pursue this path any further
because it makes the optimization slightly slower and did not yield substantial improvements
for P1 and P2 in the simulation study and in particular for P3 it is not immediately clear
how this should be implemented without a substantial increase in computational cost. We
suspect it may have some potential when the true cluster sizes are very unbalanced. Note
that this normalization of the penalty parameter does not affect the P0 penalty.

Remark 5 (Adaptive penalties) In addition to making the penalties dependent on the
cluster sizes, there is the option of making them adaptive. This idea was introduced by Zou
(2006) in the context of lasso regression to obtain both

√
n-consistency as well as consistent

variable selection. It was also used by Sun et al. (2012) in their version of regularized
K-means clustering. It can be implemented by replacing λ in the updating equations of
Proposition 2 by λj = λ

||µ∗·,j ||2
.

2.4 A Note on Model-Based Clustering

Model based clustering is sometimes used as a flexible alternative to K-means. There
exist a number of proposals for sparse and regularized model-based clustering including
Friedman and Meulman (2004), Raftery and Dean (2006), Pan and Shen (2007), Wang and
Zhu (2008) and Maugis et al. (2009). Casting model-based clustering in our regularization
strategy would lead to a framework encompassing the lasso-based approaches of Pan and
Shen (2007) and Sun et al. (2012). Suppose we would model the data distribution f as
a mixture of K distribution functions, f(x) =

∑K
i=1 πkfk(x; θk), where θk contains all

parameters needed to characterize fk. For the `0 penalty, we then obtain the regularized
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log-likelihood

1

n

n∑
i=1

{
log

(
K∑
k=1

πkfk(xi; θk)

)}
− λ

p∑
j=1

1||µ·,j ||2 > 0, (3)

which can be optimized through the EM algorithm. The reason for not including this ap-
proach in more detail is twofold. First, several of the aforementioned methods were shown
to be outperformed by the sparse K-means algorithm of Witten and Tibshirani (2010) (in
the same paper), which we include in our simulation study. Secondly, for high-dimensional
data, modeling the clusters using only a center already yields quite a lot of parameters
(O(Kp)) that need to be estimated. If more complex models are used, such as Gaussian
clusters with arbitrary covariance matrices, we obtain O(Kp2) parameters, which quickly
becomes prohibitive in terms of computation time. Additionally, the sample covariance
matrix may no longer be invertible (which is required for the calculation of the likelihood),
and so one has to resort to other means. One possible assumption to simplify the objective
(see, for example, Pan and Shen, 2007) is to assume that all clusters follow a multivariate
normal distribution with the same diagonal covariance matrix given by diag(σ2

1, . . . , σ
2
p).

While this does make the calculations feasible in the high dimensional setting, it makes
the extension from K-means only minor, as now the only difference is the ability to model
elliptical clusters with axes parallel to the coordinate axes. The EM-algorithm for optimiz-
ing the objective function in Equation 3 under this assumption is given in Section C of the
Appendix.

3. Consistency and Variable Selection

In order to investigate regularized K-means from a theoretical perspective, we first consider
the asymptotic formulation of the objective function in Equation 2. Let Q be a probability
measure on Rp and A a finite subset of possible cluster centers in Rp. Let λ ≥ 0 be fixed.
We define the following objective function:

W (A,Q) :=

∫
min
a∈A
||x− a||22Q(dx) + λP(A)

where P(A) denotes the penalization on the cluster centers in A.

Let p > 0 and K > 0 be two fixed integers. Let X be a p-variate random variable with
distribution F . Assume that

(a)
∫
||x||22F (dx) <∞

(b) For each k = 1, . . . ,K, there is a unique set Ā(k) for which

W (Ā(k), F ) = inf {W (A,F )|A contains at most k points}

(c) P is one of P0, P1, P2 or P3.

These assumptions are identical to the assumptions needed for the consistency of classical
K-means, see Pollard (1981). The following theorem establishes the (strong) consistency of
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regularized K-means in terms of the Hausdorff distance. For two finite sets A and B, the
Hausdorff distance between them is given by

dH(A,B) = max

{
max
a∈A

min
b∈B
||a− b||2,max

b∈B
min
a∈A
||a− b||2

}
.

A proof of the theorem can be found in Section A.3 of the Appendix.

Theorem 6 Let x1 . . . , xn be a random sample from F with empirical distribution function
Fn and let An be the optimal set of at most K cluster centers for the sample. Under
assumptions (a), (b) and (c) above, we have that:

1. W (An, Fn)
a.s.−−→W (Ā(k), F )

2. dH(An, Ā(k))
a.s.−−→ 0.

In addition to consistency, it is important that the penalization is guaranteed to work as
intended, that is, that we perform variable selection. Suppose w.l.o.g. that the last p−p0+1
variables are noise variables, in the sense that they are independent of all other variables
and of any clustering structure. The optimal asymptotic solution to the classical as well
as the regularized K-means problem is then a set of centers Ā for which Ā·,j = 0 for all
j = p0, . . . , p, that is, the last p − p0 + 1 centers are zero. We would then like to have
P (Â·,j = 0) → 1 for each j = p0, . . . , p. The strong consistency implies that the true zero-
centers converge in probability to zero. However, this doesn’t guarantee that the probability
that they are equal to zero converges to 1, which is what we need to guarantee variable
selection. The following theorem shows that this does indeed happen for all but the P2

penalty, provided λ > 0. The proof can be found in Section A.4 of the Appendix.

Theorem 7 Under conditions (a), (b) and (c) above, and assuming that λ > 0, we have
that P (Â·,j = 0)→ 1 for all j = p0, . . . , p for P0, P1 and P3.

Ideally, one may wish that the non-zero centers are estimated as if the regular K-means
algorithm would be executed on the “selected” variables, that is, those variables with non-
zero cluster centers. The following corollary follows naturally from Theorems 6 and 7 as
well as Proposition 2 and states that this can only happen for the P0 penalty, provided the
value of λ is chosen correctly.

Corollary 8 Under conditions (a), (b) and (c) above, and using penalty P0, there exists

a λ > 0, such that we have that P (Â·,j = 0) → 1 for all j = p0, . . . , p and Â·,j
P−→ A∗·,j

for all j = 1, . . . , p0 − 1. Here A∗ is the set of optimal cluster centers obtained by dropping
the penalty term from the objective function (that is, classical K-means on the first p0 − 1
variables).

We now consider the asymptotic properties when the dimension p is allowed to diverge
together with n. More precisely, we assume that n → ∞, pn → ∞ with pn = o(n) and
λn → 0. We will drop the subscript n in the following results. In this regime, the goal is to
asymptotically approximate the solution to the “classical” K-means objective. Denote with
Ā the minimizer of the objective

∫
mina∈A ||x− a||22F (dx). We then obtain the following

result
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Theorem 9 Assume the assumptions (i) - (vi) in the Section A.5 of the Appendix hold.
Then if λp → 0 as n → ∞, then An

a.s.−−→ Ā and ||An − Ā|| = O
(
p1/2n−1/2

)
, with the

additional condition for P1,P2 and P3 that λ = O(n−1/2).

Note that the theorem above implies that the conditions for
√

n
p -consistency are less strin-

gent for the HT penalty P0 than for the other penalties under consideration, as the former
does not require λ = O(n−1/2). This is in line with results from regression (see, for exam-
ple, Fan and Peng, 2004), where it is known that the same requirement of λ = O(n−1/2) is

needed in order to obtain
√

n
p -consistency for Lq-penalties with q ≥ 1.

We now turn to variable selection, for which we obtain the following result.

Theorem 10 Assume the assumptions (i) - (vii) in the Appendix hold. Then if n−1λ−2p→
0 as n→∞, then we have that P (Â·,j = 0)→ 1 for all j = p0, . . . , p for P ∈ {P0,P1,P3}.
We again have a parallel with regression here, as the condition n−1λ−2p → 0 is exactly
the same as the one used in, for example, Fan and Peng (2004); Kim et al. (2008); Cho
and Qu (2013) to obtain model selection consistency. Note that, just like for regression, we

cannot jointly achieve
√

n
p -consistency and model selection consistency for non-adaptive Lq-

penalties with q ≥ 1. In contrast, we can achieve this using P0 provided that p = o(n1/3),
which is the same rate as the one achieved in Huber (1973) and discussed in Fan and Peng
(2004) for regression.

The theoretical results above indicate that there is merit in using the `0 penalty. Addi-
tionally, this penalty has the benefit of not shrinking the cluster centers of the variables used
in the clustering. This allows for easier interpretation of the cluster centers and justifies the
use of relatively simple techniques for selecting λ, as we will see in the next section. The `0
penalty leads to the hard-thresholding algorithm for K-means which we call HTK-means.
This is the main proposal of our paper. The results of the synthetic data experiments in
Section 5 further strengthen our case in favor of the use of the HTK-means algorithm.

4. Selection of λ

The selection of the regularization parameter λ is not an easy task. The main reason is
that many techniques and heuristics for tuning hyperparameters in cluster analysis rely
on some kind of distance between observations. In the setting of regularization, one could
calculate distances on the selected variables, or on all of the variables. In the former case,
the distances are not comparable over different values of the regularization parameter. In
the latter case, the values of the distances can be dominated by uninformative variables
which are not used for the clustering. Therefore, relying on distances between observations
may be inappropriate in the setting of regularized clustering. This makes straight forward
adoption of popular methods such as the gap statistic (Tibshirani et al., 2001) or the
silhouette coefficient (Rousseeuw, 1987) impossible.

We focus on the selection of λ for the `0 penalty and the corresponding HTK-means
algorithm, which has the advantage of not shrinking the cluster centers of the selected
variables. We first discuss a number of approaches for selecting λ. These approaches are
then compared empirically in Section 5.3.
We first consider the rather simple AIC and BIC criteria (Ramsey et al., 2008) given by
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AIC = WCSS +2kp

BIC = WCSS +k ln(n)p,

where WCSS denotes the within-cluster sums of squares calculated on all variables. Possible
improvements on these rather naive criteria could be in the form of more accurate estimation
of the degrees of freedom in the BIC criteria (see, for example, Hofmeyr, 2020).

In addition to the AIC and BIC criteria, we consider methods based on clustering stabil-
ity rather than coherence-type measures. The idea in this approach is that a good clustering
method should yield “stable” clusters, in the sense that it should yield similar cluster assign-
ments when estimated on different samples from the same population. Following Ben-David
et al. (2006) and Wang (2010), we can define

Definition 11 (Clustering Distance) The distance between any two clusterings ψ1 and
ψ2 is defined as

d(ψ1, ψ2) = Pr[1{ψ1(X)=ψ1(Y )} + 1{ψ2(X)=ψ2(Y )}],

where 1{·} denotes the indicator function and X and Y are independently sampled from F .

Based on the clustering distance above, we can define clustering instability as in Wang
(2010):

Definition 12 (Clustering Instability) The clustering instability of a clustering algo-
rithm ψ is

s(ψ;λ) = E[d{ψ(X1;λ),ψ(X2;λ)}],

where the expectation is taken with respect to X1 and X2 which are independent samples of
size n from F .

Several ways to estimate s(ψ;λ) have been proposed. Wang (2010) propose to repeatedly
split the data into 3 parts, 2 training sets and one validation set. The clustering method
is trained on each of the training sets, and the stability is calculated as the expectation of
their agreement in clustering the validation set. A potential problem with this approach is
that the resulting data sets of sizes n/3 may be too small. We consider three alternatives:

1. stab1: Fang and Wang (2012) propose instead to use bootstrap samples by taking
for each replication, 2 bootstrap data sets of size n, after which the original data is
used as validation set.

2. stab2: Ben-Hur et al. (2001); Haslbeck and Wulff (2020) take the intersection of
unique samples of the 2 bootstrapped training data sets as validation set.

3. stab3: Sun et al. (2012) use a variation where a third bootstrap data set is taken as
validation set.

In Section 5.3 we empirically evaluate the discussed approaches for selecting λ in terms
of clustering performance, variable selection performance and computational cost.
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5. Synthetic Data Experiments

In this section we empirically evaluate the proposed methodology in four separate simulation
studies. The first focuses on comparing the different penalty types within the regularized
K-means framework of Equation 2. The second compares different techniques for selecting
the regularization parameter λ. The third simulation study compares the proposed HTK-
means method with other existing approaches to regularized clustering. The fourth and
final simulation study investigates whether AIC and the proposed sparse starting values
can improve the performance of other regularized clustering algorithms.

We start by describing the synthetic data generation process used throughout the sim-
ulation studies.

5.1 Synthetic Data Generation

The data generation process starts from the approach of Sun et al. (2012) and extends this
in several directions. We generate data sets of n ∈ {80, 800} observations x1, . . . , xn in
p ∈ {50, 200, 500, 1000} dimensions. First the true cluster assignment vector y = y1, . . . , yn
is sampled from {1, . . . ,K} where K ∈ {2, 4, 8}. For each observation xi, only the first 50
variables are informative. They are sampled from N

(
µ (yi) , I50

)
, where µ (yi) is given by

µ
K=2

(yi) = γ1501yi=1 − γ1501yi=2

µ
K=4

(yi) = (−γ125, γ125)1yi=1 + γ1501yi=2 + (γ125,−γ125)1yi=3 − γ1501yi=4

µ
K=8

(yi) = (γ117, γ117, γ116)1yi=1 + (γ117,−γ117, γ116)1yi=2

+ (γ117, γ117,−γ116)1yi=3 + (γ117,−γ117,−γ116)1yi=4

+ (−γ117, γ117, γ116)1yi=5 + (−γ117,−γ117, γ116)1yi=6

+ (−γ117, γ117,−γ116)1yi=7 + (−γ117,−γ117,−γ116)1yi=8

Large values of γ produce well-separated clusters and small values of γ produce clusters
with a lot of overlap. We vary the value of γ in {0.4, 0.5, 0.6, 0.7, 0.8}. The remaining
p − 50 are noise variables sampled randomly from N (0, 1). For each of the 120 simulation
settings, we generate 100 data sets and average the results over these replications. The
range of simulations setups under consideration is fairly broad. The setups with n = 800
are roughly covered by the Theorems in Section 3, whereas the n = 80 settings complement
these results in a higher-dimensional setting. For each combination of n and p, the range
of γ values more or less covers the transition from poor performances (for low values of
γ) to excellent performances (for larger γ). Finally the values of K cover many practical
clustering tasks, where often a relatively small number of clusters are sought.

Before clustering, we standardize the data so that each variable has a mean of 0 and a
variance of 1.

In order to evaluate clustering performance, we calculate the adjusted rand index (ARI)
(Rand, 1971; Hubert and Arabie, 1985) between the estimated partition and the true clus-
tering. The ARI has an expected value of 0 for random clusterings of the data. A perfect
agreement between the true and estimated partitions corresponds to an ARI of 1.

We compare the regularized K-means algorithms with the different penalties. Each
of the methods is calculated on a grid of 40 lambda values given by 10−2+4i/40, for i =
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t]

γ = 0.4 γ = 0.5 γ = 0.6 γ = 0.7 γ = 0.8

classical 0.08 (0.05) 0.19 (0.08) 0.35 (0.11) 0.55 (0.12) 0.69 (0.12)
lasso 0.15 (0.06) 0.32 (0.1) 0.69 (0.19) 0.97 (0.06) 1 (0.02)
ridge 0.15 (0.05) 0.28 (0.08) 0.44 (0.11) 0.61 (0.13) 0.75 (0.14)

glasso 0.15 (0.06) 0.36 (0.13) 0.80 (0.19) 0.99 (0.01) 0.99 (0.1)
`0 0.15 (0.06) 0.34 (0.12) 0.86 (0.17) 1 (0.01) 1 (0)

Table 2: mean ARI values (and standard deviation in brackets) of regularized K-means
variants on data with p = 1000, n = 80 and K = 4.

0, 1, . . . , 39, after which the best solution is retained. Throughout the paper, we will take
the setting of n = 80, K = 4 and p = 1000 as the leading example to present the results.
This is the setting used in Sun et al. (2012). Due to its difficulty, it allows us to clearly
distinguish between different clustering approaches. The results for the other 115 settings
are always qualitatively similar and a summary of these can be found in Section D of the
Appendix.

Note that we assume K to be known throughout the simulation studies.

5.2 Comparison of Penalty Types

In this simulation we compare the different penalty types and make a case for P0. In order
to evaluate the performance of the different penalties independently from the problem of
selecting λ, we proceed as follows. For each generated data set and penalty type, we compute
the solution to Equation 2 for the grid of values of the regularization parameter, after which
we retain the partition that is closest to the theoretically correct partition (the one with the
largest ARI). The performance for this data set and penalty type is this largest achieved
ARI. The results of this experiment indicate which penalty has the most potential, provided
that the tuning parameters are well chosen.

Table 2 shows the results for the setting with n = 80 and p = 1000. We note that
the scenarios with γ = 0.4 and γ = 0.5 are very hard for all penalty types and none of
them achieve a satisfactory performance. As the clusters get more separated, the penalized
K-means start to substantially outperform classical K-means. Out of the different penalty
types, the ridge penalty is the least effective, whereas the `0 is the most effective. The
group-lasso penalty is a close second, and the lasso penalty falls somewhere in between.

Similar results are obtained for the other simulation settings. These results are summa-
rized in Section D.1 of the Appendix. In addition to our theoretical results, we thus find
empirical support for the use of the `0 penalty and the proposed HTK-means algorithm.

5.3 Comparison of Methods to Select λ

We now compare the methods for selecting λ described in Section 4 in a simulation study.
We focus here on the `0 penalty, our main proposal. As before, we present the case of
K = 4, n = 80 and p = 1000 here, and refer to Section D.2 of the Appendix for the results
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t]

γ = 0.4 γ = 0.5 γ = 0.6 γ = 0.7 γ = 0.8

AIC 0.09 (0.06) 0.26 (0.12) 0.80 (0.19) 0.98 (0.98) 1 (0.01)
BIC 0.05 (0.05) 0.21 (0.12) 0.79 (0.24) 0.99 (0.99) 1 (0)

stab1 0.08 (0.05) 0.22 (0.08) 0.47 (0.21) 0.71 (0.71) 0.82 (0.17)
stab2 0.08 (0.05) 0.20 (0.09) 0.47 (0.23) 0.72 (0.72) 0.84 (0.17)
stab3 0.08 (0.06) 0.21 (0.09) 0.48 (0.21) 0.69 (0.69) 0.84 (0.2)

Table 3: mean ARI (and standard deviation in brackets) of lambda selection techniques on
data with p = 1000, n = 80 and K = 4.

obtained under the other simulation setups. For the stability based methods, 20 replications
of the resampling strategy were used.

Table 3 presents the resulting ARI values. First of all note that the simple AIC criterion
is almost always among the best performing methods. While the BIC performs similar to
the AIC in this setting, we found that the AIC is more consistent in situations with lower p,
as can be seen from the additional simulation results in Section D.2 of the Appendix. The
stability based selection techniques do not seem appropriate here, and only start performing
reasonably well in the simplest case of γ = 0.8.

γ = 0.4 γ = 0.5 γ = 0.6 γ = 0.7 γ = 0.8

AIC 100 (18) 99 (26) 81 (24) 89 (11) 90 (7)
BIC 6 (3) 11 (6) 36 (10) 49 (2) 50 (1)

stab1 487 (317) 502 (303) 491 (299) 518 (302) 542 (285)
stab2 503 (318) 518 (314) 463 (314) 478 (302) 503 (301)
stab3 496 (333) 523 (313) 483 (310) 547 (326) 467 (301)

Table 4: mean number of selected variables (and standard deviation in brackets) of lambda
selection techniques on data with p = 1000, n = 80 and K = 4.

In addition to the resulting ARI values, we consider the number of selected variables.
Remember that the true number of informative variables is 50. Table 4 shows the number
of selected variables for the scenarios under consideration. It is clear that it is quite difficult
to select the correct number of variables. BIC seems to be closest to the true number of
informative variables, but only when the cluster centers are very well separated. AIC ap-
pears to consistently overestimate the true number of informative variables, but as discussed
before, this does not seem to lead to inferior performance in terms of recovering the class
memberships. The stability-based methods select way too many variables, again suggesting
that they are not preferable to use in combination with the `0 penalty.

Finally, we briefly consider the computation times of the different methods. It is clear
that AIC and BIC are very quick to compute, since they require virtually no additional
calculations once the regularized K-means algorithm has been executed on a grid of values
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for λ. The stability-based criteria require substantially more computation time, and this is
of course due to the repeated runs of regularized K-means on all the bootstrap samples.

γ = 0.4 γ = 0.5 γ = 0.6 γ = 0.7 γ = 0.8

AIC 0.23 (0.01) 0.23 (0.02) 0.23 (0.02) 0.25 (0.01) 0.23 (0)
BIC 0.17 (0.01) 0.17 (0.01) 0.17 (0) 0.18 (0.01) 0.18 (0)

stab1 878 (32) 886 (29) 918 (31) 944 (19) 944 (33)
stab2 878 (32) 886 (29) 918 (31) 944 (19) 944 (33)
stab3 878 (32) 886 (29) 918 (31) 944 (19) 944 (33)

Table 5: mean computation time in seconds (and standard deviation in brackets) of lambda
selection techniques on data with p = 1000, n = 80 and K = 4.

We end the discussion on the selection of λ with a remark. While automatic selection
of the regularization parameter is attractive, we have found that in practice, there seems
not to be any one-size-fits all method. Therefore, we encourage applying several methods
and comparing the conclusions and results. This process can be supported by graphical
displays of the regularization path and changing partition for increasing values of λ, as we
will illustrate in Section 6 with real data examples.

5.4 Comparison of HTK-means with Existing Proposals

In this section we compare HTK-means with the most popular competitors. The best-
known competitor is the sparse K-means method of Witten and Tibshirani (2010). Sparse
K-means was shown to outperform several alternative approaches such as the COSA method
(Friedman and Meulman, 2004), the model-based clustering of Raftery and Dean (2006) and
PCA followed by K-means. We use the implementation of sparse K-means provided in the
R-package sparcl by Witten and Tibshirani (2018). The tuning parameter is chosen by
the proposed permutation approach using 20 permutations searching over a grid of length
40. We additionally include the regularized K-means (henceforth Reg K-means) of Sun
et al. (2012), where the tuning parameter is chosen using the proposed stability criterion
over 20 bootstrap replications and a grid of 40 lambda values given by 10−2+4i/40, for
i = 0, 1, . . . , 39. Finally, we compare with classical K-means which serves as a reference.

Table 6 presents the ARI results on data of dimension p = 1000 with K = 4 and n = 80,
whereas the results for the other settings are summarized in Section D.3 of the Appendix.
Several things can be noted. First, we see again that the cases of little separation between
the cluster centers (γ = 0.4 and γ = 0.5) are really difficult, and none of the methods has
a satisfactory performance. As the clusters get more separated, the clustering task clearly
becomes easier. The performance of HTK-means is never worse than that of the competitors,
and substantially better in the case of γ = 0.6, γ = 0.7 and γ = 0.8. Sparse K-means is
the second best performing method, with very competitive performance for γ = 0.8 and a
reasonable performance for γ = 0.6 and γ = 0.7. Reg K-means does not seem to be doing
much better than classical K-means in this simulation. We note that the outperformance
of the other methods by HTK-means for γ = 0.5, 0.6, 0.7, 0.8 is statistically significant when
tested based on the differences in means and standard deviations (for example using Welch’s
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t-test). Finally, note that classical K-means starts to perform reasonably well as the cluster
centers get more and more separated.

γ = 0.4 γ = 0.5 γ = 0.6 γ = 0.7 γ = 0.8

HTK-means 0.09 (0.06) 0.26 (0.12) 0.80 (0.19) 0.98 (0.03) 1 (0.01)
Reg K-means 0.09 (0.05) 0.19 (0.08) 0.36 (0.12) 0.57 (0.15) 0.72 (0.14)

Sparse K-means 0.05 (0.05) 0.18 (0.1) 0.66 (0.27) 0.89 (0.15) 0.96 (0.08)
K-means 0.09 (0.05) 0.19 (0.08) 0.36 (0.11) 0.56 (0.12) 0.69 (0.12)

Table 6: mean ARI (and standard deviation in brackets) on data with p = 1000, n = 80
and K = 4.

We now briefly consider the number of selected variables for each of the methods, shown
in Table 7. The AIC criterion used for HTK-means consistently underestimates the sparsity
of the signal and selects a few too many variables on average. However, out of all the
methods, it is closest to the true number of signal variables (50) most of the time. Sparse
K-means seems to select too many variables when the clusters are not very well separated.
However, for well-separated clusters (γ = 0.8) it selects almost exactly 50 variables on
average, albeit with high variability. Finally, Reg K-means heavily underestimates the
sparsity of the signal.

γ = 0.4 γ = 0.5 γ = 0.6 γ = 0.7 γ = 0.8

HTK-means 100 (18) 99 (26) 81 (24) 89 (11) 90 (7)
Reg K-means 708 (242) 724 (239) 719 (252) 720 (246) 654 (274)

Sparse K-means 237 (331) 293 (306) 131 (208) 41 (12) 50 (93)
K-means 1000 (0) 1000 (0) 1000 (0) 1000 (0) 1000 (0)

Table 7: mean number of selected variables (and standard deviation in brackets) on data
with p = 1000, n = 80 and K = 4.

Finally we take a brief look at the computation times of the different methods. Table
8 shows the computation times in seconds. It is immediately clear that classical K-means
is by far the fastest method and the regularized alternatives have a computation time that
is larger by several orders of magnitude. Of the alternatives to classical K-means, HTK-
means is the fastest to compute followed by Sparse K-means which is about 4 times as slow
on these data. Reg K-means is much slower than the competitors, and the bulk of this
computation time is due to the stability-based tuning of the regularization parameter λ.

The computation times of the classical K-means method may seem rather low com-
pared with the other variants. One of the main drivers of this discrepancy is the fact that
the implementation of classical K-means uses highly optimized C code, whereas the other
methods use pure R code. Additionally, the regularized and sparse variants are calculated
on a grid of values for the regularization parameter, which increases the computation time
proportionally to the size of this grid. Finally, the HTK-means in particular uses a sparse
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γ = 0.4 γ = 0.5 γ = 0.6 γ = 0.7 γ = 0.8

HTK-means 28 (1) 28 (1) 29 (1) 29 (1) 28 (1)
Reg K-means 1991 (61) 1999 (55) 1983 (61) 2007 (54) 2000 (60)

Sparse K-means 100 (2) 100 (3) 101 (3) 103 (2) 101 (2)
K-means 1 (0) 1 (0) 1 (0) 1 (0) 1 (0)

Table 8: mean computation time in seconds (and standard deviation in brackets) on data
with p = 1000, n = 80 and K = 4.

starting value, which increases the computation time by a constant factor when compared
with classical K-means. That said, for a fixed value of λ, the computational complexity
of HTK-means is the same as that of classical K-means. We believe that with enough
engineering HTK-means could scale to the same settings that classical K-means can scale
to.

5.5 Comparison with Modified Existing Proposals

In this section, we compare our proposal with a modified version of Sparse K-means and
Reg K-means. More precisely, we investigate whether selecting λ using the AIC and using
our sparse initialization strategy would also benefit both methods. This study can help us
to gain insight into whether the improvement of HTK-means over existing methods is due to
the use of the new initial values, the AIC for the selection of λ, or the penalty itself. Table 9
shows the ARIs on the simulated data with p = 1000 and K = 4 and n = 80. The “(m)” (for
“modified”) indicates the versions of Sparse K-means and Reg K-means using our sparse
starting value as well as the AIC for the selection of λ. The results in this table indicate that
Sparse K-means does not work well with our initialization procedure and the AIC. This is
explained by the fact that our initialization is aimed at methods which regularize based on
some norm of the cluster centers, which Sparse K-means doesn’t do directly. Additionally,
Sparse K-means induces (a lot of) shrinkage on the estimated cluster centers which can
be detrimental to the use of the AIC as it relies on the WCSS. The difference between
HTK-means and modified Reg K-means is very small. The table suggests that HTK-means
may be slightly better when γ is small, but no definite conclusions can be drawn here.

γ = 0.4 γ = 0.5 γ = 0.6 γ = 0.7 γ = 0.8

HTK-means 0.09 (0.06) 0.26 (0.12) 0.8 (0.19) 0.98 (0.03) 1 (0.01)
Reg K-means (m) 0.03 (0.04) 0.23 (0.15) 0.76 (0.24) 0.99 (0.02) 1 (0.01)

Sparse K-means (m) 0.02 (0.03) 0.06 (0.05) 0.16 (0.05) 0.21 (0.06) 0.28 (0.09)

Table 9: mean ARI (and standard deviation in brackets) of the proposed method as well as
the modified versions (denoted “(m)”) of Reg K-means and Sparse K-means on
data with p = 1000, n = 80 and K = 4.
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Table 10 reports the computation times of this experiment. As is clear from these
numbers, the proposed methods requires about half of the computation time of the modified
Reg K-means approach and about one-fourth of the modified Sparse K-means method. The
algorithm of the HTK-means method is the simplest in nature, yielding the best results from
a computational perspective.

γ = 0.4 γ = 0.5 γ = 0.6 γ = 0.7 γ = 0.8

HTK-means 28 (1) 28 (1) 29 (1) 29 (1) 28 (1)
Reg K-means (m) 66 (4) 67 (3) 67 (7) 63 (4) 62 (2)

Sparse K-means (m) 108 (2) 109 (2) 109 (3) 109 (3) 109 (2)

Table 10: mean computation time (and standard deviation in brackets) of the proposed
method as well as the modified versions (denoted “(m)”) of Reg K-means and
Sparse K-means on data with p = 1000, n = 80 and K = 4.

Finally, we take a brief look at the variable selection performance of HTK-means and
the modified Sparse and Regularized K-means. Table 11 shows the number of variables
selected for each of the methods under consideration. It is confirmed that the AIC method
does not work well for Sparse K-means, as the number of selected variables is extremely
low each time. For HTK-means, the procedure slightly overestimates the number of signal
variables, but it does so in a stable way. For the modified Reg K-means however, the AIC
provides a much more volatile selection of the number of relevant variables. For small values
of γ it clearly underestimates the number of relevant variables. As suggested earlier, this
is likely due to the fact that the WCSS is not comparable for different values of λ when
there is (a lot of) shrinkage in the estimated cluster centers. This happens mostly in more
difficult clustering scenarios (that is, for small values of γ), explaining the results in the
table.

γ = 0.4 γ = 0.5 γ = 0.6 γ = 0.7 γ = 0.8

HTK-means 100 (18) 99 (26) 81 (24) 89 (11) 90 (7)
Reg K-means (m) 8 (4) 18 (13) 59 (16) 66 (7) 65 (6)

Sparse K-means (m) 3 (2) 3 (1) 3 (1) 3 (1) 3 (1)

Table 11: mean number of selected variables (and standard deviation in brackets) of the
proposed method as well as the modified versions (denoted “(m)”) of Reg K-
means and Sparse K-means on data with p = 1000, n = 80 and K = 4.

6. Real Data Examples

In this section we analyze several real data examples using the HTK-means method. We
start with a few simple examples and then turn to more complex data sets.
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6.1 The Iris Data Set

We first reconsider the Iris data set discussed in the introduction, where it was clear that not
all variables contribute equally to the partitioning of the data. More specifically, the third
and fourth variable contain most information with respect to the true clustering structure.
Adding the first and second variables does not help in recovering the underlying clustering,
and in fact worsens the result. When applying HTK-means to these data, we obtain the
regularization path on the left panel of Figure 2. As λ decreases, we see that the variables
enter the active set one at a time. As discussed in the introduction, the best clustering
performance is achieved when using only the petal dimensions, that is, the blue and yellow
variables which first enter the regularization path. Including the sepal dimensions (the red
and green variables) worsens the result.
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Figure 2: Regularization path of HTK-means on the Iris data (left). Diagnostic plot of
HTK-means.

The AIC and BIC criteria select a λ parameter of 0, suggesting that all four variables
should be used to cluster the Iris data. The stability based methods select λ between 0.67
and 0.92, meaning that they all select the 2 variables describing the dimensions of the petal
and thus achieve the optimal ARI on this data set. In addition to these automatic methods
for selecting λ, we may consider the diagnostic plot in the right panel of Figure 2. On
the horizontal axis, it shows the number of active variables rather than the value of the
regularization parameter. On the left vertical axis, it shows the increase in WCSS. If this
is large, it suggests that the added variable is likely to be a noise variable. On the right
vertical axis, it shows the difference in ARI between the subsequent partitions of the data.
Large values means that the added variable has caused the current partition to change
drastically. From this plot, we can infer that the inclusion of the third and fourth variable
produces a large increase in WCSS compared with the inclusion of the first two variables.
We also see that the partition keeps changing substantially when we add more variables.
The graphical display consistently points to the optimal use of the petal dimensions for the
clustering of the flowers, and a threshold of 0.2 on the increase in WCSS would yield the
optimal partition.
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6.2 The Banknote Data Set

As a second example we consider the banknote data set, which consists of six measurements
for 100 genuine and 100 counterfeit old-Swiss 1000-franc bank notes. The data was analyzed
by Flury and Riedwyl (1988) and is publicly available in the R-package mclust (Scrucca
et al., 2016). For each bank note, we have the length, the width of the left and right edges,
the bottom and top margin widths and the length of the diagonal. Figure 3 presents a pairs
plot of the data, with the genuine and counterfeit bills colored in blue and red respectively.
From this plot we may expect that not all variables contribute equally well to the separation
between good and bad bank notes.

Length

Left

Right

Bottom

Top

Diagonal

Figure 3: Pairs plot of the banknote data. The genuine bank notes are colored in blue,
whereas the counterfeit notes correspond with the red dots.

If we cluster the bank note data using classicalK-means, we obtain an ARI of about 0.85,
which is already a very good performance. Figure 4 shows the regularization path resulting
from applying HTK-means on the bank note data. From this plot, we immediately see that
not all variables contribute equally to the clustering of the data. More specifically, it seems
that the measurements of the diagonal of the bill is by far the most important variable,
followed by the bottom margin variable. It turns out that if we cluster only based on the
diagonal measurement, we obtain an ARI of 96 %. If we additionally include the second
variable, the bottom margin, we obtain an ARI of 98 %, which is almost perfect recovery
of the true clusters. Including additional variables slightly lowers the ARI, but it is the
measurements of the length and left edge which make the ARI drop from around 0.95 to
0.85. Any λ value smaller than 0.33 includes these variables and thus we would like to
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select a tuning parameter value of at least 0.33. The AIC and BIC criteria select a λ of
0.02, meaning that they leave out the length variable, but still include the left edge variable.
The stability based criteria also select λ values between 0.02 and 0.33, essentially selecting
5 variables and yielding a suboptimal ARI. While the automatic tuning for λ does not seem
to work well here, the diagnostic plot in the right panel of Figure 4 does points towards a
better solution. It clearly shows that the last variable is a noise variable with an addition to
the WCSS of the active variables which is almost one. However, the third, fourth and fifth
variable also seem to increase the WCSS substantially, and if we would put a threshold at
an increase of 0.2 as in the Iris data, we would obtain the partition based on one variable,
which has almost perfect recovery.
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Figure 4: Regularization path of HTK-means on the bank note data (left). Diagnostic plot
of HTK-means (right).

6.3 The Colon Cancer Data Set

We analyze the gene expression data publicly available in the R-package antiProfilesData
(Bravo et al., 2020) and contains samples of normal colon tissue and colon cancer tissue
collected from the Gene Expression Omnibus (Edgar et al., 2002; Barrett et al., 2012). The
complete data set contains 68 gene expressions of length 5339, subdivided into 4 categories:
adenoma, colorectal cancer, normal and tumor. There are 15 observations for each of the
first three categories, and 23 of the tumor category. We are interested in clustering the
data and thereby hopefully recovering the different tissue types in the obtained partition.
Furthermore, if we are able to do so using a limited number of variables, this would add
valuable insight regarding potentially important genes.
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Figure 5: Regularization path of HTK-means on the colon cancer data.

We first consider the simplified problem of separating the normal tissue from the tumor,
which together form a data set of size 38 × 5339. Interestingly, when clustering this data
using classical K-means, we obtain a perfect recovery of the true clusters: normal tissue
vs. tumor tissue. However, classical K means evidently uses all variables to obtain this
partition, and offers no insight into whether all of these variables are needed or whether
some of them may be redundant. Figure 5 shows the regularization path resulting from
applying HTK-means to the colon cancer data. Clearly, not all variables contribute equally
to the clustering, as even for very small values of the regularization parameter λ, many
variables are dropped from the clustering. As even classical K-means clusters this data
perfectly, we cannot hope to perform better in that respect, but we can try to identify
potentially interesting features as well as try to obtain the same perfect partition using
fewer variables.
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Figure 6: Diagnostic plot of HTK-means on the colon cancer data (left) with zoomed-in
plot on the right.

AIC and BIC suggest tuning parameters of 0.11 and 0.19 respectively, which yield clus-
tering models of size 2697 and 1999. The stability based methods stab1, stab2 and stab3
suggest using λ equal to 0.14, 0.08 and 0.26 respectively which correspond with clustering
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models of size 2396, 3046 and 1530 respectively. All of these options achieve perfect clus-
tering, but none of them achieve a very sparse clustering. In fact, all sub models along the
regularization path achieve perfect clustering, as can be seen from the flat red line on the
diagnostic plot in Figure 6. Using a threshold of 0.2 on the increase of WCSS as in the
previous two examples, we would find a very sparse model of roughly fifty genes.

Given that the partition is essentially determined by a single variable, it is interesting
to consider the first few variables which enter the active set of clustering features. Figure 7
shows the expression levels of the first 4 variables which enter the clustering model. All 4
of these variables perfectly separate the normal tissue samples from the tumor samples, ex-
plaining why the data is rather easy to cluster regardless of the tuning parameter. However,
HTK-means allows us to identify these variables as they appear first in the regularization
path.
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Figure 7: Expression levels of the first 4 features entering the clustering model. All four
variables perfectly separate the normal from the tumor samples.
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We now consider the full data set, with all 4 classes. This clustering task is significantly
more difficult, as evidenced by the ARI of 0.61 achieved by classical K-means. Figure 8
shows the regularization path of HTK-means which is a little bit more noisy than before,
but clearly shows unequal importance of the variables in the clustering.
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Figure 8: Regularization path of the full colon cancer data set.

For the selection of λ, AIC and BIC suggest values of 0.12 and 0.25, corresponding
with partitions based on 3910 and 2568 variables respectively and both achieving an ARI
of 0.654. The stability based methods result in more sparse models of between 97 and 329
variables which both have an ARI of about 0.68, the highest achievable using K-means
on this data set. Considering the diagnostic plots of Figure 9 however, it seems that these
models are still not sparse enough. More in particular, the partition obtained using only the
7 best variables remains unaltered when the next 700 (!) variables are added to the model.
In other words, the optimal partition which can be achieved using K-means on a subset of
the variables in this data set can be reached using only 7 variables. While the diagnostic
plot with a threshold on the WCSS of 0.2 would yield a model of roughly 50 variables, it
also shows that it leads to the same partition as the model based on 7 variables, as the red
line is flat at 0.

Given that we can essentially reach the 0.68 ARI with only 7 variables, it is interesting
to look at the variables which first enter the model. The first 4 variables are shown in
Figure 10. Interestingly, the variable which first enters the model, named 204719 at, was
also among the first variables entering when we only considered the normal and tumor
categories. This gene seems very important as it clearly distinguishes between healthy
tissue and non-healthy tissue of different types. We further see that the other variables
which enter the model early mainly distinguish between the adenoma and the other tissue.
They also suggest the existence of a sub-cluster within the normal tissue, as all three of
the genes 1552863 a at, 44673 at and 213451 x at indicate a difference between the first
8 and the last 7 blue dots. It turns out that these observations correspond with tissue
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Figure 9: Diagnostic plot of HTK-means on the full colon cancer data (left) with zoomed-in
plot on the right.

collected from the rectum mucosa instead of the colon, and so it can in fact be considered
a sub-cluster. Finally, we notice that the colorectal cancer and tumor tissue are hard to
separate making the clustering task more difficult.

7. Conclusion

Classical K-means is a very popular clustering technique. Despite its popularity, the perfor-
mance of K-means can be impaired by noise variables which do not contribute to a reliable
partitioning of the data. Regularized K-means aims to mitigate this issue by distinguishing
important clustering features from noise variables. While variable identification is interest-
ing in its own right, this information can be leveraged to improve the partitioning of the
data. We have introduced and analyzed a framework for performing regularized K-means,
based on direct penalization of the size of the cluster centers. Based on an extensive simula-
tion study and theoretical analysis, we have proposed a new method called hard-threshold
K-means, which uses an `0 penalty to induce sparsity.

Theoretically, HTK-means is consistent and variable-selection consistent for fixed dimen-
sions without requiring λ to vanish. In the high-dimensional regime where p = o(n1/3), we
additionally showed that HTK-means can achieve

√
n/p-consistency while also preserving

variable selection consistency (unlike the other penalties under consideration). We conjec-
ture that this is the optimal rate for this regime (without any further assumptions on the
sparsity structure), as that is the rate achieved for penalized regression of which K-means
clustering with K = 1 is a special case. Empirically, we have shown that a substantial part
of the superior performance of HTK-means is explained by its sparse starting value. The
penalty itself shows similar empirical performance to the group-lasso penalty, while outper-
forming the regular lasso and ridge penalties. The `0 penalty has the additional benefit of
yielding the fastest algorithm and avoiding shrinkage in the non-zero cluster centers. This
last property enhances interpretability and visualization, and allows for the justified use of
simpler tuning parameter selection methods like AIC and BIC.
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Figure 10: Expression levels of the first 4 features entering the clustering model.

The application of HTK-means to real data examples illustrates its potential in identi-
fying the important clustering variables, which is useful even when a good partitioning of
the data can be found without regularization. Additionally, new graphical displays were
presented and used to gain further insight into the data sets.

Software Availability. The code for HTK-means and the proposed diagnostic plots is in-
cluded in the R package clusterHD (Raymaekers and Zamar, 2022) available on CRAN.

Acknowledgments

27



Raymaekers and Zamar

This work was supported by internal funds of the KU Leuven [to J.R.] and by the Discovery
grant from NSERC [to R.Z.].

28



Regularized K-means Through Hard-Thresholding

Appendix A. Proofs

A.1 Proof of Proposition 1

Proof We want to show that obj∗ = obj + 1. We have:

obj∗ = min
{(ak,ck)|k=1...,K}

K∑
k=1

∫
· · ·
∫
m+1

[
min
k
||x− ak||2 + min

k
(y − ck)2

]
1R∗k(x, y)dQ∗(x, y)

= min
{(ak,ck)|k=1...,K}

K∑
k=1

∫
· · ·
∫
m+1

[
min
k
||x− ak||2 + min

k
(y − ck)2

]
1Rk(x)1R(y)dQ(x)dQ∗(y|x)

= min
{(ak,ck)|k=1...,K}

K∑
k=1

∫
· · ·
∫
m+1

[
min
k
||x− ak||2 + min

k
(y − ck)2

]
1Rk(x)dQ(x)dQ∗(y)

≥ obj + min
c1,...,ck

K∑
k=1

∫
· · ·
∫
m

[∫
min
k

(y − ck)2dQ∗(y)

]
1Rk(x)dQ(x)

= obj +

[
min
c1,...,ck

∫
min
k

(y − E[Y ]))2dQ∗(y)

] K∑
k=1

∫
· · ·
∫
m

1Rk(x)dQ(x)

= obj + Var[Y ]

K∑
k=1

P (Rk)

= obj + 1

Note that the reverse inequality, obj∗ ≤ obj + 1 is obvious, since we can reach this
value of the objective function by putting all the cluster centers of the new variable to zero.
Assuming the optimum is unique, we thus conclude that the cluster centers for the added
variable must be all equal to zero.

A.2 Proof of Proposition 2

Proof Suppose that we have an assignment of the elements into K clusters C1, . . . , CK .
Keeping this assignment fixed, we try to minimize the objective function. We denote the
cluster centers obtained by taking the within cluster averages by µ∗ throughout. For ex-

ample, µ∗
k,j

:= 1
|Ck|

∑
i∈Ck xi,j .

P0 For the `0 penalty, we have that µ·,j must be the solution to

arg min
m

1

n
||x·,j −mm||22 + λ1||m||2>0

Now suppose we have ||m||2 6= 0. In that case we obtain the exact same optimization step
as in classical K-means, since the penalty term is fixed at λ. Therefore, we must have

m = µ∗·,j =
(
µ∗

1,j
, . . . ,µ∗

K,j

)
.
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The other option is that we have ||m||2 = 0, that is, m = 0 , which is chosen if it results in
a lower objective function. In other words, we have that:

µ·,j =

{
0 if ||x·,j ||22 ≤ ||x·,j −mµ∗·,j ||

2
2 + nλ

µ∗·,j if ||x·,j ||22 > ||x·,j −mµ∗·,j ||
2
2 + nλ

It goes without saying that this is solved very easily. It is the literal translation of “include
a variable iff it reduces the first term of the objective function sufficiently and exclude
it otherwise”. If a variable is included, then the estimated centers are the within cluster
means, that is, there is no shrinkage on the included variables.

P1 Note that for P1, the objective function can be split up and optimized for each µk,j
separately. The optimization problem becomes:

µk,j = arg min
m

1

n

∑
i∈Ck

(xi,j −m)2
2 + λ|m|,

where m is now a scalar. Taking the derivative with respect to m of the objective function
yields:

∂

∂m

 1

n

∑
i∈Ck

(xi,j −m)2
2 + λ|m|

 = − 2

n

∑
i∈Ck

xi,j +
2

n
|Ck|m+ λ∂(|m|) = 0

where ∂ denotes the subderivative of |m| with respect to m, that is, ∂(|m|) = sign(m) if
m 6= 0 and ∂(|m|) = [−1, 1] otherwise.
Now if m > 0, we must have m = 1

|Ck|
∑

i∈Ck xi,j −
nλ

2|Ck| = µ∗
k,j
− nλ

2|Ck| , whereas if m < 0,

we have m = 1
|Ck|

∑
i∈Ck xi,j + nλ

2|Ck| = µ∗
k,j

+ nλ
2|Ck| . The solution is thus given by

µ
k,j

= max

0, 1− nλ

2|Ck|
∣∣∣µ∗

k,j

∣∣∣
µ∗

k,j
.

P2 Analogously to the previous case, we obtain that µ
k,j

must be the solution to the opti-

mization problem arg minm
1
n

∑
i∈Ck (xi,j −m)2

2 + λm2, where m is again a scalar. Taking
the derivative with respect to m of the objective function yields:

∂

∂m

 1

n

∑
i∈Ck

(xi,j −m)2
2 + λm2

 = − 2

n

∑
i∈Ck

xi,j +
2

n
|Ck|m+ 2λm = 0

It immediately follows that µ
k,j

= 1
1+ nλ
|Ck|

1
|Ck|

∑
i∈Ck xi,j = 1

1+ nλ
|Ck|

µ∗
k,j

is the solution.

P3 In this scenario, µ·,j is the solution to

arg min
m

1

n
||x·,j −mm||22 + λ||m||2
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Karush–Kuhn–Tucker conditions yield:

− 2

n
mT (X −mm) + λs = 0,

where s = ∂||m||2 is the subdifferential given by

sk =

{
mk
||m||2 if m 6= 0

{a| ||a||2 ≤ 1} if m = 0.

Note that mTX =
(∑

i∈C1
xi,j , . . . ,

∑
i∈Ck xi,j

)
and mTm = diag(|C1|, . . . , |Ck|). As a

result, we have that the k-th component of µ·,j has to be a solution to:

µk,j =
1

|Ck|+ nλ/(2||µ·,j ||2)

∑
i∈Ck

xi,j =
1

1 + nλ/(2|Ck|||µ·,j ||2)
µ∗
k,j
.

A.3 Proof of Theorem 6

We will make use of the following lemma’s to prove Theorem 6.

Lemma 13 Let x1 . . . , xn be a random sample from F . Let An be the optimal set of (at
most k) cluster centers for the sample. Then there exists a M > 0 such that for n large
enough, we must have

1. An ⊂ B(M)

2. Ā(k) ⊂ B(M)

where B(M) denotes closed the ball with radius M centered at the origin.

Proof We first show that we can find a M0 > 0 so that for n large enough, at least one
point of An is contained in the closed ball around the origin B(M0).

First we take a radius r > 0 such that the closed ball B(r) has positive measure, that is,∫
B(r) F (dx) > 0. Now we can choose M0 large enough such that ||M0 − r||2

∫
B(r) F (dx) >∫

||x||22F (dx). Denote the set which only contains the origin withA0 = {0}. Given thatAn is
the set of optimal sample centers, it must hold that W (An, Pn) ≤W (A0, Pn). Additionally,
as P(A0) = 0, we have that

W (A0, Fn) =

∫
||x||22Fn(dx) + λP(A0)

=

∫
||x||22Fn(dx)

a.s.−−→
∫
||x||22F (dx)
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Now suppose that not a single element of An would be in B(M0) for infinitely many
values of n. Then we would have that:

lim sup
n

W (An, Fn) = lim sup
n

∫
min
a∈An

||x− a||22Fn(dx) + λP(An)

≥ lim
n
||M0 − r||2

∫
B(r)

Fn(dx)

a.s.−−→ ||M0 − r||2
∫

B(r)
F (dx)

>

∫
||x||22P (dx).

This leads to a contradiction, since if this were true, we would have that W (An, Pn) >
W (A0, Pn) infinitely often such that An cannot be the optimal set of sample centers. We
thus know that there is at least one point, a0, which lies in An and in B(M0).

Now we show by induction that as n grows, B(5M0) eventually contains all the points
of An. Suppose that for 1, . . . , k−1 cluster centers, B(5M0) contains all the optimal sample
centers for n large enough. Suppose that An would never be contained in B(5M0) as n
grows large. We will show that this would allow for the construction of an allocation of the
points to k − 1 centers which has a lower objective function than the optimal allocation,
which is a contradiction.

We start by choosing ε such that W (Ā(k), F ) + ε < W (Ā(k − 1), F ) and M0 large
enough so that 2

∫
||x||>2M0

||x||22F (dx) < ε. Now suppose that there is a point a∗ ∈ An
which is not in B(5M0). If we were to remove this point from An, then at worst, all the
points currently assigned to the center a∗ will now be assigned to the center a0, known to lie
within B(M0). Additionally, for each of the points xi currently assigned to a∗ it must hold
that ||xi−a∗||22 < ||xi−a0||22. Note that this implies that points must be at a distance of at
least 2M0 from the origin. Deleting a∗, would therefore cause an increase of the objective
function by at most ∫

||x||>2M0

||x− a0||22Fn(dx) + λ (P(An\a∗)− P(An))

≤
∫
||x||>2M0

||x||22 + ||a0||22Fn(dx)

≤2

∫
||x||>2M0

||x||22Fn(dx).

Let A∗n be the set of centers obtained by deleting all the centers from An which are not
contained in B(5M0). Denote withBn the optimal set of k−1 or fewer centers. It is clear that
A∗n should not have a lower objective function than Bn, that is, W (Bn, Fn) ≤W (A∗n, Fn).

Now, under the assumption that An would never be contained in B(5M0) as n grows
large, we can find a subsequence ni such that Ani * B(5M0) for all i = 1, 2, . . .. We would
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then obtain that:

W (Ā(k − 1), F ) ≤ lim inf
ni

W (A∗ni , Fn) a.s.

= lim inf
ni

∫
min
a∈A∗ni

||x− a||22Fn(dx) + λP(A∗ni)

≤ lim sup
ni

W (An, Fn) + 2

∫
||x||>2M0

||x||22Fn(dx)

≤ lim sup
ni

W (Ā, Fn) + 2

∫
||x||>2M0

||x||22F (dx) a.s.

≤W (Ā(k), F ) + ε

< W (Ā(k − 1), F ).

Which is again a contradiction. Therefore, if we put M = 5M0, it must hold that An and
Ā(k) are eventually in B(M) for n large enough.

The following lemma proves a uniform strong law of large numbers on the compact set
of the previous lemma.

Lemma 14 (Uniform strong law of large numbers) Given a value M > 0, denote
with K = {A ⊂ B(M)|A contains at most k points}

sup
A∈K
|W (A,Fn)−W (A,F )| a.s.−−→ 0

Proof Note that due to the fact that the penalty is independent of Fn, we have for every
A that:

|W (A,Fn)−W (A,F )| =
∣∣∣∣∫ min

a∈A
||x− a||22Fn(dx)−

∫
min
a∈A
||x− a||22F (dx)

∣∣∣∣ .
Therefore, the uniform SLLN for classical K-means (Pollard, 1981) directly yields the de-
sired result.

The following lemma shows the continuity of W with respect to the Hausdorff distance
for all penalties except for the `0.

Lemma 15 (Continuity of W ) For ridge, lasso and group-lasso penalties, the function
C →W (C,F ) is continuous on K under the topology induced by the Hausdorff distance.

Proof Take A,B ∈ K so thatH(A,B) < δ. Then ∀b ∈ B, ∃a(b) ∈ A so that ||a(b)−b||2 < δ.

We first show that that the penalties under consideration are continuous with respect to
the Hausdorff metric. If δ is taken small enough, and in particular smaller than the minimal
distance between two points of the set A, then we can construct a bijection between the
points of A and the points of B such that each point a of A corresponds with exactly one
point b of B for which ||a− b||2 < δ. Therefore, if we denote the matrices
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A =

a1,1 . . . a1,p
...

. . .
...

aK,1 . . . aK,p

 B =

 b1,1 . . . b1,p
...

. . .
...

bK,1 . . . bK,p


then we have that, after possible rearrangement of the rows of A and B, H(A,B) < δ implies
that |ai,·−bi,·| < δ for i ∈ {1, . . . ,K} and thus also that |ai,j−bi,j | < δ for all i ∈ {1, . . . ,K}
and j ∈ {1, . . . , p}. This guarantees that P(A) − P(B) can be made arbitrarily small as
long as δ is chosen small enough. Because of the continuity of the penalty functions, we
can bound the difference in penalties of A and B as P(A) − P(B) ≤ f(δ) where f is
non-decreasing and such that limδ→0 f(δ) = 0.

If R > 5M + δ, we now have:

W (A,Q)−W (B,Q) =

∫
min
a∈A
||x− a||22Q(dx)−

∫
min
b∈B
||x− b||22Q(dx) + λ (P(A)− P(B))

≤
∫

max
b∈B

{
(||x− a(b)||22 − ||x− b||22)

}
Q(dx) + λf(δ)

≤
∫ ∑

b∈B

{
(||x− a(b)||22 − ||x− b||22)

}
Q(dx) + λf(δ)

≤
∫ ∑

b∈B

{
((||x− b||2 + δ)2 − ||x− b||22)

}
Q(dx) + λf(δ)

≤ k sup
||x||≤R

sup
b∈B(5M)

∣∣((||x− b||2 + δ)2 − ||x− b||22
)∣∣

+ k

∫
||x||>R

(||x||2 + ||b||2 + δ)2 P (dx) + λf(δ)

≤ k sup
||x||≤R

sup
b∈B(5M)

∣∣((||x− b||2 + δ)2 − ||x− b||22
)∣∣

+ 2k

∫
||x||>R

||x||22P (dx) + λf(δ)

where the last inequality holds because R > 5M + δ and b ≤ 5M . The second term will
be small when R is chosen large enough, while the first and third will be small when δ is
chosen small enough.

Lemma 16 We have that

W (An, Fn)
a.s.−−→W (Ā, F )

Proof We have that

W (An, Fn)−W (An, F ) ≤W (An, Fn)−W (Ā, F ) ≤W (Ā, Fn)−W (Ā, F )
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The left hand side converges to zero almost surely because of Lemma 14. The right hand
side converges to zero almost surely due to the strong law of large numbers. We thus have
that

W (An, Fn)−W (Ā, F )
a.s.−−→ 0

Lemma 17 Consider the function ρ : K 7→ R : C →W (C,F ) with
K = {A ⊂ B(M)|A contains at most k points} with unique minimum ρ(Ā) = W (Ā, F ).
Suppose we have a sequence of sets of centers (An)n∈N ⊆ K for which

∀η > 0, ∃n0 : ∀n ≥ n0, ρ(An) < η + ρ(Ā)

then An converges to Ā in Hausdorff distance.

Proof Note that K is a compact metric space under the Hausdorff metric.

Choose ε > 0 and consider the subset of K1 of K which contains sets of cluster centers
located at a Hausdorff distance of at least ε from the optimal set Ā. In other words, we
have:

K1 := K\ B̊
Ā

(ε),

where B̊Ā(ε) denotes the open ball centered around Ā with radius ε. Note that K1 is also
compact.

We now claim that there is a B∗ ∈ K1 such that

min
B∈K1

ρ(B) = ρ(B∗)

In case ρ is continuous as in Lemma 15, its minimum is well-defined over K1 and so the
claim above is naturally true. Now, suppose we are dealing with the `0 penalty, that is,
W (A,F ) =

∫
mina∈A ||x− a||22F (dx) + λ

∑p
j=1 1||a·,j ||2>0.

ConsiderK(s) := K1∩Rps, where s ∈ {1, . . . , p} and Rps = {x ∈ Rp|x has at most s non-zeroes}.
That is, we subdivide the space K1 into sets which are restricted to have at most s variables
equal to zero. So we have that K(0) ⊂ K(1) ⊂ . . . ⊂ K(p) = K1.

Consider the first part of the objective function W in: ρ∗ : K 7→ R : C → W ∗(C,F ) =∫
minc∈C ||x− c||22F (dx). This is the classical K-means objective function, which is contin-

uous with respect to the Hausdorff metric.

Now let m0 = W (0, F ) = W ∗(0, F ) =
∫
||x||22F (dx) and consider K(1) ⊃ K(0). Note that

ρ∗ is continuous on K(1) (ρ is not, since it is not continuous in 0) and it therefore attains a
minimum, m∗1. Now take m1 = min(m0,m

∗
1 +λ), then we must have that minB∈K(1)

ρ(B) =
m1. We can continue in similar fashion for K(2). ρ∗ is continuous on K(2) and attains a
minimum m∗2. We can then take m2 = min(m1,m

∗
2 + 2λ) so that minB∈K(2)

ρ(B) = m2.
Continuing like this we find a value mp so that minB∈K(p)

ρ(B) = mp. Denote the set of
centers in which this minimum is attained by B∗, that is, ρ(B∗) = mp.
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We now have shown that B∗ exists for all of the penalties under consideration. Due to
the uniqueness of Ā, we must have

ρ(B∗) > ρ(Ā)

Now, if we take η = ρ(B∗) − ρ(Ā), the Lemma hypothesis guarantees that there exists
an n0 such that, for all n ≥ n0,

ρ(An) < η + ρ(Ā) = ρ(B∗).

This ensures An cannot belong to K1 and thus An ∈ B̊Ā(ε) for all n ≥ n0. Therefore, An
has to converge to Ā in Hausdorff distance.

The proof of Theorem 6 now follows:

Proof Lemma 13 ensures that the optimal cluster centers for the sample, An as well as
for the population, Ā(k), will eventually be contained in a closed ball around the origin.
We now also have that the sequence An of optimal centers of the sample is a minimizing
sequence for W (·, F ):

W (An, F )
a.s.−−→W (Ā, F ).

This follows from

0 ≤W (An, F )−W (Ā, F ) ≤ (W (An, F ) +W (An, Fn)) + (W (An, Fn)−W (Ā, F ))

where both terms on the right hand side converge to zero almost surely, as a consequence
of Lemmas 14 and 16. As a result, the condition of Lemma 6 is satisfied, after which the
convergence in Hausdorff metric of An to Ā follows.

A.4 Proof of Theorem 7

For Theorem 7 we have:

Proof Suppose λ > 0.

P0 For the `0 penalty, we have that Â·,j 6= 0 only if

1

n
||x·,j ||22 >

1

n
||x·,j −mÂ·,j ||22 + λ

⇔ 1

n
||x·,j ||22 −

1

n
||x·,j −mÂ·,j ||22 > λ

As the left hand side converges in probability to zero, we must have that P (Â·,j = 0)→ 1.
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P1 The KKT conditions yield that if Â·,j 6= 0, we must have

1− λ

2|Ck|
∣∣∣ 1
|Ck|

∑
i∈Ck xi,j

∣∣∣ > 0

Therefore, we must have 1
|Ck|

∑
i∈Ck xi,j >

λ
2|Ck| . The left hand side converges in probability

to 0 as a result of the consistency. Therefore, we must have that P (Â·,j = 0)→ 1.

P3 Based on KKT conditions, we have that if Â·,j 6= 0, we must have

− 2

n
mT (x·,j −mÂ·,j) + λ

Â·,j

||Â·,j ||2
= 0

Now, note that

∣∣∣∣∣∣∣∣λ Â·,j

||Â·,j||2

∣∣∣∣∣∣∣∣
2

= λ > 0, whereas
∣∣∣∣∣∣ 2
nm

T (x·,j −mÂ·,j)
∣∣∣∣∣∣

2

P−→ 0

Corollary 8 is now a direct consequence of Theorem 6, Theorem 7 and Proposition 2.

A.5 Proof of Theorem 9

We make the following assumptions in this section, in line with the assumptions used in
Sun et al. (2012):

(i) Xj = m̄Ā·,j + εj for j = 1, . . . , p, where εj = (ε1j , . . . , εnj)
′ with εij independent,

E[εij ] = 0 and E[ε2
ij ] <∞.

(ii) The true cluster centers Ā is unique up to relabeling of its coordinates

(iii)
∫
||x||22F (dx) <∞

(iv) F has a continuous density f on Rp.

(v) There exists a dominating function g such that f(x) ≤ g(||x||) for which rpg(r) is
integrable.

(vi) The matrix Γ of Pollard (1982) is positive semi definite at Ā.

(vii) arg min1≤k≤K ||X − Āk,·||2 is unique with probability one.

(viii) min1≤j<p0
||An;·,j ||
λn

→ 0 as n→∞.

where m̄ denotes matrix of cluster assignments based on the true centers Ā.

Proof Our proof follows that of Sun et al. (2012), to which we refer for the details.
Some adjustments need to be considered for the changing penalty terms, and those are
highlighted here. First we show that for large n, the estimated cluster centers lie in a
compact region of Rp. This follows from the fact that the statement holds for classical K-
means, in combination with the observation that all of the regularized K-means variants can
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be written as a constrained optimization problem where the constraint vanishes as n→∞.
As an example, for the `0 penalty, we can rewrite the objective as

∫
min
a∈A
||x− a||22Fn(dx) so that

p∑
j=1

1||A·,j ||>0 ≤ sn

where sn → ∞ as n → ∞. We know that the cluster centers of the classical K-means are
contained in a closed ball B(M) around the origin for large n. We can then pick N large
enough so that the constraint sN does not interfere with this ball. The other penalties can
be treated in similar fashion.
Secondly, a uniform SLLN for W (C,F ) over the subsets of B(M) can be obtained by
considering that

sup
A∈B(M)

|W (A,Fn)−W (A,F )|

≤ sup
A∈B(M)

∣∣∣∣∫ min
a∈A
||x− a||22Fn(dx)−

∫
min
a∈A
||x− a||22F (dx)

∣∣∣∣
+ sup
A∈B(M)

λP(A).

For the first term, there is almost sure convergence to zero as p = o(n) and the uniform
SLLN of classical K-means. The second term goes to zero because for all the penalties under
consideration, we have supA∈B(M) λP(A) = O(Mpλ) = O(pλ) and pλ → 0 as n → ∞.

Finally, we obtaining a rate of convergence for ||An− Ā||. Under assumptions (iii)-(vi) and
Lemma D of Pollard (1982) we then obtain the expansion

W (An, Fn) = W
(
Ā, Fn

)
− n−1/2Z ′n

(
v (An)− v

(
Ā
))

+
1

2

(
v (An)− v

(
Ā
))′

Γ
(
v (An)− v

(
Ā
))

+
(
P (An)− P

(
Ā
))

+ op(n
−1/2rn) + op(r

2
n),

where rn = ||An − Ā||, v(·) is the operator that vectorizes a matrix, and Zn ∈ RK×p is
asymptotically normal with zero mean and the covariance matrix given in Lemma D of
Pollard (1982). The positive definiteness of Γ together with the fact that W (An, Fn) ≤
W (A,Fn) now yields the inequality

Op(r2
n) +Op(λ(P(An)− P(Ā))) ≤ Op(n−1/2p1/2rn) + op(n

−1/2rn) + op(r
2
n).

In case of the lasso, ridge or group-lasso penalty, we have λ(P(An)−P(Ā)) = O(p1/2λrn),

from which it follows that we need λ = O(n−1/2) in order to obtain
√

n
p -consistency. For

the `0 penalty, we have λ(P(An) − P(Ā)) = O(λ) under assumption (viii). Therefore, the
`0 penalty does not impose any additional restrictions on the convergence rate of λ.
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A.6 Proof of Theorem 10

We work under the same assumptions as those of the previous section.
Proof First consider P ∈ {P1,P3}. Take j ∈ {p0, . . . , p} and suppose that P (Â·,j = 0) 6→
1. Based on KKT conditions, we have that if Â·,j 6= 0, we must have

− 2√
n
mT (x·,j −mÂ·,j) + λ

√
n

∂

∂m
P(m)

∣∣∣∣
m=Â·,j

= 0

For the lasso penalty, we have
∣∣∣∣∣∣λ√n ∂

∂m P(m)
∣∣
m=Â·,j

∣∣∣∣∣∣ =
∣∣∣∣∣∣λ√n sign

(
Â·,j

)∣∣∣∣∣∣ = O(
√
nλ).

For the group-lasso penalty, we have
∣∣∣∣∣∣λ√n ∂

∂m P(m)
∣∣
m=Â·,j

∣∣∣∣∣∣ =
∣∣∣∣∣∣λ√n Â·,j

||Â·,j ||

∣∣∣∣∣∣ = O(λ
√
n).

Now as we have
√
nλ→∞, the last term diverges to infinity whereas the first term can be

shown to be Op(1) (see Sun et al., 2012), which leads to a contradiction. We thus conclude
that P (Â·,j = 0) → 1. By the assumption n−1λ−2p → 0, it follows that this holds jointly
for all j = p0, . . . , p.
Now consider P = P0 and take j ∈ {p0, . . . , p}. have that Â·,j 6= 0 only if

1

n
||x·,j ||22 >

1

n
||x·,j −mÂ·,j ||22 + λ

⇔ 1

n
||x·,j ||22 −

1

n
||x·,j −mÂ·,j ||22 > λ

Now we have that the left hand side of this equality is smaller than 1
n ||mÂ·,j ||22 = 1

nO(nr2
n)

in absolute value. This yields the inequality O(p/n) = O(r2
n) > O(λ), which contradicts

the assumption that n−1λ−2p→ 0 leading us to conclude that P (Â·,j = 0)→ 1. As λp→ 0,
this holds jointly for all j = p0, . . . , p.

Appendix B. A Note on the Starting Value

Table 12 shows the ARI values obtained when comparing the proposed starting value with 7
random initializations and with classical K-means as a starting value on the simulated data
of dimensions n = 80 and p = 1000 with K = 4. It is clear that the lasso, group lasso, and
`0 penalty all benefit from the proposed sparse start. The ridge penalty is least affected,
which is somewhat expected as it does not induce sparsity in the variables, in contrast with
the other penalties. Note that this simulation was run in the same way as the simulation
of Section 5.2, that is, the optimal lambda was selected based on the knowledge of the true
clusters. In this way, we eliminate the effect of choosing the regularization parameter on
the results of our simulation which allows us to isolate the effect of the starting value.
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penalty & start γ = 0.4 γ = 0.5 γ = 0.6 γ = 0.7 γ = 0.8

lasso.random 0.07 (0.03) 0.11 (0.06) 0.2 (0.13) 0.27 (0.13) 0.33 (0.12)
ridge.random 0.08 (0.03) 0.11 (0.03) 0.14 (0.04) 0.18 (0.04) 0.22 (0.05)

glasso.random 0.07 (0.04) 0.14 (0.11) 0.26 (0.17) 0.36 (0.15) 0.47 (0.23)
HT.random 0.07 (0.03) 0.1 (0.06) 0.25 (0.16) 0.47 (0.2) 0.62 (0.22)

lasso.kmeans 0.14 (0.06) 0.3 (0.1) 0.48 (0.11) 0.66 (0.12) 0.81 (0.13)
ridge.kmeans 0.15 (0.06) 0.28 (0.08) 0.43 (0.1) 0.61 (0.12) 0.74 (0.11)

glasso.kmeans 0.15 (0.06) 0.35 (0.12) 0.62 (0.2) 0.93 (0.13) 0.98 (0.08)
HT.kmeans 0.14 (0.06) 0.32 (0.12) 0.74 (0.23) 0.97 (0.08) 0.99 (0.05)

lasso.sparse 0.15 (0.06) 0.34 (0.12) 0.71 (0.2) 0.98 (0.04) 1 (0.03)
ridge.sparse 0.15 (0.06) 0.28 (0.08) 0.44 (0.11) 0.63 (0.15) 0.77 (0.14)

glasso.sparse 0.15 (0.06) 0.35 (0.12) 0.81 (0.18) 0.99 (0.01) 1 (0)
HT.sparse 0.15 (0.06) 0.36 (0.13) 0.85 (0.19) 0.99 (0.01) 1 (0)

Table 12: ARIs of Regularized K-means variants based on 7 random starts, the classical
K-means start, and the proposed 7 sparse starts on data of dimensions n = 80
and p = 1000 where K = 4.

40



Regularized K-means Through Hard-Thresholding

Appendix C. EM-algorithm for Model-Based Clustering

The expected value of the log-likelihood function given the parameters θ(m) = (θ
(m)
1 , . . . , θ

(m)
K )

at iteration m of the algorithm is given by

Q(θ, θ(m)) =

K∑
k=1

n∑
i=1

m
(m)
ik (log(πk) + log(fk(xi; θk)))− λ

p∑
j=1

1||µ·,j ||2 > 0, (4)

where m
(m)
ik =

π
(m)
k fk(xi;θ

(m)
k )∑K

k=1 π
(m)
k fk(xi;θ

(m)
k )

is the posterior probability of xi belonging to cluster k.

The M-step now requires maximizing the quantity of Equation 4 with respect to θ. This
yields the update equations

π
(m+1)
k =

1

n

n∑
i=1

m
(m)
ik

σ
2,(m+1)
j =

1

n

K∑
k=1

n∑
i=1

m
(m)
ik (xij − µ(m)

kj
)2

µ(m+1)
·,j =

{
µ
∗,(m+1)
·,j if ||x·,j ||22 > ||x·,j −m(m) µ

∗,(m+1)
·,j ||22 + 2nλσ

2,(m+1)
j

0 else

where µ
∗,(m+1)
·,j =

∑n
i=1m

(m+1)
ik xi∑n

i=1m
(m+1)
ik

. Given a certain starting value, we can thus alternate

between updating m(m) and the other parameters until convergence. Note that this is very
similar in spirit to what we are doing in our adaptation of Lloyd’s algorithm, with the
difference that we do not have updates of the quantities σ2

j and πk.
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Appendix D. Additional Simulation Results

In this section, the results of the complete simulation study are shown. Rather than showing
all of the 23 additional tables with simulation results, we have chosen to summarize them by
taking ranks of the different methods. For a single simulation setup, a rank of 1 corresponds
with the best performing method as measured by ARI. In case of ties in performance, the
average rank is given to all methods with the same performance. For each value of γ, these
ranks are then averaged over all 24 simulation settings and this average rank is shown in the
tables. The conclusions drawn in the main text remain valid for the other simulation setups.
In particular, the relative performance of the methods does not change much depending on
the parameters of the simulation. The section is subdivided in three subsections, each
corresponding with one simulation study discussed in the main text.

D.1 Comparison of Penalty Types

Table 13 below shows the average ranks for the simulation comparing the different penalty
types. We see that the performance of the `0 penalty is close to that of the group-lasso,
but more often than not it does perform slightly better. The classical K-means is the worst
performing method here, with the ridge as a fairly close second. The performance of the
lasso penalty somewhere in between that of the ridge and the group-lasso penalties.

γ = 0.4 γ = 0.5 γ = 0.6 γ = 0.7 γ = 0.8

classical 4.42 4.21 4.04 3.85 3.65
ridge 3.02 3.25 3.31 3.46 3.35
lasso 2.79 2.96 2.88 2.81 2.73

glasso 2.50 2.21 2.48 2.50 2.77
HT 2.27 2.38 2.29 2.38 2.50

Table 13: Average ranks of the performance of the different penalties in the Regularized
K-means framework. A rank of 1 indicates the best performance, whereas a rank
of 5 is the worst possible performance.
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D.2 Comparison of Techniques for Selecting λ

Table 14 below shows the average ranks for the performance of the different techniques for
selecting λ over the 24 simulation setups. We can see that the AIC performs best overall,
and consistently attains the highest relative rank over different setups. Given that it is
also the fastest to compute (together with BIC), we propose to use it as our technique for
selecting λ.

γ = 0.4 γ = 0.5 γ = 0.6 γ = 0.7 γ = 0.8

AIC 1.90 1.98 1.85 1.83 2.15
BIC 2.58 2.23 2.31 1.96 2.35

stab1 2.52 2.54 2.60 2.79 2.62
stab2 2.83 3.04 2.88 3.02 2.67
stab3 2.67 2.71 2.85 2.90 2.71

Table 14: Average ranks of the performance of the different λ-selection techniques in the
Regularized K-means framework. A rank of 1 indicates the best performance,
whereas a rank of 5 is the worst possible performance.
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D.3 Comparison with Other Regularized Clustering Methods

Table 15 below shows the average ranks for the performance of the different techniques
for regularized and sparse K-means clustering over the 24 simulation setups. Note that
there are some relatively easy simulation setups in which all methods perform (almost)
perfectly. Those setups have quite a lot of ties in the performance measures, which means
the average rank is given to these tied performances. This somewhat “shrinks” all the
performances towards 2.5. We clearly see that the proposed HTK-means procedure performs
the best overall. The other methods are somewhat comparable, with the regularized K-
means slightly outperforming Sparse K-means which in turn slightly outperforms classical
K-means when γ is not too small.

γ = 0.4 γ = 0.5 γ = 0.6 γ = 0.7 γ = 0.8

HTK-means 1.77 1.90 1.83 1.85 1.96
Reg K-means 2.65 2.73 2.71 2.65 2.60

Sparse K-means 3.25 2.75 2.69 2.75 2.67
K-means 2.33 2.62 2.77 2.75 2.77

Table 15: Average ranks of the performance of the different proposals for regularized and
sparse K-means. A rank of 1 indicates the best performance, whereas a rank of
4 is the worst possible performance.
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