
CONTRIBUTED RESEARCH ARTICLE 38

robslopes: Efficient Computation of the
(Repeated) Median Slope
by Jakob Raymaekers

Abstract Modern use of slope estimation often involves the (repeated) estimation of a large number
of slopes on a large number of data points. Some of the most popular non-parametric and robust
alternatives to the least squares estimator are the Theil-Sen and Siegel’s repeated median slope estima-
tors. The robslopes package contains fast algorithms for these slope estimators. The implemented
randomized algorithms run in O(n log(n)) and O(n log2(n)) expected time respectively and use O(n)
space. They achieve speedups up to a factor 103 compared with existing implementations for common
sample sizes, as illustrated in a benchmark study, and they allow for the possibility of estimating
the slopes on samples of size 105 and larger thanks to the limited space usage. Finally, the original
algorithms are adjusted in order to properly handle duplicate values in the data set.

1 Introduction

The Theil-Sen estimator (Theil, 1950; Sen, 1968) is arguably the most popular non-parametric and
robust alternative to the least squares estimator for estimating the slope in simple linear regression. A
variation on this estimator, Siegel’s repeated median slope (Siegel, 1982), was the first slope estimator
to attain the maximal breakdown value of 50 %, which roughly means that it can withstand up to
50% of outliers in the data. Since their introduction, these estimators have seen widespread use in a
variety of applications including signal extraction (Davies et al., 2004; Gather et al., 2006), filtering
(Fried et al., 2006; Bernholt et al., 2006; Fried et al., 2007; Gelper et al., 2010), computer vision Meer
et al. (1991), climatology (Zhang et al., 2000; Zhai et al., 01 Apr. 2005; Kosaka and Xie, 2013) and very
recently differentially private estimation (Alabi et al., 2022; Fu et al., 2019).

Several implementations of these estimators exist, most notably in the R packages deming (Th-
erneau, 2018), zyp (Bronaugh and for the Pacific Climate Impacts Consortium, 2019), mblm (Komsta,
2019), and RobustLinearReg (Hurtado, 2020), all publicly available on CRAN. Despite their popularity
and importance, all of these publicly available implementations are based on a brute-force computation
of the (repeated) median slope. Given a sample of n observations, this approach requires a compu-
tational cost of O(n2) as well as O(n2) space. This makes the currently available implementations
unsuitable for modern applications involving larger data sets as they are rather slow and potentially
use prohibitively large amounts of storage space.

Nevertheless, there exist several algorithms for the Theil-Sen and repeated median estimators
which run in quasilinear time and require only O(n) space. For the Theil-Sen estimator, Cole et al.
(1989), Katz and Sharir (1993), and Brönnimann and Chazelle (1998) proposed algorithms running in
O(n log(n)) deterministic time. A randomized algorithm requiring O(n log(n))-expected time was
proposed in Matoušek (1991), Dillencourt et al. (1992) and Shafer and Steiger (1993). For the repeated
median slope, Stein and Werman (1992), Matoušek et al. (1993) and Matoušek et al. (1998) proposed
algorithms running in O(n log(n)) and O(n log(n)2) (-expected) time. A potential explanation for
these algorithms not being available in R may be twofold. Firstly, they are all more involved than
brute-force computation of the median slopes and sample implementations in other programming
languages are scarce, if available at all. Secondly, most of them make efficient use of features not
(readily) available in R, such as pointers and in-place assignment, as well as complex data structures.

In this article we discuss the R package robslopes (Raymaekers, 2022) which contains implementa-
tions of the randomized algorithms by Matoušek (1991) and Matoušek et al. (1998) for the Theil-Sen
and repeated median estimators respectively. The original algorithms have been adjusted in order to
properly deal with potential duplicates in the data. We start by briefly reviewing the problem setting
and the estimators. Next, we present a rough outline of the key ideas underlying the algorithms and
a brief description of the usage of the functions in the package. We end with a benchmarking study
comparing the implementation with existing implementations in publicly available R packages and
concluding remarks.

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=robslopes
https://CRAN.R-project.org/package=deming
https://CRAN.R-project.org/package=zyp
https://CRAN.R-project.org/package=mblm
https://CRAN.R-project.org/package=RobustLinearReg
https://CRAN.R-project.org/package=robslopes

CONTRIBUTED RESEARCH ARTICLE 39

2 The Theil-Sen and repeated median estimators

The typical problem setting of slope estimation is that of the simple linear model. Suppose we have n
observations (xi, yi) which follow the model

yi = α + βxi + ei

where α and β are the (unknown) true intercept and slope parameters and ei represents the noise. The
most popular estimator for the regression coefficients is the ordinary least squares (OLS) estimator, i.e.
the (α̂, β̂) minimizing ∑n

i=1 (yi − α̂ − β̂xi)
2. The OLS estimator possesses several attractive properties,

including ease of computation and interpretation and optimal performance when the errors are i.i.d.
and follow a normal distribution. Despite these properties, it is well known that the OLS estimator is
very sensitive to outliers and can have a quickly deteriorating performance as the error term deviates
from normality. For these reasons, many alternatives have been suggested, of which the Theil-Sen
estimator and Siegel’s repeated median slope are two popular and intuitively attractive examples.

The Theil-Sen (TS) estimator (Theil, 1950; Sen, 1968) of β is defined as the median of the slopes of
all the lines determined by two different observations (xi, yi) and (xj, yj):

β̂TS(x, y) = medi ̸=j
yi − yj

xi − xj
,

where the median avoids i = j as the slope through one point is undefined and where x = x1, . . . , xn
and y = y1, . . . , yn. In case there are duplicate values in x1, . . . , xn, the proposal of Sen (1968) is to only
include the slopes which are constructed using two observations with different x-values and we adopt
this approach here.

The TS estimator has been analyzed extensively from a theoretical point of view. Sen (1968) showed
its asymptotic normality and equivariance properties. In particular, we have

1. scale equivariance: β̂TS(x, cy) = cβ̂TS(x, y) for all c ∈ R

2. regression equivariance β̂TS(x, y + ax) = β̂TS(x, y) + a for all a ∈ R,

but the estimator is not equivariant under affine transformations of both predictor and response
variables. Wang and Yu (2005) give precise conditions for the unbiasedness of the TS estimator and
(Wilcox, 1998) studied its behavior in the case of heteroscedastic errors. From a robust statistics per-
spective, it is known that the TS estimator is much more robust against outliers than the OLS estimator
(see Rousseeuw and Leroy (2005)). In particular, it has a bounded influence function (Hampel et al.,

1986) and its breakdown value is 1 −
√

1
2 ≈ 0.293%, where the latter can be roughly interpreted as the

maximum percentage of contaminated samples that the estimator can handle (see Donoho and Huber
(1983) for an exact definition). Finally, its maximum bias properties under contamination have been
studied by Adrover and Zamar (2004).

The search for a slope estimator with a breakdown value higher than 30% prompted Siegel to
propose the repeated median (RM) slope (Siegel, 1982). It is the first slope estimator attaining the
maximal breakdown value of 50%. The repeated median estimator of β is computed by first calculating
the median slope per observation xi, yielding n values, and then taking the median of these values:

β̂RM(x, y) = medi medj ̸=i
yj − yi

xj − xi
,

where now the inner median avoids i = j. We handle duplicate values in x1, . . . , xn by skipping them
in the computation of the inner median, in the same spirit as duplicate handling for the TS estimator.
The consistency, unbiasedness and efficiency of the RM estimator were discussed by Siegel (1982),
whereas the asymptotic normality was analyzed in Hossjer et al. (1994). The estimator was designed
to have a 50 % asymptotic breakdown value, and like the TS estimator, its influence function is also
bounded (Rousseeuw et al., 1993, 1995; Rousseeuw and Leroy, 2005). Finally, it possesses the same
equivariance properties as the TS estimator, i.e. it is both scale and regression equivariant but not
affine equivariant, and its maximum bias properties are also discussed in Adrover and Zamar (2004).

It is clear that both β̂TS and β̂RM can be computed by calculating all n(n−1)
2 pairwise slopes, and

selecting the median or repeated median of these slopes. Clearly, this brute-force approach has a
O(n2) computational cost, and the available implementations of this approach also require storing
the O(n2) slopes. In the next section, we describe the more efficient algorithms implemented in the
robslopes package.

While not the main focus of this article, it is worth mentioning that the intercept can be estimated
in several ways. We opt for the most straight-forward approach of taking the median of the residuals

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 40

as the estimator for α:
α̂ = medi

(
yi − β̂xi

)
,

where β̂ can be β̂TS or β̂RM.

3 Randomized algorithms for slope selection

The R-package robslopes contains an implementation of the randomized algorithm by Matoušek
(1991) for the Theil-Sen estimator and the algorithm of Matoušek et al. (1993, 1998) for the repeated
median estimator. Unlike in their original proposals, we haven taken into account the case of possible
duplicate values in the xi and adjusted the algorithms to work properly in that case as well. We now
briefly outline these algorithms without going too much into detail. For specific details and a complete
description we refer to the original references and our code.

Suppose we are given n data points (xi, yi) with i = 1, . . . , n and we are interested in the median
(or more generally, any order statistic) of the slopes formed by connecting two data points. The main
idea behind the algorithms is to consider each observed data point (xi, yi) in dual space by associating
it with the line

v = xiu − yi.

We will denote the coordinates in dual space with (u, v) in the following. It can be verified that the
u-coordinate of the intersection of two lines in dual space (also called “intersection abscissa” (IA))
is equal to the slope of the line passing through the two points in the original space. Therefore, the
problem of finding order statistics of slopes can be translated into the problem of finding order statistics
of intersection abscissas in dual space. To find these order statistics in dual space, the algorithms use
the following idea. Given an interval (ulow, uhigh] in dual space, the number of IAs in that interval can
be computed by counting the number of inversions in a certain permutation. For a permutation π
on 1, . . . , n, an inversion is a pair of elements (π(i), π(j)) for which i < j and π(i) > π(j). Figure
1 shows three lines in dual space and illustrates the connection between IAs and inversions which
works as follows. Suppose we have two lines associated with the points (xi, yi) and (xj, yj). The
v-coordinates of the intersection of these lines with ulow in dual space are given by xiulow − yi and
xjulow − yj respectively. Suppose without loss of generality that xiulow − yi < xjulow − yj. Now, if lines i
and j intersect in the interval (ulow, uhigh], we must have that the v-coordinate of the intersection of these
lines with uhigh have switched order: xiuhigh − yi > xjuhigh − yj. Therefore, there is a bijection between
the IAs in (ulow, uhigh] and the permutation obtained by going from the order of the intersections of the
lines with u = ulow to the order of the intersections with u = uhigh. Counting the number of inversions
in a permutation can be done in O(n log(n)) time using an adaptation of merge sort Knuth (1998), and
constructing the permutation itself has the same computational complexity.

ulow uhigh

1

2

3
1

2

3

Figure 1: Three lines in dual space, restricted to the interval (ulow, uhigh]. If two lines intersect in this
interval, the ordering of their values of the v-coordinate at ulow and uhigh must have turned around.
Therefore, the number of IAs in the interval (ulow, uhigh] is given by the number of inversions in the
permutation (3 1 2).

For the Theil-Sen estimator, we obtain n(n − 1) IAs in dual space, where parallel lines meet at
+∞ by convention. Suppose we want to find the k-th smallest IA (e.g., k could be ⌊(n(n − 1) + 1)/2⌋
for the lower median). The idea is to maintain a half-open interval (ulow, uhigh], which is initialized at
(−∞, ∞] and always contains the IA we are looking for. We also keep a count L and C of the total
number of IAs to the left and within the interval respectively. If the number of IAs in the interval
is of order O(n), we can enumerate them in O(n log(n)) time and select the desired element (we
call this “brute-force computation”). If there are more IAs left in the interval, we use a contraction

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 41

strategy which makes the interval (ulow, uhigh] progressively smaller while still containing the target
k-th smallest slope, until it is small enough for brute-force computation.

In order to contract the interval, we randomly sample a O(n) number of IAs. These are then used
to estimate a new interval (u′

low, u′
high] ⊂ (ulow, uhigh] which contains the target IA with high probability.

To check whether the contracted interval contains the target, we count the number of IAs in the
intervals (ulow, u′

low] and (u′
low, u′

high]. If the current count L added to the number of IAs in the former
interval exceeds k, we know that the target IA is in (ulow, u′

low]. If not, we check whether additionally
adding the number of IAs in (u′

low, u′
high] gives a total count exceeding k, in which case the target IA is in

(u′
low, u′

high]. If neither of those cases hold, we know the target IA is in (u′
high, uhigh]. After the contraction,

we update L and C and this process is repeated until C, the number of IAs in the current interval, is of
the order O(n). To execute this strategy, we need a method to randomly sample IAs. It turns out that
this can be achieved in O(n log(n)) time, again using an adaptation of merge sort. For the Theil-Sen
estimator there is an expected O(1) number of iterations required for convergence, leading to a total
expected complexity of O(n log(n)).

For the repeated median estimator, the algorithm is similar to the previously described algorithm
in that it also works with an interval-contraction strategy. In contrast with the previous algorithm
however, we now keep track of the lines for which the median IA falls within the interval, in addition
to the number of abscissas on the left and within the current interval for each individual line. In each
contraction step, we first sample a O(

√
n) number of lines for which we know that their median IA lies

within the current interval. For each of these lines, a O(
√

n) number of IAs are now sampled which
allow for the estimation of a new interval (u′

low, u′
high] ⊂ (ulow, uhigh] containing the target slope with

high probability. The interval (ulow, uhigh] can then be contracted by counting the number of IAs for each
line on the left and within (u′

low, u′
high]. As before, the algorithm switches to brute-force computation

once the number of IAs in (ulow, uhigh] is of the order O(n). For this algorithm, there is an expected
O(log(n)) number of contraction steps required, resulting in a total complexity of O(n log2(n)).

The original algorithms were only described for the case where the xi values are all distinct. In
case of duplicate values however, some of the slopes are not defined and the natural way of handling
this is by ignoring the undefined slopes and computing the median (or any other order statistic) on
the remaining slopes. Fortunately, we can incorporate this into our algorithms by realizing that these
duplicate xi values correspond with parallel lines in dual space. Using the convention that parallel
lines in dual space meet at +∞, the (repeated) median slope can be found by appropriately adjusting
the value of the order statistic of the slope we want to find. For the Theil-Sen estimator, this means
we need to find the order statistic corresponding with n(n−1)

2 − ∑n
i=1

di−1
2 values, where di denotes

the number of times the value xi occurs in the predictor variable. For the repeated median estimator,
we only have to adjust the inner median, but the adjustment is dependent on the individual line i.
More specifically, the order statistic for the inner median needs to be computed on n − di values. Note
that we can count the number of duplicates easily in O(n) time and so the overall complexity of the
algorithm is not affected by this change. There is one additional complication, namely that of duplicate
pairs (xi, yi). If such pairs are present, one should be careful with computing the permutation of
intersections in dual space given an interval (ulow, uhigh]. Obtaining such a permutation involves sorting
(and ranking) a vector of IAs. However, in case of duplicate pairs, this sorting needs to be done using
stable sort. If not, duplicate pairs may randomly produce inversions, yielding sampled IAs at ∞ even if
the current interval has uhigh < ∞. In the original algorithm, this scenario was not considered and thus
not explicitly accounted for. These changes have been incorporated in the implementation provided in
the robslopes package.

4 Implementation and usage

We briefly describe the implementation and usage of the functions in the robslopes package. The
package revolves around 2 main functions, the TheilSen function and the RepeatedMedian function,
both returning a list with the self-explanatory elements intercept and slope. Both functions start with
input checking and duplicate counting, which are done in R. The duplicate counts are then used to set
the correct target order statistics for the main part of the algorithm. This information is then passed
on to the randomized algorithms which are implemented in C++, making use of the rcpparmadillo
package (Eddelbuettel and François; Eddelbuettel and Sanderson, 2014).

The TheilSen function has the layout TheilSen(x,y,alpha = NULL,verbose = TRUE), where the
x and y arguments are the input vectors for the predictor and response variable respectively. The
verbose option allows for switching off the printing of the computation progress. Finally, the alpha
argument is a value between 0 and 1 which determines the order statistic corresponding with the
target slope. When alpha = NULL, the default, the upper median of the m slopes is computed, which
corresponds with the ⌊(m + 2)/2⌋-th order statistic. For any other value of 0 ≤alpha≤ 1, the function

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=rcpparmadillo

CONTRIBUTED RESEARCH ARTICLE 42

computes the [alpha m]-th order statistic of the slopes, where [·] is the rounding operator.

The RepeatedMedian function has the layout RepeatedMedian(x,y,alpha = NULL,beta = NULL,verbose
= TRUE), where the x, y and verbose arguments play the same role as for the TheilSen function. The
arguments alpha and beta determine the order statistics of the inner and outer “median”. When NULL,
the default, they again correspond to the upper median. If they contain values between zero and
one, the order statistics corresponding with the inner and outer “median” are given by [alpha m] and
[beta m] respectively.

For convenience, the TheilSen and RepeatedMedian functions have been wrapped in the user-
friendly functions robslope and robslope.fit. These mimic the structure of common regression
functions (e.g., lm and lm.fit). In particular, robslope takes the standard arguments formula, data,
subset, weights and na.action, in addition to the type argument selecting which type of slope to com-
pute, as well as the optional alpha, beta and verbose arguments of the TheilSen and RepeatedMedian
functions.

As an example we analyze the flights data of the nycflights13 package (Wickham, 2019). It contains
on-time data for all flights that departed in New York City (i.e. JFK, LGA or EWR airports) in 2013.
We consider the distance traveled in miles as the predictor variable, and take the air time in minutes as
the response. After removing all NA values, we end up with a data set of 327,346 observations. In
contrast to the previous example, this one is too large to compute the TS or RM slope with a brute-force
algorithm (on most computers). We now calculate the TS and RM slopes three times each, where we
change the inner order statistic to the first, second and third quartiles. With the exception of graphical
parameters, the code executed is shown below.

library("robslopes")
library("nycflights13")
data("flights")

ts.out.25 <- robslope(formula = air_time~distance, data = data, alpha = 0.25)
ts.out.50 <- robslope(formula = air_time~distance, data = data, alpha = 0.50)
ts.out.75 <- robslope(formula = air_time~distance, data = data, alpha = 0.75)
plot(data$distance, data$air_time)
abline(coef(ts.out.25), col = "red", lwd = 3)
abline(coef(ts.out.50), col = "green", lwd = 3)
abline(coef(ts.out.75), col = "blue", lwd = 3)

rm.out.25 <- robslope(formula = air_time~distance, data = data, beta = 0.25,
type = "RepeatedMedian")

rm.out.50 <- robslope(formula = air_time~distance, data = data, beta = 0.50,
type = "RepeatedMedian")

rm.out.75 <- robslope(formula = air_time~distance, data = data, beta = 0.75,
type = "RepeatedMedian")

plot(data$distance, data$air_time)
abline(coef(rm.out.25), col = "red", lwd = 3)
abline(coef(rm.out.50), col = "green", lwd = 3)
abline(coef(rm.out.75), col = "blue", lwd = 3)

The resulting figure is shown in Figure 2. In this example, the slopes calculated by the TS and RM
estimators are virtually identical due to the very limited number of outliers and the large number of
data points. Note that there are many duplicates in this data set, which are handled appropriately by
the proposed implementation.

5 Benchmarking study

We now benchmark the implemented algorithm against the existing implementations in the deming,
zyp, mblm, and RobustLinearReg packages. Note that the deming and zyp packages only contain the
TS estimator, the others contain both the TS and RM estimators. All simulations were done using the
R-package microbenchmark (Mersmann, 2019) and were run on an Intel® Core™ i7-10750H @2.60GHz
processor. The setup is as follows. For each value of n = {10, 102, 103, 104}, we have generated 100
samples (xi, yi) from the bivariate standard normal distribution. Afterward, each of the available
implementations was used to estimate the regression parameters and the execution time was measured
(in nanoseconds).

The following code snippets show the code used for benchmarking the TS and RM estimator for a
sample of size n = 103, the same code was used for the other sample sizes, with exception of n = 104,

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=nycflights13
https://CRAN.R-project.org/package=microbenchmark

CONTRIBUTED RESEARCH ARTICLE 43

0 1000 2000 3000 4000 5000

0
10

0
30

0
50

0
70

0

distance traveled (in miles)

ai
r

tim
e

(in
 m

in
ut

es
)

TS 25
TS 50
TS 75

0 1000 2000 3000 4000 5000

0
10

0
30

0
50

0
70

0

distance traveled (in miles)

ai
r

tim
e

(in
 m

in
ut

es
)

RM 25
RM 50
RM 75

Figure 2: The TS (left) and RM (right) slopes fitted on the flights data. The first, second and third
quartiles as the (inner) order statistic are shown in red, green and blue respectively. The slopes are
virtually identical for both estimators in this example, as there are not many outliers in the data. The
implemented algorithm appropriately deals with the many duplicate x-values in this data set.

in which case the implementation of the mblm package was left out due to its computational burden
(it takes several hours to compute it once).

n <- 10^3
mbm <- microbenchmark("deming" = deming::theilsen(y~x, data = data),

"zyp" = zyp::zyp.sen(y~x, dataframe = data),
"mblm" = mblm::mblm(y~x, dataframe = data, repeated = FALSE),
"RobustLinearReg" = RobustLinearReg::theil_sen_regression(y~x,
data = data),
"robslopes" = robslopes::TheilSen(x, y),
setup = {x = rnorm(n); y = rnorm(n);
data = as.data.frame(cbind(x, y))}, times = 100)

autoplot(mbm)

n <- 10^3
mbm <- microbenchmark("mblm" = mblm::mblm(y~x, dataframe = data, repeated = TRUE),

"RobustLinearReg" = RobustLinearReg::siegel_regression(y~x,
data = data),
"robslopes" = robslopes::RepeatedMedian(x, y),
setup = {x = rnorm(n); y = rnorm(n);
data = as.data.frame(cbind(x, y))}, times = 100)

autoplot(mbm)

Figure 3 shows the results for the Theil-Sen estimator. We see that for the smallest sample size,
n = 10, the absolute computation times are extremely low and while there are visible differences,
they are probably not of practical relevance. For n = 100, the robslopes package is roughly five times
faster than the fastest competitor, and the mblm implementation starts to run away from the other
competitors. For n = 103, the differences become much clearer. The robslopes implementation is now
between one and two orders of magnitude faster than the best competitor. Finally, for n = 104 the gap
widens further to a difference of over two orders of magnitude. Note that for n = 104, we have left out
the mblm package in the comparison as a single run takes several hours and the resulting plot would
hinder a clear comparison.

Figure 4 shows the results for the RM estimator. As for the TS estimator, the difference in
computation time is already visible for small sample sizes of n = 10 and n = 100, where the robslopes
implementation is roughly a factor 20 faster than the competition. However, the absolute computation
times for these sample sizes is by no means prohibitive for any of the implementations. Starting at
n = 1000 however, we start to see a larger difference, especially between the robslopes and mblm
implementations. The former is now roughly 800 times faster than the latter, and 60 times faster
than the RobustLinearReg implementation. For sample size n = 104, we did not include the mblm
implementation as it now takes roughly half an hour to compute, in contrast with 16 seconds for the
RobustLinearReg implementation and 0.034 seconds (on average) for the robslopes implementation.
Finally note that interestingly, the repeated median of the mblm package is much faster than the
Theil-Sen estimator of the same package. This is somewhat counter-intuitive, but turns out to be
caused by a much higher number of calls to the c() function (concatenate) in the implementation of
the TS estimator.

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 44

deming

zyp

mblm

RobustLinearReg

robslopes

1e+02 1e+03 1e+04
Time [microseconds]

deming

zyp

mblm

RobustLinearReg

robslopes

1e+02 1e+03 1e+04 1e+05
Time [microseconds]

deming

zyp

mblm

RobustLinearReg

robslopes

1e+00 1e+01 1e+02 1e+03 1e+04 1e+05 1e+06
Time [milliseconds]

deming

zyp

RobustLinearReg

robslopes

1e+01 1e+02 1e+03 1e+04 1e+05
Time [milliseconds]

Figure 3: Computation times of the different implementations of the Theil-Sen slope estimator for the
sample size n equal to 10, 102, 103 and 104 in the top left, top right, bottom left and bottom right panels
respectively. The robslopes implementation is consistently faster than the competition by orders
of magnitude. The difference scales close to linearly in n, gaining almost one order of magnitude
advantage for a similar increase in the sample size, which is what we expect based on the theoretical
computational complexities. The mblm estimator was left out for sample size n = 104 due to it
requiring several hours to compute once.

As explained before, the brute-force implementations of the (repeated) median slope require O(n2)
storage as they typically compute all slopes and store them in a n × n matrix. Therefore, while a
sample size of n = 104 is by no means extremely large, we cannot go much higher than that. A sample
size of n = 105 for example, would require a RAM memory of about 75GB, which is rather uncommon
on most computers and laptops. The implementations in the robslopes package however, require
only O(n) storage space, and we can thus easily compute the estimators on much larger samples. To
illustrate this, we have continued the benchmarking study with only the robslopes implementation,
but this time for the sample sizes n = 105, 106 and 107. This was done using the following code snippet,
where the saving of the results in the for loop is omitted:

for (n in 10^(5:7)) {
mbm <- microbenchmark("robslopes" = robslopes::TheilSen(x, y),

setup = {x = rnorm(n); y = rnorm(n);
data = as.data.frame(cbind(x, y))}, times = 100)

}

for (n in 10^(5:7)) {
mbm <- microbenchmark("robslopes" = robslopes::RepeatedMedian(x, y),

setup = {x = rnorm(n); y = rnorm(n);
data = as.data.frame(cbind(x, y))}, times = 100)

}

Figure 5 shows the mean computation times of the TS estimator and the RM estimator for sample
sizes up to n = 107. As an example, for a sample size of n = 106, the TS estimator requires roughly
4 seconds of computation time, whereas the RM estimator requires roughly 6 seconds. The blue
shade on the figure indicates the maximum and minimum computation time over the 100 replications,
showing that the computation times have a fairly small variance around their mean. The red line

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 45

mblm

RobustLinearReg

robslopes

1e+02 1e+03 1e+04
Time [microseconds]

mblm

RobustLinearReg

robslopes

1e+02 1e+03 1e+04 1e+05
Time [microseconds]

mblm

RobustLinearReg

robslopes

1e+00 1e+01 1e+02 1e+03 1e+04
Time [milliseconds]

RobustLinearReg

robslopes

1e+01 1e+02 1e+03 1e+04 1e+05
Time [milliseconds]

Figure 4: Computation times of the different implementations of the repeated median slope estimator
for the sample size n equal to 10, 102, 103 and 104 in the top left, top right, bottom left and bottom
right panels respectively. The robslopes implementation is consistently faster than the competition by
orders of magnitude. The difference scales close to linearly in n, which is what we expect based on the
theoretical computational complexities. Note that the mblm estimator was left out for sample size
n = 104 due to it requiring more than 106 milliseconds (approx. 30 minutes) to compute.

shows a (robustly) estimated fit of the theoretical computation times to the observed ones (i.e. of
the functions f (n) = βn log(n) and f (n) = βn log2(n) for a β ∈ R), indicating that for n ≥ 103, the
observed computational cost grows according to the theoretical complexity.

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 46

1e−05

1e−04

1e−03

1e−02

1e−01

1e+00

1e+01

1e+02

1e+01 1e+02 1e+03 1e+04 1e+05 1e+06 1e+07
n

tim
e

1e−05

1e−04

1e−03

1e−02

1e−01

1e+00

1e+01

1e+02

1e+01 1e+02 1e+03 1e+04 1e+05 1e+06 1e+07
n

tim
e

Figure 5: Mean computation times of the Theil-Sen (left) and repeated median (right) estimators as
implemented in robslopes for increasing sample size n. The red line is an estimate of the ∼ n log(n)
(for TS) and ∼ n log2(n) (for RM) expected computational cost. The blue shade indicates the minimum
and maximum computation times. Other than the deviations for very small n which are due to
computational overhead, the computational cost scales precisely as the theory predicts. Furthermore,
the variance of the computation times around their mean is negligible.

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 47

6 Summary

We have introduced the robslopes package which contains fast implementations of the popular Theil-
Sen and repeated median slope estimators. The implemented algorithms are randomized algorithms
running in quasilinear expected time and use linear space. In contrast, the currently available im-
plementations in different R packages on CRAN require quadratic time and space. A benchmark
study comparing the common implementations of the slope estimator with the newly introduced one
illustrates speedups up to a factor 103 compared with the next best alternative implementation for
common sample sizes. Additionally, due to the linear space requirements of the algorithms, the slope
estimators can be computed on much larger sample sizes than the current maximum. Finally, the
original algorithms were adjusted to properly deal with potential duplicates in the predictor variable.

The fast implementation of these popular slope estimators unlocks new possibilities for their use
in modern applications where the slope has to be estimated repeatedly and on a large number of
data points. Evidently, inferential procedures based on bootstrapping are also highly facilitated by
these fast algorithms. Finally, the underlying C++ implementation may serve as a useful reference for
implementations of these algorithms in other programming languages, which also seem to be scarce.

Bibliography

J. Adrover and R. H. Zamar. Bias robustness of three median-based regression estimates. Journal
of statistical planning and inference, 122(1-2):203–227, 2004. URL https://doi.org/10.1016/j.jspi.
2003.06.001. [p39]

D. Alabi, A. McMillan, J. Sarathy, A. Smith, and S. Vadhan. Differentially private simple linear
regression. Proceedings on Privacy Enhancing Technologies (PoPETs), 2022(2):184–204, 2022. URL
https://doi.org/10.2478/popets-2022-0041. [p38]

T. Bernholt, R. Fried, U. Gather, and I. Wegener. Modified repeated median filters. Statistics and
Computing, 16(2):177–192, 2006. URL https://doi.org/10.1007/s11222-006-8449-1. [p38]

D. Bronaugh and A. W. for the Pacific Climate Impacts Consortium. zyp: Zhang + Yue-Pilon Trends
Package, 2019. URL https://CRAN.R-project.org/package=zyp. R package version 0.10-1.1. [p38]

H. Brönnimann and B. Chazelle. Optimal slope selection via cuttings. Computational Geometry, 10(1):
23–29, 1998. URL https://doi.org/10.1016/S0925-7721(97)00025-4. [p38]

R. Cole, J. S. Salowe, W. L. Steiger, and E. Szemerédi. An optimal-time algorithm for slope selection.
SIAM Journal on Computing, 18(4):792–810, 1989. URL https://doi.org/10.1137/0218055. [p38]

P. L. Davies, R. Fried, and U. Gather. Robust signal extraction for on-line monitoring data. Journal
of Statistical Planning and Inference, 122(1-2):65–78, 2004. URL https://doi.org/10.1016/j.jspi.
2003.06.012. [p38]

M. B. Dillencourt, D. M. Mount, and N. S. Netanyahu. A randomized algorithm for slope selection.
International Journal of Computational Geometry & Applications, 2(01):1–27, 1992. URL https://doi.
org/10.1142/S0218195992000020. [p38]

D. Donoho and P. Huber. The notion of breakdown point. In P. Bickel, K. Doksum, and J. Hodges,
editors, A Festschrift for Erich Lehmann, pages 157–184, Belmont, 1983. Wadsworth. [p39]

D. Eddelbuettel and R. François. Rcpp: Seamless r and c++ integration. URL https://doi.org/10.
18637/jss.v040.i08. [p41]

D. Eddelbuettel and C. Sanderson. Rcpparmadillo: Accelerating r with high-performance c++ linear
algebra. Computational Statistics and Data Analysis, 71:1054–1063, March 2014. URL http://dx.doi.
org/10.1016/j.csda.2013.02.005. [p41]

R. Fried, T. Bernholt, and U. Gather. Repeated median and hybrid filters. Computational statistics &
data analysis, 50(9):2313–2338, 2006. URL https://doi.org/10.1016/j.csda.2004.12.013. [p38]

R. Fried, J. Einbeck, and U. Gather. Weighted repeated median smoothing and filtering. Journal
of the American Statistical Association, 102(480):1300–1308, 2007. URL https://doi.org/10.1198/
016214507000001166. [p38]

S. Fu, C. Xie, B. Li, and Q. Chen. Attack-resistant federated learning with residual-based reweighting,
2019. URL https://doi.org/10.48550/ARXIV.1912.11464. [p38]

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

https://doi.org/10.1016/j.jspi.2003.06.001
https://doi.org/10.1016/j.jspi.2003.06.001
https://doi.org/10.2478/popets-2022-0041
https://doi.org/10.1007/s11222-006-8449-1
https://CRAN.R-project.org/package=zyp
https://doi.org/10.1016/S0925-7721(97)00025-4
https://doi.org/10.1137/0218055
https://doi.org/10.1016/j.jspi.2003.06.012
https://doi.org/10.1016/j.jspi.2003.06.012
https://doi.org/10.1142/S0218195992000020
https://doi.org/10.1142/S0218195992000020
https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.18637/jss.v040.i08
http://dx.doi.org/10.1016/j.csda.2013.02.005
http://dx.doi.org/10.1016/j.csda.2013.02.005
https://doi.org/10.1016/j.csda.2004.12.013
https://doi.org/10.1198/016214507000001166
https://doi.org/10.1198/016214507000001166
https://doi.org/10.48550/ARXIV.1912.11464

CONTRIBUTED RESEARCH ARTICLE 48

U. Gather, K. Schettlinger, and R. Fried. Online signal extraction by robust linear regression. Computa-
tional Statistics, 21(1):33–51, 2006. URL https://doi.org/10.1007/s00180-006-0249-8. [p38]

S. Gelper, R. Fried, and C. Croux. Robust forecasting with exponential and holt–winters smoothing.
Journal of forecasting, 29(3):285–300, 2010. URL https://doi.org/10.1002/for.1125. [p38]

F. Hampel, E. Ronchetti, P. Rousseeuw, and W. Stahel. Robust Statistics: The Approach Based on Influence
Functions. Wiley, New York, 1986. [p39]

O. Hossjer, P. J. Rousseeuw, and C. Croux. Asymptotics of the repeated median slope estimator. The
Annals of Statistics, pages 1478–1501, 1994. URL https://doi.org/10.1214/aos/1176325638. [p39]

S. I. Hurtado. RobustLinearReg: Robust Linear Regressions, 2020. URL https://CRAN.R-project.org/
package=RobustLinearReg. R package version 1.2.0. [p38]

M. J. Katz and M. Sharir. Optimal slope selection via expanders. Information Processing Letters, 47(3):
115–122, 1993. URL https://doi.org/10.1016/0020-0190(93)90234-Z. [p38]

D. E. Knuth. The art of computer programming: Volume 3: Sorting and Searching. Addison-Wesley
Professional, 1998. [p40]

L. Komsta. mblm: Median-Based Linear Models, 2019. URL https://CRAN.R-project.org/package=mblm.
R package version 0.12.1. [p38]

Y. Kosaka and S.-P. Xie. Recent global-warming hiatus tied to equatorial pacific surface cooling. Nature,
501(7467):403–407, 2013. URL https://doi.org/10.1038/nature12534. [p38]

J. Matoušek. Randomized optimal algorithm for slope selection. Information processing letters, 39(4):
183–187, 1991. URL https://doi.org/10.1016/0020-0190(91)90177-J. [p38, 40]

J. Matoušek, D. M. Mount, and N. S. Netanyahu. Efficient randomized algorithms for the repeated
median line estimator. In Proceedings of the Fourth ACM-SIAM Annual Symposium on Discrete
Algorithms, pages 74–82, 1993. [p38, 40]

J. Matoušek, D. M. Mount, and N. S. Netanyahu. Efficient randomized algorithms for the repeated me-
dian line estimator. Algorithmica, 20(2):136–150, 1998. URL https://doi.org/10.1007/PL00009190.
[p38, 40]

P. Meer, D. Mintz, A. Rosenfeld, and D. Y. Kim. Robust regression methods for computer vision: A
review. International journal of computer vision, 6(1):59–70, 1991. URL https://doi.org/10.1007/
BF00127126. [p38]

O. Mersmann. microbenchmark: Accurate Timing Functions, 2019. URL https://CRAN.R-project.org/
package=microbenchmark. R package version 1.4-7. [p42]

J. Raymaekers. robslopes: Fast Algorithms for Robust Slopes, 2022. R package version 1.1.2. [p38]

P. Rousseeuw, C. Croux, and O. Hössjer. Sensitivity functions and numerical analysis of the repeated
median slope. Computational Statistics, 10(1):71–90, 1995. [p39]

P. J. Rousseeuw and A. M. Leroy. Robust regression and outlier detection, volume 589. John wiley & sons,
2005. [p39]

P. J. Rousseeuw, N. S. Netanyahu, and D. M. Mount. New statistical and computational results on the
repeated median line. In S. Morgenthaler, E. Ronchetti, and W. A. Stahel, editors, New Directions in
Statistical Data Analysis and Robustnes, pages 177–194. Birkh¨auser-Verlag, Basel, 1993. [p39]

P. K. Sen. Estimates of the regression coefficient based on kendall’s tau. Journal of the American statisti-
cal association, 63(324):1379–1389, 1968. URL https://doi.org/10.1080/01621459.1968.10480934.
[p38, 39]

L. Shafer and W. Steiger. Randomizing optimal geometric algorithms. In CCCG, 1993. [p38]

A. F. Siegel. Robust regression using repeated medians. Biometrika, 69(1):242–244, 1982. URL https:
//doi.org/10.2307/2335877. [p38, 39]

A. Stein and M. Werman. Finding the repeated median regression line. In SODA ’92, 1992. [p38]

H. Theil. A rank-invariant method of linear and polynomial regression analysis. i, ii, iii. Nederl. Akad.
Wetensch., Proc., 53:386––392, 521–525, 1397–141, 1950. [p38, 39]

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

https://doi.org/10.1007/s00180-006-0249-8
https://doi.org/10.1002/for.1125
https://doi.org/10.1214/aos/1176325638
https://CRAN.R-project.org/package=RobustLinearReg
https://CRAN.R-project.org/package=RobustLinearReg
https://doi.org/10.1016/0020-0190(93)90234-Z
https://CRAN.R-project.org/package=mblm
https://doi.org/10.1038/nature12534
https://doi.org/10.1016/0020-0190(91)90177-J
https://doi.org/10.1007/PL00009190
https://doi.org/10.1007/BF00127126
https://doi.org/10.1007/BF00127126
https://CRAN.R-project.org/package=microbenchmark
https://CRAN.R-project.org/package=microbenchmark
https://doi.org/10.1080/01621459.1968.10480934
https://doi.org/10.2307/2335877
https://doi.org/10.2307/2335877

CONTRIBUTED RESEARCH ARTICLE 49

T. Therneau. deming: Deming, Theil-Sen, Passing-Bablock and Total Least Squares Regression, 2018. URL
https://CRAN.R-project.org/package=deming. R package version 1.4. [p38]

X. Wang and Q. Yu. Unbiasedness of the theil–sen estimator. Journal of Nonparametric Statistics, 17(6):685–
695, 2005. doi: 10.1080/10485250500039452. URL https://doi.org/10.1080/10485250500039452.
[p39]

H. Wickham. nycflights13: Flights that Departed NYC in 2013, 2019. URL https://CRAN.R-project.
org/package=nycflights13. R package version 1.0.1. [p42]

R. Wilcox. A note on the theil-sen regression estimator when the regressor is random and the
error term is heteroscedastic. Biometrical Journal: Journal of Mathematical Methods in Biosciences,
40(3):261–268, 1998. URL https://doi.org/10.1002/(SICI)1521-4036(199807)40:3<261::AID-
BIMJ261>3.0.CO;2-V. [p39]

P. Zhai, X. Zhang, H. Wan, and X. Pan. Trends in total precipitation and frequency of daily precipitation
extremes over china. Journal of Climate, 18(7):1096 – 1108, 01 Apr. 2005. doi: 10.1175/JCLI-3318.1.
URL https://doi.org/10.1175/JCLI-3318.1. [p38]

X. Zhang, L. A. Vincent, W. Hogg, and A. Niitsoo. Temperature and precipitation trends in canada
during the 20th century. Atmosphere-ocean, 38(3):395–429, 2000. URL https://doi.org/10.1080/
07055900.2000.9649654. [p38]

Jakob Raymaekers
Maastricht University and KU Leuven
Maastricht University, Department of Quantitative Economics
6200 MD Maastricht
The Netherlands
j.raymaekers@maastrichtuniversity.nl
also
KU Leuven, Department of Mathematics
3001 Leuven
Belgium
jakob.raymaekers@kuleuven.be

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=deming
https://doi.org/10.1080/10485250500039452
https://CRAN.R-project.org/package=nycflights13
https://CRAN.R-project.org/package=nycflights13
https://doi.org/10.1002/(SICI)1521-4036(199807)40:3<261::AID-BIMJ261>3.0.CO;2-V
https://doi.org/10.1002/(SICI)1521-4036(199807)40:3<261::AID-BIMJ261>3.0.CO;2-V
https://doi.org/10.1175/JCLI-3318.1
https://doi.org/10.1080/07055900.2000.9649654
https://doi.org/10.1080/07055900.2000.9649654
mailto:j.raymaekers@maastrichtuniversity.nl
mailto:jakob.raymaekers@kuleuven.be

	robslopes: Efficient Computation of the (Repeated) Median Slope
	Introduction
	The Theil-Sen and repeated median estimators
	Randomized algorithms for slope selection
	Implementation and usage
	Benchmarking study
	Summary

