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ABSTRACT
The usual Minimum Covariance Determinant (MCD) estimator of a covariance matrix is robust against
casewise outliers. These are cases (that is, rows of the data matrix) that behave differently from the majority of
cases, raising suspicion that they might belong to a different population. On the other hand, cellwise outliers
are individual cells in the data matrix. When a row contains one or more outlying cells, the other cells in the
same row still contain useful information that we wish to preserve. We propose a cellwise robust version of
the MCD method, called cellMCD. Its main building blocks are observed likelihood and a penalty term on the
number of flagged cellwise outliers. It possesses good breakdown properties. We construct a fast algorithm
for cellMCD based on concentration steps (C-steps) that always lower the objective. The method performs
well in simulations with cellwise outliers, and has high finite-sample efficiency on clean data. It is illustrated
on real data with visualizations of the results. Supplementary materials for this article are available online.
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1. Motivation

Any practicing statistician or data scientist knows that real
datasets often contain outliers. One definition of outliers says
that they are cases that do not obey the fit suggested by the
majority of the data, which raises suspicion that they may have
been generated by a different mechanism. Since cases typically
correspond to rows of the data matrix, they are sometimes called
rowwise outliers. They may be the result of gross errors, but
they can also be nuggets of valuable information. In either case,
it is important to find them. In computer science this is called
anomaly detection, and in some areas it is known as excep-
tion mining. In statistics several approaches were tried, such as
testing for outliers and the computation of outlier diagnostics.
In our experience the approach working best is that of robust
statistics, which aims to fit the majority of the data first, and then
flags outliers by their large deviation from that fit.

In this article we focus on single-class multivariate numerical
data without a response variable (although the results are rele-
vant for classification and regression too). The goal is to robustly
estimate the central location of the point cloud as well as its
covariance matrix, and at the same time flag the outliers that may
be present. The underlying model is that the data come from
a multivariate Gaussian distribution, after which some data has
been replaced by outliers that can be anywhere.

The Minimum Covariance Determinant (MCD) estimator
introduced by Rousseeuw (1984, 1985) is highly robust to case-
wise outliers. Its definition is quite intuitive. Take an integer
h that is at least half the sample size n. We then look for the
subset containing h cases such that the determinant of its usual
covariance matrix is as small as possible. The resulting robust

CONTACT Peter J. Rousseeuw peter@rousseeuw.net Section of Statistics and Data Science, University of Leuven, Leuven, Belgium.
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location estimate is then the mean of that subset, and the robust
covariance matrix is its covariance matrix multiplied by a con-
sistency factor. One can show that the estimates are not overly
affected when there are fewer than n − h outlying cases. The
MCD became computationally feasible with the algorithm of
Rousseeuw and Van Driessen (1999), followed by even faster
algorithms by Hubert, Rousseeuw, and Verdonck (2012) and
De Ketelaere et al. (2020). Copt and Victoria-Feser (2004) com-
puted the MCD for incomplete data. The MCD has also been
generalized to high dimensions (Boudt et al. 2020), and to non-
elliptical distributions using kernels (Schreurs et al. 2021). For a
survey on the MCD and its applications see Hubert, Debruyne,
and Rousseeuw (2018). The MCD is available in the procedure
ROBUSTREG in SAS, in SAS/IML, in Matlab’s PLS Toolbox, and
in the R packages robustbase (Maechler et al. 2022) and rrcov
(Todorov 2012) on CRAN. In Python one can use MinCovDet
in scikit-learn (Pedregosa et al. 2011).

In recent times a different outlier paradigm has gained promi-
nence, that of cellwise outliers, first published by Alqallaf et al.
(2009). It assumes that the data were generated from a certain
distributional model, after which some individual cells (entries)
were replaced by other values. The difference between the case-
wise and the cellwise paradigm is illustrated in Figure 1. In the
left panel the outlying cases are shown as black rows. In the
panel on the right the cellwise outliers correspond to fewer black
squares in total, but together they contaminate over half of the
cases, so the existing methods for casewise outliers may fail.

In reality we do not know in advance which cells in the
right panel of Figure 1 are outlying (black), unlike the simpler
problem of incomplete data where we do know which cells are
missing. When the variables have substantial correlations, the

© 2023 The Author(s). Published with license by Taylor & Francis Group, LLC.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by
the author(s) or with their consent.

https://doi.org/10.1080/01621459.2023.2267777
https://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2023.2267777&domain=pdf&date_stamp=2023-11-17
http://orcid.org/0000-0002-3807-5353
mailto:peter@rousseeuw.net
http://www.tandfonline.com/r/JASA
http://creativecommons.org/licenses/by/4.0/


2 J. RAYMAEKERS AND P. J. ROUSSEEUW

Figure 1. The casewise (left) and cellwise (right) outlier paradigms. (Black means outlying.)

cellwise outliers need not be marginally outlying, and then it
can be quite hard to detect them. Van Aelst, Vandervieren, and
Willems (2011) proposed one of the first detection methods.
Rousseeuw and Van den Bossche (2018) predict the values of
all cells and flag the cells that differ much from their prediction.

There has been some work on estimating the underlying
covariance matrix in the presence of cellwise outliers. One
approach is to compute robust covariances between each pair
of variables, and to assemble them in a matrix. To estimate these
pairwise covariances, Öllerer and Croux (2015) and Croux and
Öllerer (2016) use rank correlations. Tarr, Muller, and Weber
(2016) instead use the robust pairwise correlation estimator
of Gnanadesikan and Kettenring (1972) in combination with
the robust scale estimator Qn of Rousseeuw and Croux (1993).
As the resulting matrix is not necessarily positive semidefinite
(PSD), they then compute the nearest PSD matrix by the method
of Higham (2002). Raymaekers and Rousseeuw (2021a) obtain a
PSD covariance matrix by transforming (“wrapping”) the origi-
nal data variables.

Many cellwise robust methods were developed for settings
such as principal components (Hubert, Rousseeuw, and Van den
Bossche 2019), discriminant analysis (Aerts and Wilms 2017),
clustering (García-Escudero et al. 2021), graphical models
(Katayama, Fujisawa, and Drton 2018), low-rank approximation
(Maronna and Yohai 2008), regression (Öllerer, Alfons, and
Croux 2016; Filzmoser et al. 2020), and variable selection (Su,
Tarr, and Muller 2021). Also, isolated outliers in functional data
(Hubert, Rousseeuw, and Segaert 2015) can be seen as cellwise
outliers.

In the next section we introduce the cellwise MCD estimator.
It is the first method with a single objective that combines
detection and estimation, unlike some existing methods which
do detection and estimation separately. Because of this cellMCD
has provable cellwise breakdown properties, see Section 3. There

we also derive its consistency. Section 4 describes its algorithm,
and proves that it converges. It is faster than the earlier methods.
Some illustrations on real data are shown in Section 5. The
performance of the method is studied by simulation in Section 6,
indicating that it is very robust against adversarial contamina-
tion. Section 7 concludes with a discussion.

2. A Cellwise MCD

We first note that the casewise MCD can be reformulated in
terms of likelihood. The likelihood of a d-variate Gaussian dis-
tribution is

f (x, μ, �) = 1
(2π)d/2|�|1/2 e− MD2(x, μ, �)/2 (1)

where μ is a column vector, � is a positive definite
matrix, and the Mahalanobis distance is MD(x, μ, �) =√

(x − μ)��−1(x − μ). For a sample x1, . . . , xn we put
L(xi, μ, �) := −2 ln(f (xi, μ, �)) so the maximum likelihood
estimator (MLE) of (μ, �) minimizes

n∑
i=1

L(xi, μ, �) =
n∑

i=1

(
ln |�| + d ln(2π) + MD2(xi, μ, �)

)
.

(2)
Let us now look for a subset H ⊂ {1, . . ., n} with h elements
which minimizes (2) where the sum is only over i in H. We can
also write this with weights wi that are 0 or 1 in the objective∑n

i=1 wiL(xi, μ, �), so we minimize
n∑

i=1
wi

(
ln |�| + d ln(2π) + MD2(xi, μ, �)

)
under the constraint that

n∑
i=1

wi = h .
(3)
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For the minimizing set of weights wi we know from maximum
likelihood that μ̂ is the mean of the xi in H, so it is the weighted
mean of all xi , and similarly

̂� = 1
h

n∑
i=1

wi(xi − μ̂)(xi − μ̂)� . (4)

But then the third term of (3) becomes
n∑

i=1
wi(xi − μ̂)�̂�

−1
(xi − μ̂)

=
n∑

i=1
trace

(
wi(xi − μ̂)(xi − μ̂)�̂�

−1) =

trace

( n∑
i=1

wi(xi − μ̂)(xi − μ̂)�̂�
−1

)
= trace

(
ĥ�̂�

−1) = hd

which is constant, and so is the second term. Therefore, mini-
mizing (3) is equivalent to minimizing the determinant of (4),
which is the definition of the casewise MCD.

In the context of incomplete data, Dempster, Laird, and Rubin
(1977) and others defined the observed likelihood. Let us denote
the missingness pattern of the n × d data matrix X by the
n × d matrix W with entries wij that are 0 for missing xij and
1 otherwise. Its rows wi take the place of the scalar weights wi in
(3). For the Gaussian model the observed likelihood of the ith
observation (Little and Rubin 2020) is given by

f (x(wi)
i , μ(wi), �(wi))

:= 1
(2π)d(wi)/2|�(wi)|1/2

e− MD2(xi, wi, μ, �)/2 (5)

in which

MD(xi, wi, μ, �):=
√

(x(wi)
i −μ(wi))�(�(wi))−1(x(wi)

i −μ(wi))

(6)
is called the partial Mahalanobis distance by Danilov, Yohai, and
Zamar (2012). Here x(wi)

i is the vector with only the entries
for which wij = 1, and similarly for μ(wi). The matrix �(wi)

is the submatrix of � containing only the rows and columns
of the variables j with wij = 1. Finally, d(wi) is the dimen-
sion of x(wi)

i , that is the number of non-missing entries of
xi . By convention, a case xi consisting exclusively of NA’s has
d(wi) = 0, MD(xi, wi, μ, �) = 0 and |�(wi)| = 1. Putting
L(xi, wi, μ, �) := −2 ln(f (xi, wi, μ, �)) we see that maximizing
the observed likelihood of the entire dataset comes down to
minimizing

n∑
i=1

L(xi, wi, μ, �) =
n∑

i=1

(
ln |�(wi)| + d(wi) ln(2π)

+ MD2(xi, wi, μ, �)
)
. (7)

This maximum likelihood estimate of (μ, �) is typically com-
puted by the EM algorithm (Dempster, Laird, and Rubin 1977).

When constructing a cellwise MCD, the matrix W now
describes which cells are flagged: a flagged cell xij gets wij =
0. The notations x(wi)

i , d(wi), μ(wi), and �(wi) are interpreted

analogously. The matrix W is not given in advance, but will
be obtained through the estimation procedure. Now h can no
longer apply to the number of unflagged cases. Instead, we
apply it to the number of unflagged cells per column. We could
minimize

n∑
i=1

(
ln |�(wi)| + d(wi) ln(2π) + MD2(xi, wi, μ, �)

)
under the constraints λd(�) � a and

||W .j||0 � h for all j = 1, . . . , d

(8)

over (μ, �, W). The first constraint says that the smallest eigen-
value of � is at least as large as a number a > 0, where the
eigenvalues of � are denoted as λ1(�) � · · · � λd(�). This
ensures that � is nonsingular, which is required to compute
Mahalanobis distances. In the second constraint, ||W .j||0 is the
number of nonzero entries in the jth column of W. Note that we
should not choose h too low. Whereas for the casewise MCD we
can take h as low as 0.5n, that would be ill-advised here because
it could happen that two variables j and k do not overlap in the
sense that wijwik = 0 for all i, making it impossible to estimate
their covariance. We will impose that h � 0.75n throughout.

However, minimizing (8) typically treats too many cells as
outlying. This is because a value of h that is suitable for one
variable may be too low for another, and we do not know ahead
of time which variables have many outlying cells and which
have few or none. To avoid flagging too many cells, we add a
penalty counting the number of flagged cells in each column.
The objective function of the cellwise MCD (cellMCD) then
becomes

n∑
i=1

(
ln |�(wi)| + d(wi) ln(2π) + MD2(xi, wi, μ, �)

)
+

d∑
j=1

qj||1d − W .j||0

under the constraints λd(�) � a and
||W .j||0 � h for all j = 1, . . . , d .

(9)

The notation ||1d − W .j||0 stands for the number of nonzero
elements in this vector, so the number of zero weights in column
j of W, that is, the number of flagged cells in column j of X. The
constants qj for j = 1, . . . , d are computed (in Section 4) from
the desired percentage of flagged cells in the absence of contam-
ination. At the same time we keep the robustness constraint that
||W .j||0 � h. Combining a penalty term with a ||.||0 constraint is
not new, see the work of She, Wang, and Shen (2022) on casewise
robust regression. In our context, the constraint ||W .j||0 � h will
ensure the robustness of the estimator (through Proposition 2),
whereas the penalty term

∑
j qj||1d−W .j||0 discourages flagging

too many cells, which improves the estimation accuracy at clean
data as seen in simulations.

The cellMCD method is the first cellwise robust technique
that combines the fitting of the parameters and the flagging
of outlying cells (W) in one objective function. The constraint
||W .j||0 � h for j = 1, . . . , d says that we require at least
h unflagged cells in each column. In order to avoid a singular
covariance matrix, we obviously need h > d. Combining these
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inequalities we obtain n > 4d/3 . But the curse of dimensionality
implies that many spurious structures can be found in increasing
dimensions, so we want a more comfortable ratio of cases per
dimension. For the casewise MCD the rule of thumb is n/d � 5
(Rousseeuw and van Zomeren 1990), and we will require that
here too.

The cellMCD method defined by (9) is equivariant for per-
muting the cases, for shifting the data, and for multiplying the
variables by nonzero constants. But unlike the casewise MCD
it is not equivariant under general nonsingular linear transfor-
mations, or even orthogonal transformations. This is because
cells are intimately tied to the coordinate system, and an orthog-
onal transformation changes the cells. This is an important
difference between the casewise and cellwise approaches. For
instance, consider the standard multivariate Gaussian model in
dimension d = 4 with the suspicious point (10, 0, 0, 0). By an
orthogonal transformation of the data, this point can be moved
to (

√
50,

√
50, 0, 0) or to (5, 5, 5, 5). The casewise MCD is equiv-

ariant to such transformations and will still flag the same case.
But in the cellwise paradigm (10, 0, 0, 0) has one outlying cell,
(
√

50,
√

50, 0, 0) has two, and (5, 5, 5, 5) has four, so cellMCD
will react differently, as it should.

3. Theoretical Properties

Alqallaf et al. (2009) define the cellwise breakdown value
of a location estimator. Here we will focus on finite-sample
breakdown values in the sense of Donoho and Huber (1983)
and Lopuhaä and Rousseeuw (1991). The finite-sample cellwise
breakdown value of an estimator μ̂ at a dataset X is given by the
smallest fraction of cells per column that need to be replaced to
carry the estimate outside all bounds. Formally, let X be a dataset
of size n, and denote by Xm any corrupted sample obtained by
replacing at most m cells in each column of X by arbitrary values.
Then the finite-sample cellwise breakdown value of a location
estimator μ̂ at X is given by

ε∗
n(μ̂, X) = min

{
m
n

: sup
Xm

∣∣∣∣μ̂(Xm) − μ̂(X)
∣∣∣∣ = ∞

}
. (10)

Analogously to the casewise setting, we can also define the
cellwise explosion breakdown value of a covariance estimator
̂� as

ε+
n (̂�, X) = min

{
m
n

: sup
Xm

λ1(̂�) = ∞
}

. (11)

Moreover, we define the cellwise implosion breakdown value of
̂� as

ε−
n (̂�, X) = min

{
m
n

: inf
Xm

λd(̂�) = 0
}

. (12)

The definitions of the corresponding casewise breakdown
values are very similar, the only difference being that the cor-
rupted samples, let us call them ˜Xm

, are obtained by replacing
at most m rows of X by arbitrary rows. If we denote the case-
wise breakdown values by δ∗

n , δ+
n and δ−

n we can formulate the
following simple but useful result:

Proposition 1. For all estimators μ̂ and ̂� at any dataset X it
holds that ε∗

n(μ̂, X) � δ∗
n(μ̂, X), ε+

n (̂�, X) � δ+
n (̂�, X), and

ε−
n (̂�, X) � δ−

n (̂�, X).

The proof consists of realizing that the casewise contami-
nated samples ˜Xm

can be seen as cellwise contaminated samples
Xm. It is thus generally true that the cellwise breakdown value is
less than or equal to the casewise breakdown value. Therefore,
all upper bounds on casewise breakdown values in the literature
also hold for cellwise breakdown values.

When proving breakdown values one often assumes that the
original dataset X is in general position, meaning that no more
than d points lie in any d − 1 dimensional affine subspace. In
particular, no three points lie on a line, no 4 points lie on a
plane, and so on. When the data are drawn from a continuous
distribution, it is in general position with probability 1. Real
data have a limited precision, so they are not always in general
position.

The inequalities in Proposition 1 can be strict. For instance,
the casewise implosion breakdown value of the classical covari-
ance matrix Cov at a dataset in general position is very high, in
fact it is (n − d)/n which goes to 1 for increasing sample size
n. This is because whenever d + 1 of the original data points
are kept, Cov remains nonsingular. In stark contrast, its cellwise
implosion breakdown value is quite low:

ε−
n (Cov, X) =

⌈
n − d

d

⌉
/n � 1

d
. (13)

To see why, let us pick d points of X which lie on a hyperplane
that is not parallel to any coordinate axis. In the remaining n−d
rows we can then replace a single cell such that all of the resulting
points lie on the same hyperplane, so Cov becomes singular. We
can do this by replacing no more than �(n − d)/d� cells in each
variable, which is a fraction �(n − d)/d�/n of its n cells.

Raymaekers and Rousseeuw (2023) recently derived a similar
upper bound for all affine equivariant estimators ̂�. In order
to obtain a higher cellwise breakdown value we are thus forced
to leave the realm of affine equivariance. In fact, the constraint
λd(̂�) � a > 0 in the definition (9) of cellMCD is not affine
invariant, but it keeps ̂� from imploding. Therefore, the cellwise
implosion breakdown value of cellMCD is 1.

We also want to know the breakdown value of its location
estimate μ̂ and the explosion breakdown value of ̂�. These
naturally depend on the choice of h.

Proposition 2. If the dataset X is in general position and h �
	n

2 
+1, the cellMCD estimators μ̂ and ̂� satisfy the properties

(a) ε−
n (̂�, X) = 1

(b) ε+
n (̂�, X) � (n − h + 1)/n

(c) ε∗
n(μ̂, X) � (n − h + 1)/n

(d) The lower bound (n − h + 1)/n is sharp.

Proposition 2 shows that cellMCD is highly robust. Its proof
is in Section A.1 of the supplementary material. By Proposi-
tion 1, it follows that these lower bounds also hold for the
casewise breakdown values. This also implies that the method
works on a mix of cellwise and casewise outliers as well. We
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do not actually recommend to choose h as low as the proposi-
tion allows: as explained before this could lead to some poorly
defined covariances and numerical instability. We stick with our
earlier recommendation of h � 0.75n, and in fact h = 0.75n is
the default in our implementation.

Let us now turn to the asymptotic behavior of cellMCD. At
the uncontaminated model distribution and for large n only a
small fraction of cells is actually discarded, due to our choice of
the constants qj in the penalty term. In that situation the large-
sample behavior of cellMCD is therefore the same as without the
columnwise constraint on W. The cellMCD objective can then
be written as

G(μ, �, F) :=
∫

gμ,�(x)F(dx) (14)

where

gμ,�(x) := min
w∈{0,1}d

{
ln

∣∣∣�(w)
∣∣∣ + d(w) ln(2π)

+MD2(x, w, μ, �) + q (1 − w)�
}

(15)

in which q = (q1, . . . , qd) and w = (w1, . . . , wd). The cellMCD
estimate is then

argmin
(μ,�)∈�

G(μ, �, Fn)

with Fn the empirical distribution and � the parameter space of
(μ, �), which incorporates the condition λd(�) � a. Denote
the set of minimizers as �∗. In section A.2 of the supplementary
material the following Wald-type consistency result is shown,
using work of Van der Vaart (2000):

Proposition 3. Let (μ̂n, �̂n) be a sequence of estimators which
nearly minimize G(·, ·, Fn) in the sense that G(μ̂n, �̂n, Fn) �
G(μ∗, �∗, Fn) + oP(1) for some (μ∗, �∗) ∈ �∗. Then it holds
for all ε > 0 that

P( D((μ̂n, �̂n), �∗) � ε ) → 0 ,

where D((μ̂n, �̂n), (μ∗, �∗)) := max(||μ̂n − μ∗||2, ||�̂n −
�̂∗||F) combines the Euclidean and Frobenius norms.

The population minimizer for � is not quite the underlying
parameter, since a small fraction of cells is always given weight
zero due to the penalty term in the objective. But for the location
μ we can prove that the unique minimizer is indeed the under-
lying parameter vector, so the cellMCD functional for location
is Fisher consistent:

Proposition 4. Let F be a strictly unimodal elliptical distribution
with center μ and a density function. For any �, we then have
the unique argminm∈Rd G(m, �, F) = μ .

4. Algorithm

In the algorithm we will need the following result about decom-
posing the Mahalanobis distance and the likelihood.

Proposition 5. Let us split the d-variate case x into two nonempty
blocks, and split μ and the d × d positive definite matrix �

accordingly, like

x =
[

x1
x2

]
μ =

[
μ1
μ2

]
� =

[
�11 �12
�21 �22

]
.

Then MD2(x, μ, �) = (x − μ)��−1(x − μ) and L(x, μ, �) =
−2 ln(f (x, μ, �)) satisfy

MD2(x, μ, �) = MD2(x1, x̂1, C1) + MD2(x2, μ2, �22) (16)

L(x, μ, �) = L(x1, x̂1, C1) + L(x2, μ2, �22) (17)

for x̂1 = μ1+�12�
−1
22 (x2−μ2) and C1 = �11−�12�

−1
22 �21 .

The proof can be found in section A.3 in the supplementary
material. The proposition can be interpreted as follows. Take a
case xi with some but not all cells missing, and for simplicity
assume that its missing components come first. Then put x1 =
x(1−wi)

i and x2 the remainder. If (μ, �) are the true underlying
parameters, x̂1 is the conditional expectation E[X1|X2 = x2]
and C1 is the conditional covariance matrix cov[X1|X2 = x2].
The additivity in (16) and (17) justifies the use of the partial
Mahalanobis distances and the observed likelihood in our set-
ting. Moreover, the fact that the difference of two “nested” MD2

is again an MD2 and hence nonnegative implies that the MD2

is monotone for nested sets of variables. In particular, if x is
observed fully we can write

MD2(x, μ, �)

= r2(x1|x2, . . . , xd)

s2(X1|x2, . . . , xd)
+ r2(x2|x3, . . . , xd)

s2(X2|x3, . . . , xd)
+ · · ·

+ r2(xd−1|xd)

s2(Xd−1|xd)
+ (xd − μd)

2

�dd

(18)

where each time s2 is the matrix C1 (which is a scalar here)
and the residuals are r(x1|x2, . . . , xd) = x1 − x̂1(x2, . . . , xd)
and so on. Note that (18) holds for any order of the d variables.
However, in each order the relative contribution of variable j to
the total MD2(x, μ, �) may be different. For the likelihood we
obtain similarly

L(x, μ, �) = L(x1, μ1, C1|2,...,d) + L(x2, μ2, C2|3,...,d) + · · ·
+ L(xd−1, μd−1, Cd−1|d) + L(xd, μd, �dd)

(19)
in which the terms do not need to be positive.

If we set qj = 0 in the objective function (9) of cellMCD
and use casewise weights, that is, casewise constant wij , we
recover the objective function (3) of the original casewise MCD.
The latter is not convex in μ and �, so neither is (9). The
crucial ingredient in the algorithm for the casewise MCD is
the concentration step (C-step) of Rousseeuw and Van Driessen
(1999). After each C-step the new objective value is less than
or equal to the old objective value, so iterating C-steps always
converges to a stationary point. We will now construct a C-step
for cellMCD with the same properties. Let us denote the current
solution of cellMCD by μ̂

(k), ̂�
(k), and W(k). Then the new C-

step proceeds as follows.

Part (a) of the C-step. In this part we update the matrix W in
(9) while keeping μ̂

(k) and ̂�
(k) unchanged. We start the new
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pattern ˜W as ˜W = W(k), and then we modify ˜W column
by column, by cycling over the variables j = 1, . . . , d. The
fact that this job can be done by column is advantageous for
maintaining the constraint. Assume we are working on column
j of ˜W, possibly after having modified other columns of ˜W
already. The current pattern of variable j is ˜W·j and we want to
obtain a new pattern for column j to reduce the objective while
leaving the other columns of ˜W unchanged. Note that we can
write the objective (9) as

∑n
i=1 L̃(xi, wi, μ, �, q) where

L̃(xi, wi, μ, �, q) = ln |�(wi)| + d(wi) ln(2π)

+ MD2(xi, wi, μ, �) +
d∑

j=1
qj|1 − wij|

with q = (q1, . . . , qd). For each i = 1, . . . , n we compute the
difference in the total objective (9) between putting w̃ij = 1 and
putting w̃ij = 0, which is

�ij = L̃(xi, w̃ij = 1, μ̂(k), ̂�(k), q) − L̃(xi, w̃ij = 0, μ̂(k), ̂�(k), q)

= ln |�(w̃ij=1)| − ln |�(w̃ij=0)| + ln(2π)

+ MD2(xij, x̂ij, Cij) − qj

= ln(Cij) + ln(2π) + (xij − x̂ij)
2/Cij − qj (20)

where the second and third equalities use Proposition 5 in
which x̂ij and Cij are now scalars. Note that x̂ij = μ̂

(k)
j +

̂�
(k)
j,o (̂�

(k)
o,o)

−1(̂xi,o − μ̂
(k)
o ) is the conditional expectation of

the cell Xij conditional on the observed (subscript ‘o’) cells
in row i, that is, those with w̃i· = 1, taking into account
any earlier modifications to ˜W. Analogously, Cij = ̂�

(k)
j,j −

̂�
(k)
j,o (̂�

(k)
o,o)

−1
̂�

(k)
o,j is the conditional variance of Xij . We now

need to minimize
∑n

i=1 L̃(xi, w̃ij, μ̂(k), ̂�(k), q) subject to the
constraint

∑n
i=1 w̃ij � h. If �ij � 0 holds for h or more i,

then the minimum is attained by setting those w̃ij to 1 and the
others to 0. If not, it is attained by setting w̃ij to 1 for the i with
the h smallest �ij and to 0 otherwise. After cycling through all
columns of ˜W we set W(k+1) = ˜W.

Part (b) of the C-step. Keeping the new pattern W(k+1) fixed we
now want to update μ̂ and ̂�. As W(k+1) is fixed the penalty
term in (9) does not enter the minimization, so we are in the
situation of the objective (7) for incomplete data, where the
EM algorithm can be used. We first carry out one E-step which
computes conditional means and products for the data entries
with W(k+1)

ij = 0, for all rows. Next, we carry out an M-step,
followed by imposing the constraint λd � a by truncating the
eigenvalues of ̂� from below at a. The C-step ends by reporting
W(k+1), μ̂(k+1) and ̂�

(k+1).

Proposition 6. (i) Each C-step turns a triplet (μ̂
(k), ̂�(k), W(k))

satisfying the constraints in (9) into a new triplet
(μ̂

(k+1), ̂�(k+1), W(k+1)) which satisfies the same constraints
and whose objective (9) is less than or equal to before. (ii)
Iterating C-steps always converges.

For the proof see section A.3 in the supplementary material,
which also contains the pseudocode of the algorithm. Many
variations of the C-step are possible, such as cycling through the
columns of ˜W in a different order. We could also cycle through
the columns of ˜W more than once in part (a), and/or run more
than one EM-step in part (b). But experiments in section A.6
of the supplementary material show that these changes have a
negligible and nonsystematic effect on estimation accuracy, so
we stay with the current version which is the fastest.

Note that cellMCD can still be used when the data contains
missing cells, indicated by uij which are 0 for missing cells and 1
elsewhere. In that situation we first have to remove variables with
more than n − h missing values. In the C-step it then suffices to
force wij = 0 whenever uij = 0.

In order to start our C-steps we need an initial estimator.
In our experiments we found that the DDCW estimator of
Raymaekers and Rousseeuw (2021b) gives good results and is
very fast. It is a combination of the DetectDeviatingCells (DDC)
method of Rousseeuw and Van den Bossche (2018) and the
fast correlation method in (Raymaekers and Rousseeuw 2021a).
DDCW is described in section A.4 of the supplementary mate-
rial. Instead of starting from a single initial estimate, one could
also start from several initial estimates. Iterating C-steps from
each (with the same qj and a > 0) until convergence, one can
then keep the solution with the lowest objective (9).

The only remaining question is how to select the constants
qj but this is quite simple, we do not need cross-validation or
an information criterion. In (20) the term (xij − x̂ij)2/Cij is
the square of the residual xij − x̂ij standardized robustly. For
inlying cells this should be below a cutoff, for which we take
the Chi-squared quantile χ2

1,p with one degree of freedom and
probability p. The term ln(Cij) is approximated by using the
conditional variance of variable j in the initial estimate ̂�0 , given
by Cj := 1/(̂�

−1
0 )jj . So we set each qj equal to

qj = χ2
1,p + ln(2π) + ln(Cj) . (21)

The effect of this choice is that a cell xij is flagged iff it lies
outside a robust tolerance interval around its predicted value x̂ij
with coverage probability p. Therefore, we only have to choose a
single cutoff probability p to generate all qj automatically. From
simulations and examples we found that p = 0.99 was a good
choice overall, so it is set as the default. Section A.5 provides
more information on the qj and the choice of p.

The algorithm has been implemented as the R function
cellMCD(). It starts by checking the data for non-numerical
variables, cases with too many NA’s and so on. Next, it robustly
standardizes the variables, and then computes the initial esti-
mator followed by C-steps until convergence. The constraint
λd(̂�) � a is applied to the standardized data, with default
a = 10−4. The function also reports the number of flagged cells
in each variable. All the plots in the next section were made by
the companion function plot_cellMCD(). Both functions
have been included in the R package cellWise on CRAN.

5. Illustration on Real Data

We will illustrate cellMCD on the cars data obtained from
the Top Gear website by Alfons (2016), focusing on the 11
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numerical variables price, displacement, horsepower,
torque, acceleration time, top speed, miles
per gallon, weight, length, width, and height.
This dataset is popular because both the variables and the cases
(the cars) can easily be interpreted. After removing two cars with
mostly NA’s we have n = 295. We also replaced the highly right-
skewed variables price, displacement, horsepower,
torque, and top speed by their logarithms. On these data
we ran cellMCD in its default version.

To visualize the results, we first look by variable. Consider
variable j, say horsepower. Its ith cell has observed value xij
as well as its prediction x̂ij obtained from the unflagged cells in
the same row i, as in (20). In (20) we also see the conditional
variance Cij of this cell. It is then natural to plot the standardized
cellwise residual

stdresij = xij − x̂ij√
Cij

(22)

which is NA when xij is missing. The left panel of Figure 2 shows
the standardized residuals of the variable horsepower versus
the index (case number) i. This plot was made by the function
plot.cellMCD(), which also draws a horizontal tolerance
band given by ± c where c =

√
χ2

1,0.99 ≈ 2.57 . Here, some
residuals stick out below the tolerance band. The Renault Twizy
and Citroen DS3 are energy savers, whereas the Caterham is
a super lightweight fun car. The most extreme outlier is the
Chevrolet Volt with a standardized residual below −8. Top Gear
lists this car’s power as 86 hp, which cellMCD says is very
low compared to what would be expected from the other 10
characteristics of this car. Looking it up revealed that the Volt
actually has 149 hp. As far as we know this data error was not
detected before.

The right panel of Figure 2 plots the standardized residuals
of the variable length versus the observed length itself.
The vertical lines are at T ± cS where T and S are robust
univariate location and scale estimates of length, obtained
from the function estLocScale() in the R package cellWise.
The points to the left and right of such a vertical tolerance band

are marginally outlying, that is theirlength stands out by itself
without regard to the other variables. In the bottom left region
of the plot we see five cars that are marginal outliers to the left
and at the same time have outlying negative residuals, so they
are short in absolute terms, as well as relative to what would
be expected from their other characteristics. The Smart fortwo,
Renault Twizy, Toyota IQ, and Aston Martin Cygnet are indeed
tiny.

However, not all cellwise outliers are marginal outliers. In
the middle bottom part of the plot we marked three cars whose
length is not unusual by itself, but that are short relative to what
would be expected based on their other 10 variables. They are
sports cars, often built small to achieve high speeds. Note that
there could also be points that lie inside the horizontal band but
(slightly) outside the vertical band. They would correspond to
cells that look a bit unusual in the variable j, but whose observed
value xij is not that far from the predicted x̂ij based on its other
variables.

The left panel of Figure 3 plots the standardized residual of
each car’s weight versus its prediction. Since all the points lie
within the vertical tolerance band, no predictions are outlying.
But we do see some outlying residuals, most of which can
easily be explained. The Bentley is a heavy luxury car, and the
Mercedes-Benz G an all-terrain vehicle. Below the horizontal
tolerance band we see four lightweight sports cars. What remains
is the Peugeot 107 which is small but not sporty at all. Top Gear
reports its weight as 210 kg, which seems much too light for a car.
Based on its other characteristics, cellMCD predicts its weight as
757 kg with a standard error of 89.5 kg. Looking up this car, its
actual weight turns out to be 800 kg, so the value in the Top Gear
dataset was mistaken.

The right panel of Figure 3 shows the observed value of top
speed versus its prediction. Below the superimposed y = x
line we find some electric cars (BMW i3, Vauxhall Ampera)
and some small cars (Smart fortwo and Renault Zoe). The one
standing out most is the Renault Twizy, a tiny electric one-seater
vehicle. Above the line we see some extremely fast sports cars.
Also note that some points appear to lie on a horizontal line.
Top Gear reports their top speed as 155 mph, corresponding to

Figure 2. Top Gear data: (left) index plot of the standardized residual of log(horsepower); (right) standardized residual of length versus observed length.
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Figure 3. Top Gear data: (left) standardized residual of weight versus its prediction; (right) observed log(top speed) versus its prediction.

Figure 4. Top Gear data: bivariate plot of width versus acceleration. The
99% tolerance ellipse is given by the cellMCD estimates μ̂ and ̂� restricted to the
variables in the bivariate plot, and the red lines go to the predicted points shown in
blue.

250 km/hr. Many of these cars were produced by Audi, BMW
and Mercedes with a built-in 250 km/hr speed limiter.

The four plot types in Figures 2 and 3 all focus on a single
variable. It can also be instructive to look at a pair of vari-
ables, say j and k. Figure 4 shows the variables width versus
acceleration. The points for which wij = 0 or wik = 0 or
both are automatically plotted in red. The figure also contains an
ellipse, given by

[
x − μ̂j y − μ̂k

] [
�̂jj �̂jk
�̂kj �̂kk

]−1 [
x − μ̂j
y − μ̂k

]
= q (23)

where q is the 0.99 quantile of the χ2
2 distribution with two

degrees of freedom. Note that outlyingness in this type of plot

differs from cellwise outlyingness, since the former refers to two
variables only, whereas the latter uses all 11 variables. So it is not
unusual to see some red points inside the ellipse, and some black
points outside it.

The width of the Land Rover is flagged as this is a wide
all terrain vehicle. The red vertical line connects the observed
point (xij, xik) to its predicted point (̂xij, x̂ik) plotted in blue.
That the line is vertical means that the width cell was flagged
whereas the acceleration cell was not. The acceleration of
the Ssangyong Rodius and Lotus Elise is outlying on the left. In
fact, Top Gear lists their acceleration time as 0 which is physically
impossible: presumably the true value was missing and encoded
as 0 instead of NA. The same happens for the Renault Twizy.
Note that also the width cell of the Twizy is flagged, so the red
line to its predicted point is slanted instead of horizontal. The
Caterham also has both cells flagged, as seen from its slanted
line.

6. Simulation Results

In this section we evaluate the performance of cellMCD by a
simulation study. The clean data is generated as n points from
a d-variate Gaussian distribution with mean μ = 0. Since
there is no affine equivariance, letting � be the identity matrix
is not sufficient. Instead we use the types “A09” and “ALYZ”.
The entries of the A09 correlation matrix are given by �ij =
0.9|i−j|, yielding both small and large correlations. The ALYZ
type are randomly generated correlation matrices following the
procedure of Agostinelli et al. (2015) and typically have mostly
small absolute correlations. We consider three combinations
of sample size and dimension (n, d): (100, 10), (400, 20), and
(800, 40).

In these clean data, we then replace a fraction ε in {0.1, 0.2}
of cells by contaminated cells. These are generated as follows.
First, for each column in the data matrix we randomly sam-
ple nε indices of cells to be contaminated. In each row, say
(z1, . . . , zd), we then collect the indices of the cells to be con-
taminated. Denote this set of size k by K = {j1, . . . , jk}. We
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Figure 5. Discrepancy of estimated covariance matrices for d = 10 and n = 100.

next replace the cells (zj1 , . . . , zjk) by the k-dimensional vec-
tor γ

√
k vK/MD(vK , μK , �K) where μK and �K are μ and �

restricted to the indices in K. The scalar γ > 0 quantifies the
distance of the outlying cells to the center of the distribution, and
we vary γ over 1, . . . , 10. The vector vK is the normed eigenvec-
tor of �K with the smallest eigenvalue. In each row, the outlying
cells are thus structurally outlying in the subspace generated
by the variables in K. Therefore, these cells will often not be
marginally outlying, especially when |K| is large and γ is rela-
tively small, which makes them hard to detect. The R-package
cellWise (Raymaekers and Rousseeuw 2022) contains the
function generateData which generates the contaminated
data according to this procedure.

We compare the proposed method cellMCD to the following
alternative estimators:

• Grank, Spearman: the Gaussian and Spearman rank-based
estimators used in Öllerer and Croux (2015) and Croux and
Öllerer (2016);

• GKnpd: the Gnanadesikan-Kettenring estimator used in
Tarr, Muller, and Weber (2016);

• 2SGS: the two-step generalized S-estimator of Agostinelli
et al. (2015);

• DI: the detection-imputation algorithm of Raymaekers and
Rousseeuw (2021b).

In order to evaluate the performance of the different estima-
tors, we compute the Kullback-Leibler discrepancy between the
estimated �̂ and the true � given by

KL(�̂, �) = tr(�̂�−1) − d − log(det(�̂�−1)) .

For each setting of the simulation parameters we generate 100
random datasets, and average the Kullback-Leibler discrepancy
over these 100 replications. (For the variability around these
averages see Section A.6.1.)

Figure 5 presents the results for d = 10, n = 100 and
ε = 0.1. (The results for ε = 0.2 were similar.) Both cellMCD
and DI perform well, as does 2SGS provided γ � 4. As expected,

the classical covariance matrix (Cov) and the casewise MCD
(labeled caseMCD) were not robust to these adversarial cellwise
outliers. Note that the performances of Grank, Spearman and
GKnpd do not improve as γ increases. While these estimators
bound the influence that a single cell can have on the estimation,
the effect remains substantial as the cell becomes more outlying.
This is in contrast to 2SGS, DI and cellMCD in which far outliers
get a zero weight.

The top panels of Figure 6 show the results for n = 400 and
d = 20. The relative performances are similar to Figure 5. The
2SGS method still does well when γ > 4, but now suffers more
for low γ . The performances of DI and cellMCD are again very
close, with cellMCD often doing slightly better.

The lower panels with n = 800 and d = 40 are similar, with
cellMCD performing best for all values of γ while DI is quite
close, and 2SGS only doing well for higher γ .

Table 1 lists the computation times (in seconds) of the meth-
ods in the simulation. The first five methods are fast but they per-
formed poorly. The bottom three methods did better. In dimen-
sions 20 and 40 the cellMCD method was the fastest among
them.

We are also interested in the performance of these methods
on data without outliers. For this we repeated the simulation
with ε = 0, again with 100 replications. The variability of
each entry of the covariance matrix was measured taking the
Fisher information of that entry into account. These results were
then averaged over the upper triangular matrix entries including
the diagonal. Next we divided the MSE of the classical MLE
estimator by that of each robust method, yielding the finite-
sample efficiencies in Table 2.

We see that the efficiency of cellMCD averages over 90%,
which is excellent for a highly robust covariance estimator. This
is similar to 2SGS, and outperforms DI. As expected Grank
has a high efficiency, but we just saw that it performed poorly
under contamination, as did GKnpd and Spearman. The finite-
sample efficiency of cellMCD is much higher than that of the
casewise MCD with the same coverage parameter h = 0.75n,
which is under 0.70 for this range of dimensions d. This is due
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Figure 6. Discrepancy of estimated covariance matrices for d = 20 and n = 400 (top panels) and for d = 40 and n = 800 (bottom panels).

Table 1. Computation times of the methods in the simulation.

d = 10 d = 20 d = 40

Cov 0.00 0.00 0.00
Grank 0.00 0.01 0.05
Spearman 0.01 0.02 0.06
GKnpd 0.90 1.31 4.29
caseMCD 0.04 0.53 2.37
DDCW 0.01 0.03 0.18
2SGS 0.67 6.91 66.88
DI 0.28 4.72 41.41
cellMCD 0.28 1.83 22.47

to the penalty term in (9), which made the number of actually
discarded cells much smaller than 0.25 n.

We conclude that cellMCD is about equally robust as DI
but with better efficiency, and is about as efficient as 2SGS but
with better robustness at contaminated data. Moreover, it does
substantially better at contaminated data than the remaining
methods.

Table 2. Finite-sample efficiencies of robust covariance estimators.

ALYZ configuration A09 configuration

method d = 10 d = 20 d = 40 d = 10 d = 20 d = 40
cellMCD 0.90 0.90 0.89 0.89 0.93 0.96
2SGS 0.87 0.94 0.98 0.83 0.91 0.95
DI 0.68 0.61 0.49 0.87 0.90 0.90
GKnpd 0.74 0.80 0.81 0.78 0.77 0.79
Grank 0.90 0.96 0.98 0.88 0.89 0.94
Spearman 0.84 0.88 0.90 0.83 0.82 0.85

7. Discussion

The cellMCD method proposed here has an elegant formula-
tion based on a single objective function, making it easier to
understand than the earlier 2SGS and DI methods. We proved
its good breakdown properties and consistency, and like the
casewise MCD it can be computed by an algorithm based on C-
steps that always lower the objective function and is guaranteed
to converge. We have illustrated cellMCD on a real dataset
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where the accompanying graphical displays revealed interesting
aspects of the data that aided interpretation. Simulations indi-
cate that cellMCD outperforms earlier cellwise methods, while
being conceptually simple and rather fast to compute.

CellMCD is cellwise robust and incorporates a kind of spar-
sity penalty (on 1−W). This naturally brings to mind the work of
Candès et al. (2011). The goals are clearly related, but there are
also some differences. The first is that their work assumes that
the cellwise outlier pattern W is drawn uniformly at random,
whereas we adopt the robustness paradigm that the outliers may
be placed adversarially. Second, the method of Candès et al.
(2011) is equivariant for transposing the data matrix, so it treats
cases and variables in the same way, whereas in our setting they
have to be treated differently. We do allow for some rows being
flagged entirely, whereas we cannot allow flagging an entire
column as this would make μ and � not identifiable, which
motivates our constraint ||W .j||0 � h for j = 1, . . . , d .

The fact that implosion breakdown can happen easily in the
cellwise setting, see (13), was not mentioned in the literature
before. We feel that, apart from cellMCD, also other cellwise
robust covariance estimators could benefit from a constraint
such as λd(̂�) � a, or similarly from a formulation in which
̂� is a sum of two matrices, one of which is a small multiple of
the identity matrix.

The casewise MCD is typically followed by a reweighting
step. This works as follows. First, the estimated covariance
matrix ̂� is multiplied by a correction factor cn,d,h such that
cn,d,ĥ� is roughly unbiased when the original data are generated
from a Gaussian distribution. Next, one computes the squared
robust distances of the data points, given by RD2

i = (xi −
μ̂)�(cn,d,ĥ�)−1(xi − μ̂). Each case xi then gets a weight wi
depending on its RD2

i . Typically, the weight is set to 1 when RD2
i

is below some quantile of the χ2
d distribution with d degrees of

freedom, and to 0 otherwise. The final estimates are then the
weighted mean and the weighted covariance matrix (4). This
reweighting step increases the finite-sample efficiency of the
estimator.

For cellMCD, the analogous reweighting step would compute
the standardized residual (22) of every cell xij and compare
its square to a quantile of the χ2

1 distribution with 1 degree
of freedom, yielding zero-one weights wij. With these wij one
would then run the EM algorithm on the original data. But in
fact, the result is not very different from the cellMCD result.
This is because all the ingredients are already used in cellMCD,
which contains the squared standardized residual in (20), the χ2

1
quantile in (21), and the partial likelihood on which EM is based
in (9). So in some sense the components of a reweighting step are
already built into cellMCD itself. This explains its rather high
finite-sample efficiency in Table 2.

Supplementary Materials

This is a text with the proofs of the propositions and some additional
simulation results, as well as a zipped directory with the R code and vignette.
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