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Summary

In this thesis we investigate various aspects of the dynamics of Hamilto-
nian vector fields in singular symplectic manifolds.

We concentrate on two questions: first, we investigate a generalization
of the Arnold conjecture in the setting of singular symplectic geometry.
Second, we explore constructions for integrable systems in this context.

In Chapter 2 we provide the background material required for this thesis.
We start by delving into the theory of symplectic geometry. Then, we
present the Arnold conjecture, which asserts that there is a lower bound on
the number of 1-periodic orbits for a non-degenerate Hamiltonian system,
and that this lower bound can be formulated strictly in topological terms.
We also present a tool used in the investigation of this conjecture: Floer
theory.

Then, we explain some notions of Poisson geometry before we explore a
notion fundamental to this thesis: that of a 𝑏𝑚-symplectic manifold. These
are manifolds with a structure that is symplectic almost everywhere but
“blows up” at a hypersurface, which we call the singular hypersurface.
We lay out some techniques used in the study of 𝑏𝑚-symplectic manifolds,
with an emphasis on a procedure called desingularization.

Finally, we give a summary of the theory of integrable systems and the
study of their singular points.

In Chapter 3 we investigate the dynamical behaviour of certain vector fields
in 𝑏𝑚-symplectic geometry, coming from 𝑏𝑚-Hamiltonians. We focus on
the study of their dynamics in a neighbourhood of the singular hypersur-
face, and find a family of 𝑏𝑚-Hamiltonians where a version of the Arnold
conjecture can be formulated. Then, we explore new aspects of the desin-
gularization procedure in relation to the 𝑏𝑚-Hamiltonian dynamics, and
provide some techniques that allow us to relate these dynamics to those
of classical symplectic geometry. We conclude with two results yielding
partial versions of the Arnold conjecture for 𝑏𝑚-Hamiltonian vector fields.
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In Chapter 4 we show the existence of a Floer homology for 𝑏𝑚-symplectic
manifolds. This we manage through an investigation of the Floer equation
for the family of 𝑏𝑚-Hamiltonians presented in Chapter 3.

In Chapter 5 we introduce the notion of the classes of 𝑏-integrable and 𝑏-
semitoric systems. We study the features of 𝑏-semitoric systems using some
interesting examples and the investigation of their singular points.



Samenvatting

In deze thesis bestuderen we verscheidene aspecten van de dynamica van
Hamiltoniaanse vectorvelden op singuliere symplectische variëteiten.

We concentreren ons op twee vraagstukken: Als eerste bestuderen we
een generalisatie van het vermoeden van Arnold in het gebied van de
singuliere symplectische meetkunde. Ten tweede besturen we potentiële
constructies voor integreerbare systemen binnen dit gebied.

In Hoofdstuk 2 geven we de basisdefinities die noodzakelĳk zĳn in dit
proefschrift. We beginnen met het beschrĳven van de theorie van de sym-
plectische meetkunde, waarna we het vermoeden van Arnold presenteren.
Het vermoeden van Arnold stelt dat er een ondergrens bestaat voor het
aantal van 1-periodieke banen van een niet-ontaard Hamiltoniaans sys-
teem, en dat deze ondergrens volledig in topologische termen gegeven
kan worden. We presenteren tevens een hulpmiddel dat we gebruiken bĳ
het bestuderen van dit vermoeden: de theorie van Floer.

Daarna leggen we enkele standaard noties uit de Poissonmeetkunde
uit, alvorens een fundamentele notie in deze thesis te bestuderen: 𝑏𝑚-
symplectische variëteiten. Dit zĳn variëteiten met een structuur die bĳna
overal symplectisch is maar "opblaast" langs een hyperoppervlak, welke
we het singuliere hyperopervlak noemen. We geven enkele technieken
die gebruikt worden in de theorie van 𝑏𝑚-symplectische variëteiten, met
de nadruk op een procedé genaamd desingularisatie.

Ten laatste geven we een samenvatting van de theorie van integreerbare
systemen en de studie van hun singuliere punten.

In Hoofdstuk 3 bestuderen we het dynamisch gedrag van bepaalde vector
velden in 𝑏𝑚-symplectische meetkunde, afkomstig van 𝑏𝑚-Hamiltonianen.
We richten ons op de studie van hun dynamica in een omgeving van het
singuliere hyperoppervlak. We zullen een familie van 𝑏𝑚-Hamiltonianen
vinden waarvoor een versie van het vermoeden van Arnold geformuleerd
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kan worden. Daarna onderzoeken we nieuwe aspecten van het desingu-
larisatie procedé met betrekking tot 𝑏𝑚-Hamiltoniaanse dynamica, en we
beschrĳven enkele technieken die ons de mogelĳkheid geven deze dynam-
ica te relateren aan de dynamica in klassieke symplectische meetkunde.
We concluderen met twee resultaten welke gedeeltelĳke versies van het
vermoeden van Arnold voor 𝑏𝑚-Hamiltoniaanse vector velden bewĳzen.

In Hoofdstuk 4 tonen we aan dat er een Floer homologie voor 𝑏𝑚-
symplectische variëteiten bestaat. Dit bereiken we door de Floer vergelĳk-
ing te bestuderen voor de familie van 𝑏𝑚-Hamiltonianen die we in Hoofd-
stuk 3 hebben geïntroduceerd.

In Hoofdstuk 5 introduceren we de noties van 𝑏-integreerbare en
𝑏-semitorische systemen. We bestuderen de eigenschappen van 𝑏-
semitorische systemen door middel van interessante voorbeelden en het
bestuderen van hun singuliere punten.



Resum

En aquesta tesi investiguem diversos aspectes dinàmics sobre camps vec-
torials Hamiltonians en varietats simplèctiques singulars.

Ens centrem en dues facetes: primer investiguem una generalització de
la conjectura d’Arnold en el context de la geometria simplèctica singular.
En segon lloc, examinem construccions de sistemes integrables en aquest
àmbit.

Al Capítol 2 oferim els coneixements preliminars necessaris per a aque-
sta tesi. Comencem fixant-nos en la teoria de la geometria simplèctica.
Després presentem la conjectura d’Arnold, que proposa l’existència d’una
fita inferior en el nombre d’òrbites 1-periòdiques en sistemes Hamiltonians
no degenerats, la qual es pot formular en termes estrictament topològics.
També presentem una eina emprada per investigar aquesta conjectura: la
teoria de Floer.

Tot seguit exposem algunes nocions de la geometria de Poisson, abans
d’explorar una noció fonamental d’aquesta tesi: la de varietat 𝑏𝑚-
simplèctica. Les varietats 𝑏𝑚-simplèctiques tenen una estructura que és sim-
plèctica gairebé arreu però que “explota” en una hipersuperfície, anom-
enada singular. També exposem algunes tècniques emprades en l’estudi
de les varietats 𝑏𝑚-simplèctiques, posant èmfasi en un procés anomenat
desingularització.

Concloem el capítol oferint un resum de la teoria de sistemes integrables
i de l’estudi dels seus punts singulars.

Al Capítol 3 investiguem el comportament dinàmic d’uns camps vectorials
particulars en geometria 𝑏𝑚-simplèctica, induïts per 𝑏𝑚-Hamiltonians. Ens
centrem en estudiar la seva dinàmica en un entorn de la seva hipersuper-
fície singular, i trobem una família de 𝑏𝑚-Hamiltonians per a la qual es pot
formular una versió de la conjectura d’Arnold. Després explorem alguns
aspectes del procés de desingularització relacionats amb la dinàmica dels
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camps 𝑏𝑚-Hamiltonians, i descrivim algunes tècniques que ens permeten
connectar aquesta dinàmica amb la dinàmica que trobem en la geometria
simplèctica clàssica. Per acabar, donem dos resultats que constitueixen
versions parcials de la conjectura d’Arnold per a camps 𝑏𝑚-Hamiltonians.

Al Capítol 4 demostrem l’existència d’una homologia de Floer per a vari-
etats 𝑏𝑚-simplèctiques. Per aconseguir-ho estudiem l’equació de Floer en
el context dels 𝑏𝑚-Hamiltonians presentats al Capítol 3.

Al Capítol 5 introduïm les nocions de classe 𝑏-integrable i de sistema 𝑏-
semitòric. Estudiem les característiques dels sistemes 𝑏-semitòrics a través
d’alguns exemples i les propietats dels seus punts singulars.



Resumen

En esta tesis investigamos varios aspectos dinámicos de campos vectoriales
Hamiltonianos en variedades simplécticas singulares.

Nos centramos en dos facetas: primero investigamos una generalización
de la conjetura de Arnold en el contexto de la geometría simpléctica singu-
lar. En segundo lugar examinamos construcciones de sistemas integrables
en este contexto.

En el Capítulo 2 proveemos los conocimientos previos necesarios para
esta tesis. Empezamos fijándonos en la teoría de la geometría simpléctica.
Después presentamos la conjetura de Arnold, que propone la existencia
de una cota inferior en el número de órbitas 1-periódicas en sistemas
Hamiltonianos no degenerados, la cual puede formularse en términos
estrictamente topológicos. También presentamos una herramienta usada
para investigar esta conjetura: la teoría de Floer.

A continuación exponemos algunas nociones de la geometría de Poisson,
antes de explorar una noción fundamental en esta tesis: la de variedad
𝑏𝑚-simpléctica. Éstas son variedades dotadas de una estructura que es
simpléctica casi en todas partes pero que “explota” en una hipersuperficie,
la cual llamamos singular. También exponemos algunas técnicas usadas
en el estudio de las variedades 𝑏𝑚-simplécticas, poniendo énfasis en un
proceso llamado desingularización.

Cerramos el capítulo con un resumen de la teoría de sistemas integrables
y del estudio de sus puntos singulares.

En el Capítulo 3 investigamos el comportamiento dinámico de unos cam-
pos vectoriales particulares en la geometría 𝑏𝑚-simpléctica, inducidos por
𝑏𝑚-Hamiltonianos. Nos centramos en estudiar su dinámica en un en-
torno de su hipersuperficie singular, y encontramos una familia de 𝑏𝑚-
Hamiltonianos para la cual podemos formular una versión de la conjetura
de Arnold. Después exploramos algunos aspectos del proceso de desingu-
larización relacionados con la dinámica de los campos 𝑏𝑚-Hamiltonianos,
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y describimos algunas técnicas que nos permiten conectar esta dinámica
con la dinámica que encontramos en la geometría simpléctica clásica. Para
acabar, damos dos resultados que constituyen versiones parciales de la
conjetura de Arnold para campos 𝑏𝑚-Hamiltonianos.

En el Capítulo 4 demostramos la existencia de una homología de Floer
para variedades 𝑏𝑚-simplécticas. Con este fin estudiamos la ecuación de
Floer en el contexto de los 𝑏𝑚-Hamiltonianos presentados en el Capítulo
3.

En el Capítulo 5 introducimos las nociones de clase 𝑏-integrable y de sistema
𝑏-semitórico. Estudiamos las características de los sistemas 𝑏-semitóricos a
través de algunos ejemplos y las propiedades de sus puntos singulares.
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Introduction

1.1 Preface

It is sometimes asserted that breakthroughs in science occur when one
studies the intersections between different fields. This is certainly so in
mathematics, where tools from one area can provide swift resolutions for
problems that seemed insurmountable in a different one. The bridging
between different fields can also inspire questions that propel our under-
standing of a field forward, and multiply its potential applications.

If there is a field in mathematics in which this pattern of collaboration has
been fruitful, it is that of symplectic geometry. Symplectic geometry is
the natural setting for the study of classical mechanics in full generality,
particularly in their Lagrangian formulation. Symplectic manifolds, the
focus of study in this field, encode the generalization of a phase space from
classical mechanics. They are endowed with a structure that allows us to
set up the equations of motion of a system given its preserved quantity, a
function called the Hamiltonian of the system.

A connection grew between the world of symplectic geometry and that of
topology, motivated by the hunt for periodic orbits: If we have a Hamiltonian
system on a symplectic manifold, is it possible to predict how many periodic orbits
it will feature? Is it possible to locate them? Arnold put forward in [Arn65] a
conjecture on the lower bound of periodic orbits of period 1 for a family
of Hamiltonian systems in terms of the topology of the underlying space.
This conjecture triggered a series of investigations on the relationship
between the topological properties of a symplectic manifold and both its

1



2 Chapter 1. Introduction

geometric and dynamical features. Conley and Zehnder proved in [CZ83]
a partial version of Arnold’s conjecture using variational methods. In
parallel, Gromov studied the behaviour of pseudoholomorphic curves in
symplectic manifolds, which led to his famous non-squeezing theorem
in [Gro85]. Floer took inspiration from both Conley and Zehnder, and
Gromov to develop a construction called Floer homology, which relates
the topology of a symplectic manifold with the dynamical behaviour of
a Hamiltonian within it. Floer’s work paved the way to a solution of
Arnold’s conjecture, and motivated a wide variety of questions in the
intersection between symplectic geometry and topology.

Another interesting connection can be found between the fields of sym-
plectic geometry and of foliation theory. Roughly speaking, foliation the-
ory investigates the ways in which a space can be split in "well-behaved"
subspaces, called leaves, possibly with different dimensions. For instance,
a space can be partitioned into symplectic leaves, which provides a moti-
vation to generalize the notion of symplectic manifold to what is known
as a Poisson manifold. Poisson manifolds encode thus a generalization of
symplectic structures. In fact, they can be thought of as a “symplectic
structure” that is allowed to have some kind of degeneracy.

The category of Poisson manifolds is remarkably less restricted than that
of symplectic manifolds, which renders the classification of Poisson mani-
folds much more challenging that that of symplectic manifolds. For this
reason it is common to investigate families of manifolds within the Poisson
category. A useful tool to define families within Poisson geometry are Lie
algebroids, which intuitively encode limitations in the tangent space of a
given manifold. Thus we can find the families of 𝑏𝑚-symplectic manifolds,
log-symplectic manifolds, 𝑐-symplectic manifolds and so on.

𝑏𝑚-symplectic manifolds represent a situation in which a symplectic struc-
ture “blows up” in a subspace of codimension 1. Their study is motivated
by non-canonical changes of coordinates in the restricted three-body pro-
blem (see [BDM+19] or [MO21] for more information), which helps us to
understand the dynamical behaviour of the third body towards infinity.

The field of 𝑏𝑚-symplectic geometry and the very much related field of
𝑏𝑚-contact geometry, by themselves, inspire many interesting questions
because their behaviour can be compared easily to that of symplectic or
contact geometry. However, 𝑏𝑚-symplectic and 𝑏𝑚-contact geometries
can display behaviours distinctly different to that of symplectic or contact
geometry.



1.1. Preface 3

The initial question motivating this thesis was the potential construction of
a theory of Floer homology in the context of 𝑏𝑚-symplectic manifolds, and
its use towards a potential analog to the Arnold conjecture on this setting.
An inspiration for this project was the work of Frauenfelder and Schlenk
[FS07] where periodic orbits are investigated in a symplectic manifold with
contact boundary. The work of Pasquotto, Vandervorst and Wiśniewska
[PW20, PVW22], where Rabinowitz Floer homology is studied for families
of Hamiltonians (namely tentacular Hamiltonians) in non-compact hyper-
surfaces, also contributed to motivate our line of research. Many different
avenues were explored trying to achieve an understanding of the dyna-
mical behaviour relevant to setting up an Arnold conjecture. The final
result has been a very promising collection of results providing definite
lower bounds for certain families of 𝑏𝑚-symplectic manifolds. The proofs
for these lower bounds suggest several directions in which they could be
improved and perhaps unified in the future.

Another feature of symplectic geometry that can find its analog in 𝑏𝑚-
symplectic geometry is that of an integrable system. Integrable systems arise
when investigating the dynamics of Hamiltonian systems that have a cer-
tain number of symmetries that constraint the dynamics of the resulting
system in interesting ways. In her famous theorem, Noether identified the
relationship between these symmetries and conserved quantities in a sys-
tem, inspiring the notion of moment map and its function. A particularly
well-understood example of a family of integrable systems is that of toric
manifolds. These are systems in which all the components of the flow of the
momentum map are periodic. Toric manifolds were completely classified
by Delzant in [Del88] using a single invariant, the polytope associated to
the momentum map.

A generalization of toric manifolds within integrable systems are semitoric
systems, which have a more complicated behaviour. In particular, semitoric
systems have singular points which are called focus-focus, with have a
more complicated behaviour. A complete classification was developed by
Pelayo, Vũ Ngo. c, Palmer and Tang in terms of a sophisticated invariant
called the marked semitoric polygon (see [PVN12a, AH19, Pel21]).

In this thesis we introduce the notion of 𝑏-semitoric system and explore a
particular example of such a system: the 𝑏-coupled spin-oscillator.
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1.2 Publications

The contents of this thesis can be found in the following articles, written
in collaboration with several coauthors.

• [BMO22] The Arnold conjecture for singular symplectic manifolds, joint
with Eva Miranda and Cédric Oms, arXiv:2212.01344.

• [BHMM23] Constructions of 𝑏-semitoric systems, joint with Sonja
Hohloch, Pau Mir and Eva Miranda. Journal of Mathematical
Physics 64(7):072703 (2023). DOI:10.1063/5.0152551.

The preliminaries of the articles have been summarized and included in
Chapter 2 of this thesis.

1.3 Structure and results

In Chapter 2 we present all preliminary notions required to develop the
results of this thesis. This comprises symplectic geometry, a presentation
of the Arnold conjecture with an overview of its proof through Floer
theory, Poisson structures, 𝑏𝑚-symplectic geometry and the techniques
to desingularize them, and an overview of integrable systems and their
generalization to the 𝑏𝑚-symplectic setting.

In Chapter 3 we study the Arnold conjecture in the context of 𝑏𝑚-
symplectic manifolds. We begin by identifying the conditions under which
a generalization to the Arnold conjecture for a 𝑏𝑚-symplectic form can be
formulated. We conclude with the definition of what an admissible Hamil-
tonian is and we study its basic dynamical properties. We explore the way
in which our desingularization techniques can be adapted to these admis-
sible Hamiltonians and their effects on the associated dynamics. Using
these techniques we are then able to derive lower bounds on 1-periodic
orbits for several families of manifolds within the 𝑏𝑚-symplectic family.

The first result we highlight is in the case of an acyclic 𝑏2𝑘-symplectic
manifold:

https://arxiv.org/abs/2212.01344
https://doi.org/10.1063/5.0152551
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Theorem A (Brugués, Miranda and Oms. Theorem 3.3.3) Let (𝑀, 𝑍, 𝜔)
be a compact 𝑏2𝑘-symplectic manifold whose associated graph is acyclic. Let 𝐻𝑡

be a time-dependent regular admissible 𝑏2𝑘-Hamiltonian function. Then

#𝒫(𝐻) ≥
∑
𝑖

dim𝐻𝑀𝑖(𝑀;Z2).

We explore as well the more general case of 𝑏2𝑘-symplectic manifolds,
and what are the limitations for a lower bound to be found in the 𝑏2𝑘+1-
symplectic case.

The second theorem that we highlight can be found in the particular case
of 𝑏𝑚-symplectic surfaces:

Theorem B (Brugués, Miranda and Oms. Theorem 3.3.5) Let (Σ, 𝑍, 𝜔)
be a closed 𝑏𝑚-symplectic orientable surface. Let 𝐻𝑡 be a regular admissible 𝑏𝑚-
Hamiltonian function. Then the number of 1-periodic orbits of 𝑋𝐻 has the lower
bound

#𝒫(𝐻) ≥
∑
𝑣∈𝑉

(
2𝑔𝑣 +

��deg(𝑣) − 2
��) .

Moreover, in Proposition 3.3.7 we prove that the lower bound in Theorem
B is sharp.

In Chapter 4 we explore the construction of a Floer complex from a regular
admissible Hamiltonian as introduced in Chapter 3 through the study of
the Floer equation. The study of the Floer equation yields the following
important result:

Theorem C (Brugués, Miranda and Oms. Theorem 4.1.6) Let (𝑀, 𝑍, 𝜔)
be a 𝑏𝑚-symplectic manifold, and let 𝑢 : Ω ⊂ C → 𝒩 ⊂ 𝑀, where 𝒩 is a
tubular neighbourhood of 𝑍 in 𝑀 \ 𝑍. Let also 𝑓 : 𝒩 → R be given by log |𝑧 |
if 𝑚 = 1 and − 1

(𝑚−1)𝑧𝑚−1 if 𝑚 > 1. Suppose also that 𝑢 is a solution of the Floer
equation for an admissible Hamiltonian 𝐻 ∈ 𝒞∞(𝑆1 × 𝒩). If 𝑓 ◦ 𝑢 attains its
maximum or minimum on Ω, then 𝑓 ◦ 𝑢 is constant.

In Chapter 5 we switch to the study of a particular subclass of 𝑏-integrable
systems, 𝑏-semitoric systems. We concentrate on the study of a particular
family of such systems, the 𝑏-coupled spin-oscillators, and classify all critical
points in the system.
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1.4 Open questions

As many projects of this kind, this thesis leaves a lot of questions open
at its conclusion. We deem the following the most interesting questions
raised by our work:

1. Is it possible to compute the homology defined in Chapter 4?
In Chapter 4 we define a Floer complex in line with the classical
definition, but there is no clear indication of how to compute its
homology. In light of the results exposed in Chapter 3 we would
expect this homology to be split in each of the connected components
of 𝑀 \ 𝑍 and to depend on the relative topology of 𝑍 within each
of the components. The second part of Theorem 4.1.6 should be
helpful in this endeavour, in particular to build an isomorphism
of the homology or at least to prove invariance with respect to the
admissible Hamiltonian 𝐻.
A reasonable direction in which to investigate would be to attempt to
build a Morse theory that is compatible with the class of Hamiltoni-
ans introduced in Definition 3.1.11, taking into account the behaviour
of these functions near the critical hypersurface 𝑍.

2. Is it possible to generalize the desingularization arguments of Chap-
ter 3 to 𝑏2𝑘+1-symplectic manifolds of dimension higher than 2?
The desingularization arguments work for the case of 𝑏2𝑘-symplectic
manifolds because the resulting structure is symplectic, and in the
case of surfaces because the low dimension allows us to keep track
of changes of a change of sign on certain components of the surface
Σ \ 𝑍. In higher dimensions we need to be able to glue smoothly
the dynamics along the symplectic foliation of 𝑍 locally around each
connected component, for which there is no general method yet.

3. Can the desingularization methods be considered for wider families
of 𝑏𝑚-Hamiltonians?
In this thesis we deal with the notion of admissible Hamiltonian
(see Definition 3.1.11) within the wider family of 𝑏𝑚-Hamiltonians.
The purpose of this definition is to work with induced dynamics
that split along different connected components of 𝑀 \ 𝑍. The next
step should be to investigate the possible roles that the dynamics
in 𝑍 could play in different generalizations of the results exposed
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in this thesis. We deem the first natural generalization to be one in
which finite periodic orbits are allowed within 𝑍, and to develop an
understanding of how the solutions to the Floer equation (2.5) could
connect periodic orbits within 𝑍 to those outside.

4. This thesis contributes to providing toy models for the classifica-
tion of 𝑏-semitoric system, a research project of Eva Miranda. The
question has already been raised by Guillemin, Miranda and Pires
[GMP14] for general 𝑏-integrable systems and by Guillemin, Mi-
randa, Pires and Scott [GMPS17] for almost toric manifolds. We
think that there should be good prospects for such a classification,
taking into account the fact that in Proposition 5.1.9 we prove that
fixed points of the system cannot belong to𝑍, and therefore the focus-
focus critical points of the system will fall away from 𝑍. Therefore,
all invariants which are locally defined near singularities should be
trivial to generalize to this context.
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Preliminaries

In this chapter we cover the mathematical background essential to this
thesis. All the contents of this chapter are either widely known or available
in the cited works whenever provided, with the sole exception of some of
the examples in Subsection 2.4.3, which we will point out accordingly.

2.1 Symplectic geometry

In classical physics many systems can be formulated in a compact way
by means of the Hamiltonian formulation. In these problems there is a
conserved quantity, usually the sum of the kinetic and potential energies,
called here the Hamiltonian of the system. If we take the position and
momentum coordinates (𝑞1, . . . , 𝑞𝑛 , 𝑝1, . . . , 𝑝𝑛) inR2𝑛 and let𝐻 : R2𝑛 → R
be the Hamiltonian, the trajectory of a particle under the forces derived
from the potential energy is governed by Hamilton’s equations,

{
𝑑𝑝𝑖
𝑑𝑡

= −𝜕𝐻
𝜕𝑞𝑖
,

𝑑𝑞𝑖
𝑑𝑡

= 𝜕𝐻
𝜕𝑝𝑖
.

(2.1)

Symplectic geometry is a setting where one can generalize Hamilton’s
equations within the category of smooth manifolds.

Definition 2.1.1 Let 𝑀 be a smooth manifold and 𝜔 ∈ Ω2(𝑀) a diffe-
rential form. We say that it is a symplectic form if it closed (i.e. 𝑑𝜔 = 0) and
non-degenerate. In that case we call (𝑀, 𝜔) a symplectic manifold.

9



10 Chapter 2. Preliminaries

Remark 2.1.2 Symplectic manifolds are always even dimensional. This
is a consequence of the non-degeneracy property in Definition 2.1.1. Also,
as 𝜔𝑛 is a volume form, symplectic manifolds are oriented.

Example 2.1.3 In R2𝑛 with coordinates (𝑥1, . . . , 𝑥𝑛 , 𝑦1, . . . , 𝑦𝑛) the stan-
dard symplectic form is

𝜔st =

𝑛∑
𝑖=1

𝑑𝑥𝑖 ∧ 𝑑𝑦𝑖 .

Example 2.1.4 If Σ is an orientable surface then any area form 𝜔Σ ∈
Ω2(Σ) has top degree and thus it is closed, and by definition it is non-
degenerate. Hence, any orientable surface admits a symplectic structure.

In particular, let us consider the unit sphere S2 ⊂ R3, and let ⟨·, ·⟩ be a
Riemannian metric in R3. We say then that the differential form 𝜔S2 ∈
Ω2(S2) given by 𝜔S2 ,𝑝(𝑢, 𝑣) = ⟨𝑝, 𝑢 × 𝑣⟩ is the standard symplectic form in S2.
Let (𝜃, 𝑧) denote the cylindrical coordinates in S2 \ {𝑁, 𝑆}, where 𝑁 and
𝑆 denote the north and south poles respectively. In these coordinates the
standard symplectic form in S2 with respect to the Euclidean metric has
the expression

𝜔S2 = 𝑑𝜃 ∧ 𝑑𝑧.

Example 2.1.5 Let 𝑀 be a smooth manifold, and let 𝜋 : 𝑇∗𝑀 → 𝑀

denote the projection of the cotangent bundle onto the base space. The
tautological 1-form 𝜆 ∈ Ω1 (𝑇∗𝑀) is the differential form given at every
𝜉 ∈ 𝑇∗𝑀 by 𝜆𝜉 = 𝜉 ◦ 𝑑𝜉𝜋.

The canonical symplectic form on a cotangent bundle is then given by
𝜔 := −𝑑𝜆. If 𝑈 ⊂ 𝑀 is a trivializing chart for the cotangent bundle
with coordinates (𝑞1, . . . , 𝑞𝑛) in the base and coordinates 𝑝1, . . . , 𝑝𝑛 in
the direction of the fibre, the canonical symplectic form has the local
expression

𝜔 |𝑇∗𝑈 =

𝑛∑
𝑖=1

𝑑𝑞𝑖 ∧ 𝑑𝑝𝑖 .

Remark 2.1.6 Let 𝑀 be a closed even dimensional manifold. If the
second De Rham cohomology group 𝐻2

𝐷𝑅
(𝑀) is trivial then 𝑀 does not

admit a symplectic structure.

As an example, S2𝑛 does not admit a symplectic structure for any 𝑛 > 1.
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Proof. Assume that the second De Rham cohomology group 𝐻2
𝐷𝑅
(𝑀) is

trivial. Let 𝜔 ∈ Ω2(𝑀) be a closed form. As the cohomology group is
trivial, 𝜔 = 𝑑𝜂. By the Stokes theorem,∫

𝑀

𝜔𝑛 =

∫
𝑀

𝑑
(
𝜂 ∧ 𝜔𝑛−1

)
=

∫
𝜕𝑀

𝜂 ∧ 𝜔𝑛−1 = 0.

This implies that 𝜔 has to be degenerate at some point, and therefore it
cannot be a symplectic form.

A notable characteristic of symplectic forms is that they have no local
invariants besides the dimension of the manifold. In particular, any sym-
plectic form admits a local expression akin to that of Examples 2.1.3 and
2.1.5:

Theorem 2.1.7 (Darboux) Let (𝑀, 𝜔) be a symplectic manifold and 𝑝 ∈ 𝑀.
Then there exists a chart centered on 𝑝, (𝑈 ; 𝑞1, . . . , 𝑞𝑛 , 𝑝1, . . . , 𝑝𝑛), such that the
expression of 𝜔 in given in these coordinates by

𝜔 |𝑈 =

𝑛∑
𝑖=1

𝑑𝑞𝑖 ∧ 𝑑𝑝𝑖 .

As mentioned at the start of this section, symplectic geometry is tightly
related to classical mechanics. In Definition 2.1.1 we can consider 𝑀 to
be describing the phase space of a physical system, and if 𝐻 : 𝑀 → R is
a smooth function it is possible to use the symplectic form 𝜔 to derive a
system of equations locally equivalent to that of Equation 2.1.

Definition 2.1.8 A vector field 𝑋 ∈ 𝔛(𝑀) is symplectic if it preserves the
symplectic structure, this means, ℒ𝑋𝜔 = 0.

The Hamiltonian vector field or symplectic gradient of a smooth function H is
the unique vector field that satisfies the equation

𝜔(𝑋𝐻 , ·) = −𝑑𝐻.

Remark 2.1.9 The Hamiltonian vector field 𝑋𝐻 is symplectic for any
function 𝐻 ∈ 𝒞∞(𝑀). This we can see by using Cartan’s formula,

ℒ𝑋𝐻𝜔 = 𝜄𝑋𝐻𝑑𝜔 + 𝑑𝜄𝑋𝐻𝜔 = 0 − 𝑑𝑑𝐻 = 0.
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Example 2.1.10 Consider the standard symplectic structure in local Dar-
boux coordinates (𝑞1, . . . , 𝑞𝑛 , 𝑝1, . . . , 𝑝𝑛) as presented in Theorem 2.1.7.
The Hamiltonian vector field of 𝐻 is given in these coordinates by the
expression

𝑋𝐻 =

𝑛∑
𝑖=1

𝜕𝐻

𝜕𝑝𝑖

𝜕

𝜕𝑞𝑖
− 𝜕𝐻

𝜕𝑞𝑖

𝜕

𝜕𝑝𝑖
.

Definition 2.1.11 Let (𝑀1, 𝜔1) and (𝑀2, 𝜔2) be symplectic manifolds,
and consider 𝜓 : 𝑀1 → 𝑀2 a diffeomorphism. We say that it is a symplec-
tomorphism if 𝜓∗𝜔2 = 𝜔1.

We say (𝑀1, 𝜔1) and (𝑀2, 𝜔2) are symplectomorphic if there exists a sym-
plectomorphism between them.

Remark 2.1.12 For any Hamiltonian𝐻 the flow of its Hamiltonian vector
field, 𝜑𝑡

𝑋𝐻
, is a symplectomorphism for every 𝑡 when it is defined.

2.2 An introduction to Floer theory

In this section we will present the statement of the Arnold conjecture,
a central question in the study of symplectic geometry and a focus of
this thesis. This conjecture provides a lower bound on the number of
fixed points for Hamiltonian isotopies on compact symplectic manifolds.
This lower bound is set up in topological terms, which has implications
on the broader study of symplectic topology and symplectic dynamics.
Moreover, we will present a summary of one of the most useful techniques
to tackle this conjecture: Floer theory.

2.2.1 Morse theory

We will first introduce a sketch of Morse theory, which provides both a
model for Floer theory and a first inspiration for the Arnold conjecture.
For a more detailed introduction to this subject we direct the reader to
Milnor [Mil63] or to Part I of Audin and Damian [AD14].

Morse theory is centered on the relationship between the topology of a
manifold and the critical points of certain smooth functions defined on
the manifold, by means of a chain complex and the induced homology.
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Definition 2.2.1 Let 𝑀 be a closed smooth manifold and 𝑓 ∈ 𝒞∞(𝑀),
and let 𝑝 ∈ 𝑀 be a critical point of 𝑓 . The Hessian of 𝑓 at 𝑝 is the bilinear
map 𝐻𝑝[ 𝑓 ] on 𝑇𝑝𝑀 such that

𝐻𝑝[ 𝑓 ](𝑢, 𝑣) = 𝑣 (ℒ𝑋𝑢𝐻)

for all 𝑢, 𝑣 ∈ 𝑇𝑝𝑀. Here, 𝑋𝑢 ∈ Γ(𝑈) is a (local) vector field extending 𝑢 in
a neighbourhood𝑈 of 𝑝, so 𝑋𝑢 |𝑝 = 𝑢.

Lemma 2.2.2 The Hessian 𝐻𝑝[ 𝑓 ] is well defined in the sense that it does not
depend on the choice of 𝑋𝑢 , and it is a bilinear and symmetric map.

Definition 2.2.3 Let 𝑀 be a closed smooth manifold and 𝑓 ∈ 𝒞∞(𝑀).
A critical point 𝑝 of 𝑓 is non-degenerate if the Hessian 𝐻𝑝[ 𝑓 ] has maximal
rank.

If 𝑝 is a non-degenerate critical point, its index is the dimension of the
maximal subspace of𝑇𝑝𝑀 on which the Hessian𝐻𝑝[ 𝑓 ] is negative definite.
We denote the index of 𝑓 at 𝑝 by 𝜇 𝑓 (𝑝).

A function 𝑓 is Morse if all its critical points are non-degenerate.

Definition 2.2.4 Let 𝑀 be a closed smooth manifold endowed with a
Riemannian metric 𝑔. Let 𝑓 : 𝑀 → R be a Morse function, and let 𝜑𝑡grad 𝑓
denote the flow of the gradient of 𝑓 with respect to 𝑔. Let 𝑝 ∈ 𝑀 be a
critical point.

The stable manifold of 𝑓 at 𝑝 is the submanifold

𝑊 𝑠(𝑝) :=
{
𝑞 ∈ 𝑀

�� lim
𝑡→+∞

𝜑𝑡grad 𝑓 (𝑞) = 𝑝
}
.

The unstable manifold of 𝑓 at 𝑝 is the submanifold

𝑊𝑢(𝑝) :=
{
𝑞 ∈ 𝑀

�� lim
𝑡→−∞

𝜑𝑡grad 𝑓 (𝑞) = 𝑝
}
.

It is possible to construct a cellular decomposition of a manifold using
the stable manifolds of −grad( 𝑓 ) at each of the critical points of a Morse
function defined on the manifold. This naturally provides a relationship
between the topology of the manifold and the dynamics of the gradient
vector field −grad( 𝑓 ).

We can formalize this concept by defining a chain complex.
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Definition 2.2.5 Let 𝑀 be a closed manifold, 𝑓 ∈ 𝒞∞(𝑀) a Morse func-
tion and 𝑔 a Riemannian metric on 𝑀.

We define the groups of the Morse complex of (𝑀, 𝑓 , 𝑔) as the group of
degree 𝑘 generated freely over Z2 by the critical points with index 𝑘, this
means,

𝐶𝑀𝑘(𝑀, 𝑓 , 𝑔) :=

{
𝑁∑
𝑖=1

𝑎𝑝𝑖𝑝𝑖

��� 𝑁 ∈ N, 𝑝𝑖 ∈ Crit( 𝑓 ), 𝜇 𝑓 (𝑝𝑖) = 𝑘, 𝑎𝑝𝑖 ∈ Z2

}
.

Remark 2.2.6 It is possible to define the Morse complex over Z as well.
We choose as a coefficient ring Z2 because it simplifies considerably com-
putations significantly later on and when working with the Floer complex
(which we will model after the Morse complex), as the use of Z requires
the consideration of orientations on the stable and unstable manifolds.
Although the integral complex can eventually rely more information, Z2
suffices to prove the Morse inequalities.

Definition 2.2.7 The boundary map of the Morse complex 𝜕𝑘 :
𝐶𝑀𝑘(𝑀, 𝑓 , 𝑔) → 𝐶𝑀𝑘−1(𝑀, 𝑓 , 𝑔) is defined on the generators by the ex-
pression

𝜕𝑘(𝑝) :=
∑

𝜇 𝑓 (𝑞)=𝑘−1

𝑛(𝑝, 𝑞)𝑞,

where 𝑛(𝑝, 𝑞) denotes the number (modulo 2) of solutions to the system
of equations 

𝛾′(𝑡) = − grad( 𝑓 )
��
𝛾(𝑡)

lim
𝑡→−∞

𝛾(𝑡) = 𝑝

lim
𝑡→+∞

𝛾(𝑡) = 𝑞.

This means, the number of flow lines of −grad( 𝑓 ) that connect the critical
points 𝑝 and 𝑞.

Lemma 2.2.8 For any manifold𝑀, Morse function 𝑓 , and with the appropriate
choice of 𝑔, we have that

𝜕𝑘 ◦ 𝜕𝑘+1 = 0.

Definition 2.2.9 The Morse homology of (𝑀, 𝑓 , 𝑔) is the sequence of
groups

𝐻𝑀𝑘(𝑀, 𝑓 , 𝑔) := ker(𝜕𝑘)
im(𝜕𝑘+1)

.
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Theorem 2.2.10 The Morse homology of a manifold 𝑀 does not depend on
the choice of Morse function 𝑓 or the Riemannian metric 𝑔.

In light of Theorem 2.2.10, it makes sense to denote the homology simply
as 𝐻𝑀•(𝑀).

Theorem 2.2.11 The Morse homology of a manifold 𝑀 is isomorphic to the
singular homology of the manifold with coefficients on Z2,

𝐻𝑀•(𝑀) � 𝐻•(𝑀;Z2).

Corollary 2.2.12 (Morse inequalities) Let 𝑓 be a Morse function over a
closed manifold 𝑀. Then, there is a lower bound on the number of critical points
of 𝑓 ,

#Crit( 𝑓 ) ≥
𝑛∑
𝑘=0

𝛽𝑘 ,

where 𝛽𝑘 denotes the 𝑘-th Betti number of 𝑀, i.e., the rank of 𝐻𝑘(𝑀;Z2).

In particular, if we take Crit𝑘( 𝑓 ) =
{
𝑝 ∈ Crit( 𝑓 ) | 𝜇 𝑓 (𝑝) = 𝑘

}
we have that

#Crit𝑘( 𝑓 ) ≥ 𝛽𝑘 . (2.2)

Moreover, for all 0 ≤ 𝑙 < 𝑛 we have

𝑙∑
𝑘=0
(−1)𝑘#Crit𝑘( 𝑓 ) ≥

𝑙∑
𝑘=0
(−1)𝑘𝛽𝑘 , (2.3)

and
𝑛∑
𝑘=0
(−1)𝑘#Crit𝑘( 𝑓 ) =

𝑛∑
𝑘=0
(−1)𝑘𝛽𝑘 . (2.4)

Inequality 2.2 is often called the strong Morse inequality, while inequalities 2.3
and 2.4 are called the weak Morse inequalities.

Remark 2.2.13 The weak Morse inequalities reflect a general property
of homology groups, namely that the Euler characteristic of the sequence
of homology groups coincides with that of the chain complex from which
it is computed.



16 Chapter 2. Preliminaries

2.2.2 The Arnold conjecture

The Arnold conjecture, stated by V. I. Arnold in [Arn65, Arn86], estab-
lishes a lower bound on the number of fixed points of certain symplecto-
morphisms on compact symplectic manifolds.

First, let us consider a direct consequence of the Morse inequalities in
Corollary 2.2.12:

Corollary 2.2.14 Let (𝑀, 𝜔) be a closed symplectic manifold and let 𝐻 ∈
𝒞∞(𝑀) be a Morse function. Let 𝒫(𝐻) denote the set of 1-periodic orbits of the
Hamiltonian vector field 𝑋𝐻 . Then the number of (non-parametrized) 1-periodic
orbits of the Hamiltonian vector field 𝑋𝐻 is bounded below by the sum of the Betti
numbers of 𝑀:

#𝒫(𝐻) ≥
𝑛∑
𝑘=0

𝛽𝑘 .

The interesting idea by V. I. Arnold was to propose the same inequality
for a wider family of Hamiltonians, as we will see.

Remark 2.2.15 Let𝐻 : R×𝑀 → R be a smooth function. Its Hamiltonian
vector field is defined in an analogous manner to Definition 2.1.8. Let us
recall that the Hamiltonian vector field is defined as

𝜔(𝑋𝐻𝑡 , ·) = −𝑑𝐻𝑡 .

Here, 𝑑𝐻𝑡 denotes the differential of the function with respect to the
coordinates in 𝑀, ignoring the variable 𝑡.

This is a section in the sense that it is a map 𝑋𝐻𝑡 : R×𝑀 → 𝑇𝑀 such that,
if𝜋 : 𝑇𝑀 → 𝑀 denotes the vector bundle projection, 𝜋◦𝑋𝐻𝑡 : R×𝑀 → 𝑀

is the projection on the second component.

We use the same notation for a smooth function 𝐻 : S1 ×𝑀 → R.

Definition 2.2.16 A periodic solution 𝑥 : S1 → 𝑀 to Hamilton’s equa-
tions for a time-dependent Hamiltonian is said to be non-degenerate if

det
(
Id − 𝑑𝑥(0)𝜑1

𝑋𝐻𝑡

)
≠ 0.

A Hamiltonian 𝐻 : R × 𝑀 → R is non-degenerate if all of its 1-periodic
orbits are non-degenerate.
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Remark 2.2.17 If a critical point of 𝐻 is non-degenerate as a periodic
orbit, then it is non-degenerate as a critical point.

With these definitions in mind, we can state the general formulation of the
Arnold conjecture.

Theorem 2.2.18 (Arnold Conjecture) Let (𝑀, 𝜔) be a compact symplectic
manifold, and let 𝐻 : R ×𝑀 → R be a non-degenerate smooth Hamiltonian.

The number of 1-periodic orbits of 𝑋𝐻 is bounded below by the sum of the Betti
numbers of 𝑀:

#𝒫(𝐻) ≥
2𝑛∑
𝑘=0

𝛽𝑘 .

The Arnold conjecture was proved in full generality by the combined
efforts of several researchers. A chronology of the proof can be found in
Salamon [Sal99], which we will recall here:

A first proof for Riemann surfaces was found by Eliashberg [Eli79]. Then,
Conley and Zehnder developed a proof for the 2𝑛-tori in [CZ83]. In
[Gro85] Gromov proved the existence of at least one fixed point under the
assumption that 𝜋2(𝑀) = 0. Floer introduced his homology in a series
of papers [Flo88a, Flo88b, Flo88c, Flo89b, Flo89a] proving the Arnold
conjecture, for aspherical manifolds first and for monotone manifolds
later. Floer’s proof was extended by Hofer and Salamon [HS95] and Ono
[Ono95] to the weakly monotone case. Finally, Fukaya and Ono [FO99],
Liu and Tian [LT98] and Ruan [Rua99] achieved the proof for general
closed symplectic manifolds.

Further work has been devoted to iterate on and refine the proofs of
the Arnold conjecture in the last decades. For example, Filippenko and
Wehrheim [FW22] formulated a general proof using a perturbation scheme
based on the polyfold theory developed by Hofer, Wysocki and Zehn-
der [HWZ21] following the scheme by Piunikhin, Salamon and Schwarz
[PSS96]. Another approach for the full proof can be found in Par-
don [Par16] using techniques on virtual fundamental cycles on moduli
spaces of pseudo-holomorphic curves. Moreover, Abouzaid and Blum-
berg [AB21] have proved a more general version of the Arnold conjecture
in terms of generalized homology with respect to Morava 𝐾-theory.
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2.2.3 An overview of Floer theory

In this part we will give an overview of the proof of the Arnold Conjecture
2.2.18 in the particular case of aspherical manifolds. This will allow us to
introduce an element of special interest in this thesis: Floer homology.

Definition 2.2.19 Let 𝑀 be a smooth manifold. An almost complex struc-
ture is a section 𝐽 ∈ End(𝑇𝑀) such that 𝐽2 = −Id.

If (𝑀, 𝜔) is a symplectic manifold and 𝐽 is an almost complex structure,
we say that 𝐽 is compatible with, or calibrated by 𝜔, if 𝜔(𝐽𝑋, 𝐽𝑌) = 𝜔(𝑋,𝑌)
for all 𝑋,𝑌 ∈ 𝔛(𝑀) and the section 𝑔𝐽 := 𝜔(·, 𝐽·) is positive definite. In that
case 𝑔𝐽 defines a Riemannian metric on 𝑀. Let us denote by 𝒥(𝑀, 𝜔) the
space of almost complex structures compatible with 𝜔.

Remark 2.2.20 (McDuff and Salamon [MS98]) The space 𝒥(𝑀, 𝜔) of
almost complex structures compatible with 𝜔 is contractible.

Let (𝑀, 𝜔) be a compact symplectic manifold and consider 𝐽 an almost
complex structure adapted to 𝜔. Let us assume that the first Chern class
of (𝑀, 𝐽) vanishes on 𝜋2(𝑀) and also that [𝜔] vanishes on the second
homotopy group of 𝑀. These conditions can be written as ⟨𝜔,𝜋2(𝑀)⟩ = 0
and ⟨𝑐1(𝑇𝑀, 𝐽),𝜋2(𝑀)⟩ = 0.

Let us introduce informally the domain on which we will work. For a
formal introduction we refer the reader to [AD14, Section 6.8].

Definition 2.2.21 Let 𝑝 > 1 and 𝑔 a Riemannian metric on 𝑀. The
space of loops of 𝑀, denoted by ℒ1,𝑝𝑀, is a subset of 𝒞0(S1;𝑀) given
by the exponentials (with respect to 𝑔) of sections of the Banach bundle
𝑊1,𝑝(𝑥∗𝑇𝑀), where 𝑥 ∈ 𝒞∞(S1, 𝑀).

Theorem 2.2.22 (Schwarz [Sch93, Theorem 10]) ℒ1,𝑝𝑀 has a structure
of smooth manifold for all 𝑝 > 1 which does not depend on 𝑔. Moreover,
𝒞∞(S1;𝑀) ⊂ ℒ1,𝑝𝑀 ⊂ 𝒞0(S1;𝑀), where each inclusion is dense in the next
one.

From now on, we will denote byℒ𝑀 the subspace ofℒ1,2𝑀 of contractible
loops.

Definition 2.2.23 Let 𝐻 : S1 ×𝑀 → R be a smooth 1-periodic Hamilto-
nian. The action functional𝒜𝐻 : ℒ𝑀 → R is defined as

𝒜𝐻(𝑥) =
∫
S1
𝐻𝑡(𝑥(𝑡))𝑑𝑡 −

∫
𝐷2
𝑣∗𝜔,
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where 𝑣 is a filling of 𝑥 within 𝑀, i.e., 𝑣 : 𝐷2→ 𝑀 such that 𝑣 |𝜕𝐷2 = 𝑥.

Lemma 2.2.24 Critical points of the action functional correspond to 1-periodic
orbits of the Hamiltonian vector field.

Proof. Let us consider 𝑥 ∈ ℒ𝑀. Let 𝜋 : 𝑇𝑀 → 𝑀 denote the projection of
the tangent bundle. A tangent vector 𝑌 ∈ 𝑇𝑥ℒ𝑀 is a section 𝑌 : S1→ 𝑇𝑀

such that 𝜋 ◦ 𝑌 = 𝑥. Let us compute the differential of𝒜𝐻 along 𝑌.

First, let us consider a path through 𝑥, given by 𝑧 : (−𝜀, 𝜀) × S1→ 𝑀 such
that 𝑧(0, 𝑡) = 𝑥(𝑡) for all 𝑡 and 𝑑

𝑑𝑠

��
𝑠=0 𝑧(𝑠, 𝑡) = 𝑌(𝑡).

Let 𝑣 : 𝐷2 → 𝑀 a filling of 𝑥. Let us consider 𝑣̃ : (−𝜀, 𝜀) × 𝐷2 → 𝑀 such
that 𝑣̃

(
𝑠, 𝑒 𝑖𝑡

)
= 𝑧

(
𝑠, 𝑒 𝑖𝑡

)
and 𝑣̃(0, 𝑝) = 𝑣(𝑝). In other words, 𝑣̃ is a filling of

𝑧 compatible with 𝑣.

Then, 𝑌 can be extended to the whole disk 𝐷2 by taking 𝑌(𝑝) = 𝜕𝑣̃
𝜕𝑠 (0, 𝑝).

Then,

𝑑𝒜𝐻(𝑥) · 𝑌 =
𝑑

𝑑𝑠

����
𝑠=0
𝒜𝐻 (𝑧(𝑠)) =

𝑑

𝑑𝑠

����
𝑠=0

(∫ 1

0
𝐻𝑡 (𝑧(𝑠, 𝑡)) 𝑑𝑡 −

∫
𝐷2
𝑣̃∗𝑠𝜔

)
.

If we look at the second component and apply Cartan’s formula and Stoke’s
theorem, we get

−
∫
𝐷2

(
𝑑

𝑑𝑠

����
𝑠=0

𝑣̃∗𝑠𝜔

)
= −

∫
𝐷2
𝑣∗

(
ℒ𝑌(𝑝)𝜔

)
= −

∫
𝐷2
𝑣∗ (𝑑𝜄𝑌𝜔)

= −
∫
S1
𝑥∗ (𝜄𝑌𝜔) =

∫
S1
𝜔(𝑥′(𝑡), 𝑌(𝑡))𝑑𝑡.

On the other hand, for the first term we have∫ 1

0

𝜕

𝜕𝑠

����
𝑠=0

𝐻𝑡 (𝑧(𝑠, 𝑡)) 𝑑𝑡 =
∫ 1

0
𝑑𝐻𝑡 (𝑥(𝑡)) · 𝑌(𝑡)𝑑𝑡 = −

∫
S1
𝜔 (𝑋𝐻𝑡 , 𝑌) 𝑑𝑡.

Therefore,

𝑑𝒜𝐻(𝑥) · 𝑌 =

∫ 1

0
𝜔 (𝑥′(𝑡) − 𝑋𝐻𝑡 (𝑥(𝑡)) , 𝑌(𝑡)) 𝑑𝑡.

A loop 𝑥 is a critical point of𝒜𝐻 if and only if this last expression vanishes
for all 𝑌 ∈ 𝑇𝑥ℒ𝑀 and, as 𝜔 is non-degenerate, this happens if and only if
𝑥′(𝑡) = 𝑋𝐻𝑡 (𝑥(𝑡)) for all 𝑡 ∈ S1, which means that 𝑥 has to be an orbit of
the Hamiltonian vector field.
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Definition 2.2.25 Consider a Hamiltonian 𝐻 : S1×𝑀 → R. We say that
H is regular if all of the 1-periodic orbits of 𝑋𝐻𝑡 are non-degenerate (see
Definition 2.2.16).

Lemma 2.2.26 Let 𝐻 be an regular Hamiltonian defined on a compact mani-
fold. Then, all 1-periodic orbits of 𝑋𝐻𝑡 are isolated. In particular, 𝑋𝐻𝑡 has a finite
number of 1-periodic orbits.

Definition 2.2.27 The Floer complex is the graded Z2-vector spaces gene-
rated freely by the critical points of𝒜𝐻 :

𝐶𝐹𝑘(𝑀, 𝜔, 𝐻) :=

{
𝑁∑
𝑖=1

𝑎𝑥𝑖𝑥𝑖

��� 𝑁 ∈ N, 𝑥𝑖 ∈ Crit(𝒜𝐻), 𝜇𝐶𝑍(𝑥𝑖) = 𝑘, 𝑎𝑥𝑖 ∈ Z2

}
.

The grading on the Floer complex is given by a map 𝜇𝐶𝑍 called the Conley-
Zehnder index, which we will introduce here. The reader is encouraged
to look at Robbin and Salamon [RS93] or at Gutt [Gut12] for a definition
beyond our brief sketch.

Definition 2.2.28 Let SP(𝑛) be the set of continuous paths of matrices
𝜓 : [0, 1] → Sp

(
R2𝑛 , 𝜔st

)
(the space of symplectic matrices) such that

𝜓(0) = Id and det (Id − 𝜓(1)) ≠ 0.

The idea is to provide a map SP(𝑛) → Z that keeps track of the "rotation"
taken by a given path of matrices. To provide more context, take into con-
sideration the topological properties of the space of symplectic matrices,
Sp(R2𝑛 , 𝜔st):

Lemma 2.2.29 The first homotopy group of the space of symplectic matrices is
𝜋1

(
Sp(R2𝑛 , 𝜔st)

)
= Z. Moreover, there exists a projection 𝜌 : Sp(R2𝑛 , 𝜔st) →

S1 that induces an isomorphism of the homotopy groups.

We will call the projection 𝜌 from Lemma 2.2.29 the rotation map.

Informally, the Conley-Zehnder index can be constructed from a path
𝜓 ∈ SP(𝑛) by extending it into a particular path 𝜓 : [0, 2] → Sp(R2𝑛 , 𝜔st)
such that 𝜓(2) = Id. This means, 𝜓 : S1 → Sp(R2𝑛 , 𝜔st). The index can
then be defined to be the degree of the map 𝜌 ◦ 𝜓 : S1→ S1.

We include this sketch to provide a topological intuition for this con-
struction. However, the Conley-Zehnder can also be succintly defined
axiomatically, as follows.
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Proposition 2.2.30 ([Gut12, Proposition 37]) There exists a unique map
𝜇𝐶𝑍 : SP(𝑛) → Z such that it satisfies the properties

1. (Homotopy): If 𝜓0,𝜓1 ∈ SP(𝑛) are homotopic paths, then 𝜇𝐶𝑍(𝜓0) =
𝜇𝐶𝑍(𝜓1).

2. (Loop): Let 𝜓 ∈ SP(𝑛) and 𝜙 : [0, 1] → Sp(R2𝑛 , 𝜔st) such that 𝜙(0) =
𝜙(1) = Id. Then,

𝜇𝐶𝑍(𝜙𝜓) = 𝜇𝐶𝑍(𝜓) + 2deg(𝜌 ◦ 𝜙).

3. (Signature): Let 𝑆 a symmetric matrix such that 0 < |𝜆𝑖 | < 2𝜋 for
all its eigenvalues. Let 𝜓 ∈ SP(𝑛) given by 𝜓(𝑡) = exp(𝐽0𝑆𝑡), where

𝐽0 =

(
0 Id
−Id 0

)
. Then,

𝜇𝐶𝑍(𝜓) =
1
2Sign(𝑆),

where Sign denotes the signature of 𝑆.

Definition 2.2.31 If 𝑥 ∈ 𝒫(𝐻) (a 1-periodic orbit of 𝑋𝐻𝑡 ), we say that the
Conley-Zehnder index of 𝑥 is the integer given by 𝜇𝐶𝑍(𝑥) := 𝜇𝐶𝑍

(
𝑑𝜑𝑡

𝑋𝐻𝑡

)
.

Remark 2.2.32 The Conley-Zehnder index in Definition 2.2.31 is well
defined in this context because of the condition of asphericality on the
Chern class, which guarantees that the tangent bundle 𝑇𝑀 can be sym-
plectically trivialized when restricted to any S2 embedded in 𝑀. As a
consequence, two different choices of symplectic trivialization of 𝑇𝑀 over
a disk filling a contractible orbit will be equivalent.

To define a boundary map for the Floer complex, we need a way to connect
two periodic orbits, which we accomplish with the Floer equation.

Let (𝑀, 𝜔, 𝐽) be a symplectic manifold with a compatible almost-complex
structure. Let 𝐻 ∈ 𝒞∞(R × 𝑀) a regular Hamiltonian, and let 𝑢 : R ×
S1 → 𝑀. The Floer equation can be found when computing the negative
gradient flow of the action functional along 𝑢 with respect to the metric
induced by 𝑔𝐽 on ℒ𝑀:

Definition 2.2.33 Let 𝑢 : R → ℒ𝑀 smooth. The Floer equation is given
by
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𝜕𝑢

𝜕𝑠
+ 𝐽𝑢

𝜕𝑢

𝜕𝑡
+ grad𝐻𝑡(𝑢) = 0. (2.5)

The energy of a solution 𝑢 of Equation 2.5 is defined by

𝐸(𝑢) =
∫
S1×R

𝑢∗𝑑𝒜𝐻 ,

and the set of finite energy solutions is defined by

ℳ =
{
𝑢 : R × S1→ 𝑀 | 𝑢 is a solution to 2.5 and 𝐸(𝑢) < ∞

}
. (2.6)

The properties ofℳwere studied by Floer using the techniques pioneered
by Gromov in his analysis of pseudo-holomorphic curves. In the particular
context of the Floer equation, very similar methods are used to show the
following theorem:

Theorem 2.2.34 (Audin and Damian [AD14, Theorems 6.5.4 and 6.5.6])
For a generic choice of the almost-complex structure 𝐽, the setℳ is compact in
𝒞∞
𝑙𝑜𝑐
(R × S1;𝑀) . Moreover, for any 𝑢 ∈ ℳ, there exist two critical points of

𝒜𝐻 , 𝑥 and 𝑦, such that

lim
𝑠→−∞

𝑢(𝑠, ·) = 𝑥, lim
𝑠→+∞

𝑢(𝑠, ·) = 𝑦

in 𝒞∞(S1, 𝑀), and

lim
𝑠→±∞

𝜕𝑢

𝜕𝑠
(𝑠, ·) = 0.

Therefore,ℳ =
⋃
𝑥,𝑦∈Crit(𝒜𝐻)ℳ(𝑥, 𝑦).

In order the define a boundary map for the Floer complex one must study
the setsℳ(𝑥, 𝑦). It is possible to show that eachℳ(𝑥, 𝑦) is a finite dimen-
sional smooth manifold. To do so, one studies the linear approximation
of the Floer operator acting on the set of perturbations of elements ofℳ.
The space of such perturbations is defined as

𝒫1,𝑝(𝑥, 𝑦) =
{
𝑃 : (𝑠, 𝑡) ↦→ exp𝑢(𝑠,𝑡)𝑌(𝑠, 𝑡) | 𝑢 ∈ ℳ(𝑥, 𝑦), 𝑌 ∈𝑊1,𝑝(𝑢∗(𝑇𝑀))

}
.

Here 𝑊1,𝑝(𝑢∗(𝑇𝑀)) denotes the set of maps 𝑌 : R × S1 → 𝑇𝑀 such that
𝜋 ◦ 𝑌 = 𝑢 and such that their local trivializations belong to the Sobolev
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space 𝑊1,𝑝 . The exponential exp : 𝑇𝑝𝑀 → 𝑀 is the exponential induced
by the Riemannian structure 𝑔𝐽 .

Then, the linearised Floer operator is defined as

ℱ : 𝒫1,𝑝(𝑥, 𝑦) −→ 𝐿𝑝(R, S1)
𝑤 ↦−→ 𝜕𝑤

𝜕𝑠 + 𝐽𝑤
𝜕𝑤
𝜕𝑡 + grad𝑤𝐻𝑡 ,

and its linearisation has the expression

𝑑𝑢ℱ (𝑌) =
𝜕𝑌

𝜕𝑠
+ 𝐽𝑢

𝜕𝑌

𝜕𝑡
+ (ℒ𝑌 𝐽)𝑢

𝜕𝑢

𝜕𝑡
+ ℒ𝑌

(
grad𝑢𝐻𝑡

)
.

One can conclude (see [AD14, Theorem 8.1.5] or [Sal99, Theorem 2.2]) that
𝑑𝑢ℱ is a Fredholm map for any 𝑢 ∈ ℳ(𝑥, 𝑦) and that its Fredholm index
is Ind(𝑑ℱ𝑢) = 𝜇𝐶𝑍(𝑥) − 𝜇𝐶𝑍(𝑦), the difference of Conley-Zehnder indices.
Moreover, 𝑑𝑢ℱ is a surjective map for any non-degenerate Hamiltonian
𝐻 and any almost complex structure 𝐽 compatible with 𝜔 (recall that in
Remark 2.2.20 we mentioned that two almost complex structures compat-
ible with the same symplectic form are always homotopic). From this, it
is possible to determine the dimension ofℳ(𝑥, 𝑦) as follows:

Theorem 2.2.35 For 𝑝 > 2, ℱ −1(0) is a smooth manifold of dimension
𝜇𝐶𝑍(𝑥) − 𝜇𝐶𝑍(𝑦).

Definition 2.2.36 Let 𝑥 and 𝑦 two 1-periodic Hamiltonian orbits. The
set of non-parametrized trajectories, denoted by 𝒯 (𝑥, 𝑦), is the quotient of
the manifoldℳ(𝑥, 𝑦) by the action of R.

Remark 2.2.37 It is possible to conclude (see [AD14, Chapter 9]) that
𝒯 (𝑥, 𝑦) is Hausdorff. Moreover, for any pair (𝑥, 𝑦) of orbits, 𝒯 (𝑥, 𝑦) can
be compactified into a manifold of dimension 𝜇𝐶𝑍(𝑥) − 𝜇𝐶𝑍(𝑦) − 1, which
we denote by 𝒯 (𝑥, 𝑦).

Definition 2.2.38 Let (𝑥, 𝑦) a pair of Hamiltonian orbits such that
𝜇𝐶𝑍(𝑥) = 𝜇𝐶𝑍(𝑦) + 1. Then, we denote by 𝑛(𝑥, 𝑦) the cardinality of the
zero-dimensional and compact manifold 𝒯 (𝑥, 𝑦), modulo 2.

Then, for each 𝑘 ∈ N the boundary map of the Floer complex is the map
𝜕𝑘 : 𝐶𝐹𝑘+1(𝑀;𝐻, 𝐽) → 𝐶𝐹𝑘(𝑀;𝐻, 𝐽) given by

𝜕𝑘(𝑥) =
∑

𝑦∈𝐶𝐹𝑘(𝑀;𝐻,𝐽)
𝑛(𝑥, 𝑦)𝑦.
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Theorem 2.2.39 (Floer [Flo89a, Theorem 4])

𝜕𝑘 ◦ 𝜕𝑘+1 = 0.

Thus, the Floer complex (𝐶𝐹•(𝑀;𝐻, 𝐽), 𝜕•) is well defined and it induces
a homology. It is clear that we used both 𝐻 and 𝐽 to define this complex,
so we would expect the complex (and therefore the homology) to depend
on these choices. However, this is not the case for the homology:

Theorem 2.2.40 (Floer [Flo89a, Theorem 5], Audin and Damian [AD14,
Chapter 11]) The homology induced by the Floer complex does not depend on
the choice of a pair (𝐻, 𝐽).

Indeed, this homology can be identified with the Morse homology:

Theorem 2.2.41 (Floer [Flo89a, Theorem 1], Audin and Damian [AD14,
Theorem 10.1.1]) The Floer homology is isomorphic to the Morse homology with
a shift in the degree,

𝐻𝐹•(𝑀) � 𝐻𝑀•+𝑛(𝑀),
where dim(𝑀) = 2𝑛.

Theorem 2.2.41 proves that the Floer homology is indeed a topological
invariant of an (aspherical) symplectic manifold. Moreover, it provides
explicitly the dimensions of the homology groups, in relation to the groups
of the Morse homology.

The power of this result resides in the fact that the groups of the Floer
complex may be impossible to compute, rendering an explicit computation
of the Floer homology impossible. However, the theorem allows the Morse
inequalities to be translated to this setting without any further effort.

In particular, this proves the Arnold conjecture for the aspherical sym-
plectic case.

2.3 Poisson geometry

In this section we generalize the notion of symplectic geometry to a broader
setting. This generalization is particular in that we still can compute a
Hamiltonian vector field for any given function𝐻 ∈ 𝒞∞(𝑀)while relaxing
the non-degeneracy condition.
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Definition 2.3.1 A Poisson bracket or Poisson structure on a manifold 𝑀 is
a map {·, ·} : 𝒞∞(𝑀)×𝒞∞(𝑀) → 𝒞∞(𝑀) such that for all 𝑓 , 𝑔, ℎ ∈ 𝒞∞(𝑀):

1. It is skew-symmetric, this means, {𝑔, 𝑓 } = −{ 𝑓 , 𝑔}.

2. It is bilinear, so { 𝑓 , 𝑎𝑔 + 𝑏ℎ} = 𝑎{ 𝑓 , 𝑔} + 𝑏{ 𝑓 , ℎ} for all 𝑎, 𝑏 ∈ R.

3. It satisfies the Jacobi identity: { 𝑓 , {𝑔, ℎ}}+{𝑔, {ℎ, 𝑓 }}+{ℎ, { 𝑓 , 𝑔}} = 0.

4. It satisfies the Leibniz identity: { 𝑓 , 𝑔ℎ} = 𝑔{ 𝑓 , ℎ} + ℎ{ 𝑓 , 𝑔}.

If {·, ·} is a Poisson bracket, we say that (𝑀, {·, ·}) is a Poisson manifold.

Example 2.3.2 Any symplectic manifold has a Poisson structure given
by

{ 𝑓 , 𝑔}𝜔 := 𝜔(𝑋 𝑓 , 𝑋𝑔).

Thus, symplectic manifolds are particular cases of Poisson manifolds.
However, there are meaningful differences between both classes. For
instance, there exist no topological restrictions on the existence of a Pois-
son bracket on a given manifold, because the trivial bracket is always a
possibility:

Example 2.3.3 Let 𝑀 be a smooth manifold. Then, (𝑀, {·, ·}0) is a
Poisson manifold, where { 𝑓 , 𝑔}0 = 0 for all 𝑓 , 𝑔 ∈ 𝒞∞(𝑀).

In Definition 2.1.8 we introduced the notion of symplectic and Hamiltonian
vector fields. We have analogous notions of Poisson and Hamiltonian
vector fields in this context:

Definition 2.3.4 Let (𝑀, {·, ·}) be a Poisson manifold. We say that 𝑋 ∈
𝔛(𝑀) is a Poisson vector field if ∀ 𝑓 , 𝑔 ∈ 𝒞∞(𝑀)we have

ℒ𝑋{ 𝑓 , 𝑔} = {ℒ𝑋 𝑓 , 𝑔} + { 𝑓 ,ℒ𝑋 𝑔} .

For a function 𝑓 ∈ 𝒞∞(𝑀), its Hamiltonian vector field is given by the
derivation

𝑋 𝑓 (𝑔) := { 𝑓 , 𝑔}.
By the Jacobi identity in Definition 2.3.1 it is clear that a Hamiltonian
vector field is always a Poisson vector field.
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Remark 2.3.5 If (𝑀, {·, ·}) is induced by a symplectic structure 𝜔, the
Hamiltonian vector fields introduced in Definitions 2.1.8 and 2.3.4 coin-
cide.

Poisson structures can be presented by means of a bivector field:

Definition 2.3.6 The Poisson bivector field associated to a Poisson bracket
is the bivector field 𝜋 ∈ Γ

(∧2 𝑇𝑀
)

such that

{ 𝑓 , 𝑔} = 𝜋(𝑑𝑓 , 𝑑𝑔)

for all 𝑓 , 𝑔 ∈ 𝒞∞(𝑀).

Conversely, a bivector field 𝜋 ∈ Γ
(∧2 𝑇𝑀

)
induces a Poisson structure on

𝑀 if [𝜋,𝜋] = 0, where [·, ·] denotes the Schouten-Nĳenhuis bracket.

We will not develop the notion of the Schouten-Nĳenhuis bracket here. We
just note that it is a generalization of the Lie bracket to multivector fields.
A detailed introduction can be found, for example, in Laurent-Gengoux,
Pichereau and Vanhaecke [LGPV13].

Example 2.3.7 For any symplectic manifold (𝑀, 𝜔), we will denote the
Poisson bivector field associated to 𝜔 by 𝜔−1. In the case of the stan-
dard symplectic form in R2𝑛 with coordinates (𝑥1, . . . , 𝑥𝑛 , 𝑦1, . . . , 𝑦𝑛), the
Poisson bivector field is

𝜔−1 := 𝜋st =

𝑛∑
𝑖=1

𝜕

𝜕𝑥𝑖
∧ 𝜕

𝜕𝑦𝑖
.

Lemma 2.3.8 If 𝑓 , 𝑔 are smooth functions, then

[𝑋 𝑓 , 𝑋𝑔] = 𝑋{ 𝑓 ,𝑔} .

Proof. Using the definition of a Hamiltonian vector field, we can compute
the Lie derivative of a function ℎ with respect to [𝑋 𝑓 , 𝑋𝑔]:

ℒ[𝑋 𝑓 ,𝑋𝑔]ℎ = ℒ𝑋 𝑓
ℒ𝑋𝑔 ℎ − ℒ𝑋𝑔ℒ𝑋 𝑓

ℎ = { 𝑓 , {𝑔, ℎ}} − {𝑔, { 𝑓 , ℎ}}
= { 𝑓 , {𝑔, ℎ}} + {𝑔, {ℎ, 𝑓 }} = {{ 𝑓 , 𝑔}, ℎ} = ℒ𝑋{ 𝑓 ,𝑔} ℎ,

where we use the Jacobi identity and the skew-symmetry of {·, ·}.
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This fact allows us to define an involutive distribution for any Poisson
manifold, induced by its set of Hamiltonian vector fields.

Definition 2.3.9 Let (𝑀, {·, ·}) be a Poisson manifold. Its characteris-
tic foliation, also called symplectic foliation is the foliation induced by the
distribution of Hamiltonian vector fields.

We say that the rank of a Poisson structure at a point 𝑝 ∈ 𝑀 is the rank of
the characteristic foliation at 𝑝.

Remark 2.3.10 The restriction of the Poisson structure to each leaf of the
characteristic foliation is symplectic. In particular, the rank of the Poisson
structure at a point is always even.

Poisson structures do not admit a uniform local expression as in Theorem
2.1.7, in part because the rank can vary depending on the point. However,
Weinstein presented in [Wei83] a local form theorem:

Theorem 2.3.11 (Weinstein splitting theorem) Let (𝑀,𝜋) be a Poisson
manifold of dimension 𝑛 and let 𝑝 ∈ 𝑀. Let 2𝑟 denote the rank of the Poisson
structure at 𝑝.

Then, there exist a neighbourhood 𝑈 of 𝑝 and a local coordinate system in 𝑈

centered at 𝑝 with coordinates (𝑥1, . . . , 𝑥𝑟 , 𝑦1, . . . , 𝑦𝑟 , 𝑧1, . . . , 𝑧𝑛−2𝑟), such that
the Poisson structure has the local expression

𝜋|𝑈 =

𝑟∑
𝑖=1

𝜕

𝜕𝑥𝑖
∧ 𝜕

𝜕𝑦𝑖
+

∑
𝑗<𝑘

𝑓𝑗 ,𝑘(𝑧)
𝜕

𝜕𝑧 𝑗
∧ 𝜕

𝜕𝑧𝑘
,

where 𝑓𝑗 ,𝑘 are smooth functions depending only on the variables (𝑧1, . . . , 𝑧𝑛−2𝑟)
and vanishing at the origin.

There is a particular vector field in the context of Poisson geometry that
will be of special interest in our research: the modular vector field.

Definition 2.3.12 Let (𝑀,𝜋) be a Poisson manifold admitting a volume
form Ω. The modular vector field 𝑣𝑚𝑜𝑑 associated to 𝜋 and Ω is the unique
vector field such that

ℒ𝑋 𝑓
Ω =

(
ℒ𝑣𝑚𝑜𝑑 𝑓

)
Ω,

where 𝑋 𝑓 is the Hamiltonian vector field of 𝑓 with respect to 𝜋, for all
𝑓 ∈ 𝒞∞(𝑀).
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Remark 2.3.13 Let (𝑀,𝜋) be a Poisson manifold and Ω and Ω′ volume
forms. Then there exists 𝑔 ∈ 𝒞∞(𝑀) a strictly positive function, so that
Ω′ := 𝑔Ω. If 𝑣Ω

𝑚𝑜𝑑
and 𝑣Ω′

𝑚𝑜𝑑
denote the modular vector fields associated to

the corresponding volume forms, then

𝑣Ω
′

𝑚𝑜𝑑
= 𝑣Ω

𝑚𝑜𝑑
+ 𝑋log 𝑔 .

Therefore, the difference between two modular vector fields is always a
Hamiltonian vector field.

Remark 2.3.14 The modular vector field is always a Poisson vector field,
this means, ℒ𝑣𝑚𝑜𝑑𝜋 = 0.

We will introduce also a particular type of Poisson manifold: cosymplectic
manifolds:

Definition 2.3.15 Let 𝑀 be a smooth manifold of dimension 2𝑛 + 1
and 𝛼 ∈ Ω1(𝑀) and 𝛽 ∈ Ω2(𝑀) closed forms. We say that (𝛼, 𝛽) is a
cosymplectic structure if 𝛼 ∧ 𝛽𝑛 is a volume form. In that case we call
(𝑀, 𝛼, 𝛽) a cosymplectic manifold.

The Hamiltonian vector field associated to a function 𝑓 ∈ 𝒞∞(𝑀) is the
unique vector field 𝑋 𝑓 such that

𝛽(𝑋 𝑓 , ·) + 𝛼(𝑋 𝑓 )𝛼 = −𝑑𝑓 ,

and the Poisson structure induced by (𝛼, 𝛽) is
{ 𝑓 , 𝑔} := 𝛽

(
𝑋 𝑓 , 𝑋𝑔

)
.

Remark 2.3.16 The symplectic foliation of a cosymplectic manifold (as
introduced in Definition 2.3.9) is induced by the integrable distribution
given by ker(𝛼).

Remark 2.3.17 A cosymplectic manifold (𝑀, 𝛼, 𝛽) has the natural vo-
lume form 𝛼 ∧ 𝛽𝑛 by definition. Its modular vector field, also called Reeb
vector field in this context, is given by

𝛼(𝑣𝑚𝑜𝑑) = 1, 𝛽(𝑣𝑚𝑜𝑑 , ·) = 0.

Remark 2.3.18 There is an equivalent characterization of cosymplectic
manifolds by means of the Poisson structure (see for instance Osorno-
Torres [OT15]): Let (𝑀,𝜋) a Poisson manifold of dimension 2𝑛 + 1 whose
Poisson bivector field has constant rank 2𝑛. If there exists a Poisson vector
field 𝑋 ∈ 𝔛(𝑀) transverse to ℱ everywhere, then the tuple (𝑀,𝜋, 𝑋)
describes a cosymplectic manifold with modular vector field 𝑋.
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Example 2.3.19 ConsiderR2𝑛+1 with coordinates (𝑡 , 𝑥1, ..., 𝑥𝑛 , 𝑦1, ..., 𝑦𝑛).
The standard cosymplectic structure is then given by

𝛼 = 𝑑𝑡, 𝛽 =

𝑛∑
𝑖=1

𝑑𝑥𝑖 ∧ 𝑑𝑦𝑖 .

In this case, 𝑣𝑚𝑜𝑑 = 𝜕
𝜕𝑡 and the Poisson structure has the form

{ 𝑓 , 𝑔} =
𝑛∑
𝑖=1

(
𝜕 𝑓

𝜕𝑥𝑖

𝜕𝑔

𝜕𝑦𝑖
−

𝜕 𝑓

𝜕𝑦𝑖

𝜕𝑔

𝜕𝑥𝑖

)
.

2.4 𝑏𝑚-symplectic geometry

In this section we will provide a brief overview of the field of 𝑏𝑚-symplectic
manifolds. The aim of this field is to reproduce techniques and results of
symplectic geometry to a more general family of structures within Poisson
geometry. Therefore, we will emphasize similarities and contrasts between
𝑏𝑚-symplectic and symplectic structures whenever possible.

A reader interested in furthering their understanding of this subject is ad-
vised to consult Guillemin, Miranda and Pires [GMP14] and Scott [Sco16].

The issue of terminology is relevant in this subject. The 𝑏 in 𝑏𝑚-symplectic
comes from boundary, and was introduced by Melrose in [Mel93] in the
context of 𝑏-calculus while proving the Atiyah-Patodi-Singer theorem. The
terminology was adopted by the aforementioned authors in their study of
𝑏𝑚-symplectic manifolds with a motivation in studying the dynamical as-
pects of the restricted 3-body problem under non-canonical changes of co-
ordinates. For a complete development of this interpretation, see Kiesen-
hofer and Miranda [KM17] or Kiesenhofer, Miranda and Scott [KMS16].

However, the same structures and similar ones have been independently
introduced and studied under the name of log-symplectic structure among
others by Cavalcanti, Gualtieri, Li, Pelayo and Ratiu, see for instance
[Cav17, GL14, GLPR17, CK19]. In their case the point of view is motivated
by a study of generalized complex geometry and foliations of Poisson
manifolds.

Further contributions may be found in [MP18, GMW18a, GMW18b,
GMW19, KMS16, KM17, MOT14b, MOT14a].
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2.4.1 𝑏-manifolds

We begin by establishing the basic tools used to set up a theory of sym-
plectic structures on singular manifolds.

Definition 2.4.1 A 𝑏-manifold is a pair (𝑀, 𝑍), where 𝑀 is a smooth
manifold and 𝑍 ⊂ 𝑀 is an embedded hypersurface. 𝑍 is often called the
singular hypersurface, the critical set or the divisor of the 𝑏-manifold.

If (𝑀1, 𝑍1) and (𝑀2, 𝑍2) are 𝑏-manifolds and 𝑓 : 𝑀1 → 𝑀2 is a smooth
map, we say that 𝑓 is a 𝑏-map if 𝑓 −1(𝑍2) = 𝑍1 and 𝑓 is transversal to 𝑍2.

Definition 2.4.2 Let (𝑀, 𝑍) be a 𝑏-manifold, and let 𝒩(𝑍) denote a
neighbourhood of 𝑍, this means, an open set 𝒩(𝑍) ⊂ 𝑀 containing 𝑍.
A defining function is a 𝑏-map 𝑧 : (𝒩(𝑍), 𝑍) → (R, {0}). In the case that
a defining function 𝑧 is defined in the whole manifold we say that it is a
global defining function or globally defined defining function.

Moreover, if𝑈 ⊂ 𝑀 is an open set, we will say that a local defining function
is a 𝑏-map 𝑧 : (𝑈,𝑈 ∩ 𝑍) → (R, {0}).

𝑏-manifolds allow us to encode dynamical behaviours in which the hy-
persurface is left invariant by the system. A basic tool to understand this
kind of systems is the 𝑏-tangent bundle.

Definition 2.4.3 Let (𝑀, 𝑍) be a 𝑏-manifold. A 𝑏-vector field is a vector
field 𝑋 ∈ 𝔛(𝑀) such that it is tangent to 𝑍 at all points of 𝑍, this means,
𝑋(𝑧) ∈ 𝑇𝑍 for all 𝑧 ∈ 𝑍. The subset of 𝑏-vector fields is denoted by
𝑏𝔛(𝑀, 𝑍).

Remark 2.4.4 The set of 𝑏-vector fields is a submodule of 𝔛(𝑀). More-
over, it is closed under the Lie bracket.

Remark 2.4.5 If 𝑝 ∈ 𝑍 and we have a local chart around 𝑝 given by
(𝑈 ; 𝑧, 𝑥2, . . . , 𝑥𝑛), with 𝑧 : 𝑈 → R a local defining function, it is possible
to describe the set of 𝑏-vector fields in local coordinates as

𝑏𝔛(𝑀, 𝑍)
��
𝑈
=

〈
𝑧
𝜕

𝜕𝑧
,

𝜕

𝜕𝑥2
, . . . ,

𝜕

𝜕𝑥𝑛

〉
𝒞∞(𝑈)

The set of 𝑏-vector fields can be related to a geometrical object, namely the
𝑏-tangent bundle, through the use of the Serre-Swan theorem.
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Theorem 2.4.6 (Swan [Swa62]) Let 𝑀 be a smooth manifold and 𝑃 a pro-
jective 𝒞∞(𝑀)-module. Then, there exists a vector bundle 𝐸 → 𝑀 such that 𝑃
is isomorphic to Γ(𝐸), the module of sections of 𝐸. Moreover, 𝐸 is unique up to
vector bundle isomorphisms.

The module 𝑏𝔛(𝑀, 𝑍) fulfils the requirements of Theorem 2.4.6, so we can
define the vector bundle whose sections are precisely the 𝑏-vector fields.

Definition 2.4.7 Let (𝑀, 𝑍) be a 𝑏-manifold where dim(𝑀) = 𝑛. The
𝑏-tangent bundle is the unique vector bundle 𝑏𝑇𝑀 → 𝑀 of rank 𝑛 such that
𝑏𝔛(𝑀, 𝑍) = Γ(𝑏𝑇𝑀). The dual to this vector bundle, denoted by 𝑏𝑇∗𝑀, is
the 𝑏-cotangent bundle.

Definition 2.4.8 A Lie algebroid is a tuple (𝒜 , [·, ·], 𝜌)where

• 𝒜 → 𝑀 is a vector bundle,

• 𝜌 : 𝒜 → 𝑇𝑀, called the anchor map, is a vector bundle morphism,

• [·, ·] : Γ(𝒜) × Γ(𝒜) → Γ(𝒜) is a Lie bracket,

such that [𝑋, 𝑓 𝑌] =
(
ℒ𝜌(𝑋) 𝑓

)
𝑌 + 𝑓 [𝑋,𝑌] for all 𝑋,𝑌 ∈ Γ(𝒜) and 𝑓 ∈

𝒞∞(𝑀).

Remark 2.4.9 The 𝑏-tangent bundle is a particular case of a Lie algebroid
on 𝑀, where the anchor map 𝜌 is induced by the inclusion of sections
𝑏𝔛(𝑀) ↩→ 𝔛(𝑀).

𝑏-manifolds are particular cases of a more general family, that of 𝑏𝑚-
manifolds:

Definition 2.4.10 (Scott [Sco16]) Let (𝑀, 𝑍) be a 𝑏-manifold and take an
integer 𝑚 ≥ 1. A 𝑏𝑚-vector field is a vector field 𝑋 ∈ 𝔛(𝑀) that is tangent
to 𝑍 at order 𝑚 with respect to some defining function 𝑧 : (𝒩(𝑍), 𝑍) →
(R, {0}). The set of 𝑏𝑚-vector fields is denoted by 𝑏𝑚𝔛(𝑀).

The sheaf of 𝑏𝑚-vector fields constitutes a projective submodule of 𝔛(𝑀)
for all 𝑚 ≥ 1, and therefore we can use Theorem 2.4.6 to define the 𝑏𝑚-
tangent bundle and the as in Definition 2.4.7:
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Definition 2.4.11 Let (𝑀, 𝑍) be a 𝑏-manifold and 𝑚 ≥ 1 an integer. The
𝑏𝑚-tangent bundle is the unique vector bundle 𝑏𝑚𝑇𝑀 → 𝑀 whose sheaf
of sections is isomorphic to 𝑏𝑚𝔛(𝑀). Its dual, denoted as 𝑏𝑚𝑇∗𝑀, is the
𝑏𝑚-cotangent bundle.

By construction, when 𝑚 = 1 we recover precisely the construction of
Definition 2.4.7.

Remark 2.4.12 Let (𝑀, 𝑍) be a 𝑏-manifold with a defining function 𝑧 and
𝑚 ≥ 1. Let 𝑝 ∈ 𝑍. Then, there is a chart centered on 𝑝, (𝑈 ; 𝑧, 𝑥2, . . . , 𝑥𝑛),
such that

Γ

(
𝑏𝑚𝑇∗𝑀

)���
𝑈
=

〈
𝑧𝑚

𝜕

𝜕𝑧
,

𝜕

𝜕𝑥2
, . . . ,

𝜕

𝜕𝑥𝑛

〉
𝒞∞(𝑈)

and
Γ

(
𝑏𝑚𝑇∗𝑀

)���
𝑈
=

〈
𝑑𝑧

𝑧𝑚
, 𝑑𝑥2, . . . , 𝑑𝑥𝑛

〉
𝒞∞(𝑈)

.

The notation 𝑑𝑧
𝑧𝑚 might seem misleading, as the expression cannot be eval-

uated at points where 𝑧 = 0. However, what is meant by this expression is
merely that the section 𝑑𝑧

𝑧𝑚 is such that its pairing with the non-vanishing
section 𝑧𝑚 𝜕

𝜕𝑧 ∈ Γ
(
𝑏𝑚𝑇𝑀

)
is precisely 1.

Definition 2.4.13 The set of 𝑏𝑚-𝑘-differential forms on a 𝑏-manifold (𝑀, 𝑍)
is the space of sections

𝑏𝑚Ω𝑘(𝑀) := Γ

(
Λ𝑘

(
𝑏𝑚𝑇∗𝑀

))
.

Proposition 2.4.14 (Guillemin-Miranda-Pires [GMP14]) Let (𝑀, 𝑍) be a
𝑏-manifold with a fixed defining function 𝑧. Let 𝜔 ∈ 𝑏𝑚Ω𝑘(𝑀). Then, there exist
𝛼 ∈ Ω𝑘−1(𝑀) and 𝛽 ∈ Ω𝑘(𝑀) such that locally 𝜔 has the expression

𝜔 = 𝛼 ∧ 𝑑𝑧
𝑧𝑚
+ 𝛽

around 𝑍. The forms 𝛼 and 𝛽 are not necessarily unique, but 𝛼 |𝑍 and 𝛽 |𝑍 are
unique.

With this decomposition in mind we can define a structure completely
analogous to that of the De Rham complex.
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Definition 2.4.15 The differential is the graded map 𝑑 : 𝑏𝑚Ω•(𝑀) →
𝑏𝑚Ω•+1(𝑀) such that, if 𝜔 = 𝛼 ∧ 𝑑𝑧

𝑧𝑚 + 𝛽, then

𝑑𝜔 = 𝑑𝛼 ∧ 𝑑𝑧
𝑧𝑚
+ 𝑑𝛽.

The 𝑏𝑚-De Rham complex is then the chain complex

0→ 𝑏𝑚Ω0(𝑀) 𝑑−→ 𝑏𝑚Ω1(𝑀) 𝑑−→ · · · 𝑑−→ 𝑏𝑚Ω𝑛(𝑀) → 0.

The 𝑏𝑚-De Rham cohomology can be defined by

𝑏𝑚𝐻 𝑘(𝑀) :=
ker

(
𝑑𝑘

)
im

(
𝑑𝑘−1) .

An interesting phenomenon in this case is that this homology can be very
easily computed.

Theorem 2.4.16 (Mazzeo-Melrose) Let (𝑀, 𝑍) be a 𝑏-manifold. The 𝑏𝑚-De
Rham cohomology is

𝑏𝑚𝐻 𝑘(𝑀) �
(
𝐻 𝑘−1(𝑍)

)𝑚
⊕ 𝐻 𝑘(𝑀).

There will be cases in which we will be interested in expanding the set
𝒞∞(𝑀) in such a way that the form 𝑑𝑧

𝑧𝑚 becomes exact. In such cases we
will take 𝑏𝑚-functions into consideration.

Definition 2.4.17 The set of 𝑏-functions or 𝑏-Hamiltonians is the sheaf
given locally by

𝑏𝒞∞(𝑈) := {𝑎 log |𝑧 | + 𝑔 | 𝑎 ∈ R, 𝑔 ∈ 𝒞∞(𝑈)}

when𝑈 intersects 𝑍, where 𝑧 denotes a local function 𝑧 : 𝑈 → R defining
𝑍 ∩𝑈 . When𝑈 does not intersect 𝑍 we simply take 𝑏𝒞∞(𝑈) = 𝒞∞(𝑈).

With the same notations, we define the set of 𝑏𝑚-functions or 𝑏𝑚-
Hamiltonians as the sheaf constructed analogously as

𝑏𝑚𝒞∞(𝑈) :=

(
𝑚−1⊕
𝑖=1

𝑧−𝑖𝒞∞(𝑧)
)
⊕ 𝑏𝒞∞(𝑈)

whenever 𝑈 ∩ 𝑍 ≠ ∅, where 𝒞∞(𝑧) denotes smooth functions of one
variable composed with 𝑧.
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We will end this section by introducing a structure that will be useful in
multiple places to encode topological information regarding the relative
position of 𝑍 within 𝑀.

Definition 2.4.18 The associated graph to a 𝑏-manifold (𝑀, 𝑍) is the graph
whose vertices are the connected components of 𝑀 \𝑍, often individually
denoted by𝑀𝑖 . There is an edge between𝑀𝑖 and𝑀 𝑗 if there is a connected
component of 𝑍 that borders both 𝑀𝑖 and 𝑀 𝑗 . We will usually refer to the
edges (or connected components of 𝑍) by 𝑍𝑖 .

In the case that dim(𝑀) = 2 we equip the graph with weights. The weight
associated to the vertex 𝑀𝑖 , denoted by 𝑔𝑀𝑖 , is given by the genus of the
surface 𝑀𝑖 where each adjacent component of 𝑍 has been compactified
into a point.

We say that a 𝑏-manifold is cyclic or acyclic if its associated graph contains
(or, respectively, does not contain) a cycle.

An example of such a graph can be seen in Figure 2.1.

𝑀1

𝑀2

𝑀3

𝑀4

𝑀5

𝑀1

𝑀2

𝑀3

𝑀4

𝑀5

Figure 2.1: An example of the graph associated to a 𝑏-manifold (cyclic).
All the weights are 0 except of 𝑔𝑀5 , which is 1.

A first use of the graph is the characterization of the 𝑏-manifolds that admit
a global defining function (see Definition 2.4.2). The following result is
essentially a reformulation from Miranda and Planas [MP18, Theorem 5.5].

Lemma 2.4.19 A 𝑏-manifold admits a global defining function if and only if
its associated graph is 2-colourable.

Proof. Let 𝑧 : (𝑀, 𝑍) → (R, {0}) a global defining function. By definition
we know that 𝑀 \ 𝑍 = 𝑧−1(R \ {0}). Therefore, we can choose a colouring
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of the graph by partitioning the set of connected components of 𝑀 \ 𝑍
between those that are subsets of 𝑧−1(R>0) and those that are subsets of
𝑧−1(R<0). Since 𝑧 must vanish transversally in each connected component
𝑍𝑖 , the two connected components of 𝑀 \ 𝑍 adjacent to 𝑍𝑖 must belong
to two different partitions, which in terms of the graph means that any
two adjacent vertices must have different colours. In this way 𝑧 induces a
2-colouring on the graph.

Conversely, let (𝑀, 𝑍) be a 𝑏-manifold whose graph admits a 2-colouring.
Let 𝒩(𝑍) an open neighbourhood of 𝑍 small enough so that 𝑀 \ 𝒩(𝑍) is
homeomorphic to 𝑀 \ 𝑍. Consider now a partition {𝑈1, ..., 𝑈𝑘 ;𝑉1, ..., 𝑉𝑙}
of the connected components of𝑀 \𝑍 given by the 2-colouring, so𝑀 \𝑍 =

𝑈1∪ ...∪𝑈𝑘 ∪𝑉1∪ ...∪𝑉𝑙 , and let
{
𝑈𝑖 , 𝑉𝑖

}
denote the associated connected

components of𝑀\𝒩(𝑍). Moreover, for each connected component𝑍𝑖 ⊂ 𝑍
consider a local defining function 𝑧𝑖 such that 𝑧−1

𝑖
(R>0) lies within one of

the sets 𝑈𝑖 and 𝑧−1
𝑖
(R<0) lies within one of the 𝑉𝑖 . Then, we can construct

a global defining function 𝑧 : 𝑀 → R by smoothly interpolating each of
the local defining functions 𝑧𝑖 with the constant 1 in ∪𝑘

𝑖=1𝑈𝑖 and with the
constant −1 in ∪𝑙

𝑖=1𝑉𝑖 .

2.4.2 𝑏𝑚-symplectic structures

As we mentioned at the beginning of this section, we are interested in
generalizing the notion of symplectic structures to a setting where sin-
gularities are introduced. With the introduction of 𝑏𝑚-smooth forms we
have the tools to do so.

Definition 2.4.20 Let (𝑀, 𝑍) be a 𝑏-manifold and𝑚 ≥ 1. A 𝑏𝑚-symplectic
structure on (𝑀, 𝑍) is a 𝑏𝑚-2-form 𝜔 ∈ 𝑏𝑚Ω2(𝑀) such that it is closed, i.e,
𝑑𝜔 = 0, and it is non-degenerate as a 𝑏𝑚-form.

Theorem 2.4.21 (𝑏𝑚-Darboux) Let 𝜔 be a 𝑏𝑚-symplectic form on (𝑀2𝑛 , 𝑍).
Let 𝑝 ∈ 𝑍. Then, there exists a coordinate chart (𝑈 ; 𝑧, 𝑡 , 𝑥2, 𝑦2, . . . , 𝑥𝑛 , 𝑦𝑛)
centered at 𝑝 such that 𝑧 is a local defining function for𝑈 ∩ 𝑍 and

𝜔 |𝑈 =
𝑑𝑧

𝑧𝑚
∧ 𝑑𝑡 +

𝑛∑
𝑖=2

𝑑𝑥𝑖 ∧ 𝑑𝑦𝑖 .

Let us present some examples of 𝑏𝑚-symplectic structures on some 𝑏-
manifolds.
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Example 2.4.22 (R2𝑛 , 𝑍 = {𝑥1 = 0}) has a natural 𝑏𝑚-symplectic struc-
ture in the form of

𝜔 =
𝑑𝑥1
𝑥𝑚1
∧ 𝑑𝑦1 +

𝑛∑
𝑖=2

𝑑𝑥𝑖 ∧ 𝑑𝑦𝑖 .

Example 2.4.23 Let S2 ⊂ R3 be the sphere and 𝑍 := {(𝑥, 𝑦, 𝑧) ∈ S2 | 𝑧 =

0}. The 𝑏-manifold (S2, 𝑍) admits a 𝑏𝑚-symplectic structure that has the
expression

𝜔 = − 𝑑𝑧
𝑧𝑚
∧ 𝑑𝜃

in cylindrical coordinates (𝑧, 𝜃) on S2 \ {𝑁, 𝑆}, and the expression

𝜔 = − 1
1 − 𝑥2 − 𝑦2 𝑑𝑥 ∧ 𝑑𝑦

in Cartesian coordinates (𝑥, 𝑦) in𝑈+ :=
{
(𝑥, 𝑦, 𝑧) ∈ S2 | 𝑧 > 0

}
and in𝑈− :={

(𝑥, 𝑦, 𝑧) ∈ S2 | 𝑧 < 0
}
.

Example 2.4.24 Let T2𝑛 denote the 2𝑛-torus with coordinates
(𝜃1, . . . , 𝜃2𝑛). Take 𝑍 := {𝜃1 = 0} ⊔ {𝜃1 = 𝜋}. The 𝑏-manifold then
admits the 𝑏𝑚-symplectic structure

𝜔 =
𝑑𝜃1

sin𝑚 𝜃1
∧ 𝑑𝜃2 +

𝑛∑
𝑖=2

𝑑𝜃2𝑖−1 ∧ 𝑑𝜃2𝑖 .

Remark 2.4.25 We note that there is a natural inclusion Ω𝑘(𝑀) ↩→
𝑏𝑚Ω𝑘(𝑀). In the particular case of 𝑘 = 1, for any function 𝐻 ∈ 𝒞∞(𝑀) we
can consider that 𝑑𝐻 ∈ 𝑏𝑚Ω1(𝑀) for any choice of 𝑍 and 𝑚. Therefore we
can define the Hamiltonian vector field 𝑋𝐻 of a Hamiltonian 𝐻 ∈ 𝒞∞(𝑀) in
the same way as in Definition 2.1.8 through the equation

𝜔(𝑋𝐻 , ·) = −𝑑𝐻.

In the same way, following Example 2.3.2 we can define the Poisson struc-
ture associated to 𝜔 by

{ 𝑓 , 𝑔} = 𝜔
(
𝑋 𝑓 , 𝑋𝑔

)
.

The existence of a Poisson structure associated to a 𝑏𝑚-symplectic structure
𝜔 can be studied in more generality.
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Definition 2.4.26 A Poisson structure 𝜋 on 𝑀 is 𝑏-Poisson if the multi-
vector field 𝜋𝑛 intersects the zero section of

∧2𝑛 𝑇𝑀 transversally along a
hypersurface 𝑍.

Let (𝑀, 𝑍) be a 𝑏-manifold and 𝑚 ≥ 1. A Poisson structure 𝜋 on 𝑀 is 𝑏𝑚-
Poisson if its bracket satisfies that {·, ·}𝜋 : 𝐼𝑍 × 𝒞∞(𝑀) → 𝐼𝑚

𝑍
. In particular,

𝑏1-Poisson structures are 𝑏-Poisson.

Lemma 2.4.27 The Poisson bracket associated to a 𝑏𝑚-symplectic structure is
a 𝑏𝑚-Poisson structure, and any 𝑏𝑚-Poisson structure can be represented by a
𝑏𝑚-symplectic structure.

In particular, 𝑏-Poisson manifolds can be constructed from cosymplectic
manifolds.

Example 2.4.28 Let (𝑁,𝜋, 𝑋) be a cosymplectic manifold induced by the
Poisson structure 𝜋 and the modular vector field 𝑋, and let 𝑓 : S1 → R.
Then, (S1 × 𝑁, 𝑓 (𝜃) 𝜕𝜕𝜃 ∧ 𝑋 + 𝜋) is a 𝑏-Poisson manifold if and only if 𝑑𝑓 ≠
at every point where 𝑓 vanishes.

Proposition 2.4.29 (Guillemin, Miranda and Pires [GMP14]) A form 𝜔 ∈
𝑏𝑚Ω2(𝑀) is 𝑏𝑚-symplectic if and only if its associated bivector field 𝜋 is 𝑏𝑚-
Poisson.

In Proposition 2.4.29 the Poisson structure associated to a 𝑏𝑚-symplectic
form is defined in the same way as in Example 2.3.2, as { 𝑓 , 𝑔} = 𝜔

(
𝑋 𝑓 , 𝑋𝑔

)
.

Let us now introduce a particular vector field, the normal vector field,
which will be useful to study the geometry of a 𝑏𝑚-symplectic manifold
near 𝑍.

Lemma 2.4.30 There is a natural inclusion Γ

(
𝑏𝑚𝑇𝑀

��
𝑍

)
↩−→ 𝔛(𝑍). This

induces a morphism of vector bundles 𝜑 : 𝑏𝑚𝑇𝑀
��
𝑍
→ 𝑇𝑍. This morphism is

surjective, and the kernel of 𝜑 is a trivial line bundle 𝐿𝑍 → 𝑍.

The line bundle introduced in Lemma 2.4.30 can be extended to a tubular
neighbourhood𝒩(𝑍) of 𝑍, which we will denote 𝐿𝒩(𝑍)→𝒩(𝑍).

Definition 2.4.31 The normal or normal symplectic 𝑏𝑚-vector field, denoted
𝑋𝜎 is a trivializing vector field for 𝐿𝒩(𝑍). The normal vector field can
moreover be chosen to be symplectic with respect to a given 𝑏𝑚-symplectic
form, i.e., ℒ𝑋𝜎𝜔 = 0.
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Example 2.4.32 Let (𝑀, 𝜔, 𝑍) be a 𝑏𝑚-symplectic manifold with a local
defining function 𝑧 : 𝒩(𝑍) → R such that the local expression of 𝜔 is
𝜔 = 𝑑𝑧

𝑧𝑚 ∧ 𝛼 + 𝛽, with 𝛼 ∈ Ω1(𝑀) and 𝛽 ∈ Ω2(𝑀). The normal vector field
can be then chosen as 𝑋𝜎 = 𝑧𝑚 𝜕

𝜕𝑧 .

Remark 2.4.33 Let (𝑀, 𝜔, 𝑍) be a 𝑏𝑚-symplectic manifold of dimension
2𝑛. The rank of the Poisson structure associated to 𝜔 is 2𝑛 for all points in
𝑀 \ 𝑍 and 2𝑛 − 2 for all points in 𝑍.

In other words, the symplectic foliation associated to 𝜔 is composed of the
connected components of 𝑀 \ 𝑍 and of a codimension 1 foliation within
each of the connected components of 𝑍.

It is possible to give an interpretation of 𝑏𝑚-symplectic manifolds as sym-
plectic manifolds with boundary, where we have a symplectic vector field
pointing towards the boundary. More precisely,

Lemma 2.4.34 (Frejlich, Martínez-Torres and Miranda [FMTM17]) Let
(𝑀, 𝜕𝑀) be a manifold with boundary 𝜕𝑀 and let 𝜔 ∈ Ω2(𝑀) be a symplectic
form on 𝑀 \ 𝜕𝑀 such that there exists a symplectic vector field 𝑋𝜎 that points
outwards or inwards at the boundary.

Then, for each 𝑚 ∈ N, 𝑚 ≥ 1 there exists a 𝑏𝑚-symplectic structure on (𝑀, 𝜕𝑀)
with critical set given by 𝜕𝑀 that coincides with the symplectic structure outside
of a tubular neighborhood of the boundary 𝜕𝑀.

Proof. We start by showing that the boundary 𝜕𝑀 can be endowed with a
cosymplectic structure.

We assume without loss of generality that 𝑋𝜎 points towards the interior
of 𝑀 at 𝜕𝑀. Let 𝜑𝑋𝜎 : 𝑈 ⊂ 𝑀 × R→ 𝑀 denote the flow of 𝑋𝜎. As 𝑋𝜎 is
transverse to 𝜕𝑀, there exists a tubular neighbourhood 𝑉𝜀 := {(𝑥, 𝑧) | 0 ≤
𝑧 < 𝜀(𝑥)} ⊂ 𝜕𝑀 × R for some function 𝜀 : 𝜕𝑀 → R such that

𝑐 : 𝑉𝜀 −→ 𝑀

(𝑥, 𝑧) ↦−→ 𝜑𝑧
𝑋𝜎(𝑥)

is an embedding.

Let 𝜃 := 𝑐∗(𝜄𝑋𝜎𝜔) and 𝜂 := 𝑐∗𝜔. Both forms are invariant with respect to
𝜕
𝜕𝑧 . We can show this for 𝜂 by the observation that the vector fields 𝜕

𝜕𝑧 and
𝑋𝜎 are 𝑐-related, so ℒ 𝜕

𝜕𝑧
𝜂 = 𝑐∗ (ℒ𝑋𝜎𝜔) = 0. Conversely,

ℒ 𝜕
𝜕𝑧
𝜃 = 𝑐∗ (ℒ𝑋𝜎 𝜄𝑋𝜎𝜔) = 𝑐∗ (𝑑𝜄𝑋𝜎 𝜄𝑋𝜎𝜔 + 𝜄𝑋𝜎𝑑𝜄𝑋𝜎𝜔) = 𝑐∗ (𝜄𝑋𝜎ℒ𝑋𝜎𝜔) = 0,
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where the first term vanishes because𝜔 is skew-symmetric, and the second
term vanishes because 𝑋𝜎 is a symplectic vector field.

Moreover, if 𝑗𝜕𝑀 : 𝜕𝑀 ↩→ 𝑉𝜀 denotes the inclusion by 𝑗𝜕𝑀(𝑥) = (𝑥, 0),
𝑗∗
𝜕𝑀

(
𝜃 ∧ 𝜂𝑛−1) is a volume form for 𝜕𝑀, because

𝜃 ∧ 𝜂𝑛−1 = 𝑐∗
(
𝜄𝑋𝜎𝜔 ∧ 𝜔𝑛−1

)
=

1
𝑛
𝑐∗ (𝜄𝑋𝜎𝜔𝑛) = 1

𝑛
𝜄 𝑑
𝑑𝑧
𝑐∗𝜔𝑛 ,

whose pull-back by 𝑗𝜕𝑀 is a well defined non-degenerate form due to the
𝑧-invariance.

Therefore, (𝜕𝑀, 𝜃, 𝜂) is a cosymplectic manifold, and 𝑐 is an embedding
into 𝑉𝜀 ⊂ 𝑀. Moreover, by our definitions it is clear that

𝑐∗𝜔 = 𝑑𝑧 ∧ 𝜃 + 𝜂.

Let 𝜓 : 𝑉𝜀 → R be a smooth bump function such that 𝜓(𝑥, 𝑧) = 1 when
0 ≤ 𝑧 < 𝜀(𝑥)

3 and 𝜓(𝑥, 𝑧) = 0 when 𝑧 > 2𝜀(𝑥)
3 . Then the 𝑏-form

𝜔 = 𝑑(𝜓 log 𝑧 + (1 − 𝜓)𝑧) ∧ 𝜃 + 𝜂

is clearly non-degenerate and therefore a 𝑏-symplectic form on 𝑉𝜀. If we
push it forward to 𝑀, it coincides with 𝜔 outside of a tubular neighbor-
hood of 𝜕𝑀.

In the same way, for 𝑚 > 1 we can use the 𝑏𝑚-form

𝜔 = 𝑑

(
−

𝜓

𝑚 − 1
1

𝑧𝑚−1 + (1 − 𝜓)𝑧
)
∧ 𝜃 + 𝜂,

which again is a 𝑏𝑚-symplectic form on 𝑉𝜀 whose push-forward to 𝑀

coincides with 𝜔 outside a neighbourhood of 𝜕𝑀.

The tubular neighborhood and the defining function can be chosen to
satisfy the following Proposition.

Proposition 2.4.35 (Guillemin, Miranda and Weitsman [GMW18a, The-
orem 2]) There exist a choice of defining function 𝑧 for the critical set and a
projection 𝜋 : 𝒩(𝑍) → 𝑍 such that there exists an expansion for 𝜔 of the form

𝜔 |𝒩(𝑍) =
𝑚∑
𝑖=1

𝑑𝑧

𝑧 𝑖
∧ 𝜋∗𝛼𝑖 + 𝜋∗𝛽

where 𝛼𝑖 ∈ Ω1(𝑍) are closed and 𝛽 ∈ Ω2(𝑍) is symplectic on the foliation defined
by 𝛼𝑚 .



40 Chapter 2. Preliminaries

Remark 2.4.36 For convenience, sometimes we will denote the expan-
sion from Proposition 2.4.35 by

𝜔 |𝒩(𝑍) =
𝑑𝑧

𝑧𝑚
∧ 𝛼̃ + 𝛽,

where 𝛼̃ =

𝑚∑
𝑖=1

𝑧𝑚−𝑖𝜋∗𝛼𝑖 .

Recall from Remark 2.3.17 that the modular vector field can be characteri-
zed on𝒩(𝑍) by the equations

𝜄𝑣𝑚𝑜𝑑 𝛼̃ = 1 , 𝜄𝑣𝑚𝑜𝑑𝛽 = 0.

Remark 2.4.37 Let (𝑀, 𝑍,𝜋) be a 𝑏𝑚-symplectic manifold and let 𝜋 be
its Poisson structure. Then, (𝜋|𝑍 , 𝑣𝑚𝑜𝑑) is a cosymplectic structure.

If 𝜔 = 𝑑𝑧
𝑧𝑚 ∧ 𝛼 + 𝛽, the pull-back of the forms 𝛼 and 𝛽 are explicitly the

forms defining a cosymplectic structure.

Theorem 2.4.38 (Guillemin, Miranda and Pires [GMP14]) Let (𝑀, 𝑍, 𝜔)
be a 𝑏𝑚-symplectic manifold, let 𝑍𝑖 denote a connected component of 𝑍 and let ℱ
denote the symplectic foliation restricted to 𝑍𝑖 .

If ℱ contains a compact leaf ℒ, then every leaf of ℱ is symplectomorphic to ℒ.
Moreover, 𝑍𝑖 is the total space of a fibration over S1 given by the mapping torus
of the symplectomorphism 𝜙 : ℒ → ℒ induced by the flow of a modular vector
field 𝑣𝑚𝑜𝑑. This means, 𝜙 = 𝜑𝑇𝑣𝑚𝑜𝑑 for some 𝑇 ∈ R, 𝑇 > 0 and

𝑍𝑖 �
ℒ × [0, 𝑇]

(𝑥, 0) ∼ (𝜙(𝑥), 𝑇) . (2.7)

Definition 2.4.39 The modular period or the modular weight of a connected
component 𝑍𝑖 ⊂ 𝑍 is the period of the flow of 𝑣𝑚𝑜𝑑 on 𝑍𝑖 , this means, the
number 𝑇 in Theorem 2.4.38.

Remark 2.4.40 The situation exposed in Theorem 2.4.38 can be under-
stood to be, in fact, generic. If the cosymplectic structure in 𝑍 induces a
symplectic foliation with non-compact leaves, then there exists a family
of cosymplectic structures that tend to it in the 𝒞0-topology, all of which
have a symplectic foliation with compact leaves (see Tischler [Tis70] and
Frejlich, Martínez-Torres and Miranda [FMTM17]).



2.4. 𝑏𝑚-symplectic geometry 41

Let us recall from Definition 2.4.18 the notion of the graph of a 𝑏-manifold.
Taking into account 𝑏𝑚-symplectic structures, we may have a restriction
on the graph:

Remark 2.4.41 Let (𝑀, 𝑍, 𝜔) be a 𝑏2𝑘+1-symplectic manifold of dimen-
sion 2𝑛, with 𝑀 orientable. Then, the graph (𝑉, 𝐸) of the 𝑏-manifold
(𝑀, 𝑍) must admit a 2-colouring induced by the sign of 𝜔𝑛 with respect
to an orientation on 𝑀.

To conclude this summary we highlight the fact that 𝑏-symplectic closed
and oriented surfaces where first completely classified by Radko [Rad02].

Theorem 2.4.42 (Radko [Rad02]) Let Σ be a closed and oriented surface.
Two 𝑏-symplectic structures 𝜔1, 𝜔2 ∈ 𝑏Ω(Σ) are equivalent if, and only if, the
following invariants coincide:

• The regularized Liouville volume of the 𝑏-symplectic forms, which, if
𝑧 : Σ→ R denotes a defining function for 𝑍𝑖 , is the well defined limit

Vol := lim
𝜀→0

∫
|𝑧 |>𝜀

𝜔𝑖 .

• The topology of 𝑍.

• The modular weight of each connected component of 𝑍.

This classification was expanded to 𝑏𝑚-symplectic structures in closed
surfaces by Scott [Sco16] and by Miranda and Planas [MP18] in the non-
orientable case. The classification is expressed in terms of the 𝑏𝑚-de Rham
cohomology classes:

Theorem 2.4.43 (Scott [Sco16], Miranda and Planas [MP18]) Let (Σ, 𝑍) a
closed 𝑏𝑚-surface. Two 𝑏𝑚-symplectic structures 𝜔1, 𝜔2 on Σ are equivalent if,
and only if, [𝜔1] = [𝜔2] in 𝑏𝑚𝐻2(Σ).

2.4.3 The topology of the 𝑏𝑚-tangent bundle

We end our first exploration of the properties of 𝑏𝑚-manifolds by giving
some insights into the relationship between the tangent bundle of a ma-
nifold and its 𝑏𝑚-tangent bundle. In particular, we are interested on the
possible topologies that the latter may exhibit.



42 Chapter 2. Preliminaries

Although most of the results in this subsection were already known, Ex-
amples 2.4.47 and 2.4.48 are original to this thesis.

We give first some examples of low dimensional 𝑏𝑚-manifolds and their
associated bundles:

Example 2.4.44 Let 𝑀 = S1 � [0, 1] /0 ∼ 1 and 𝑍 = {𝑧1, ..., 𝑧𝑁 } a fi-
nite number of points. Without loss of generality we can assume that
{𝑧1, . . . , 𝑧𝑁 } are equidistant, this means, 𝑧𝑖 =

[
𝑖−1
𝑁

]
∈ S1.

If 𝑚 is even, the 𝑏𝑚-tangent bundle always admits a trivializing vector
field, 𝑋 := sin𝑚(𝑁𝑡) 𝜕𝜕𝑡 . The same family of 𝑏𝑚-vector fields works if 𝑚 is
odd but 𝑁 is even. Since we know that all possible rank 1 vector bundles
over S1 are either trivial or the Möbius strip, we conclude:

𝑏𝑚𝑇S1 �

{
𝑇S1 if 𝑁 or 𝑚 are even,
the Möbius strip if 𝑁 and 𝑚 are odd.

Example 2.4.45 Consider the 2-torus T2 with 𝑍 being the disjoint union
of 𝑁 handles as in Figure 2.2. From Example 2.4.44 we can deduce that if
𝑁 is even or 𝑚 is even then we can parallelize 𝑏𝑚𝑇T2.

𝐻1

𝐻2

𝐻3

𝐻4

Figure 2.2: A torus with 𝑁 = 4 handles

The parity of𝑁 in these examples matters because the trivializing sections
allow us to associate a sign to each connected component of 𝑀 \ 𝑍.

Following this logic we can arrive at the following result.

Proposition 2.4.46 ([Kla17, Corollary 11.2.4]) Let (𝑀, 𝑍) a 𝑏2𝑘+1-manifold
such that both 𝑇𝑀 and 𝑏𝑇𝑀 are orientable. Then, 𝑀\𝑍 has two or more
connected components.
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Proof. Let 𝑛 = dim(𝑀). If both𝑇𝑀 and 𝑏2𝑘+1
𝑇𝑀 are orientable, this implies

that both
∧𝑛 𝑇∗𝑀 and

∧𝑛 𝑏2𝑘+1
𝑇𝑀 are trivializable. Let Ω ∈ Γ (∧𝑛 𝑇∗𝑀)

and 𝐴 ∈ Γ
(∧𝑛 𝑏2𝑘+1

𝑇𝑀
)

trivializing sections.

The natural inclusion 𝑏2𝑘+1
𝔛(𝑀) ↩→ 𝔛(𝑀) induces an inclusion

Γ

(∧𝑛 𝑏2𝑘+1
𝑇𝑀

)
↩→ ∧𝑛

𝔛(𝑀). Abusing notation, let 𝐴 denote the image of

the trivializing section of Γ
(∧𝑛 𝑏2𝑘+1

𝑇𝑀
)

in
∧𝑛

𝔛(𝑀).

Consider the function 𝐹 resulting from the contraction of the trivializing
sections, 𝐹 := ⟨Ω, 𝐴⟩ : 𝑀 → R. As a consequence of the local expression
of the sections of the 𝑏𝑚-tangent bundle as seen in Remark 2.4.12, the
function 𝐹 must have the local expression 𝐹(𝑧, 𝑥2, . . . , 𝑥𝑛) = 𝑧𝑚𝑔 around
any point in 𝑍, where 𝑔 is a non-vanishing function. Moreover, 𝐹 cannot
vanish in 𝑀 \ 𝑍.

Consider the open sets 𝑈+ := 𝐹−1 (R>0) and 𝑈− := 𝐹−1 (R<0). By construc-
tion, 𝑀 \ 𝑍 = 𝑈+ ⊔𝑈−. Also, if 𝑍 is non-empty, and as a consequence of
the local expression of 𝐹 that we have just presented, neither 𝑈+ nor 𝑈−
can be empty.

Therefore, 𝑀 \𝑍 can be separated with two disjoint non-empty open sets.
This means that 𝑀 \ 𝑍 is non-connected, so it has two or more connected
components.

The following example goes further into detail in a case where the 𝑏-
tangent bundle is parallelizable but the tangent bundle is not:

Example 2.4.47 Consider the 𝑏-manifold (S2, 𝑍), where 𝑍 ⊂ S2 is the
equator. Then, 𝑏𝑇S2 is parallelizable, so 𝑏𝑇S2 ≇ 𝑇S2

Proof. Consider S2 = {(𝑥, 𝑦, 𝑧) ∈ R3 | 𝑥2 + 𝑦2 + 𝑧2 = 1} ⊂ R3, and let the
equator 𝑍 = {𝑧 = 0} ⊂ S2 be the singular hypersurface. Let 𝑗 : S2 → R3

the canonical inclusion, and let 𝑔 = 𝑗∗𝑔st, where 𝑔st is the Euclidean metric
in R3. We will study the vector field 𝜕

𝜕𝑥 := ∇𝑔𝑥, where we denote by
𝑥 : S2 → R the 𝑥 coordinate function composed with 𝑗. We will compute
the local form of 𝜕

𝜕𝑥 in a coordinate chart, in order to prove that it does not
vanish anywhere.

Consider the points 𝑃 = (1, 0, 0) and 𝑄 = (−1, 0, 0), and the atlas given by
the open sets S2\{𝑃} and S2\{𝑄}:
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Chart 1: Given by the local diffeomorphism

𝜑 : S2\{𝑃} ←→ R2

(𝑥, 𝑦, 𝑧) ↦−→
( 𝑦

1−𝑥 ,
𝑧

1−𝑥
)(

𝑌2+𝑍2−1
1+𝑌2+𝑍2 ,

2𝑌
1+𝑌2+𝑍2 ,

2𝑍
1+𝑌2+𝑍2

)
←−[ (𝑌, 𝑍) .

In this chart, the local form of the function 𝑥 is

𝑥(𝑌, 𝑍) = 𝑌2 + 𝑍2 − 1
1 + 𝑌2 + 𝑍2 ,

and the local expression of the metric 𝑔 is

𝜑∗𝑔 =

(
2

1 + 𝑌2 + 𝑍2

)2 (
𝑑𝑌2 + 𝑑𝑍2

)
,

so the local form of 𝜕
𝜕𝑥 can be computed and it is

𝜕

𝜕𝑥
= 𝑌

𝜕

𝜕𝑌
+ 𝑍 𝜕

𝜕𝑍
,

where 𝑍 𝜕
𝜕𝑍 is a non-vanishing 𝑏-vector field, so 𝜕

𝜕𝑥 does not vanish any-
where in S2\{𝑃}.

Chart 2: Given the local diffeomorphism

𝜓 : S2\{𝑄} ←→ R2

(𝑥, 𝑦, 𝑧) ↦−→
( 𝑦

1+𝑥 ,
𝑧

1+𝑥
)(

1−𝑌2−𝑍2

1+𝑌2+𝑍2 ,
2𝑌

1+𝑌2+𝑍2 ,
2𝑍

1+𝑌2+𝑍2

)
←−[ (𝑌, 𝑍) .

In this chart, the local form of the function 𝑥 is

𝑥(𝑌, 𝑍) = 1 − 𝑌2 − 𝑍2

1 + 𝑌2 + 𝑍2 ,

and the local expression of 𝑔 is the same as before,

𝜑∗𝑔 =

(
2

1 + 𝑌2 + 𝑍2

)2 (
𝑑𝑌2 + 𝑑𝑍2

)
,

so the local form of 𝜕
𝜕𝑥 is

𝜕

𝜕𝑥
= −𝑌 𝜕

𝜕𝑌
− 𝑍 𝜕

𝜕𝑍
,
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where 𝑍 𝜕
𝜕𝑍 is a non-vanishing 𝑏-vector field, so 𝜕

𝜕𝑥 is nonzero in S2\{𝑄}.

This proves that 𝜕
𝜕𝑥 is a non-vanishing 𝑏-vector field for (S2, 𝑍).

This argument can be reproduced for 𝜕
𝜕𝑦 := ∇𝑔𝑦, so

(
𝜕
𝜕𝑥 ,

𝜕
𝜕𝑦

)
is a trivializing

basis for 𝑏𝑇S2.

Figure 2.3: A sketch of one of the trivializing sections of 𝑏𝑇S2.

Example 2.4.48 Consider 𝑍 ⊂ T2 a contractible circle, as in Figure 2.4.
Then, 𝑏𝑇T2 is parallelizable.

Figure 2.4: A representation of a non-vanishing 𝑏-vector field in T2

Proof. Let us find the pair of trivializing vector fields explicitly in T2 �
[0,1]×[0,1]

(0,𝑦)∼(1,𝑦), (𝑥,0)∼(𝑥,1) . We will consider 𝑍 = {(𝑥, 𝑦) ∈ [0, 1]×[0, 1] | 4𝑥2+4𝑦2 =

1}, the circle of radius 1
2 , and its image inside of T2. We will construct the

two vector fields by patching together a collection of vector fields through
a partition of unity.
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Consider the function 𝑓 : T2→ R given in [0, 1] × [0, 1] by

𝑓 (𝑥, 𝑦) =


exp
[
36 + 1

𝑥2+𝑦2−
√
𝑥2+𝑦2+ 2

9

]
if 1

3 <
√
𝑥2 + 𝑦2 < 2

3 ,

0 if
√
𝑥2 + 𝑦2 ≤ 1

3 ,
√
𝑥2 + 𝑦2 ≥ 2

3 ,

which is equal to 1 for all points in 𝑍. It is clear by definition that 𝑓 is well
defined also in the quotient T2.

Consider also the two indicative functions 𝑔−, 𝑔+ : T2 → R2 given in
[0, 1] × [0, 1] by

𝑔−(𝑥, 𝑦) =


exp

[
1 + 1

144(𝑥+ 1
2)2+144𝑦2−1

]
if

√(
𝑥 + 1

2
)2 + 𝑦2 < 1

12 ,

0 if
√(
𝑥 + 1

2
)2 + 𝑦2 ≥ 1

12 ,

𝑔+(𝑥, 𝑦) =


exp

[
1 + 1

144(𝑥− 1
2)2+144𝑦2−1

]
if

√(
𝑥 − 1

2
)2 + 𝑦2 < 1

12 ,

0 if
√(
𝑥 − 1

2
)2 + 𝑦2 ≥ 1

12 ,

with 𝑔−
(
−1

2 , 0
)
= 𝑔+

( 1
2 , 0

)
= 1.

Moreover, consider the vector fields defined on the appropriate open sets:

• 𝑋′ = 𝜕
𝜕𝑥 in T2,

• 𝑍 = 𝑦2 𝜕
𝜕𝑥 − 𝑥𝑦

𝜕
𝜕𝑦 in

𝑈 =

{
(𝑥, 𝑦) ∈ [0, 1] × [0, 1] | 13 <

√
𝑥2 + 𝑦2 <

2
3

}
,

• 𝑢− = −𝑥 𝜕
𝜕𝑥 − 𝑦

𝜕
𝜕𝑦 and 𝑢+ = 𝑥 𝜕

𝜕𝑥 + 𝑦
𝜕
𝜕𝑦 in

𝐵− =

(𝑥, 𝑦) ∈ [0, 1] × [0, 1] |
√(

𝑥 + 1
2

)2
+ 𝑦2 <

1
12

 ,
and

𝐵+ =

(𝑥, 𝑦) ∈ [0, 1] × [0, 1] |
√(

𝑥 − 1
2

)2
+ 𝑦2 <

1
12

 ,
respectively.
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The first trivializing vector field is then defined as

𝑋 = 𝑓 · (𝑔−𝑢− + 𝑔+𝑢+ + (1 − 𝑔− − 𝑔+)𝑍) + (1 − 𝑓 )𝑋′,

The second vector field 𝑌 can be defined by a 90° rotation on 𝑋.

It can be checked that 𝑋 and 𝑌 are everywhere linearly independent on
T2 as 𝑏-vector fields.

An analogous construction can be carried out in higher di-
mensions if we consider T𝑛 � [0, 1] × · · · × [0, 1] /∼ and 𝑍 ={
(𝑥1, . . . , 𝑥𝑛) ∈ [0, 1] × · · · × [0, 1] | 𝑥2

1 + · · · + 𝑥2
𝑛 = 1

4
}
. As in the last proof,

we can construct a single non-vanishing 𝑏-vector field and rotate it to cover
all the remaining 𝑛 − 1 dimensions in order to get a non-vanishing frame.

Further investigation of 𝑏𝑚-tangent bundles and their characteristic classes
can be found in Klaasse’s PhD thesis [Kla17].

2.5 Desingularization of 𝑏𝑚-symplectic mani-
folds

The desingularization of a 𝑏𝑚-symplectic manifold is a process that was
first introduced in [GMW19] and allows us to approximate a particular
𝑏𝑚-symplectic form either by a family of symplectic forms or by a family of
folded symplectic forms, depending on the parity of 𝑚. This construction
will be crucial for our work with the Arnold conjecture in 𝑏𝑚-symplectic
manifolds.

Let (𝑀, 𝑍, 𝜔) be a compact 𝑏2𝑘-symplectic manifold with 𝑍 ⊂ 𝑀 compact.

As we saw in Proposition 2.4.35 there is a tubular neighbourhood 𝒩(𝑍)
for each component of 𝑍 with coordinates such that

𝜔 |𝒩(𝑍) =
𝑑𝑧

𝑧2𝑘 ∧
(

2𝑘−1∑
𝑖=0

𝑧 𝑖𝜋∗𝛼𝑖

)
+ 𝜋∗𝛽.

Let 𝑓 ∈ 𝒞∞(R) be an odd function such that 𝑓 ′(𝑥) > 0 for all 𝑥 ∈ [−1, 1]
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and defined outside of the interval as

𝑓 (𝑥) =
{ −1
(2𝑘−1)𝑥2𝑘−1 − 2 for 𝑥 < −1,
−1

(2𝑘−1)𝑥2𝑘−1 + 2 for 𝑥 > 1.

For instance, see the illustration on Figure 2.5.

Moreover, let
𝑓𝜀 =

1
𝜀2𝑘−1 𝑓

( 𝑥
𝜀

)
and𝒩𝜀(𝑍) = {(𝑧, 𝑝) ∈ 𝒩(𝑍) | |𝑧 | < 𝜀}.

Definition 2.5.1 An 𝑓𝜀-desingularization 𝜔𝜀 of 𝜔 is a form on 𝑀 defined
in a neighbourhood𝒩𝜀(𝑍) as

𝜔𝜀 = 𝑑𝑓𝜀 ∧
(

2𝑘−1∑
𝑖=0

𝑧 𝑖𝜋∗𝛼𝑖

)
+ 𝜋∗𝛽

and coinciding with 𝜔 outside of𝒩𝜀(𝑍).

𝑥

𝑓 (𝑥)

−1 1

Figure 2.5: Construction of 𝑓 : we interpolate two branches of the function
− 1

2𝑘−1𝑥
1−2𝑘 (with a displacement) by a function whose derivative does not

vanish.

This construction allows us to approximate 𝜔−1, seen as a 𝑏2𝑘-Poisson
form, by the family of Poisson forms 𝜔−1

𝜀 :
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Theorem 2.5.2 (Guillemin, Miranda and Weitsman [GMW19, Theo-
rem 3.1]) If 𝜀 > 0 is small enough, the form 𝜔𝜀 is symplectic. The family of
bivector fields 𝜔−1

𝜀 converges to the Poisson structure 𝜔−1 in the 𝒞2𝑘−1-topology
as 𝜀→ 0.

As a consequence of this theorem, topological obstructions for the ex-
istence of 𝑏2𝑘-symplectic structures in 𝑀 can be found without further
work:

Corollary 2.5.3 A manifold admitting a 𝑏2𝑘-symplectic structure must also
admit a symplectic structure.

For the odd case let us recall the definition of folded symplectic structures:

Definition 2.5.4 Let 𝑀 be a 2𝑛-dimensional manifold. We say that a
form 𝜔 ∈ Ω2(𝑀) is folded symplectic if

• 𝑑𝜔 = 0 and 𝜔𝑛 intersects transversally the form 0 ∈ Ω2𝑛(𝑀).

• If 𝑍 := {𝑝 ∈ 𝑀 | 𝜔𝑛
𝑝 = 0} is the hypersurface where 𝜔 degenerates

and 𝑗 : 𝑍 → 𝑀 denotes the natural inclusion, then 𝑗∗𝜔 has rank
2𝑛 − 2 in 𝑍.

This definition can be understood to be in some sense "dual" to that of
𝑏-Poisson structures, as we are allowing the rank of the symplectic form to
decrease, whereas for 𝑏-Poisson structures it is the degree of the 𝑏-Poisson
structure that decreases. However, we must note that a folded symplectic
form does not induce a Poisson structure on 𝑀.

Let (𝑀, 𝑍, 𝜔) be a compact 𝑏2𝑘+1-symplectic manifold with 𝑍 ⊂ 𝑀 com-
pact, whose 𝑏2𝑘+1-symplectic form has a semilocal expression given by

𝜔 |𝒩(𝑍) =
𝑑𝑧

𝑧2𝑘+1 ∧
(

2𝑘∑
𝑖=0

𝑧 𝑖𝜋∗𝛼𝑖

)
+ 𝜋∗𝛽,

and take 𝑓 ∈ 𝒞∞(R) an even function (this means, 𝑓 (−𝑥) = 𝑓 (𝑥)) such that

• 𝑓 > 0,

• 𝑓 (𝑥) = 2 − 𝑥2 for 𝑥 ∈ [−1, 1],
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• for 𝑥 ∈ R \ [−2, 2],

𝑓 (𝑥) =
{

log |𝑥 | if 𝑘 = 0,
−1

(2𝑘+2)𝑥2𝑘+2 if 𝑘 > 0.

For an example, see the illustration in Figure 2.6.

Let
𝑓𝜀(𝑥) =

1
𝜀2𝑘 𝑓

( 𝑥
𝜀

)
and𝒩𝜀(𝑍) = {(𝑧, 𝑝) ∈ 𝒩(𝑍) | |𝑧 | < 𝜀}.

An 𝑓𝜀-desingularization 𝜔𝜀 of a 𝑏2𝑘+1-symplectic structure 𝜔 is defined as
in Definition 2.5.1 with this choice of function 𝑓𝜀.

𝑥

𝑓 (𝑥)

−1 1−2 2

Figure 2.6: Construction of 𝑓 : we interpolate two branches of the function
− 1
(2𝑘+2)𝑥2𝑘+2 (or log |𝑥 |) with the function 2 − 𝑥2 by a function that does not

vanish.
Theorem 2.5.5 (Guillemin, Miranda and Weitsman [GMW19, Theo-

rem 5.1]) If 𝜀 > 0 is small enough, the form 𝜔𝜀 is folded symplectic.

Corollary 2.5.6 A manifold admitting a 𝑏2𝑘+1-symplectic structure must also
admit a folded symplectic structure.

2.6 Integrable and singular integrable systems

In this section we will introduce the notion of integrable systems, central
among the applications of symplectic geometry to dynamical systems.
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We will present the basic results for the best understood cases, namely
toric and semitoric systems. We will also briefly introduce the equivalent
notion in the context of 𝑏-symplectic manifolds, and examine the work
done in analogy to toric systems.

2.6.1 Definition and critical points

In the setting of symplectic geometry there are systems induced by a
Hamiltonian vector field that have certain symmetries that allow for sim-
plifications and reductions of the system. As described by Noether’s
theorem, such symmetries can be encoded by preserved quantities, also
called first integrals of a system. The best possible case, which we will focus
on in this thesis, is that in which the number of first integrals is equal to
half the dimension of the manifold. Such a system is called an integrable
system.

Definition 2.6.1 Let (𝑀, 𝜔) be a symplectic manifold and 𝑓 , 𝑔 ∈ 𝒞∞(𝑀).
We say that 𝑔 is preserved by 𝑋 𝑓 if ℒ𝑋 𝑓

𝑔 = 0 or, equivalently, { 𝑓 , 𝑔} = 0 in
the associated Poisson structure (see Example 2.3.2).

With this in mind we can present the notion of a completely integrable
system.

Definition 2.6.2 Let (𝑀, 𝜔) be a symplectic manifold of dimension 2𝑛
and let 𝐹 = ( 𝑓1, . . . , 𝑓𝑛) : 𝑀 → R𝑛 be a smooth function. The tuple
(𝑀, 𝜔, 𝐹) is said to be an integrable system or a completely integrable system if
𝑑𝐹 has maximal rank almost everywhere (with respect to the symplectic
volume 𝜔𝑛) and { 𝑓𝑖 , 𝑓𝑗} = 0 for all 𝑖 , 𝑗.

The map 𝐹 = ( 𝑓1, . . . , 𝑓𝑛) is called the momentum map of the system, and
the component maps 𝑓1, . . . , 𝑓𝑛 are called the momenta.

A point 𝑝 ∈ 𝑀 is called regular if 𝑑𝐹 |𝑝 has rank exactly equal to 𝑛 and
singular if the rank is strictly lower than 𝑛.

Definition 2.6.3 Let us assume that the flow of 𝑋 𝑓1 , ..., 𝑋 𝑓𝑛 is defined for
all times. The flow of an integrable system is the group action

R𝑛 ×𝑀 −→ 𝑀

((𝑡1, . . . , 𝑡𝑛), 𝑝) ↦−→
(
𝜑𝑡1
𝑋 𝑓1
◦ · · · ◦ 𝜑𝑡𝑛

𝑋 𝑓𝑛

)
(𝑝).



52 Chapter 2. Preliminaries

We say that this map is a group action because the vector fields 𝑋 𝑓1 , ..., 𝑋 𝑓𝑛

are, by Lemma 2.3.8, in involution, and therefore their flows commute.

The distribution generated by the vector fields 𝑋 𝑓1 , ..., 𝑋 𝑓𝑛 is thus in invo-
lution and, therefore, induces a foliation of 𝑀. Moreover, the leaves of
the foliation are the connected components of 𝐹−1(𝑐) for values of 𝑐 ∈ R𝑛 .
When 𝑐 ∈ R𝑛 is a regular value of 𝐹 the foliation has a very well understood
behaviour:

Theorem 2.6.4 (Arnold-Liouville-Mineur) Let (𝑀, 𝜔, 𝐹) be an integrable
system, and let 𝑐 ∈ R𝑛 be a regular point of 𝐹, and let 𝐿𝑐 := 𝐹−1(𝑐). If 𝐿𝑐 is
compact and connected, then it is diffeomorphic to the 𝑛-dimensional torus T𝑛 ,
and there exist local coordinates (𝜃1, . . . , 𝜃𝑛 , 𝑝1, . . . , 𝑝𝑛) around every such fiber
with 𝜔 =

∑
𝑑𝜃𝑖 ∧ 𝑑𝑝𝑖 , such that 𝐿𝑐 are given locally as level sets of (𝑝1, . . . , 𝑝𝑛)

and the flow of the system in the direction of 𝜃𝑖 is linear. The coordinates
(𝜃1, . . . , 𝜃𝑛 , 𝑝1, . . . , 𝑝𝑛) are called the action-angle coordinates.

Let us shift our attention to the singular points of integrable systems.

Let (𝑀, 𝜔, 𝐹) be a completely integrable system and let 𝑝 ∈ 𝑀 be a singular
point with rank 𝑟 < 𝑛. Then it is possible to choose coordinates around 𝑝
in such a way that the action of 𝑑𝐹 |𝑝 induces a symplectic action of R𝑛−𝑟
on 𝑇𝑝𝑀. This defines a Lie subgroup 𝐺(𝑝, 𝐹) ⊂ Sp(2(𝑛 − 𝑟),R), which in
turn defines by its linearization a Lie subalgebra 𝐾(𝑝, 𝐹) ⊂ 𝔰𝔭(2(𝑛 − 𝑟),R).

Definition 2.6.5 A singular point 𝑝 ∈ 𝑀 is non-degenerate if 𝐾(𝑝, 𝐹) is
a Cartan subalgebra of 𝔰𝔭(2(𝑛 − 𝑟),R), this means, if it is nilpotent and
self-normalizing.

Non-degenerate critical points have been studied and normal forms have
been found for them in the works of Rüssman [Rüs64], Vey [Vey78], Colin
de Verière and Vey [CdVV79], Eliasson [Eli90b, Eli90a], Dufour and Molino
[DM88], Miranda [Mir03, Mir14], Miranda and Zung [MZ04], Miranda
and Vũ Ngo. c [MVN05], Vũ Ngo. c and Wacheux [VNW13] and Chaperon
[Cha13].

Theorem 2.6.6 (Local normal form for non-degenerate singularities) Let
(𝑀, 𝜔, 𝐹) be a completely integrable system and let 𝑝 ∈ 𝑀 be a non-degenerate
singular point. Then there exist a coordinate chart (𝑈 ; (𝑥1, . . . , 𝑥𝑛 , 𝜉1, . . . , 𝜉𝑛))
centered on 𝑝 and smooth functions 𝑞1, . . . , 𝑞𝑛 : 𝑈 → R such that

𝜔 |𝑈 =

𝑛∑
𝑖=1

𝑑𝑥𝑖 ∧ 𝑑𝜉𝑖 ,
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we have that {𝑞𝑖 , 𝑓𝑗} = 0 for all 1 ≤ 𝑖 , 𝑗 ≤ 𝑛, and each of the components has one
of the following forms:

• 𝑞𝑖 =
(
𝑥2
𝑖
+ 𝜉2

𝑖

)
/2, called an elliptic component.

• 𝑞𝑖 = 𝑥𝑖𝜉𝑖 , called a hyperbolic component.

• 𝑞𝑖 = 𝑥𝑖𝜉𝑖+1 − 𝑥𝑖+1𝜉𝑖 and 𝑞𝑖+1 = 𝑥𝑖𝜉𝑖 + 𝑥𝑖+1𝜉𝑖+1, called a focus-focus
component.

• 𝑞𝑖 = 𝜉𝑖 , called a regular component.

Moreover, if there are no hyperbolic components then the system of equations
{𝑞𝑖 , 𝑓𝑗} = 0 for 1 ≤ 𝑖 , 𝑗 ≤ 𝑛 is equivalent to the existence of a local diffeomorphism
𝑔 : R𝑛 → R𝑛 such that

𝑔 ◦ 𝑓 = (𝑞1, . . . , 𝑞𝑛) ◦ (𝑥1, . . . , 𝑥𝑛 , 𝜉1, . . . , 𝜉𝑛).

In what follows we will concentrate on integrable systems where the di-
mension of the manifold is 4, and therefore there are two integrals, which
we usually call 𝐽 and 𝐻.

In this particular case, the singular points of rank 1 must be either of
elliptic-regular or hyperbolic-regular type. The singular points of rank
0 must be of type elliptic-elliptic, focus-focus, hyperbolic-hyperbolic or
hyperbolic-elliptic type.

In order to classify the singular points of a 4-dimensional integrable system
we present a criterion which can be found in Bolsinov and Fomenko in
[BF04] in the line of Definition 2.6.5. In particular, we are interested
in identifying the algebra 𝐾(𝐽 , 𝐻) ⊂ 𝔰𝔭(4,R), which is generated by the
linearizations of 𝑋𝐽 and 𝑋𝐻 at the singular point 𝑝. These linearizations
can be computed locally in Darboux coordinates centered at 𝑝 as the
matrices 𝐴𝐽 = Ω−1

0 𝑑2𝐽 and 𝐴𝐻 = Ω−1
0 𝑑2𝐻, where

Ω0 =

©­­­«
0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

ª®®®¬ .
Lemma 2.6.7 The algebra 𝐾(𝐽 , 𝐻) := {𝑐1𝐴𝐽 + 𝑐2𝐴𝐻 | 𝑐1, 𝑐2 ∈ R} is a Cartan

subalgebra if and only if it is two-dimensional and it contains an element whose
eigenvalues are all different.
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With this characterization it is possible to classify all Cartan subalgebras
of 𝔰𝔭(4,R). This classification was found by Williamson [Wil36]. In partic-
ular, a Cartan subalgebra must be conjugate to one of the algebras induced
by the following 2-parameter families:

©­­­­­­­­«

0 0 −𝛼 0
0 0 0 −𝛽
𝛼 0 0 0
0 𝛽 0 0

ª®®®®®®®®¬
,

©­­­­­­­­«

−𝛼 0 0 0
0 0 0 −𝛽
0 0 𝛼 0
0 𝛽 0 0

ª®®®®®®®®¬
,

©­­­­­­­­«

−𝛼 0 0 0
0 −𝛽 0 0
0 0 𝛼 0
0 0 0 𝛽

ª®®®®®®®®¬
,

©­­­­­­­­«

−𝛼 −𝛽 0 0
𝛽 −𝛼 0 0
0 0 𝛼 −𝛽
0 0 𝛽 𝛼

ª®®®®®®®®¬
, (2.8)

where 𝛼, 𝛽 ∈ R.

Each of the types of algebra is determined by the eigenvalues of the matrix,
and they determine the type of the critical point:

• 𝑝 is elliptic-elliptic if it has the four purely imaginary eigenvalues
{±𝑖𝛼,±𝑖𝛽},

• 𝑝 is hyperbolic-hyperbolic if it has four purely real eigenvalues
{±𝛼,±𝛽},

• 𝑝 is elliptic-hyperbolic if it has two purely imaginary and two purely
real eigenvalues, {±𝑖𝛼,±𝛽},

• 𝑝 is focus-focus if it has complex eigenvalues of the form {±𝛼 ± 𝑖𝛽},

where 𝛼, 𝛽 ≠ 0 and 𝛼 ≠ 𝛽 in the elliptic-elliptic and hyperbolic-hyperbolic
cases.

2.6.2 Toric manifolds

There is a particular family of systems notable because of their rigidity,
known as toric systems. Toric systems arise as actions of a torus on
a manifold, with subcategories of such systems defined by symplectic
actions and Hamiltonian actions. Hamiltonian toric systems, thus, may
only exhibit either regular or elliptic components in their systems.

Let us give a brief overview of their classification.
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Definition 2.6.8 A completely integrable system (𝑀, 𝜔, 𝐹) is toric if the
flow of its momentum map generates an effective action of T𝑛 on 𝑀.

Hamiltonian toric systems on compact and connected manifolds can be
completely classified by the image of the momentum map, 𝐹(𝑀) ⊂ R𝑛 :

Definition 2.6.9 A convex polytope Δ ⊂ R𝑛 is a Delzant polytope if it is

• simple: each vertex lies at the intersection of exactly 𝑛 edges,

• rational: all edges have a rational slope in the sense that for every
vertex every edge has the parametrization 𝑝 + 𝑣𝑡 with 𝑝 ∈ R𝑛 and
𝑣 ∈ Z𝑛 .

• smooth: at every vertex the 𝑛 vectors parametrizing the edges meeting
at the vertex form a basis of the module Z𝑛 .

Theorem 2.6.10 (Delzant [Del88]) There is an equivalence of categories
between the category of Hamiltonian toric systems (𝑀, 𝜔, 𝐹) (up to equivariant
symplectorphisms) and the category of Delzant polytopes (up to translation).
In particular, the image of the momentum map 𝐹(𝑀) determines (𝑀, 𝜔, 𝐹) up
to symplectic equivariance, and for any Delzant polytope Δ ⊂ R𝑛 there exists a
compact connected symplectic 2𝑛-dimensional manifold (𝑀, 𝜔) and a momentum
map 𝐹 : 𝑀 → R𝑛 such that 𝐹(𝑀) = Δ.

Hamiltonian toric systems are thus very special. At the same time, its
dynamical features are relatively simple, in the sense that all singular
points of toric systems have exclusively a combination of regular and
elliptic components.

2.6.3 𝑏-Toric manifolds

In this section we will summarize a generalization of integrable systems
into the setting of 𝑏-symplectic geometry, namely that of toric systems on 𝑏-
symplectic manifolds. This subject was thoroughly studied by Guillemin,
Miranda, Pires and Scott [GMPS15, GMPS17] and by Gualtieri, Li, Pelayo
and Ratiu [GLPR17]. Here we present a summary of the formers’ results.

We will denote by 𝔱 the Lie algebra of the torus T𝑛 and by 𝑋# ∈ 𝔛(𝑀)
the fundamental vector field associated to an element 𝑋 ∈ 𝔱 through the
infinitesimal action.
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Definition 2.6.11 Let (𝑀, 𝑍, 𝜔) be a 𝑏-symplectic manifold.

We say that a toric action T𝑛 ↷ 𝑀 is Hamiltonian if for all 𝑋,𝑌 ∈ 𝔱:

• 𝜄𝑋#𝜔 = 𝑑𝐻𝑋 for some 𝐻𝑋 ∈𝑏 𝒞∞(𝑀).

• 𝜔(𝑋#, 𝑌#) = 0.

We say that the action is toric if it is effective and dim(T𝑛) = 1
2dim(𝑀).

Through an equivariant version of the 𝑏-Morse lemma it is possible to show
a simple classification for toric Hamiltonian 𝑏-actions in the particular case
of surfaces:

Theorem 2.6.12 (Guillemin, Miranda, Pires and Scott [GMPS15, The-
orem 9]) A 𝑏-symplectic surface with a toric S1-action is equivariantly 𝑏-
symplectomorphic to either (S2, 𝑍) or (T2, 𝑍). Here, 𝑍 is a collection of latitude
circles (in the T2 case, an even number of such circles), the action is the standard
rotation, and the 𝑏-symplectic form is determined by the modular periods of the
critical curves and the regularized Liouville volume.

To study higher dimensional cases first we need to understand the be-
haviour of the T𝑛-action semilocally near the hypersurface 𝑍. To this end,
an equivariant Darboux theorem is proved.

Definition 2.6.13 For each connected component 𝑍′ ⊆ 𝑍 there is an
element 𝑣𝑍′ ∈ 𝔱∗ = Hom(𝔱,R), the toric modular weight of 𝑍′, such that
for every 𝑋 ∈ 𝔱 the function 𝐻𝑋 given by Definition 2.6.11 has the form
𝑣𝑍′(𝑋) log |𝑧 | + 𝑔 in a tubular neighbourhood around 𝑍′, where 𝑧 is a local
defining function of 𝑍′ and 𝑔 ∈ 𝒞∞(𝑀).

Remark 2.6.14 If the action is toric, then 𝑣𝑍′ ≠ 0.

The following remark gives an understanding of the topology of𝑍 in terms
of the mapping torus description from Theorem 2.4.38.

Remark 2.6.15 Let (𝑀, 𝑍, 𝜔) be a 𝑏-symplectic manifold with a toric
action and assume that 𝑍 is connected. Let ℒ be a leaf of 𝑍. Then,
𝑍 � ℒ × S1.
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Using these tools it is possible to understand the global behaviour of a
𝑏-toric Hamiltonian action via an analogue to the Delzant polytope. In
some sense, we want to understand the image of a momentum map, which
as we see in Definition 2.6.13 is not a smooth function in a neighbourhood
of 𝑍.

Let us start by providing the notion of the codomain.
Remark 2.6.16 Let (𝑀, 𝑍, 𝜔) be a 𝑏-symplectic manifold, and consider a

toric Hamiltonian action T𝑛 ↷ 𝑀. Let 𝐺 = (𝑉, 𝐸) be the graph associated
to (𝑀, 𝑍), and take 𝑤 : 𝐸 → 𝔱∗ the map that associates to each connected
component 𝑍 its toric modular weight 𝑣𝑍. When the action is effective,
the graph 𝐺 must either be a cycle with an even number of vertices or a
line.

Definition 2.6.17 Consider a pair 𝒢 = (𝐺, 𝑤) of a graph satisfying
the condition of Remark 2.6.16 and a function 𝑤 : 𝐸 → 𝔱∗ such that
𝑤(𝑒) = 𝑘𝑤(𝑒′) for 𝑘 ∈ R and 𝑘 < 0 if 𝑒 and 𝑒′ meet at a vertex. The 𝑏-
momentum codomain (ℛ𝒢 ,𝒵𝒢 , 𝑥̂) is a 𝑏-manifold (ℛ𝒢 ,𝒵𝒢) with a smooth
map 𝑥̂ : ℛ𝒢 \𝒵𝒢 → 𝔱∗. A 𝑏-map 𝜇 : 𝑀 → ℛ𝒢 is then a momentum map if it
is T𝑛 equivariant and 𝔱 ∋ 𝑋 ↦→ 𝜇𝑋 ∈ 𝒞∞(𝑀) with 𝜇𝑋(𝑝) = ⟨𝑥̂ ◦ 𝜇(𝑝), 𝑋⟩ is
linear, and moreover

𝜄𝑋#𝜔 = 𝑑𝜇𝑋 .

For the complete definition of the codomain see [GMPS15, Section 5]. See
Figure 2.7 for an example.

𝜇

+∞

−∞

Figure 2.7: The momentum map 𝜇 : T2→ ℛ𝒢 .
Definition 2.6.18 ([GMPS15, Definition 28]) A 𝑏-symplectic toric manifold

is (𝑀2𝑛 , 𝑍, 𝜔, 𝜇 : 𝑀 → ℛ𝒢), where (𝑀, 𝑍, 𝜔) is 𝑏-symplectic and 𝜇 is a
momentum map for some 𝑏-toric action on (𝑀, 𝑍, 𝜔).
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Definition 2.6.19 A 𝑏-polytope inℛ𝒢 is a bounded subset𝑃 that intersects
every component of 𝒵𝒢 and can be expressed as a finite intersection of
half-spaces.

Such a polytope is Delzant if

• In the case that 𝐺 is a line, if for every vertex 𝑣 ∈ 𝑃 there is a lattice
basis {𝑢𝑖} of 𝔱∗ such that the edges incident to 𝑣 can be written in a
neighbourhood of 𝑣 as 𝑣 + 𝑡𝑢𝑖 for 𝑡 ≥ 0.

• In the case that 𝐺 is a cycle, Δ𝑍 ⊆ 𝔱∗𝑤 .

Now we have all the notions required to establish a classification:

Theorem 2.6.20 ([GMPS15, Theorem 35]) The functor{
𝑏-symplectic toric manifolds
(𝑀, 𝑍, 𝜔, 𝜇 : 𝑀 → ℛ𝒢)

}
→

{
Delzant 𝑏-polytopes

in ℛ𝒢

}
that sends a 𝑏-symplectic toric manifold to the image of its momentum map is
a bĳection, where 𝑏-symplectic toric manifolds are considered up to equivariant
𝑏-symplectomorphisms that preserve the momentum map.

Theorem 2.6.20 induces a particularly rigid classification of 𝑏-toric mani-
folds:

Corollary 2.6.21 Every 𝑏-toric manifold is 𝑏-symplectomorphic to either

• A product of a 𝑏-symplectic T2 with a smooth toric manifold, or

• A manifold obtained from a product of a 𝑏-symplectic S2 with a smooth toric
manifold by a sequence of symplectic cuts performed at the north and south
“polar caps”, away from the critical hypersurface 𝑍.

2.6.4 Semitoric manifolds

As we have seen, there are well understood generalizations of the theory of
toric systems into the setting of 𝑏-symplectic manifolds. In this section we
will present a type of integrable system more complicated than toric sys-
tems, whose generalization to the 𝑏-symplectic setting we will introduce
in Chapter 5 and illustrate with examples.
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There are many good surveys on semitoric systems and their classifica-
tion, see for instance Pelayo and Vũ Ngo. c [PVN12a], Alonso and Hohloch
[AH19] and Pelayo [Pel21]. The research in the field of semitoric systems
has been expanded recently by the inquiry into their natural general-
ization, that of hypersemitoric systems. A reader interested in these de-
velopments is encouraged to read Henriksen, Hohloch and Martynchuk
[HHM23] and Gullentops and Hohloch [GH23].

Definition 2.6.22 (Pelayo and Vũ Ngo. c [PVN09]) Let (𝑀, 𝜔) be a 4-
dimensional symplectic manifold, and let 𝐹 = (𝐿, 𝐻) : 𝑀 → R2 be the
momentum map for a completely integrable system on 𝑀. We say that
the system is semitoric if

• 𝐿 is a proper map.

• 𝐿 generates an effective S1-action.

• All singularities are non-degenerate.

• There are no hyperbolic singularities.

We say that a semitoric system is simple if each fiber 𝐿−1(𝜃) contains at
most 1 focus-focus critical point.

Due to their definition semitoric systems can admit three types of singular
points: elliptic-elliptic, elliptic-regular or focus-focus. Focus-focus fibers
are of particular interest in the classification of semitoric systems. In the
simple case they are always topologically equivalent to a pinched torus as
in Figure 2.6.4. More generally, focus-focus fibers can have a slightly more
complicated topology, adding more “pinches” to the torus.

Simple semitoric systems were completely classified by Pelayo and Vũ
Ngo. c [PVN09, PVN11]:

Theorem 2.6.23 ([PVN09, PVN11]) Simple semitoric systems are completely
classified in terms of five invariants:

• The polygon invariant, a generalization of the Delzant polytope.

• The number of focus-focus points, 𝑛𝐹𝐹 ∈ N.

• The height invariant, a 𝑛𝐹𝐹-tuple which denotes the “heights” of all the
focus-focus points in the image of the momentum map.
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Figure 2.8: Focus-focus fiber of a simple semitoric system

• The twisting index invariant, which roughly describes the “gluing” of the
focus-focus points into the polygon.

• The Taylor series invariant, which further details the behaviour of the
focus-focus point.

The Taylor series invariant had been first constructed by Vũ Ngo. c [VN03],
and the number of focus-focus points, the polygon and the height invariant
were developed in [VN07]. This classification was extended to non-simple
systems by Palmer, Pelayo and Tang [PPT19], and in the work of Le Floch
and Palmer [LFP18] they were condensed into a single invariant, the marked
semitoric polygon. More recent developments towards the understanding
of the twisting index invariant were carried out by Alonso, Hohloch and
Palmer [AHP23].

We will describe two examples of systems that exhibit semitoric features,
one of which we will generalize as a singular symplectic manifold in
Chapter 5.

Example 2.6.24 Consider 𝑀 = S2 × R2 with Cartesian coordinates
(𝑥, 𝑦, 𝑧, 𝑢, 𝑣) and take as symplectic form 𝜔 = −𝜌1𝜔S2 + 𝜌2𝜔R2 , where 𝜔S2

and 𝜔R2 denote the standard symplectic forms on S2 and R2 respectively
and 𝜌1, 𝜌2 ∈ R and 𝜌1, 𝜌2 > 0.

The coupled spin oscillator is the integrable system (𝑀, 𝜔, (𝐿, 𝐻)) given by{
𝐿(𝑥, 𝑦, 𝑧, 𝑢, 𝑣) := 𝜌1𝑧 + 𝜌2

2 (𝑢2 + 𝑣2),
𝐻(𝑥, 𝑦, 𝑧, 𝑢, 𝑣) := 1

2(𝑥𝑢 + 𝑦𝑣).

This system is a simple semitoric system, and the image of its momentum
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map with the images of the critical points marked is as shown in Figure
2.9.

𝐿

𝐻

Figure 2.9: Momentum map of the coupled spin-oscillator. The blue dot
marks the image of the elliptic-elliptic fiber and the red dot marks the
image of the focus-focus fiber.

The system has two fixed points at the images of (0, 0,±1, 0, 0). The sin-
gularity at the point (0, 0,−1, 0, 0) is of elliptic-elliptic type, whereas the
singularity at the point (0, 0, 1, 0, 0) is of focus-focus type.

Remark 2.6.25 The system in Example 2.6.24 is a simplification of
the Jaynes-Cummings model [JC63] by Babelon, Cantini and Douçot
[BCD09]).

The Jaynes-Cummings model is a theoretical model in quantum optics
that describes the interaction between an atom and a quantized mode of
an electromagnetic field.

In [BCD09], Babelon, Cantini and Douçot developed a generalization of
the Jaynes-Cummings model, replacing the two-level atom by a single
quantum spin 𝑠. The adapted model turns out to be an integrable system
with two degrees of freedom: one spin in the sphere S2 and one harmonic
oscillator in the plane R2. In particular, the model corresponds to a simple
semitoric integrable system which exhibits one unstable fixed point of fo-
cus–focus type. The model has also appeared in other areas in physics, for
instance in solid-state physics and quantum information. See Greentree,
Koch and Larson and [GKL13] other articles in the special edition for an
orientation on these applications.
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This system has special interest from the perspective of semitoric systems
because it has been the first such system that could be completely classified
in terms of the invariants from Theorem 2.6.23. Specifically, Pelayo and Vũ
Ngo. c found in [PVN12b] the polygon and height invariants of the system,
and computed the linear terms of the Taylor series invariant. Alonso,
Dullin and Hohloch completed the classification in [ADH19] finding the
twisted index invariant and all the higher order terms of the Taylor series
invariant.

The following example, the coupled angular momenta, is a well known semi-
toric system in quantum physics. It was analysed notably by Sadovskii
and Zhilinskii [SZ99]. The system models the coupling of two quantum
angular momenta, by means of an interpolating parameter 𝑡 ∈ [0, 1].

Example 2.6.26 Consider 𝑀 = S2 × S2 with Cartesian coordinates
(𝑥1, 𝑦1, 𝑧1, 𝑥2, 𝑦2, 𝑧2) and take as symplectic form 𝜔 = −𝑅1𝜔S2 − 𝑅2𝜔S2 ,
where 𝜔S2 denotes the standard symplectic form on S2 and 𝑅1, 𝑅2 ∈ R
with 0 < 𝑅1 < 𝑅2.

The coupled angular momenta is the integrable system (𝑀, 𝜔, (𝐿, 𝐻)) given
by {

𝐿(𝑥1, 𝑦1, 𝑧1, 𝑥2, 𝑦2, 𝑧2) := 𝑅1𝑧1 + 𝑅2𝑧2,
𝐻(𝑥1, 𝑦1, 𝑧1, 𝑥2, 𝑦2, 𝑧2) := (1 − 𝑡)𝑧1 + 𝑡(𝑥1𝑥2 + 𝑦1𝑦2 + 𝑧1𝑧2).

Its interest from the mathematical point of view is that, despite its relative
simplicity, the system can exhibit an interesting range of behaviours as 𝑡
changes. The singularities of the system can change from degenerate and
non-degenerate and viceversa, and their components may also change in
type. Moreover, it is the first example of a compact semitoric system for
which all invariants have been determined. Le Floch and Pelayo found
in [LFP19] some of the invariants with a specific choice of the parameters
of the system. Alonso, Dullin and Hohloch [ADH20] computed all the
invariants for the whole family, and moreover analysed the dependence of
the parameters with respect to the parameters of the system, particularly
in the limit where the focus-focus singularity becomes degenerate.

The system is often used in the study of semitoric systems more broadly.
For example, Hohloch and Palmer [HP18] derived a 4-parameter family of
systems generalizing the coupled angular momenta, with which they were
able to introduce the first example of a semitoric system with two focus-
focus singularities. Alonso and Hohloch [AH21] analysed the system and
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computed the polygon and the height invariant for this family, and investi-
gated the relationship between these two invariants and the symmetries of
the system. Alonso, Hohloch and Palmer [AHP23] computed the twisting
index invariant for a subfamily of the family, completing the classification
of a collection of systems with two focus-focus singularities.

The coupled angular momenta is an interpolation through several inte-
grable systems for different values of 𝑡 ∈ [0, 1]. It has 4 fixed points at
𝑝±,± = (0, 0,±1, 0, 0,±1) independently of 𝑡. The points 𝑝+,+, 𝑝−,+ and
𝑝−,− are elliptic-elliptic fixed points regardless of 𝑡, but the type of the
point 𝑝+,− depends on the interpolating parameter. In particular, it is non-
degenerate of elliptic-elliptic type for 𝑡 < 𝑡− and for 𝑡 > 𝑡+, of focus-focus
type for 𝑡− < 𝑡 < 𝑡+ and degenerate for 𝑡 ∈ {𝑡−, 𝑡+}, where

𝑡± =
𝑅2

2𝑅2 + 𝑅1 ∓ 2
√
𝑅1𝑅2

.

In Figure 2.10 we can see how, as 𝑡 changes, one of the elliptic-elliptic values
enters the polygon, transforms into a focus-focus point, and it becomes an
elliptic-elliptic point again as it reaches the opposite boundary.

Figure 2.10: Image of the map of the coupled angular momenta for various
values of 𝑡.
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Chapter 3333333333333333333333333333333333333333333333333333333333333333333333333
The Arnold conjecture for
𝑏𝑚-symplectic manifolds

In this chapter we will investigate lower bounds on the number of 1-
periodic orbits for certain 𝑏𝑚-Hamiltonians in the context of 𝑏𝑚-symplectic
manifolds. We will employ desingularization techniques as introduced in
Section 2.5 to achieve these lower bounds. We will be following closely
the central sections of Brugués, Miranda and Oms [BMO22].

In Section 3.1 we will introduce the notion of admissible Hamiltonians,
the setting around which the notions in this chapter and the following will
revolve. In Section 3.2 we will expand on the desingularization techniques
first visited on Section 2.5 to account for the dynamics of an admissible
Hamiltonian and how desingularization affect them. Finally, in Section 3.3
we will see how to apply all of the desingularization techniques previously
introduced to deduce several lower bounds for admissible Hamiltonians
in 𝑏𝑚-symplectic manifolds.

3.1 Admissible Hamiltonians and semilocal dy-
namics

In this section we will investigate possible relationship between Hamilto-
nian vector fields of 𝑏𝑚-symplectic manifolds and the normal and modular
vector fields. We will be particularly interested in the presence of periodic
orbits in a neighbourhood of the singular hypersurface, and we will try
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to synthesize a subset of Hamiltonians, admissible Hamiltonians, on which
the Arnold conjecture is reasonable given the previous discussion.

Remark 3.1.1 Throughout the following two chapters we will be consi-
dering time dependent 𝑏𝑚-functions or Hamiltonians, denoted as 𝑏𝑚𝒞∞(R×𝑀)
or as 𝑏𝑚𝒞∞(S1 × 𝑀). These denote simply elements 𝐻𝑡 : R → 𝑏𝑚𝒞∞(𝑀)
or 𝐻𝑡 : S1 → 𝑏𝑚𝒞∞(𝑀) (see Definition 2.4.17) that are smooth in the time
component.

Definition 3.1.2 Let (𝑀, 𝑍, 𝜔) be a 𝑏𝑚-symplectic manifold and let 𝑋𝜎

be the normal symplectic vector field. We say that a (time dependent)
Hamiltonian 𝐻 ∈ 𝑏𝑚𝒞∞(S1 × 𝑀) is linear along 𝑋𝜎 if ℒ𝑋𝜎𝐻 = 𝐾(𝑡) on a
tubular neighbourhood of 𝑍, where 𝐾 ∈ 𝒞∞(S1) and therefore is a constant
with respect to all variables on 𝑀.

The term "linear along 𝑋𝜎" is chosen in analogy to the smooth case, as we
are demanding that the growth of 𝐻 along 𝑋𝜎 does not depend on any
variable on 𝑀.

Example 3.1.3 Consider the 𝑏-symplectic manifold(
T2, 𝑍 = {sin𝜃1 = 0}, 𝜔 =

𝑑𝜃1
sin𝜃1

∧ 𝜃2

)
. In this case, the normal symplectic

vector field can be found globally and expressed as 𝑋𝜎 = sin𝜃1
𝜕

𝜕𝜃1
.

Following the definition, the family of linear Hamiltonians is then given
by

𝐻(𝑡 , 𝜃1, 𝜃2) = 𝐾(𝑡) log
���� sin𝜃1
1 + cos𝜃1

���� + ℎ𝑡(𝜃2),

where𝐾 ∈ 𝒞∞(S1) and ℎ𝑡 ∈ 𝒞∞(S1×S1). Notice that, although the family of
Hamiltonians is not well defined as it is written locally in a neighbourhood
of 𝜃1 = 𝜋, it can be rewritten as

𝐻(𝑡 , 𝜃1, 𝜃2) = −𝐾(𝑡) log
���� sin𝜃1
1 − cos𝜃1

���� + ℎ𝑡(𝜃2)

in such a neighbourhood. With this observation, it is clear that this family
of functions satisfies the linearity condition in each tubular neighbourhood
of 𝑍. The Hamiltonian vector field is then given by

𝑋𝐻 = 𝐾(𝑡) 𝜕

𝜕𝜃2
− sin𝜃1

𝜕ℎ𝑡
𝜕𝜃2

𝜕

𝜕𝜃1
.
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Remark 3.1.4 More generally, if we think of the local expression around
𝑍 with a defining function 𝑧, then linear Hamiltonians are given by the
formula

𝐻(𝑡 , 𝑧, 𝑥) =
{
𝐾(𝑡) log |𝑧 | + ℎ𝑡(𝑥) if 𝑚 = 1,
− 𝐾(𝑡)
(𝑚−1)𝑧𝑚−1 + ℎ𝑡(𝑥) if 𝑚 > 1,

where 𝐾 is a smooth function depending on time, and 𝜕ℎ𝑡
𝜕𝑧 = 0.

If we assume that the modular vector field is chosen such that
𝜔(𝑋𝜎 , 𝑣𝑚𝑜𝑑) = 1, then we have that

𝑋𝐻 = 𝐾𝑣𝑚𝑜𝑑 −
(
ℒ𝑣𝑚𝑜𝑑 ℎ𝑡

)
𝑋𝜎 + 𝑋ℎ ,

where 𝑋ℎ denotes the Hamiltonian vector field of ℎ restricted to a leaf of
the symplectic foliation of 𝜔 on 𝑍. The aspect that we want to highlight
here is that 𝐾 is the term that controls the weight of the modular vector
field on the expression of the Hamiltonian vector field.

Remark 3.1.5 An important feature of Definition 3.1.2 is that it allows
us to prescribe the form of our 𝑏𝑚-Hamiltonians in a coordinate-free way,
which is expected in the context of differential geometry. But also the con-
dition is strong in the sense that the prescription of the form of𝐻 happens
in a neighbourhood of 𝑍 and not just the hypersurface. An advantage of
this framing is that we can make sense of the notion of linear Hamiltonian
also in the context of symplectic manifolds with cosymplectic boundary
(or, alternatively, open symplectic manifolds that have cosymplectic be-
haviour at infinity), in line with Lemma 2.4.34. In the Lemma we see that
𝑋𝜎 has an important role to play in the geometry of such manifolds, and
it is also the central piece in the notion of linear Hamiltonian.

This approach was inspired by the work in [FS07] and their conception of
admissibility in the context of convex symplectic manifolds, characterized
by a contact behaviour at infinity.

In light of Remark 3.1.4 it is worth asking why 𝐾 must be a function
instead of just being constant. We begin justifying this choice in the case
of surfaces and for 𝑚 = 1.

Proposition 3.1.6 Let (Σ, 𝑍, 𝜔) be a compact 𝑏-symplectic surface with 𝑋𝜎

a normal symplectic vector field. Let 𝐻 be a 𝑏-Hamiltonian function such that
ℒ𝑋𝜎𝐻 = 𝐾 ∈ R locally constant and different from zero in each connected
component of 𝑍.
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Then, for any connected component 𝑍𝑖 ⊂ 𝑍 with modular weight 𝑎 any tubular
neighbourhood𝒩(𝑍𝑖) small enough contains infinite periodic orbits of period 𝑎

𝐾 .
Further, if 𝐾 ∈ 𝑎Z there exist infinite 1-periodic Hamiltonian orbit in𝒩(𝑍).

The situation in Proposition 3.1.6 is undesirable in our case because we are
looking for a situation in which the periodic orbits of the Hamiltonian vec-
tor are isolated, as a necessary prerequisite for them to be non-degenerate.

Proof. By compactness,𝑍must be a finite union of circles. For the purposes
of this proof we can assume that 𝑍 = S1 � [0, 1]

/
(0 ∼ 1) and that𝒩(𝑍) is

diffeomorphic to S1×] − 𝜀, 𝜀[.

By Proposition 2.4.35, the 𝑏-symplectic form is given in this tubular neigh-
bourhood by

𝜔 = 𝑎
𝑑𝑧

𝑧
∧ 𝑑𝜃,

where 𝑎 ∈ R is the modular weight of the particular component of 𝑍.

In these coordinates the normal symplectic 𝑏-vector field is 𝑋𝜎 = 𝑧 𝜕
𝜕𝑧 . As

𝐻 is linear, we have that 𝐻𝑡(𝑧, 𝜃) = 𝐾 log |𝑧 | + ℎ𝑡(𝜃), so the Hamiltonian
vector field is given by

𝑎𝑋𝐻𝑡 = 𝐾
𝜕

𝜕𝜃
− 𝑧 𝜕ℎ𝑡

𝜕𝜃

𝜕

𝜕𝑧
.

The flow of this vector field𝑋𝐻𝑡 can be computed explicitly in𝒩(𝑍), taking
initial conditions (𝜃0, 𝑧0) ∈ S1 × ]−𝜀, 𝜀[, as

𝜃(𝑡) = 𝜃0 + 𝐾
𝑎 𝑡

𝑧(𝑡) = 𝑧0 exp
(
−

∫ 𝑡

0

1
𝑎

𝜕ℎ𝑠
𝜕𝜃
(𝜃0 + 𝐾𝑠)𝑑𝑠

)
.

Notice that, as the image of 𝜃 lies in S1, 𝜃(𝑡) is merely a periodic flow, and
in particular 𝜃(𝑡 + 𝑎

𝐾 ) = 𝜃(𝑡).

Let 𝐹 : S1→ R be given by

𝐹(𝜃) :=
∫ 𝑎

𝐾

0

𝜕ℎ𝑡
𝜕𝜃
(𝜃 + 𝐾𝑡)𝑑𝑡.



3.1. Admissible Hamiltonians and semilocal dynamics 69

The 𝑧-component of the flow has a 1-periodic orbit if and only if there is
some 𝜃0 ∈ S1 such that 𝐹(𝜃0) = 0. Indeed, integrating the function 𝐹 over
S1 and applying Fubini’s theorem we obtain∫

S1
𝐹(𝜃)𝑑𝜃 =

∫
S1

∫ 𝑎
𝐾

0

𝜕ℎ𝑡
𝜕𝜃
(𝜃 + 𝐾𝑡)𝑑𝑡𝑑𝜃 =

∫ 𝑎
𝐾

0

∫
S1

𝜕ℎ𝑡
𝜕𝜃
(𝜃 + 𝐾𝑡)𝑑𝜃𝑑𝑡

=

∫ 𝑎
𝐾

0
[ℎ𝑡(𝜃 + 𝐾𝑡)]𝜃=1

𝜃=0𝑑𝑡 = 0,

and therefore 𝐹(𝜃0) = 0 for some 𝜃0. This means that for any 𝑧0 small
enough there exists some 𝜃0 such that (𝑧0, 𝜃0) belongs to a periodic orbit
of period 𝑎

𝐾 . In particular, if 𝐾 ∈ 𝑎Z, then there exists orbits of period 𝑎
𝐾 in

𝒩(𝑍), and therefore also 1-periodic orbits.

A similar statement holds for 𝑚 > 1.

Proposition 3.1.7 Let (Σ, 𝑍, 𝜔) be a compact 𝑏𝑚-symplectic surface with 𝑋𝜎

a normal symplectic vector field. Let 𝐻 be a 𝑏𝑚-Hamiltonian function such that
ℒ𝑋𝜎𝐻 = 𝐾 ∈ R is constant (different from zero) in a tubular neighbourhood
𝒩(𝑍) of 𝑍. Then, any tubular neighbourhood small enough contained in 𝒩(𝑍)
contains at least one periodic orbit.

Proof. In a tubular neighbourhood, the 𝑏𝑚-symplectic form can be ex-
pressed by the expansion introduced in Proposition 2.4.35,

𝜔 =

(
𝑚∑
𝑖=1

𝑧𝑚−𝑖𝑎𝑖

)
𝑑𝑧

𝑧𝑚
∧ 𝑑𝜃.

As 𝐻 is linear, we have that 𝐻𝑡(𝑧, 𝜃) = − 1
𝑚−1

𝐾
𝑧𝑚−1 + ℎ𝑡(𝜃), where 𝐾 is

constant. The Hamiltonian vector field is therefore given by

𝑋𝐻𝑡 =

(
𝑚∑
𝑖=1

𝑧𝑚−𝑖𝑎𝑖

)−1 (
𝐾

𝜕

𝜕𝜃
− 𝑧𝑚 𝜕ℎ𝑡

𝜕𝜃

𝜕

𝜕𝑧

)
.

The function
(∑𝑚

𝑖=1 𝑧
𝑚−𝑖𝑎𝑖

)−1 does not vanish, so we consider the time
reparametrization of the vector field 𝑋𝐻 given by

𝑋𝐻𝑡 = 𝐾
𝜕

𝜕𝜃
− 𝑧𝑚 𝜕ℎ𝑡

𝜕𝜃

𝜕

𝜕𝑧
.
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As this is a reparametrization, both vector field are orbitally equivalent
and thus periodic orbits of 𝑋𝐻𝑡 correspond to periodic orbits of 𝑋𝐻𝑡 .

We now analyse the flow of the vector field 𝑋𝐻𝑡 and show that this vector
field has always infinitely many periodic orbits around the critical set. Its
flow can be computed explicitly as

𝜃(𝑡) = 𝜃0 + 𝐾𝑡

𝑧(𝑡) =
(

1
𝑧𝑚−1

0
− (𝑚 − 1)

∫ 𝑡

0

𝜕ℎ𝑡
𝜕𝜃
(𝜃0 + 𝐾𝑠)𝑑𝑠

)− 1
𝑚−1

The flow in the 𝜃 coordinate is periodic of period 1
𝐾 as in the proof of

Proposition 3.1.6 and the same arguments apply. This means that for any
𝑧0 there exists a 𝜃0 such that the integral curve of the reparametrization
𝑋𝐻𝑡 with initial condition (𝑧0, 𝜃0) is periodic. The same thus holds for the
Hamiltonian vector field 𝑋𝐻𝑡 . However, due to the reparametrization the
periods of the periodic orbits do not coincide.

This result is also true in higher dimensions if𝐻 does not depend on time.

Lemma 3.1.8 Assume 𝐻 is a time-independent Hamiltonian that is a first
integral of 𝑋𝜎. Then there is a 1-parametric family of critical points approaching
the critical set.

Proof. As 𝐻 is a first integral of 𝑋𝜎, 𝐻 can be viewed as a function on the
level sets 𝑧−1(𝜀), where 𝑍 = 𝑧−1(0). As 𝑍 is compact, there exist critical
points of 𝐻 on each hypersurface. The critical points translate to trivial
periodic orbits which appear as a 1-parametric family.

The same result holds also in higher dimensions if ℒ𝑋𝜎𝐻 = 0 and the
geometry of 𝑍 is that of a trivial mapping torus as in Equation 2.7.

Proposition 3.1.9 Let (𝑀, 𝑍, 𝜔) be a 𝑏-symplectic manifold such that 𝑍 is
compact and 𝑍 is a trivial mapping torus. Then all 𝑋𝜎-invariant Hamiltonian
𝑏-functions have periodic orbits arbitrarily close to 𝑍.

Proof. Around the critical set we have the local expression 𝜔 = 𝑑𝑧
𝑧 ∧ 𝛼 + 𝛽.

The tubular neighbourhood 𝒩(𝑍) admits the codimension 2 symplectic
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integrable distribution ker(𝑑𝑧)∩ker(𝛼). Let us denote this foliation around
the critical set by ℱ and its leaves by ℒ.

Let us consider Hamilton’s equation 𝜄𝑋𝐻𝜔 = −𝑑𝐻. The Hamiltonian vector
field can be computed using the 𝑏𝑚-Poisson structure, which is given by

Π = 𝑋𝜎 ∧ 𝑣𝑚𝑜𝑑 + 𝜋ℒ ,

where 𝜋ℒ = 𝜔−1
ℒ for the symplectic structure on the leaf, and 𝑋𝜎 = 𝑧 𝜕

𝜕𝑧 .
Thus, the Hamiltonian vector field is given by Π(𝑑𝐻, ·).

As𝐻 does not depend on 𝑧, the Hamiltonian vector field has the expression

𝑋𝐻 =
𝜕𝐻

𝜕𝜃
𝑧
𝜕

𝜕𝑧
+ (𝑋𝐻)ℒ ,

where 𝜕𝐻
𝜕𝜃 is a function that does not depend on 𝑧 and (𝑋𝐻)ℒ is the Hamil-

tonian vector field along the leaf.

On one hand, by the Arnold conjecture applied to a compact symplectic
leaf ℒ, there always exists a 1-periodic orbit of (𝑋𝐻)ℒ in ℒ. On the other
hand, we can apply Proposition 3.1.6 to the term 𝜕𝐻

𝜕𝜃 𝑧
𝜕
𝜕𝑧 and therefore

always find a 1-periodic orbits on the normal direction. Hence there are
periodic orbits for 𝑋𝐻 . Furthermore, they come in 1-parametric families.

Remark 3.1.10 A sufficient condition so that (𝑊, 𝑍, 𝜔) has a trivial map-
ping torus at 𝑍 is that the cohomology class [𝜔] ∈ 𝑏𝐻2(𝑀) is integral. See
[GMW18b, Section 2] for more details.

In our context, we are interested in producing a category of Hamiltonians
whose symplectic gradient has a finite number of periodic orbits, and
therefore we look for cases in which we can avoid periodic orbits in𝒩(𝑍).
In other words, we are trying to pose a version of the Arnold conjecture
for the open symplectic manifold 𝑀 \𝑍. With this interpretation in mind,
we introduce the following concept:

Definition 3.1.11 A Hamiltonian𝐻𝑡 ∈ 𝑏
𝑚𝒞∞(S1×𝑀) is admissible if there

exists a tubular neighbourhood𝒩(𝑍) of each component of 𝑍 such that

1. 𝐻𝑡 is linear along the normal symplectic 𝑏𝑚-vector field 𝑋𝜎: ℒ𝑋𝜎𝐻𝑡 =

𝐾(𝑡).
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2. 𝐻𝑡 is invariant with respect to the modular vector field: ℒ𝑣𝑚𝑜𝑑𝐻𝑡 = 0.

3. The neighbourhood𝒩(𝑍) contains no 1-periodic orbits of 𝑋𝐻𝑡 .

We denote the set of admissible Hamiltonians as 𝑏𝑚Adm(𝑀, 𝑋𝜎 , 𝑣𝑚𝑜𝑑).

Condition 3 in Definition 3.1.11 can seem a bit ad hoc given our interest
particularly in periodic orbits of Hamiltonians. In Proposition 3.1.15 we
will see a sufficient condition for the admissibility of a Hamiltonian in
𝑏𝑚𝒞∞(S1 ×𝑀) in terms of 𝐾(𝑡) and 𝑣𝑚𝑜𝑑.

Remark 3.1.12 Definition 3.1.11 depends on the choice of modular vec-
tor field and normal symplectic vector field. However, as we will see
later, the lower bounds on the 1-periodic Hamiltonian orbits, which we
are interested in, will be shown to be independent of these choices.

Remark 3.1.13 Building on the notation from Remark 3.1.4, we can see
that in local coordinates admissible Hamiltonians have the local expression

𝐻(𝑡 , 𝑧, 𝜃, 𝑥) =
{
𝐾(𝑡) log |𝑧 | + ℎ𝑡(𝑥) if 𝑚 = 1,
− 𝐾(𝑡)
(𝑚−1)𝑧𝑚−1 + ℎ𝑡(𝑥) if 𝑚 > 1,

where 𝜃 denotes precisely the coordinate in the modular direction, and
therefore ℒ𝑋𝜎 ℎ𝑡 = ℒ𝑣𝑚𝑜𝑑 ℎ𝑡 = 0.

In the particular case of surfaces, admissible Hamiltonians are quite res-
tricted in a neighbourhood of 𝑍, as ℎ𝑡 ≡ 0.

Example 3.1.14 Let us consider the 2𝑛-torus T2𝑛 with coordinates
(𝜃1, . . . , 𝜃2𝑛) and the singular hypersurface 𝑍 = {sin𝜃1 = 0}. Take the
family of 𝑏-symplectic forms

𝜔 =
𝑑𝜃1

sin𝜃1
∧ 𝛼 + 𝛽

for a pair of closed forms 𝛼 ∈ Ω1 (
T2𝑛 ) and 𝛽 ∈ Ω2 (

T2𝑛 ) such that 𝑑𝜃1
sin𝜃1

∧
𝛼 ∧ 𝛽𝑛−1. We take also

𝐻𝑡(𝜃1, . . . , 𝜃2𝑛) = 𝐾 log
���� sin𝜃1
1 + cos𝜃1

����
for some 𝐾 ∈ R constant, so 𝑋𝐻 = 𝐾𝑣𝑚𝑜𝑑. Then, regardless of the ex-
pression of 𝑣𝑚𝑜𝑑, 𝐾 can always be chosen small enough so that 𝑋𝐻 has
no 1-periodic orbits, which implies that there is a family of admissible
Hamiltonians that have no 1-periodic orbit in T2𝑛 .
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We close this discussion by providing a sufficient condition to satisfy the
last requirement of Definition 3.1.11 in the case that 𝑍 is given by the
mapping torus of the modular vector field.

Proposition 3.1.15 Let 𝐻𝑡 ∈ 𝑏𝑚Adm(𝑀, 𝑋𝜎 , 𝑣𝑚𝑜𝑑) with ℒ𝑋𝜎𝐻𝑡 = 𝐾(𝑡),
and suppose that the singular hypersurface 𝑍 ⊂ 𝑀 is given by the mapping torus
of the modular vector field,

𝑍 �
ℒ × [0, 𝑇]

(𝑥, 0) ∼
(
𝜑𝑇𝑣𝑚𝑜𝑑(𝑥), 𝑇

) , (3.1)

where 𝑇 is the modular weight of 𝑍.

Then, if

0 <

∫ 1

0
𝐾(𝑡)𝑑𝑡 < 𝑇,

there exists a tubular neighbourhood of 𝑍 that contains no 1-periodic orbits of
𝑋𝐻 .

Proof. First, let us observe that, since the forms 𝛼̃ and 𝛽 defined in Remark
2.4.36 are invariant with respect to 𝑋𝜎 and 𝛼̃ ∧ 𝛽𝑛−1 ≠ 0, then a tubular
neighbourhood of 𝑍 small enough 𝒩(𝑍) will be foliated by symplectic
tori, each of them of the form in Equation 3.1.

Taking the local expression of the 𝑏𝑚-Poisson structureΠ = 𝑋𝜎∧𝑣𝑚𝑜𝑑+𝜋ℒ
around 𝑍, the Hamiltonian vector field admits a splitting in a tubular
neighbourhood𝒩(𝑍) of the form 𝑋𝐻 = 𝐾(𝑡)𝑣𝑚𝑜𝑑 + (𝑋𝐻)ℒ .

If we identify 𝑍 with the expression of its mapping torus from Equation
3.1 we can choose coordinates so that we have 𝑣𝑚𝑜𝑑 = 𝜕

𝜕𝜃 , where 𝜃 denotes
the translation in the second coordinate. Therefore, by construction, the
flow of 𝑋𝐻 restricted to this coordinate cannot form a 1-periodic orbit
because of the condition that

∫
𝐾(𝑡) < 𝑇, and therefore the complete flow

cannot have a 1-periodic orbit in𝒩(𝑍).

3.2 New results on the desingularization of 𝑏𝑚-
symplectic manifolds

In this section we will introduce versions of the desingularization pro-
cess, which we first visited on Section 2.5, that account for the dynamical
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behaviour of a given admissible Hamiltonian on a particular compact
𝑏𝑚-symplectic manifold. Our aim will be to show that the flow of the
Hamiltonian can be still Hamiltonian for the desingularized symplectic
form in some cases.

We will see two families of results: on one hand, results for 𝑏2𝑘-symplectic
manifolds, and on the other hand for 𝑏𝑚-symplectic surfaces. In both cases
we will see that the result depends on whether the graph of the manifold
(see Definition 2.4.18) is acyclic or not.

We begin with the even case.

Proposition 3.2.1 Let (𝑀, 𝑍, 𝜔) be a compact 𝑏2𝑘-symplectic manifold and
take 𝐻𝑡 ∈ 2𝑘𝒞∞(S1 × 𝑀) an admissible Hamiltonian. Then, there exists a
symplectic structure 𝜔 on 𝑀 with respect to which 𝑋𝜔

𝐻
is a symplectic vector

field.

Moreover, if the 𝑏-manifold (𝑀, 𝑍) is acyclic there exits a smooth Hamiltonian
𝐻𝑡 ∈ 𝒞∞(S1 ×𝑀) such that 𝑋𝜔

𝐻
coincides with 𝑋𝜔

𝐻
.

Proof. The idea of the proof will be to repeat the process of desingula-
rization introduced in Definition 2.5.1 but taking also into account the
𝑏2𝑘-Hamiltonian 𝐻𝑡 in the even case.

As we explained in Definition 2.5.1, there is a family of symplectic forms
approximating 𝜔 with the semilocal expression

𝜔𝜀 = 𝑑𝑓𝜀 ∧
(

2𝑘−1∑
𝑖=0

𝑧 𝑖𝜋∗𝛼𝑖

)
+ 𝜋∗𝛽 (3.2)

on a tubular neighbourhood𝒩(𝑍𝑖) around 𝑍𝑖 , and exactly equal to 𝜔 away
from 𝒩(𝑍𝑖). As discussed in Remark 3.1.13 the admissible Hamiltonian
will have the local expression in𝒩(𝑍𝑖) given by

𝐻𝑡 = −𝐾𝑖(𝑡)
1

2𝑘 − 1
1

𝑧2𝑘−1 + ℎ𝑡 . (3.3)

We will use the function 𝑓𝜀 to build a smooth Hamiltonian 𝐻𝜀 semilocally
in𝒩(𝑍𝑖) to prove the first part of the Proposition, and then we will proceed
to globalize the construction of 𝐻𝜀 in the acyclic case.
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Let us take 𝐻𝜀 = 𝐾(𝑡) 𝑓𝜀 + ℎ𝑡 in 𝒩(𝑍𝑖) and equal to 𝐻 in 𝑀 \ 𝒩(𝑍𝑖). A
direct computation shows that

𝑋𝜔
𝐻

��
𝒩(𝑍𝑖) = 𝑋

𝜔𝜀

𝐻𝜀

���
𝒩(𝑍𝑖)

.

Moreover, as 𝑑𝐻𝜀 coincides with 𝑑𝐻𝑡 outside of 𝒩(𝑍𝑖) for all connected
components of 𝑍, 𝑋𝜔𝜀

𝐻𝜀
can be extended to 𝑋𝜔

𝐻
in 𝑀 \ ⋃

𝑖𝒩(𝑍𝑖). Thus,
the vector field 𝑋

𝜔𝜀

𝐻𝜀
is globally defined. Locally, 𝑋𝜔𝜀

𝐻𝜀
is generated by

Hamiltonian functions, so it is a symplectic vector field with respect to 𝜔𝜀.
We conclude therefore that 𝑋𝜔

𝐻
is a symplectic vector field on (𝑀, 𝜔 = 𝜔𝜀)

for any 𝜀 > 0 small enough.

Let us assume from now on that the graph associated to (𝑀, 𝑍) is acyclic.
As it is acyclic we can choose a colouring of the graph with two colours,
which we will label with the signs {+,−}. Let 𝑀+ denote the union of the
connected components of 𝑀 \𝑍 labeled with the sign + and 𝑀− the union
of the connected components labeled with the sign −, so that 𝑀 \ 𝑍 =

𝑀+
⊔
𝑀− and all the adjacent components to a connected component of

𝑀+ belong to 𝑀− and conversely.

We will define 𝐻𝜀 iteratively starting from a connected component of
𝑀 \ 𝒩(𝑍). On this initial component we take 𝐻𝜀 = 𝐻, the given 𝑏2𝑘-
admissible Hamiltonian.

Let us now assume that we have defined 𝐻𝜀 on a connected component of
𝑀\𝑍whose vertex in the graph we denote by 𝑣. Consider a vertex adjacent
to 𝑣 on which we still have not constructed 𝐻𝜀, and denote by 𝑍𝑖 the
connected component of 𝑍 separating it from the connected component
associated to 𝑣.

In 𝒩(𝑍𝑖) we consider the local expression of 𝐻𝑡 as given in Equation 3.3.
In particular, we have a specific function 𝐾𝑖(𝑡). We define now𝐻𝜀 in𝒩(𝑍𝑖)
depending on the label of the present vertex, 𝑣:

• If it has the + label, this means, 𝑣 represents a connected component
in 𝑀+, we define 𝐻𝜀 = 𝑓𝜀(𝑧)𝐾𝑖(𝑡) − 2

𝜀2𝑘−1𝐾𝑖(𝑡) + ℎ𝑡 .

• If it has the − label, this means, 𝑣 represents a connected component
in 𝑀−, we define 𝐻𝜀 = 𝑓𝜀(𝑧)𝐾𝑖(𝑡) + 2

𝜀2𝑘−1𝐾𝑖(𝑡) + ℎ𝑡 .
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The "glued" function is then smooth. Indeed, if we look at the case when
𝑣 is labeled with + and take 𝑧 > 𝜀,

𝐻𝜀 = 𝑓𝜀(𝑧)𝐾𝑖(𝑡) −
2

𝜀2𝑘−1𝐾𝑖(𝑡) + ℎ𝑡

= 𝐾𝑖(𝑡)
(

−1
(2𝑘 − 1)𝑧2𝑘−1 +

2
𝜀2𝑘−1

)
− 2

𝜀2𝑘−1𝐾𝑖(𝑡) + ℎ𝑡

= −𝐾𝑖(𝑡)
1

(2𝑘 − 1)𝑧2𝑘−1 + ℎ𝑡 .

The same argument applies in the case when 𝑣 is labeled with − and we
look at 𝑧 < −𝜀.

Also, as 𝑓 ′𝜀 > 0 by construction, the function 𝐻𝜀 admits no critical points
on𝒩(𝑍𝑖).

By the same criterion, we define 𝐻𝜀 in the adjacent vertex as 𝐻𝜀 = 𝐻𝑡 −
4

𝜀2𝑘−1𝐾𝑖(𝑡) if 𝑣 has the label +, or as 𝐻𝜀 = 𝐻𝑡 + 4
𝜀2𝑘−1𝐾𝑖(𝑡) if 𝑣 has the

label −. Following this process, as the graph is acyclic, we can construct
consistently a smooth function 𝐻𝜀 on the whole manifold 𝑀.

A direct computation allows us to verify that the Hamiltonian vector field
associated to 𝐻𝜀 by the symplectic form 𝜔𝜀 constructed by a desingulari-
zation through the same functions 𝑓𝜀 coincides with 𝑋𝜔

𝐻
, as we wanted to

prove. Thus, 𝑋𝜔
𝐻

is a Hamiltonian vector field for a choice of symplectic
structure and smooth Hamiltonian.

Proposition 3.2.1 has direct implications for the dynamics of 𝑋𝐻 in the
𝑏2𝑘-symplectic setting, which we will get back to in Section 3.3

For now we will concentrate on a related result in a slightly different
setting, that of 𝑏𝑚 surfaces, where the parity of 𝑚 will no longer play a
role.

Proposition 3.2.2 Let (Σ, 𝑍, 𝜔) be a 𝑏𝑚-symplectic surface such that Σ is
orientable, and take𝐻𝑡 an admissible Hamiltonian. Then, there exists a symplectic
structure 𝜔 on Σ with respect to which 𝑋𝜔

𝐻
is a symplectic vector field.

Moreover, if (Σ, 𝑍) is acyclic, then there exists a smooth Hamiltonian 𝐻 such that
𝑋𝜔
𝐻

coincides with 𝑋𝜔
𝐻

.
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Proof. It is clear that the case in which 𝑚 = 2𝑘 is already covered in
Proposition 3.2.1, so we will assume in this proof that 𝑚 is odd. The
structure of the proof is also the same: we will first construct 𝑋𝜔

𝐻
locally,

and then we will construct its smooth Hamiltonian globally for the acyclic
case.

As Σ is a compact surface and 𝑍 ⊂ Σ is also compact it follows that 𝑍 is
diffeomorphic to a disjoint union of circles, so each tubular neighbourhood
is diffeomorphic to a cylinder,𝒩(𝑍) � ]−𝜀, 𝜀[×S1, with coordinates (𝑧, 𝜃).
In these local coordinates we can express the 𝑏𝑚-symplectic form as

𝜔 =

𝑚−1∑
𝑖=0
(𝑧 𝑖𝑎𝑖)

𝑑𝑧

𝑧𝑚
∧ 𝑑𝜃,

where 𝑎0 ≠ 0. As 𝐻𝑡 is an admissible Hamiltonian, we have a local
expression of 𝐻𝑡 on𝒩(𝑍) given by

𝐻𝑡(𝑧, 𝜃) =
{
𝐾(𝑡) log |𝑧 | if 𝑚 = 1,
−𝐾(𝑡) 1

𝑚−1
1

𝑧𝑚−1 if 𝑚 > 1.

As in the proof of Proposition 3.2.1 take Σ+ and Σ− disjoint components
of Σ \ 𝑍 corresponding to a two-colouring of the graph associated to
(Σ, 𝑍). Such a colouring exists even if the graph is not acyclic under the
assumption that 𝑚 is odd, as we commented in Remark 2.4.41.

We will perform now a desingularization of 𝜔 in a different manner to
the one exposed in Definition 2.5.1, as we want to build a symplectic
structure instead of a folded structure, with the caveat that we are no
longer approximating 𝜔 as in the standard case.

Let 𝑔𝜀 : ]−𝜀, 𝜀[ → R be a smooth function such that 𝑔′𝜀 > 0 and

𝑔𝜀
��
] 𝜀2 ,𝜀[(𝑧) =

{
log |𝑧 | if 𝑚 = 1,
− 1
𝑚−1

1
𝑧𝑚−1 if 𝑚 > 1,

𝑔𝜀
��
]−𝜀,− 𝜀

2 [(𝑧) =
{
− log |𝑧 | + 2 log

( 𝜀
2
)
− 𝜀 if 𝑚 = 1,

1
𝑚−1

1
|𝑧 |𝑚−1 − 1

𝑚−1
2𝑚+1

𝜀𝑚 if 𝑚 > 1.

This function is indeed well defined, because 𝑔𝜀
( 𝜀

2
)
− 𝑔𝜀

(
− 𝜀

2
)
> 0 for

all 𝑚 ∈ N, and therefore 𝑔𝜀 can be chosen in such a way that 𝑔′𝜀 > 0
everywhere.
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𝑧

𝑔(𝑧)

− 𝜀
2

𝜀
2

Figure 3.1: Construction of 𝑔𝜀

See Figure 3.1 for an illustration of the construction of 𝑔𝜀.

We define a smooth 2-form on Σ as

𝜔𝜀 =


𝜔 in Σ+ \ 𝒩𝜀(𝑍),
(−1)𝑚𝜔 in Σ− \ 𝒩𝜀(𝑍),
𝑚−1∑
𝑖=0
(𝑧 𝑖𝑎𝑖)𝑑𝑔𝜀 ∧ 𝑑𝜃 in𝒩𝜀(𝑍),

which can easily be shown to be a symplectic form on Σ coinciding with
either 𝜔 or (−1)𝑚𝜔 on each connected component of Σ \ 𝒩𝜀(𝑍).

With this construction in mind we can now reproduce the arguments of
the proof of Proposition 3.2.1: we can define the smooth Hamiltonian in
the tubular neighbourhoods𝒩𝜀(𝑍) in such a way that 𝑑𝐻𝜀 can be patched
into a smooth 1-form, so 𝑋𝜔

𝐻𝜀
is a symplectic vector field for 𝜔𝜀 and it

coincides with 𝑋𝜔
𝐻

, proving the second part of the Proposition.

On the other hand, when the graph associated to Σ, 𝑍 is acyclic we can
proceed as in Proposition 3.2.1 in order to construct 𝐻𝜀 globally, thus
showing that 𝑋𝜔

𝐻
can be recovered as a Hamiltonian vector field for the

smooth symplectic form 𝜔.

Remark 3.2.3 Both Propositions 3.2.1 and 3.2.2 can be rephrased as
follows: there exists a symplectic (desingularized) structure 𝜔𝜀 for which
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the 1-form resulting from the contraction

𝜂 = 𝜄𝑋𝜔
𝐻
𝜔𝜀

is closed. Moreover, if the graph corresponding to (𝑀, 𝑍) or to (Σ, 𝑍) is
acyclic, then 𝜂 is exact.

Remark 3.2.4 The construction in Proposition 3.2.2 cannot be adapted
to higher dimensions for 𝑚 odd. This is because in the local expression
𝜔 = 𝑑𝑧

𝑧𝑚 ∧ 𝛼̃+ 𝛽 we would be interpolating the first component from 𝑑𝑧
𝑧𝑚 ∧ 𝛼̃

to − 𝑑𝑧𝑧𝑚 ∧ 𝛼̃, but there is not a process that can be adopted to interpolate
𝛽 to −𝛽 in general. Lacking such a process, we cannot generalize this
construction to dimensions higher than 2 a priori.

We believe that a version of this construction should be possible in higher
dimensions, at least in the case that 𝑍 has the structure of a mapping torus
due to results that we will see in Section 3.3. However, this remains a mere
conjecture.

While the argument may not be applicable to higher dimensions necessar-
ily, it is trivial to use it for direct products of 𝑏𝑚-surfaces with symplectic
manifolds.

Remark 3.2.5 In 𝑏𝑚-symplectic manifolds of the form (Σ×𝑀, 𝑍×𝑀, 𝜔1+
𝜔2), where (Σ, 𝑍, 𝜔1) is a 𝑏𝑚-symplectic surface and (𝑀, 𝜔2) is a symplectic
manifold, we can apply the same construction as in the proof of Propo-
sition 3.2.2, as the admissibility condition implies that the Hamiltonian
dynamics corresponds to the product dynamics. The same argument
holds for 𝑐-symplectic manifolds (see Miranda and Scott [MS20]) aris-
ing from products of 𝑏𝑚-symplectic surfaces with an analogous notion of
admissibility.

The desingularization process that we have studied so far can, in a certain
way, be reversed in the particular case of surfaces. This process, which
we call singularization, was already studied in full generality in Cavalcanti
[Cav17, Section 5], but we diverge from his focus of attention slightly as
we want to concentrate on the dynamical implications of such a singula-
rization process. A similar trick was used to singularize contact structures
along convex surfaces in [MO18]. This tool will be useful later to prove the
sharpness of some of the lower bounds that we will introduce in Section
3.3.
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Proposition 3.2.6 Let (Σ, 𝜔) be a symplectic surface, and let𝑍 =
⋃
𝑖∈𝐼 𝛾𝑖 ⊂ Σ

be a collection of embedded smooth curves such that the 𝑏-surface (Σ, 𝑍) has a
2-colourable graph. Let Σ+ and Σ− denote the partition of Σ \ 𝑍 given by the
2-colouring of the graph.

Then, for every 𝑚 ∈ N>0 there exists a 𝑏𝑚-symplectic structure on (Σ, 𝑍) that
agrees with 𝜔 inΣ+ \𝒩𝜀(𝑍) (outside an 𝜀-neighbourhood of 𝑍) and with (−1)𝑚𝜔
inΣ−\𝒩𝜀(𝑍). Moreover, if𝐻 ∈ 𝒞∞(Σ) is a smooth function such that𝐻(𝑧, 𝜃) =
𝑧 in a 𝜀-neighbourhood of 𝑍, then there exists an admissible 𝑏𝑚-function 𝐻 such
that 𝑋𝜔

𝐻
= 𝑋𝜔

𝐻
.

Proof. Let us start working in an 𝜀-neighbourhood of a connected compo-
nent 𝛾𝑖 ,𝒩𝜀(𝛾𝑖) � ]−𝜀, 𝜀[×𝛾𝑖 . We define the 𝑏𝑚-function 𝑠𝜀 ∈ 𝑏

𝑚𝒞∞ (𝒩𝜀(𝛾𝑖))
given by

𝑠𝜀(𝑧, 𝜃) =


log |𝑧 | if 𝑧 ∈

]
− 𝜀

2 ,
𝜀
2
[

and 𝑚 = 1,
− 1
𝑧𝑚−1 if 𝑧 ∈

]
− 𝜀

2 ,
𝜀
2
[

and 𝑚 > 1,
𝑧 if 𝑧 > 𝜀

2 ,

(−1)𝑚𝑧 if 𝑧 < − 𝜀
2 ,

which in particular satisfies that 𝜕𝑠𝜀
𝜕𝑧 ≠ 0. We repeat this process for each

component 𝛾𝑖 so that we get a function defined in 𝒩𝜀(𝑍). We can thus
define 𝜔 =

𝜕𝑠𝜀
𝜕𝑧 𝜔 ∈

𝑏𝑚Ω2(𝒩𝜀(𝑍)). Moreover, 𝜔 can be trivially extended
to the whole manifold by taking it to be equal to 𝜔 in Σ+ \ 𝒩𝜀(𝑍) and to
(−1)𝑚𝜔 in Σ− \ 𝒩𝜀(𝑍). The 𝑏𝑚-form 𝜔 can be seen to be a 𝑏𝑚-symplectic
form.

By an analogous process, we can modify a smooth function 𝐻 ∈ 𝒞∞(Σ) to
a 𝑏𝑚-function by taking

𝐻(𝑝) =


𝐻(𝑝) if 𝑝 ∈ Σ+ \ 𝒩𝜀(𝑍),
(−1)𝑚𝐻(𝑝) if 𝑝 ∈ Σ− \ 𝒩𝜀(𝑍),
𝑠𝜀 if 𝑝 ∈ 𝒩𝜀(𝑍).

A direct computation shows that indeed 𝑋𝜔
𝐻
= 𝑋𝜔

𝐻
.

Next we will investigate particular constructions that can be performed in
𝑏𝑚-symplectic surfaces to isolate the dynamical behaviours in connected
components of Σ \ 𝑍.



3.2. New results on the desingularization of 𝑏𝑚-symplectic manifolds 81

Proposition 3.2.7 Let (Σ, 𝑍, 𝜔) be a compact 𝑏𝑚-symplectic orientable surface
and let 𝐻𝑡 be an admissible Hamiltonian. Let Σ′ denote a connected component
of Σ \ 𝑍 with genus 𝑔, and let {𝛾1, . . . , 𝛾𝑑} denote the connected components of
𝑍 adjacent to Σ′. For 𝜀 > 0, let Σ′𝜀 = Σ′ \ 𝒩𝜀(𝑍).

Then, there exists a closed symplectic surface
(
Σ′, 𝜔

)
of genus 𝑔 such that(

Σ′ \
⊔

1≤𝑖≤𝑑
𝐷𝑖 , 𝜔

)
�

(
Σ′𝜀 , 𝜔 |Σ′𝜀

)
symplectomorphically for certain contractible sets 𝐷1, . . . , 𝐷𝑑 ⊂ Σ′.

Moreover, there exists a smooth function defined on Σ′ such that its Hamiltonian
vector field coincides with 𝑋𝜔

𝐻
on Σ′ \⊔1≤𝑖≤𝑑 𝐷𝑖 .

The idea of the proof is to attach a collection of 2-disks 𝐷1, . . . , 𝐷𝑑 to Σ′ at
the corresponding curves 𝛾1, . . . , 𝛾𝑑, as suggested by Figure 3.2, and then
desingularize in order to recover the desired symplectic behaviour, and
also to extend𝐻 to this new set in order to achieve the required dynamics.

Figure 3.2: Completion of a 𝑏-symplectic surface with disks at the punc-
tures
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Consider the 𝑏-surface given by a disk and its boundary, denoted as
(𝐷, 𝜕𝐷). Any 𝑏𝑚-symplectic structure 𝜔 on (𝐷, 𝜕𝐷) has the expansion
given by Proposition 2.4.35 in a neighbourhood of 𝑍,

𝜔 |𝒩(𝜕𝐷) =
𝑚∑
𝑖=1

𝑎𝑖
𝑑𝑟

(1 − 𝑟)𝑖
∧ 𝑑𝜃, (3.4)

where 𝑎𝑖 ∈ 𝒞∞(S1 × 𝐷) are smooth functions and (𝑟, 𝜃) are polar coordi-
nates.

Also, any admissible Hamiltonian must have the semilocal expression

𝐻𝑡 |𝒩(𝜕𝐷) (𝑟, 𝜃) =
{
𝐾(𝑡) log |1 − 𝑟 | if 𝑚 = 1,
− 𝐾(𝑡)
(𝑚−1)(1−𝑟)𝑚−1 if 𝑚 > 1,

for some 𝐾 ∈ 𝒞∞(S1) such that 𝐾(𝑡) > 0 and∫ 1

0
𝐾(𝑡)𝑑𝑡 < 2𝜋

𝑎𝑚
,

where 2𝜋
𝑎𝑚

is the modular weight of 𝜔.

Lemma 3.2.8 Let 𝒩𝜀(𝑍) = {(𝑟, 𝜃) ∈ 𝐷 | 𝑟 > 1 − 𝜀} be an annulus around
the boundary of the disk, and let 𝜔 and 𝐻𝑡 be a 𝑏𝑚-symplectic form and an
admissible Hamiltonian on𝒩𝜀(𝑍), respectively. Then there exist extensions of 𝜔
and 𝐻𝑡 to the whole disk such that the Hamiltonian flow at time 1 has exactly one
fixed point.

Proof. The proof is a simple computation where we extend the expression
given in Equation 3.4 in such a way that the Hamiltonian vector field is
given globally by 𝑋𝐻 = −𝐾(𝑡)𝑎𝑚

𝜕
𝜕𝜃 , where 𝜕

𝜕𝜃 has exactly one fixed point in
(0, 0) ∈ 𝐷 and the time 1 flow of𝑋𝐻 cannot have more fixed points because
0 <

∫ 1
0 𝐾(𝑡)𝑑𝑡 < 2𝜋

𝑎𝑚
.

Proof of Proposition 3.2.7. Let us start with the assumption that 𝑑 = 1, this
means, Σ′ is diffeomorphic to an orientable surface of genus 𝑔 punctured
at a single point, and the adjacent component of 𝑍, which we can denote
simply as 𝛾, is diffeomorphic to S1. Equivalently, the vertex correspon-
ding to Σ′ in the graph of the 𝑏-manifold has degree 1. We will start by
completing Σ′ to a closed 𝑏𝑚-symplectic surface by attaching a 2-disk to
the puncture.



3.2. New results on the desingularization of 𝑏𝑚-symplectic manifolds 83

The 𝑏𝑚-symplectic form 𝜔 in the neighbourhood near 𝛾 has the expression

𝜔 |𝒩𝜀(𝑍) =
𝑚∑
𝑖=1

𝑎𝑖
𝑑𝑟

(1 − 𝑟)𝑖
∧ 𝑑𝜃,

so we can apply Lemma 3.2.8 to attach a 2-disk 𝐷 to 𝛾 in order to get a
closed surface of genus 𝑔,Σ′, with a 𝑏𝑚-symplectic form𝜔 on the extension.
Lemma 3.2.8 can also be applied to a given Hamiltonian 𝐻𝑡 to get a 𝑏𝑚-
admissible Hamiltonian 𝐻𝑡 in such a way that near 𝛾 the Hamiltonian
vector field has the expression 𝑋

𝐻
= 𝐾 𝜕

𝜕𝜃 . Under these conditions, we
also know that 𝑋

𝐻

��
𝐷

vanishes exactly at one point in the interior of the
disk.

With these choices,
(
Σ′, 𝛾

)
is a 𝑏-surface with a trivial graph, given by

two vertices linked with a single edge. In particular, this graph is acyclic.
Therefore, we can apply the desingularization procedure from Proposi-
tion 3.2.2 to the system

(
Σ′, 𝛾, 𝜔, 𝐻

)
to get the symplectic desingularized

surface
(
Σ′, 𝜔

)
with a smooth Hamiltonian 𝐻𝑡 .

If the degree of the vertex of the open component under consideration
is strictly greater than 1, the process is analogous. In this case, the sin-
gular hypersurface is

⋃
1≤𝑖≤𝑑 𝛾𝑖 � S

1 ⊔ · · · ⊔ S1, and the application of
Lemma 3.2.8 is done on each disjoint open neighbourhood 𝒩𝜀(𝛾𝑖). The
resulting closed 𝑏-surface after gluing the 𝑑 2-disks,

(
Σ′,

⋃
1≤𝑖≤𝑑 𝛾𝑖

)
, has

a star graph consistent of 𝑑 + 1 vertices, with a central vertex of degree 𝑑
and all remaining vertices connected only to this central vertex. In par-
ticular, this graph in acyclic. Therefore we can apply Proposition 3.2.2 to(
Σ′,

⋃
1≤𝑖≤𝑑 𝛾𝑖 , 𝜔, 𝐻

)
, where 𝜔 and 𝐻 denote the extended 𝑏𝑚-symplectic

structure and the extended 𝑏𝑚-admissible Hamiltonian respectively, and
we obtain a desingularized symplectic surface

(
Σ′, 𝜔

)
of genus 𝑔 with a

smooth Hamiltonian 𝐻𝑡 . Notably, the Hamiltonian flow 𝑋𝜔
𝐻

has a fixed
point in the interior of each of the 𝑑 attached disks and no other 1-periodic
orbit in the neighbourhood of either of them.

Remark 3.2.9 The process in Proposition 3.2.7 can be reproduced in an
analogous way for symplectic manifolds in higher dimensions for which
the singular hypersurface 𝑍 has the geometry of a mapping torus. A cu-
rious reader is encouraged to check [BMO22, Section 4.4] for more details
about this subject.
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3.3 The Arnold conjecture through desingulari-
zation

After the groundwork laid out in Section 3.2 we are now ready to present
several results related to lower bounds on the number of 1-periodic or-
bits of the Hamiltonian flow of certain admissible 𝑏𝑚-Hamiltonians, this
means, versions of the Arnold conjecture, for some categories of 𝑏𝑚-
symplectic manifolds.

To start we have to narrow the family of admissible Hamiltonians to ones
for which the Arnold conjecture is sensible, that of regular admissible
Hamiltonians.

Definition 3.3.1 Let (𝑀, 𝑍, 𝜔) be a 𝑏𝑚-symplectic manifold and take
𝐻𝑡 ∈ 𝑏𝑚Adm(𝑀, 𝑋𝜎 , 𝑣𝑚𝑜𝑑). Let us denote by 𝒫(𝐻) the set of 1-periodic
orbits of the flow of 𝑋𝐻 , which by construction are completely contained
within 𝑀 \ 𝑍. We say that 𝐻𝑡 is regular if for all periodic orbits 𝑥 ∈ 𝒫(𝐻)
we have that

det
(
Id − 𝑑𝜑1

𝑋𝐻
(𝑥(0))

)
≠ 0.

This means, all 1-periodic orbits are non-degenerate

Remark 3.3.2 As is the case for smooth Hamiltonians, the set of regular
admissible Hamiltonians is open and dense in 𝑏𝑚Adm(𝑀, 𝑋𝜎 , 𝑣𝑚𝑜𝑑) in the
strong Whitney 𝒞∞-topology.

Then, as a consequence of Proposition 3.2.1 we have that:

Theorem 3.3.3 (Brugués, Miranda and Oms [BMO22]) Let (𝑀, 𝑍, 𝜔) be
a compact acyclic 𝑏2𝑘-symplectic manifold, and let 𝐻𝑡 be a regular admissible
Hamiltonian. Then,

#𝒫(𝐻) ≥
∑
𝑖

dim𝐻𝑀𝑖 (𝑀;Z2) ,

where 𝐻𝑀𝑖 (𝑀;Z2) denotes the 𝑖-th group of the Morse homology on 𝑀 with
coefficients in Z2.

Proof. By Proposition 3.2.1 we can desingularize (𝑀, 𝑍, 𝜔) into a symplec-
tic manifold and 𝐻𝑡 into a smooth Hamiltonian 𝐻 whose Hamiltonian
vector field coincides with 𝑋𝐻 . Furthermore, we can assume that all the
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1-periodic orbits of 𝑋
𝐻

are non-degenerate, so we can apply the stan-
dard Arnold conjecture for compact symplectic manifolds as presented in
Theorem 2.2.18.

Note that a crucial assumption in Theorem 3.3.3 is that the graph associ-
ated to (𝑀, 𝑍) is acyclic, which intrinsically is a topological property of the
𝑏-manifold. Proposition 3.2.1 only concludes that the vector field is sym-
plectic when the graph is cyclic. Symplectic vector fields do not necessarily
exhibit 1-periodic orbits at all. In that case, the best lower bound available
for such flows can be found in the main theorem of [VO95], which induces
the following lower bound:

Corollary 3.3.4 Let (𝑀, 𝑍, 𝜔) be a compact 𝑏2𝑘-symplectic manifold of di-
mension 2𝑛 which is aspherical, in the sense that 𝜋2(𝑀) = 0. Let 𝐻𝑡 be a regular
admissible 𝑏2𝑘-Hamiltonian, with Hamiltonian flow 𝜑𝑡

𝑋𝐻
. Suppose that there

exists an isotopy between 𝜑1
𝑋𝐻

and the identity through 𝑏2𝑘-symplectomorphisms.

Then, the number of fixed points of 𝜑1
𝑋𝐻

is greater or equal to the sum of the Betti
numbers of the Novikov homology over Z2 associated with the Calabi invariant of
𝜑1
𝑋𝐻

.

In the particular case introduced in Example 3.1.14 this lower bound turns
out to be 0, as we can see in the Example for a particular Hamiltonian.

In what follows we will concentrate on a stronger version of this lower
bounds for the particular case of 𝑏𝑚-symplectic surfaces. We will adopt
the notation 𝐺 = (𝑉, 𝐸) for the graph of a given 𝑏-surface (Σ, 𝑍), where 𝑉
denotes the set of vertices and 𝐸 the set of edges of the graph. Moreover,
if 𝑣 ∈ 𝑉 is a vertex of the associated graph we will denote by Σ𝑣 ⊂ Σ \ 𝑍
the connected component associated to the vertex 𝑣, and the genus of Σ𝑣
as a surface will be denoted by 𝑔𝑣 . Finally, let us recall that the degree of a
vertex 𝑣 ∈ 𝑉 , denoted by deg(𝑣), is the number of vertices that are adjacent
to 𝑣 in the graph.

Theorem 3.3.5 (Brugués, Miranda and Oms [BMO22]) Let (Σ, 𝑍, 𝜔) be
a closed 𝑏𝑚-symplectic orientable surface. Let 𝐻𝑡 be a regular admissible 𝑏𝑚-
Hamiltonian. Then the number of 1-periodic orbits of 𝑋𝐻 has the lower bound

#𝒫(𝐻) ≥
∑
𝑣∈𝑉

(
2𝑔𝑣 +

��deg(𝑣) − 2
��) .
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Proof. We will separate this proof in two parts: first we will show that a
connected component Σ𝑣 ⊂ Σ \ 𝑍 with deg(𝑣) = 1 contains at least 2𝑔𝑣 + 1
periodic orbits, and then we will prove that in the case that deg(𝑣) ≥ 2
then the lower bound is 2𝑔𝑣 + deg(𝑣) − 2.

In the case that deg(𝑣) = 1, we can apply Proposition 3.2.7 to the open
surface Σ𝑣 , so we get a closed symplectic surface

(
Σ𝑣 , 𝜔𝑣

)
with a smooth

Hamiltonian 𝐻𝑡 in such a way that 𝑋𝜔
𝐻

agrees with 𝑋𝜔
𝐻

in Σ𝑣 ⊂ Σ𝑣 . If we

apply the standard Arnold conjecture to
(
Σ𝑣 , 𝜔, 𝐻𝑡

)
we conclude that 𝑋𝜔

𝐻

has at least 2𝑔𝑣 + 2 one-periodic orbits. Moreover, we know that in the
attached disk 𝐷 ⊂ Σ𝑣 the vector field 𝑋𝜔

𝐻
has precisely one periodic orbit,

so we can conclude that it has at least 2𝑔𝑣 + 1 periodic orbits away from
𝐷, this means, in the interior of Σ𝑣 .

Let us now consider the case when deg(𝑣) ≥ 2. If we apply Proposition
3.2.7 to this case we get a closed symplectic surface

(
Σ𝑣 , 𝜔

)
and a smooth

Hamiltonian 𝐻𝑡 , where Σ𝑣 \ Σ𝑣 is the disjoint union of deg(𝑣) 2-disks.
As remarked in Lemma 3.2.8, the flow of 𝑋𝜔

𝐻
has deg(𝑣) trivial periodic

orbits, each of them located in the interior of each of these disks. As
each of them has to be either a minimum or a maximum of 𝐻𝑡 , they have
Conley-Zehnder index either +1 or −1.

Let us now consider the Floer complex induced by
(
Σ𝑣 , 𝜔, 𝐻𝑡

)
. We will use

the notation 𝑐𝑖 := # {𝑥 ∈ 𝒫(𝐻) | 𝜇𝐶𝑍(𝑥) = 𝑖} for the dimension of the 𝑖-th
Floer complex group, and 𝑏𝑖 for the dimension of the 𝑖-th Floer homology
group. As Σ𝑣 is a closed surface of genus 𝑔𝑣 , we know that 𝑏−1 = 𝑏1 = 1
and 𝑏0 = 2𝑔𝑣 . The dimensions 𝑐𝑖 and 𝑏𝑖 are related by the weak Morse
inequalities, which in the case of the Floer complex yield∑

(−1)𝑖𝑐𝑖 =
∑
(−1)𝑖𝑏𝑖 . (3.5)

By our previous observation that the points in the interior of the disks are
maxima or minima we can deduce that 𝑐−1 + 𝑐1 ≥ deg(𝑣). If we combine
everything we know with Equation 3.5 we can arrive at the inequality

𝑐0 ≥ 2𝑔𝑣 + deg(𝑣) − 2.

Therefore the number of periodic orbits of 𝑋𝜔
𝐻

can be bounded below:

𝑐−1 + 𝑐0 + 𝑐1 ≥ 2𝑔𝑣 + 2deg(𝑣) − 2.
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If we subtract the deg(𝑣) periodic orbits that lie in the interior of the disks
we will obtain the lower bound for the orbits of 𝑋𝜔

𝐻
= 𝑋𝜔

𝐻
contained in the

interior of Σ𝑣 , which is precisely 2𝑔𝑣 + deg(𝑣) − 2.

Repeating this process for each connected component of Σ \ 𝑍 we arrive
at the desired conclusion.

Remark 3.3.6 The lower bound in Theorem 3.3.5 is always equal or
better than the lower bound from Theorem 3.3.3 in the case when both
results can be applied.

Moreover, the lower bound in Theorem 3.3.5 is sharp, in the sense that it
is the best lower bound that can be obtained.

Proposition 3.3.7 (Brugués, Miranda and Oms [BMO22]) Let (Σ, 𝜔) be
a compact orientable 𝑏𝑚-symplectic surface with critical set 𝑍 =

⊔
𝛾𝑖 , where

each 𝛾𝑖 is diffeomorphic to a circle. Then there exists an admissible 𝑏𝑚-function
𝐹 : (Σ,⊔ 𝛾𝑖) → R ∪ {±∞} such that 𝑋𝐹 has exactly∑

𝑣∈𝑉

(
2𝑔𝑣 + |deg(𝑣) − 2|

)
1-periodic orbits.

The proposition follows from Proposition 3.2.6 combined with fairly basic
Morse theory on surfaces. We will need the following result for the case
that 𝑚 is even:

Definition 3.3.8 Let 𝐺 = (𝑉, 𝐸) an undirected graph. A good orientation
of the graph is a choice of direction for each edge 𝑒 ∈ 𝐸 in such a way that
every vertex 𝑣 ∈ 𝑉 with deg(𝑣) > 1 has at least one edge whose target is 𝑣
and at least one edge whose source is 𝑣.

Lemma 3.3.9 Let 𝐺 = (𝑉, 𝐸) an undirected graph. Then, there exists a good
orientation for 𝐺.

Proof of Proposition 3.3.7. To prove this result we will split the surface at
each connected component of 𝑍 and construct a Morse function for each
of the compactified components, in a process similar to that of Proposition
3.2.7. We will then singularize the constructed Morse functions and glue
them together in the initial surface. In order to perform this gluing oper-
ation, we will need to add more data to the graph of our surface, taking
into account the parity of 𝑚:
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• If 𝑚 is odd, then we equip the graph with a colouring at the edges.
This means that we associate to each connected component of 𝑍 a
label, either + or −. Such a colouring exists for any graph that has
no odd cycles, which is true always for the graph of a 𝑏𝑚-symplectic
manifold with 𝑚 odd, as it accepts a vertex 2-colouring (see for
instance [MP18]).

• If𝑚 is even, then we equip the graph with a direction. This means, for
each edge of our graph we will select one of the two incident vertices
as a source and the other one as a target. We select this directionality
in such a way that each vertex of degree strictly greater than 1 is at
least the source of an edge and the target of a different edge. Such a
choice of direction always exists, by Lemma 3.3.9.

For each connected component of Σ \ 𝑍 we construct a closed symplectic
manifold

(
Σ𝑗 , 𝜔 𝑗

)
as in Proposition 3.2.7. Let 𝑣 denote the vertex in the

graph representing the connected component from which we constructΣ𝑗 .
Then Σ𝑗 contains deg(𝑣) connected components of 𝑍, which we denote by
𝛾1, . . . , 𝛾deg(𝑣). If𝑚 is odd, each of these components is labeled with a sign
+ or − by the edge 2-colouring. Otherwise, if 𝑚 is even, we can label each
𝛾𝑖 with the sign − if 𝑣 is the source of the associated edge, and the sign +
if 𝑣 is the target. By construction, each of these connected components of
𝑍 bounds a 2-disk.

AsΣ𝑗 is orientable, it admits a perfect Morse function, this means, a Morse
function that has the minimal number possible of critical points, in our case
2 + 2𝑔𝑣 . Such a Morse function can be manipulated in Morse coordinates
by adding non-degenerate critical points in such a way that we end up with
a Morse function 𝐹1

𝑗
: Σ𝑗 → R such that each disk delimited by a critical

curve 𝛾𝑖 contains exactly one critical point of 𝐹1
𝑗

in its interior: a maximum
if 𝛾𝑖 has the + label, or a minimum if 𝛾𝑖 has the − label. Moreover, we
can assume that in the tubular neighbourhood of any critical curve it is
possible to choose cylindrical coordinates (𝑧, 𝜃) such that 𝐹1

𝑗
has the local

expression 𝐹1
𝑗
(𝑧, 𝜃) = 𝑧 in the neighbourhood.

The constructed Morse function has then 2+2𝑔𝑣 critical points if deg(𝑣) = 1
or 2+ 2𝑔𝑣 + 2(deg(𝑣) − 2) critical points otherwise. In the first case, exactly
1 + 2𝑔𝑣 critical points are contained away from the disks delimited by the
critical curve, and in the second case 2𝑔𝑣+deg(𝑣)−2. If needed, we divide
𝐹1
𝑗

by a constant large enough so that 𝑋𝜔
𝐹1
𝑗

has no 1-periodic orbits besides
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its critical points.

We now apply Proposition 3.2.6 and obtain a 𝑏𝑚-function 𝐹2
𝑗

on the 𝑏𝑚-
symplectic surface (Σ𝑗 , 𝜔) such that 𝑋𝜔

𝐹2
𝑗

has exactly the same 1-periodic

orbits as 𝑋𝜔
𝐹1
𝑗

. In particular, there exists a tubular neighbourhood around

each 𝛾𝑖 in such a way that 𝐹2
𝑗

has the local expression

𝐹2
𝑗 (𝑧, 𝜃) =

{
± log |𝑧 | if 𝑚 = 1,
± 1
𝑧𝑚−1 if 𝑚 > 1,

(3.6)

with the sign coinciding with the label associated to 𝛾𝑖 .

Let 𝐷𝑖 denote the disk delimited by the curve 𝛾𝑖 , and let us restrict to the
interior ofΣ𝑗 \

⋃
𝑖 𝐷𝑖 . The vector field𝑋𝜔

𝐹2
𝑗

has then 1+2𝑔𝑣 1-periodic orbits

if deg(𝑣) = 1 and 2𝑔𝑣 + deg(𝑣) − 2 1-periodic orbits if deg(𝑣) > 1.

To conclude, we construct the 𝑏𝑚-function 𝐹3 ∈ 𝑏𝑚𝒞∞(Σ) by gluing to-
gether the components 𝐹2

𝑗
. We can define 𝐹3 by its restriction on each of

the connected components ofΣ\𝑍 so that it coincides with 𝐹2
𝑗
, and use the

expression from Equation 3.6 in the tubular neighbourhood of each com-
ponent of 𝑍. Because of our choices of edge 2-colouring or directionality,
the sign will be consistent along each of the tubular neighbourhoods of 𝑍.
Therefore, 𝐹3 is a well defined 𝑏𝑚-function and, moreover, an admissible
𝑏𝑚-function.

Proof of Lemma 3.3.9. Consider the graph 𝐺 = (𝑉, 𝐸). An orientation of
a graph is good if and only if it is good for each connected component.
Hence, we may assume that 𝐺 is a connected graph.

Consider an ordering of the edges of 𝐺, {𝑒𝑖}1≤𝑖≤𝑛 . We define inductively
the graphs 𝐺0, . . . , 𝐺𝑛 as follows: 𝐺0 = 𝐺, and if 𝑖 > 0 then 𝐺𝑖 = (𝑉, 𝐸𝑖),
where 𝐸𝑖 := 𝐸𝑖−1 \ {𝑒𝑖} if one of the two vertices to which 𝑒𝑖 is incident has
degree strictly greater than 2 in the graph 𝐺𝑖−1, and 𝐸𝑖 := 𝐸𝑖−1 otherwise.

By this construction, all the vertices in the graph𝐺𝑛 have a degree lower or
equal to 2. 𝐺𝑛 can then be given a good orientation trivially, because each
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Figure 3.3: Cutting and filling a 𝑏2𝑘+1-symplectic surface with signs at the
disks. Red disks contain maxima and blue disks contain minima

connected component of 𝐺𝑛 will be either a cycle, a path, or an isolated
vertex.

Now, let us construct a good orientation inductively on 𝐺𝑖 for 𝑖 < 𝑛.

Let us assume that 𝐺𝑖+1 has a good orientation. We claim then that 𝐺𝑖
admits a good orientation as well. Consider the edge 𝑒𝑖 . If 𝐺𝑖 = 𝐺𝑖+1, this
means that we did not remove the edge 𝑒𝑖 in the construction of {𝐺𝑖}𝑖 ,
and therefore 𝐺𝑖 admits the same good orientation as 𝐺𝑖+1. Otherwise,
𝑒𝑖 is the only edge of 𝐺𝑖 for which a direction compatible with the good
orientation (from 𝐺𝑖+1) must be determined. By our construction, one of
vertices adjacent to 𝑒𝑖 must have a degree greater than 2. We choose the
direction for 𝑒𝑖 depending on the degree of the other vertex in 𝐺𝑖+1:

• If the vertex has either degree 0 or greater or equal to 2, then either
direction for 𝑒𝑖 produces a good orientation for the graph 𝐺𝑖 .

• If the vertex has degree 1, then it is the source (respectively the target)
of an edge in 𝐸𝑖+1. Then, we pick the direction on 𝑒𝑖 such that this
vertex becomes also the target (respectively source) of 𝑒𝑖 .

Following this process, a good orientation can be induced for each of the
graphs 𝐺𝑖 , and in particular for 𝐺0 = 𝐺.

As mentioned in Remark 3.2.5, the desingularization process can be repro-
duced if we take the product of a 𝑏𝑚-symplectic surface with a symplectic
manifold, so Theorem 3.3.5 has the following immediate Corollary:
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Corollary 3.3.10 (Arnold conjecture for product 𝑏𝑚-symplectic mani-
folds) Let (Σ, 𝑍, 𝜔1) be an orientable 𝑏𝑚-symplectic surface and (𝑊, 𝜔2) a com-
pact symplectic manifold, and consider the 𝑏𝑚-symplectic manifold obtained by
their product, (𝑀 = Σ ×𝑊, 𝑍 ×𝑊, 𝜔1 + 𝜔2). Let 𝐻𝑡 be a regular admissible
𝑏𝑚-Hamiltonian on 𝑀.

Then the number of periodic orbits of 𝑋𝐻 has the lower bound

#𝒫(𝐻) ≥
(∑
𝑣∈𝑉

(
2𝑔𝑣 +

��deg(𝑣) − 2
��) ) · (∑

𝑖

dim𝐻𝑀𝑖 (𝑊 ;Z2)
)

where 𝐻𝑀𝑖(𝑊 ;Z2) is the 𝑖-th Morse homology group of𝑊 .

In Remark 3.2.9 we discussed the possibility to extend the desingula-
rization techniques to the setting of 𝑏𝑚-symplectic manifolds of higher
dimension where the singular hypersurface 𝑍 has the geometry of a map-
ping torus. This yields the following Proposition, in line with the results
in this section.

Proposition 3.3.11 Let (𝑀, 𝑍, 𝜔) be a closed 𝑏𝑚-symplectic manifold of di-
mension 2𝑛 with trivial mapping tori 𝑍𝑖 . Let 𝐻𝑡 be a regular admissible Hamil-
tonian. Then, the number of 1-periodic orbits of 𝑋𝐻 has the lower bound

#𝒫(𝐻) ≥
∑
𝑣∈𝑉

max

{
2𝑛∑
𝑖=0

dim𝐻𝑀𝑖

(
𝑀𝑣 ;Z2

)
−

∑
𝑒∈𝐸𝑣
𝒫

(
𝑋ℎ𝑒𝑡

��
𝑍𝑒

)
, 0

}
where 𝐸𝑣 denotes the set of edges adjacent to the vertex 𝑣, 𝑍𝑒 is the connected
component of 𝑍 corresponding to the edge 𝑒, and ℎ𝑒𝑡 the smooth function such that

𝐻𝑡 |𝒩(𝑍𝑒 ) (𝑧, 𝜃, 𝑥) =
{
𝐾(𝑡) log |𝑧 | + ℎ𝑒𝑡 (𝑥) if 𝑚 = 1,
−𝐾(𝑡) 1

(𝑚−1)𝑧𝑚−1 + ℎ𝑒𝑡 (𝑥) if 𝑚 > 1.

This result is not properly analogous to the Arnold conjecture, because the
lower bound that we find is not topological in nature. Rather, it depends
on the dynamics of the Hamiltonian restricted to 𝑍. It merely suggests a
way in which these can type of lower bounds could be found. Namely, an
exploration of the dynamics of 𝑋ℎ𝑒𝑡 and potential topological restrictions
thereof could be the key to find a strict lower bound for the family of
𝑏𝑚-symplectic compact manifolds with trivial mapping tori 𝑍.
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Floer theory on 𝑏𝑚-symplectic

manifolds

4.1 The Floer equation on 𝑏𝑚-symplectic mani-
folds

In this section we will derive the Floer equation as in Equation 2.5 for
admissible Hamiltonians in 𝑏𝑚-symplectic manifolds and investigate some
elementary properties of their solutions. From our study we will be able
to conclude that the solutions of the Floer equation in this setting satisfy a
minimum principle, which in the next section will be useful to set up the
construction of a Floer complex.

Definition 4.1.1 Let (𝑀, 𝑍) be a 𝑏-manifold and 𝑚 ∈ N>0. A 𝑏𝑚-
Riemannian metric is a symmetric and strictly positive definite tensor
𝑔 ∈ Γ

(
𝑏𝑚𝑇∗𝑀 ⊗ 𝑏𝑚𝑇∗𝑀

)
.

Definition 4.1.2 Let (𝑀, 𝑍, 𝜔) be a 𝑏𝑚-symplectic manifold. An almost
complex structure is a bundle endomorphism 𝐽 : 𝑏𝑚𝑇𝑀 → 𝑏𝑚𝑇𝑀 such that
𝐽2 = −Id.

An almost complex structure can always be chosen so that it is compatible
with the 𝑏𝑚-symplectic structure 𝜔, this means, the tensor 𝑔𝐽(·, ·) := 𝜔(·, 𝐽·)
defines a 𝑏𝑚-Riemannian metric.

Moreover, an almost complex structure can be chosen in such a way that it
is compatible with the cosymplectic structure in a tubular neighbourhood
𝒩(𝑍) around the singular set, which means that

93
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1. The restriction of 𝐽 to the symplectic leaves is a smooth almost com-
plex structure.

2. It leaves the distribution ⟨𝑋𝜎 , 𝑣𝑚𝑜𝑑⟩ invariant, and in particular 𝐽𝑋𝜎 =

𝑣𝑚𝑜𝑑.

3. 𝐽 commutes with the flow of 𝑋𝜎, which means that

𝑑𝜑𝑡𝑋𝜎(𝑧, 𝑥)𝐽(𝑧,𝑥) = 𝐽𝜑𝑡
𝑋𝜎 (𝑧,𝑥)𝑑𝜑

𝑡
𝑋𝜎(𝑧, 𝑥).

As is the case in Remark 2.2.20, the space of almost complex structures
compatible with a 𝑏𝑚-symplectic structures (and also with the cosymplec-
tic structure in𝒩(𝑍)) is contractible.

Remark 4.1.3 In this chapter we will use structures a bit more general
than in Chapter 3. In particular, our Hamiltonian will depend on two real
variables instead of one, and we will introduce the same dependencies
for the almost complex structure. This will provide more general results
about the Floer equation in 𝑏𝑚-symplectic manifolds, which we believe
that could be used in the future to investigate the Floer homology of a
𝑏𝑚-symplectic manifold.

Now we can define the Floer equation in the context of admissible 𝑏𝑚-
Hamiltonians:

Definition 4.1.4 Let (𝑀, 𝑍, 𝜔) be a 𝑏𝑚-symplectic manifold, and let
𝒩 ⊂ 𝒩(𝑍) with 𝒩 � (0, 𝜀) × 𝑍 be an open neighbourhood not including
𝑍. Let 𝑋𝜎 be a normal symplectic vector field and 𝑣𝑚𝑜𝑑 a modular vector
field, both defined in 𝒩 . Let Ω ⊆ C with coordinates 𝜂 = 𝑠 + 𝑖𝑡, and take
𝐻 an admissible Hamiltonian in 𝑏𝑚𝒞∞ (Ω ×𝒩), thus having the form

𝐻(𝑠, 𝑡 , 𝑧, 𝑥) =
{
𝐾(𝑠, 𝑡) log |𝑧 | + ℎ(𝑠, 𝑡 , 𝑥) if 𝑚 = 1,
−𝐾(𝑠, 𝑡) 1

(𝑚−1)𝑧𝑚−1 + ℎ(𝑠, 𝑡 , 𝑥) if 𝑚 > 1,

where 𝐾 ∈ 𝒞∞(Ω) and ℎ ∈ 𝒞∞(Ω × 𝑍) with ℒ𝑣𝑚𝑜𝑑 ℎ = 0. Let
𝐽 ∈ Γ

(
Ω ×𝒩 , 𝑏𝑚𝑇∗𝑀 ⊗ 𝑏𝑚𝑇𝑀

)
be a compatible almost complex structure

adapted to 𝜔 and to the cosymplectic structure.

The Floer equation for 𝐻 is then

𝜕𝑢

𝜕𝑠
+ 𝐽(𝜂,𝑢(𝜂))

(
𝜕𝑢

𝜕𝑡
− 𝑋𝐻(𝑢)

)
= 0. (4.1)
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Due to the restrictions imposed on 𝐽 using the vector fields 𝑋𝜎 and 𝑣𝑚𝑜𝑑,
the solutions of Equation 4.1 satisfy the following Proposition:

Proposition 4.1.5 (Brugués, Miranda and Oms [BMO22]) Let
(𝒩 , 𝜔, 𝑋𝜎 , 𝑣𝑚𝑜𝑑 , 𝐻, 𝐽) be as set up in Definition 4.1.4, and consider 𝑢 : Ω→𝒩
a solution to Equation 4.1. Let 𝑓 : 𝒩 → R be given by

𝑓 (𝑧, 𝑝) =
{

log |𝑧 | if 𝑚 = 1,
− 1
(𝑚−1)𝑧𝑚−1 if 𝑚 > 1.

Then
Δ ( 𝑓 ◦ 𝑢) = −𝜕𝐾

𝜕𝑠
.

Proof. Let 𝑑𝑐(𝑣) := 𝑑𝑣 ◦ 𝑖 = 𝜕𝑣
𝜕𝑡 𝑑𝑠 −

𝜕𝑣
𝜕𝑠 𝑑𝑡. Then

−𝑑𝑑𝑐(𝑣) = (Δ𝑣)𝑑𝑠 ∧ 𝑑𝑡.

Computing,

−𝑑𝑐( 𝑓 ◦ 𝑢) = 𝜕

𝜕𝑠
( 𝑓 ◦ 𝑢)𝑑𝑡 − 𝜕

𝜕𝑡
( 𝑓 ◦ 𝑢)𝑑𝑠 =

(
𝑑𝑓 (𝑢)𝜕𝑢

𝜕𝑠

)
𝑑𝑡 −

(
𝑑𝑓 (𝑢)𝜕𝑢

𝜕𝑡

)
𝑑𝑠

=

(
𝑑𝑓 (𝑢)

(
𝜕𝑢

𝜕𝑠
+ 𝐽(𝜂, 𝑢)𝜕𝑢

𝜕𝑡

))
𝑑𝑡 −

(
𝑑𝑓 (𝑢)

(
𝐽(𝜂, 𝑢)𝜕𝑢

𝜕𝑡

))
𝑑𝑡+

+
(
𝑑𝑓 (𝑢)

(
𝐽(𝜂, 𝑢)𝜕𝑢

𝜕𝑠
− 𝜕𝑢

𝜕𝑡

))
𝑑𝑠 −

(
𝑑𝑓 (𝑢)

(
𝐽(𝜂, 𝑢)𝜕𝑢

𝜕𝑠

))
𝑑𝑠

= − 𝜔(∇ 𝑓 (𝑢), 𝑋𝐻(𝑢))𝑑𝑡 + 𝜔

(
∇ 𝑓 (𝑢), 𝜕𝑢

𝜕𝑡

)
𝑑𝑡−

− 𝜔 (∇ 𝑓 (𝑢), 𝐽(𝜂, 𝑢)𝑋𝐻(𝑢)) 𝑑𝑠 + 𝜔

(
∇ 𝑓 (𝑢), 𝜕𝑢

𝜕𝑠

)
𝑑𝑠 (4.2)

Now, we apply the fact that with our choice of 𝐽 we have ∇ 𝑓 = 𝑋𝜎, so for
the first term

𝜔(𝑋𝜎 , 𝑋𝐻(𝑢))𝑑𝑡 = (ℒ𝑋𝜎𝐻) 𝑑𝑡 = 𝐾(𝑠, 𝑡)𝑑𝑡.

For the second and fourth terms

𝜔

(
𝑋𝜎 ,

𝜕𝑢

𝜕𝑡

)
𝑑𝑡 + 𝜔

(
𝑋𝜎 ,

𝜕𝑢

𝜕𝑠

)
𝑑𝑠 = 𝑢∗𝑖𝑋𝜎𝜔.
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Finally, for the third term

𝜔(𝑋𝜎 , 𝐽(𝜂, 𝑢)𝑋𝐻(𝑢))𝑑𝑠 = 𝜔(𝑋𝐻(𝑢), 𝐽(𝜂, 𝑢)𝑋𝜎(𝑢))𝑑𝑠 =
𝜔(𝑋𝐻(𝑢), 𝑣mod(𝑢))𝑑𝑠 =

(
ℒ𝑣mod𝐻

)
𝑑𝑠 = 0.

Collecting everything, Equation (4.2) yields that

−𝑑𝑐( 𝑓 ◦ 𝑢) = −𝐾(𝑠, 𝑡)𝑑𝑡 − 𝑢∗𝑖𝑋𝜎𝜔.

If we apply the differential, it is clear that 𝑑(𝐾(𝑠, 𝑡)𝑑𝑡) = 𝜕𝐾
𝜕𝑠 𝑑𝑠 ∧ 𝑑𝑡, and

𝑑 (𝑢∗𝑖𝑋𝜎𝜔) = 𝑢∗(𝑑𝑖𝑋𝜎𝜔) = 𝑢∗(ℒ𝑋𝜎𝜔) = 0.

Therefore,

(Δ ( 𝑓 ◦ 𝑢)) 𝑑𝑠 ∧ 𝑑𝑡 = −𝑑𝑑𝑐( 𝑓 ◦ 𝑢) = −𝜕𝐾
𝜕𝑠
𝑑𝑠 ∧ 𝑑𝑡.

As a corollary of Proposition 4.1.5, we obtain the following result.

Theorem 4.1.6 (Brugués, Miranda and Oms [BMO22]. Minimum prin-
ciple) Let 𝑢 ∈ 𝒞∞(Ω,𝒩) be a solution to the Floer equation 4.1. Then,

1. If 𝑢 is a solution for an admissible 𝑏𝑚-Hamiltonian that only depends on 𝑡,
𝐻 ∈ 𝑏𝑚𝒞∞(S1 × 𝒩) and if 𝑓 ◦ 𝑢 attains its maximum or minimum in Ω,
then 𝑓 ◦ 𝑢 is constant.

2. If 𝑢 is a general solution for an admissible 𝑏𝑚-Hamiltonian𝐻 ∈ 𝑏𝑚𝒞∞(Ω×
𝒩) such that 𝜕𝐾

𝜕𝑠 (𝑠, 𝑡) ≥ 0 for all (𝑠, 𝑡) ∈ Ω and if 𝑓 ◦𝑢 attains its minimum
in Ω, then 𝑓 ◦ 𝑢 is constant.

Proof. Both assertions are a direct application of the Maximum principle to
− ( 𝑓 ◦ 𝑢), making use of the fact that Δ (− 𝑓 ◦ 𝑢) = 𝜕𝐾

𝜕𝑠 ≥ 0, with an equality
in the case that 𝐻 does not depend on 𝑠.
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4.2 A Floer complex

In this section we will use the results from Section 4.1 to construct a Floer
complex in the setting of 𝑏𝑚-symplectic manifolds. In this Section we
will consider (𝑀, 𝑍, 𝜔) a 𝑏𝑚-symplectic manifold that is aspherical, in the
sense that [𝜔] vanishes on 𝜋2(𝑀).

Definition 4.2.1 Let 𝐻𝑡 be a regular admissible 𝑏𝑚-Hamiltonian. Let
𝒫(𝐻) denote the set of 1-periodic orbits of the Hamiltonian vector field
𝑋𝐻 .

We define the Floer chain complex 𝑏𝑚𝐶𝐹(𝑀, 𝜔, 𝐻) as the Z2-vector space
generated over 𝒫(𝐻), this means, the set of formal sums of the type

𝑣 =
∑

𝑥∈𝒫(𝐻)
𝑣𝑥𝑥, 𝑣𝑥 ∈ Z2.

Under the assumption that the first Chern class 𝑐1 = 𝑐1(𝜔) ∈ 𝐻2(𝑀,Z)
of the bundle (𝑏𝑚𝑇𝑀, 𝐽) vanishes on 𝜋2(𝑀), the Conley-Zehnder index
𝜇𝐶𝑍 of 𝑥 ∈ 𝒫(𝐻) is well-defined (see Definition 2.2.31). The index can be
normalized in such a way that for any critical points of a 𝒞2-small enough
𝐻 it is satisfied that

𝜇𝐶𝑍(𝑥) = 2𝑛 − 𝜇𝐻(𝑥),
where 𝜇𝐻 denotes the Morse index of 𝐻.

We can use the Conley-Zehnder index to turn 𝑏𝑚𝐶𝐹(𝑀, 𝐻, 𝜔) into a graded
vector space.

We denote byℳ the moduli space of Floer solutions with finite energy,
this means {

𝜕𝑢
𝜕𝑠 + 𝐽𝑢

𝜕𝑢
𝜕𝑡 + grad𝑢𝐻 = 0,

𝐸(𝑢) < +∞,
as in Equation 2.5.

As (𝑀\𝑍, 𝜔) is aspherical, we cannot have bubbles of pseudo-holomorphic
spheres (see, for instance, Section 6.6 on [AD14]). Moreover, as a conse-
quence of Theorem 4.1.6 we cannot have solutions of the Floer equation
approaching 𝑍 in any way. Thus, we can apply the same reasoning as
in Theorem 2.2.34 to conclude thatℳ is compact. As in standard Floer
theory, we conclude from here that whenever 𝜇𝐶𝑍(𝑥) − 𝜇𝐶𝑍(𝑦) = 1, the
quotientℳ(𝑥, 𝑦) /R by the action along the variable 𝑠 is a finite set.
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Let
𝑛(𝑥, 𝑦) := #

{ℳ(𝑥, 𝑦) /R}
mod 2.

Then, for each index 𝑘 we can define the boundary operator of the Floer
complex,

𝜕𝑘 : 𝑏𝑚𝐶𝐹𝑘(𝑀, 𝜔, 𝐻, 𝐽) −→ 𝑏𝑚𝐶𝐹𝑘−1(𝑀, 𝜔, 𝐻, 𝐽)

as defined in the generators of 𝑏𝑚𝐶𝐹𝑘(𝑀, 𝜔, 𝐻, 𝐽) by

𝜕𝑘𝑥 :=
∑

𝑦∈𝒫(𝐻)
𝜇(𝑦)=𝑘−1

𝑛(𝑥, 𝑦)𝑦.

It follows, in the same way as in classical Floer theory, that 𝜕𝑘 ◦ 𝜕𝑘+1 = 0
for all 𝑘. In other words, 𝑏𝑚𝐶𝐹•(𝑀, 𝜔, 𝐻, 𝐽) forms a chain complex.

Definition 4.2.2 The Floer homology is the one given by

𝑏𝑚𝐻𝐹𝑘(𝑀, 𝜔, 𝐻, 𝐽) := ker𝜕𝑘
im𝜕𝑘+1

.

Remark 4.2.3 The homology as it is constructed in Definition 4.2.2, as the
notation implies, depends on the choice of𝐻, 𝐽, and 𝜔, besides depending
on 𝑀, 𝑍, and the relative topology between them. More precisely, the
family of admissible Hamiltonian functions depends on 𝑋𝜎 and 𝑣𝑚𝑜𝑑, but
we do not include this dependence in the notation as they are accounted
for in the choice of a Hamiltonian 𝐻.

We believe that this homology can actually be computed and shown to
be invariant with respect to the aforementioned choices. In particular, in
light of Proposition 4.1.5 it is clear that if we study only the dependence
of the homology with respect to 𝐽 we will also have that solutions to a
parametrized Floer equation will satisfy the same principle as case 1 of
Theorem 4.1.6. As 𝒥(𝑀, 𝜔) is contractible also in the 𝑏𝑚-symplectic case,
it seems very reasonable to conjecture that the homology may be invariant
with respect to the choice of 𝐽.

We also conjecture that 𝑏𝑚𝐻𝐹•(𝑀) is, in fact, a topological invariant of
the 𝑏𝑚-manifold (𝑀, 𝑍). The identification of this invariant, falls outside
the scope of this work, despite it being an intriguing question in the
development of the theory of 𝑏𝑚-symplectic manifolds.
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Remark 4.2.4 The construction of this complex (and homology) is re-
lated to the results exposed in Section 3.3 due to the conditions on admis-
sible Hamiltonian functions, in particular to the fact that the dynamics
of 𝑋𝐻 is, in a sense, split between the connected components of 𝑀\𝑍.
Moreover, due to Theorem 4.1.6 we can deduce that solutions to the Floer
equation with finite energy do not cross the singular hypersurface 𝑍, this
means, our Floer complex splits between the connected components of
𝑀\𝑍,

𝑏𝑚𝐶𝐹•(𝑀, 𝜔, 𝐻, 𝐽) =
⊕

𝑀𝑖∈𝑀\𝑍

𝑏𝑚𝐶𝐹•(𝑀𝑖 , 𝜔, 𝐻, 𝐽).

Remark 4.2.5 In this section we have worked under the assumption
that 𝑀 \ 𝑍 is aspherical. We would expect to be able to generalize the
construction of this complex to more complicated 𝑏-manifolds following
the same techniques used to generalize Floer homology to non-aspherical
manifolds, due to the splitting phenomenon just mentioned in Remark
4.2.4.
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Features of 𝑏-semitoric systems

An aim that attracts special interest in the context of 𝑏-symplectic geo-
metry is the generalization of integrable systems. As we explained in
Section 2.6.3 this aim has been pursued in the particular case of 𝑏-toric
manifolds. Further, integrable systems have been studied in the context of
singular symplectic geometry among others by Guillemin, Miranda and
Pires [GMP14], Guillemin, Miranda, Pires and Scott [GMPS15], Kiesen-
hofer, Miranda and Scott [KMS16] and by Gualtieri, Li, Pelayo and Ratiu
[GLPR17].

In this Chapter we will lay out the results of Brugués, Hohloch, Mir and
Miranda [BHMM23]. Our main objective is to define and provide some
properties of 𝑏-semitoric systems which, as their name implies, generalize
the notion of semitoric systems in the setting of singular symplectic geo-
metry. Afterwards we will study a family of examples generalizing the
coupled spin-oscillator (from Example 2.6.24), providing case studies that
pave the way to a systematic study of these new type of systems. A sim-
ilar family of examples from the coupled angular momenta (see Example
2.6.26) can be found in [BHMM23].

5.1 𝑏-semitoric systems

Definition 5.1.1 Let (𝑀, 𝑍, 𝜔) be a 2𝑛-dimensional 𝑏-symplectic mani-
fold, and let 𝑓1, . . . , 𝑓𝑛 ∈ 𝑏𝒞∞(𝑀). We say that (𝑀, 𝑍, 𝜔, 𝐹 := ( 𝑓1, . . . , 𝑓𝑛))
is a 𝑏-integrable system if { 𝑓𝑖 , 𝑓𝑗} = 0 for all 1 ≤ 𝑖 , 𝑗 ≤ 𝑛 and if the 𝑏-form
𝑑𝑓1 ∧ · · · ∧ 𝑑𝑓𝑛 ∈ 𝑏Ω2𝑛(𝑀) does not vanish almost everywhere in 𝑀 and
also does not vanish almost everywhere in 𝑍.
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Remark 5.1.2 An important aspect of Definition 5.1.1 is that we require
the 𝑏-1-forms 𝑑𝑓1, ..., 𝑑 𝑓𝑛 to be independent almost everywhere in𝑍. This is
chosen to avoid a situation in which

(
𝑋 𝑓1 , ..., 𝑋 𝑓𝑛

)
reduces to a distribution

of rank 2𝑛 − 2 on 𝑍, which is too restrictive in order to prove normal form
results. See Kiesenhofer, Miranda and Scott [KMS16, Section 3] for a more
in-depth discussion.

Remark 5.1.3 The Hamiltonian vector fields 𝑋 𝑓1 , . . . , 𝑋 𝑓𝑛 are tangent to
𝑍 everywhere and, therefore, are 𝑏-vector fields.

Remark 5.1.4 Throughout this Chapter we will consider only the notion
of 𝑏-integrable system in contrast with previous parts of this work, where
we have considered 𝑏𝑚-structures with arbitrary degree 𝑚. 𝑏𝑚-integrable
systems can indeed be defined in an analogous way to Definition 5.1.1 by
using 𝑏𝑚-symplectic forms and 𝑏𝑚-functions, but the inquiry therein falls
beyond the scope of this thesis. The reader is invited to check Miranda
and Planas [MP23] for a study of such systems more generally.

Near regular points in 𝑍, a 𝑏-integrable system has a very constricted
behaviour:

Lemma 5.1.5 (Kiesenhofer and Miranda [KMS16, Remark 18]) Near a
regular point of 𝑍, a 𝑏-integrable system is equivalent to one of the form 𝐹 =

( 𝑓1, . . . , 𝑓𝑛), where 𝑓2, . . . , 𝑓𝑛 are smooth functions and 𝑓1 = 𝑐 log |𝑧 |, where
𝑐 ∈ R and 𝑧 is a defining function for 𝑍.

From now on we will restrict to the case of a 𝑏-integrable system of dimen-
sion 4.

Definition 5.1.6 A 𝑏-integrable system (𝑀, 𝑍, 𝜔, 𝐹 := (𝐿, 𝐻)) is 𝑏-
semitoric if 𝐿 is proper and the flow of the vector field 𝑋𝐿 generates an
effectiveS1 action on𝑀 and if all the critical points of 𝐹 are non-degenerate
and do not include any hyperbolic components.

This is the simplest class of systems that includes the possibility of focus-
focus points in dimension 4. Notably, models for 𝑏-integrable systems
of dimension 6 with focus-focus singularities and of dimension 4 with
hyperbolic singularities were already stated in Kiesenhofer and Miranda
[KM17].

Example 5.1.7 ([KM17]) Consider the group 𝐺 := S1 × R+ × S1 acting
on 𝑀 := S1 × R2 by (𝜑, 𝑎, 𝛼) · (𝜃, 𝑥1, 𝑥2) = (𝜃 + 𝜑, 𝑎𝑅𝛼(𝑥1, 𝑥2)), where 𝑅𝛼

denotes a rotation with angle 𝛼 in the (𝑥1, 𝑥2) plane.
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Let us consider the twisted 𝑏-cotangent lift of the action to 𝑇∗𝑀, by which
we mean the 𝑏-symplectic structure 𝜔 := −𝑑𝜆, where

𝜆 := log |𝑝 |𝑑𝜃 + 𝑦1𝑑𝑥1 + 𝑦2𝑑𝑥2,

and where the lifted action has the momentum map given by 𝑓1 = log |𝑝 |,
𝑓2 = 𝑥1𝑦1 + 𝑥2𝑦2 and 𝑓3 = 𝑥1𝑦2 − 𝑦1𝑥2.

In the set of points such that 𝑥1 = 𝑦1 = 𝑥2 = 𝑦2 = 0 the system has
singularities with a focus-focus component and a regular component.

Example 5.1.8 ([KM17]) Consider the group 𝐺 := S1 × R+ acting on
𝑀 := S1 × R by (𝜑, 𝑔) · (𝜃, 𝑥) := (𝜃 + 𝜑, 𝑔𝑥), and consider the twisted
𝑏-cotangent lift in an analogous way to Example 5.1.7. In this case the
momentum map of the lifted action to 𝑇∗𝑀 has the expression

𝑓1 = log |𝑝 |, 𝑓2 = 𝑥𝑦,

and therefore the family of points with 𝑥 = 𝑦 = 0 exhibit a hyperbolic-
regular singularity.

Let us now present a restriction on the dynamics of the system on the
singular hypersurface 𝑍:

Proposition 5.1.9 (Brugués, Hohloch, Mir and Miranda [BHMM23]) Let
(𝑀, 𝑍, 𝜔, 𝐹 = (𝐿, 𝐻)) be a 𝑏-semitoric system. Then, the rank of the system on
all points on 𝑍 is 1 or higher.

Proof. This proof is based on the idea by Kiesenhofer and Miranda
in [KM17, Remark 33]. We follow the notation from Bolsinov and
Fomenko [BF04, Section 1.8].

Take 𝑝 ∈ 𝑍 a fixed point, this means, such that 𝑑𝐿|𝑝 = 𝑑𝐻 |𝑝 = 0. Then, the
linearization of the actions of the flows 𝜑𝑡

𝑋𝐿
and 𝜑𝑡

𝑋𝐻
generates anR2 action

on 𝑇𝑝𝑀 which by construction preserves the 𝑏-symplectic form 𝜔. This
means that

(
𝑑𝐿|𝑝 , 𝑑𝐻 |𝑝

)
induces a dimension 2 commutative Lie sub-

group 𝐺(𝐿, 𝐻) ⊂ Sp(4,R) Let 𝐾(𝐿, 𝐻) ⊂ 𝔰𝔭(4,R) denote the commutative
Lie subalgebra induced by 𝐺(𝐿, 𝐻).

However, the vector fields 𝑋𝐿 and 𝑋𝐻 are tangent to 𝑍 at every point,
and therefore 𝐺(𝐿, 𝐻) must preserve 𝑇𝑝𝑍 ⊂ 𝑇𝑝𝑀, a 3-dimensional linear
subspace. Thus, the Lie algebra 𝐾(𝐿, 𝐻)must preserve 𝑇𝑝𝑍 as well.
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Since the point 𝑝 is non-degenerate, we know that 𝐾(𝐿, 𝐻) must be a
Cartan subalgebra, and therefore it must be conjugate to one of the matrix
subalgebras from Equation 2.8. Of these algebras, only the ones that
have hyperbolic components can leave a 3-dimensional subspace invariant,
which cannot be present in a 𝑏-semitoric system. Thus, there cannot be
such a point 𝑝 ∈ 𝑍.

In the remainder of this Chapter we will devote ourselves to present
a particular family of examples of 𝑏-semitoric systems and the proper-
ties of their singular points. The aim of this effort is to provide models
from which more systematic theories on the study and classification of
𝑏-semitoric systems can be developed in the future.

Remark 5.1.10 The tools in Chapters 3 and 4 can be used to give some
baseline information about 𝑏-toric and 𝑏-semitoric systems, in the same
way that the Arnold conjecture and Floer theory find applications to the
study of fixed points of toric manifolds (see for instance Givental [Giv95]
and [GvS17]).

In Corollary 2.6.21 we saw that 𝑏-toric manifolds have a very restricted
topology, and therefore we can sometimes predict a lower bound of the
number of fixed points that any particular system may have, using the
lower bound from Theorem 3.3.5.

It is worth noting that neither 𝑏-toric nor 𝑏-semitoric may be always as-
pherical. Indeed, Corollary 2.6.21 allows for the construction of plenty
𝑏-symplectic manifolds which do not satisfy this property. Moreover,
the examples in [BHMM23, Section 5] show the construction of compact
𝑏-symplectic manifolds with a 𝑏-semitoric system that are, however, not
aspherical. Thus the Floer homology that might be constructed from the
ideas in Chapter 4 could not cover these cases, which provides further
incentive to study their classification.

5.2 An example: The 𝑏-coupled spin oscillator

We give here the explicit computations related to an example of a 𝑏-
semitoric system. All the results exposed in this section are original and
can also be found in Brugués, Hohloch, Mir, Miranda [BHMM23].
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Consider the (non-compact) 𝑏-manifold composed by 𝑀 = S2 × R2 with
hypersurface 𝑍 = {(𝑥, 𝑦, 𝑧) ∈ S2 | 𝑧 = 0} × R2. In this section we will
introduce two possible generalizations of the semitoric system given by
the coupled spin-oscillator in Example 2.6.24 as 𝑏-integrable systems. We
will call them the 𝑏-coupled spin-oscillator and the reversed 𝑏-coupled
spin-oscillator due to the difference being owed only to a change of sign
on the 𝑏-symplectic form and in one of the 𝑏-functions. We will focus
on deriving the dynamical behaviour of the two systems, this means, the
number of fixed points and their classification.

Let us endow the 𝑏-manifold (𝑀, 𝑍)with either of the 𝑏-symplectic forms

𝜔1 := −𝜌1
𝑏𝜔S2 + 𝜌2𝜔R2 ,

𝜔2 := 𝜌1
𝑏𝜔S2 + 𝜌2𝜔R2 ,

where 𝑏𝜔S2 is the standard 𝑏-symplectic form on
(
S2, 𝑍 = {𝑧 = 0}

)
as in

Example 2.4.23 for 𝑚 = 1, 𝜔R2 is the standard symplectic form in R2, and
𝜌1, 𝜌2 are strictly positive real numbers.

Definition 5.2.1 Consider the 𝑏-Hamiltonians 𝐿1, 𝐿2, 𝐻 ∈ 𝑏𝒞∞(𝑀) given
by 

𝐿1(𝑥, 𝑦, 𝑧, 𝑢, 𝑣) = 𝜌1 log |𝑧 | + 𝜌2
2

(
𝑢2 + 𝑣2) ,

𝐿2(𝑥, 𝑦, 𝑧, 𝑢, 𝑣) = −𝜌1 log |𝑧 | + 𝜌2
2

(
𝑢2 + 𝑣2) ,

𝐻(𝑥, 𝑦, 𝑧, 𝑢, 𝑣) = 1
2 (𝑥𝑢 + 𝑦𝑣) .

The 𝑏-coupled spin-oscillator is the tuple (𝑀, 𝑍, 𝜔1, 𝐹 = (𝐿1, 𝐻)), and the
reversed 𝑏-coupled spin-oscillator is the tuple (𝑀, 𝑍, 𝜔2, 𝐹 = (𝐿2, 𝐻)).

For the sake of convenience we will now introduce a set of coordinate
charts on 𝑀 that we will use throughout the section.

Let 𝑈± ⊂ S2 denote the two open sets given respectively by 𝑈+ =

{(𝑥, 𝑦, 𝑧) ∈ S2 | 𝑧 > 0} and 𝑈− = {(𝑥, 𝑦, 𝑧) ∈ S2 | 𝑧 < 0}, with the
map

𝜑 : S2 −→ R2

(𝑥, 𝑦, 𝑧) ↦−→ (𝑥, 𝑦).

This induces the two coordinate charts
(
𝑀± := 𝑈± × R2, 𝜑 |𝑈± × idR2

)
.

The points not covered by the charts𝑈± correspond precisely to 𝑍. These
points are included in a cylindrical chart covering the sphere minus the
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two poles: we take𝑈0 = {(𝑥, 𝑦, 𝑧) ∈ S2 | |𝑧 | < 1} and

𝜓 : 𝑈0 −→ S1 × R1

(𝑥, 𝑦, 𝑧) ↦−→ (𝜃, 𝑧),

where (𝜃, 𝑧) denote the cylindrical coordinates. We complete our atlas
with the pair (𝑀0 := 𝑈0 × R2,𝜓 × id). Even though 𝑀0 is not a subset of
R4 and thus the pair is not formally a coordinate chart for 𝑀, we will be
able to use the coordinates (𝜃, 𝑧, 𝑢, 𝑣) to perform all computations.

In local coordinates we have that

𝜔1 |𝑀+ = 𝜔1 |𝑀− = −𝜌1
1

1 − 𝑥2 − 𝑦2 𝑑𝑥 ∧ 𝑑𝑦 + 𝜌2𝑑𝑢 ∧ 𝑑𝑣,

𝜔1 |𝑀0 = 𝜌1
𝑑𝑧

𝑧
∧ 𝑑𝜃 + 𝜌2𝑑𝑢 ∧ 𝑑𝑣,

𝜔2 |𝑀+ = 𝜔2 |𝑀− = 𝜌1
1

1 − 𝑥2 − 𝑦2 𝑑𝑥 ∧ 𝑑𝑦 + 𝜌2𝑑𝑢 ∧ 𝑑𝑣,

𝜔2 |𝑀0 = −𝜌1
𝑑𝑧

𝑧
∧ 𝑑𝜃 + 𝜌2𝑑𝑢 ∧ 𝑑𝑣.

Proposition 5.2.2 The 𝑏-coupled spin-oscillator and the reversed spin-
oscillator are 𝑏-integrable systems.

Proof. We will show that 𝑋𝐿 and 𝑋𝐻 are linearly independent almost eve-
rywhere in the proofs of Proposition 5.2.4 and of Proposition 5.2.7. For
now, we will prove that {𝐿1, 𝐻} = 0 and {𝐿2, 𝐻} = 0.

The most convenient way to perform this computation is to take {𝐿1,2, 𝐻} =
−𝑋𝐿1,2(𝐻). Computing the vector fields 𝑋𝜔1

𝐿1
and 𝑋𝜔2

𝐿2
, we can see that both

coincide. Thus set 𝑋𝐿 := 𝑋
𝜔1
𝐿1

= 𝑋𝜔2
𝐿2

. In cylindrical coordinates this vector
field can be expressed as

𝑋𝐿 |𝑀0 =
𝜕

𝜕𝜃
− 𝑣 𝜕

𝜕𝑢
+ 𝑢 𝜕

𝜕𝑣
,

whereas in Cartesian coordinates we have

𝑋𝐿 |𝑀± = −𝑦
𝜕

𝜕𝑥
+ 𝑥 𝜕

𝜕𝑦
− 𝑣 𝜕

𝜕𝑢
+ 𝑢 𝜕

𝜕𝑣
.



5.2. An example: The 𝑏-coupled spin oscillator 107

Computing the Poisson bracket in each of the charts yields

𝑋𝐿 |𝑀0 (𝐻) =
(
𝜕

𝜕𝜃
− 𝑣 𝜕

𝜕𝑢
+ 𝑢 𝜕

𝜕𝑣

) (√
1 − 𝑧2

2 (𝑢 cos𝜃 + 𝑣 sin𝜃)
)
= 0,

𝑋𝐿 |𝑀± (𝐻) =
(
−𝑦 𝜕

𝜕𝑥
+ 𝑥 𝜕

𝜕𝑦
− 𝑣 𝜕

𝜕𝑢
+ 𝑢 𝜕

𝜕𝑣

) (
1
2 (𝑥𝑢 + 𝑦𝑣)

)
= 0.

5.2.1 The 𝑏-coupled spin-oscillator

In this part we will classify the critical points of the 𝑏-coupled spin-
oscillator from Definition 5.2.1. We start by summarizing the results that
we are going to prove.

Proposition 5.2.3 The 𝑏-coupled spin-oscillator has two fixed points: 𝑁 :=
((0, 0, 1), (0, 0)) ∈ 𝑀 and 𝑆 := ((0, 0,−1), (0, 0)) ∈ 𝑀, and both are focus-focus
points.

Proposition 5.2.4 All the points on 𝑀 \ {𝑁, 𝑆} are regular.

Proposition 5.2.5 Both leaves of the momentum map 𝐹 = (𝐿, 𝐻) : 𝑀 \ 𝑍→
R2 of the 𝑏-coupled spin-oscillator are surjective.

Proof of Proposition 5.2.3. If we compute 𝑑𝐹 = (𝑑𝐿1, 𝑑𝐻), we can see that
𝑑𝐿1 = 𝑑𝐻 = 0 if and only if 𝑥 = 𝑦 = 𝑢 = 𝑣 = 0, this means, precisely at the
points 𝑁 and 𝑆.

To prove that the points are non-degenerate and of focus-focus type we will
use Lemma 2.6.5. In particular, we prove that the Hessians 𝑑2𝐿1 and 𝑑2𝐻
are linearly independent and that there exists a linear combination of the
symplectic operators 𝜔−1𝑑2𝐿1 and 𝜔−1𝑑2𝐻 with four different eigenvalues
of the form ±𝑎 ± 𝑖𝑏.

At 𝑁 and 𝑆, in coordinates (𝑥, 𝑦, 𝑢, 𝑣), the Hessians of 𝐿 and 𝐻 and the
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matrix form of 𝜔 have the following expressions:

𝑑2𝐿1 =

©­­­«
−𝜌1 0 0 0

0 −𝜌1 0 0
0 0 𝜌2 0
0 0 0 𝜌2

ª®®®¬ , 𝑑2𝐻 =
1
2

©­­­«
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

ª®®®¬ ,
Ω =

©­­­«
0 −𝜌1 0 0
𝜌1 0 0 0
0 0 0 𝜌2
0 0 −𝜌2 0

ª®®®¬ .
The matrices 𝑑2𝐿1 and 𝑑2𝐻 are clearly independent and give rise to the
following symplectic operators:

𝐴𝐿 := Ω−1𝑑2𝐿1 =

©­­­«
0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

ª®®®¬ 𝐴𝐻 := Ω−1𝑑2𝐻 =
1
2

©­­­­«
0 0 0 1

𝜌1

0 0 −1
𝜌1

0
0 −1

𝜌2
0 0

1
𝜌2

0 0 0

ª®®®®¬
.

The operator corresponding to the linear combination 𝐴𝐿 + 2𝐴𝐻 has the
form ©­­­­«

0 −1 0 1
𝜌1

1 0 −1
𝜌1

0
0 −1

𝜌2
0 −1

1
𝜌2

0 1 0

ª®®®®¬
,

and its four different complex eigenvalues are ± 1√
𝜌1𝜌2
± 𝑖, proving that the

poles are non-degenerate singularities of focus-focus type.

Proof of Proposition 5.2.4. Let us consider first the set of points 𝑃 :=
{(𝑥, 𝑦, 𝑧, 𝑢, 𝑣) ∈ 𝑀 | 𝑥 = 𝑦 = 0}. If we compute the differential of 𝐹
in Cartesian coordinates, we get

𝑑𝐿1(𝑥, 𝑦, 𝑢, 𝑣) = −
2𝜌1𝑥𝑑𝑥

1 − 𝑥2 − 𝑦2 −
2𝜌1𝑦𝑑𝑦

1 − 𝑥2 − 𝑦2 + 𝜌2 (𝑢𝑑𝑢 + 𝑣𝑑𝑣) ,

𝑑𝐻(𝑥, 𝑦, 𝑢, 𝑣) = 1
2 (𝑢𝑑𝑥 + 𝑣𝑑𝑦 + 𝑥𝑑𝑢 + 𝑦𝑑𝑣) .
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Which, if we restrict to the set 𝑃 by taking 𝑥 = 𝑦 = 0, are always linearly
independent except for the points 𝑁, 𝑆, where both forms vanish.

The complement of 𝑃 is precisely the domain of the polar coordinate chart,
𝑀0, in which the differential has the expression

𝑑𝐿1(𝑧, 𝜃, 𝑢, 𝑣) = 𝜌1
𝑑𝑧

𝑧
+ 𝜌2 (𝑢𝑑𝑢 + 𝑣𝑑𝑣) ,

𝑑𝐻(𝑧, 𝜃, 𝑢, 𝑣) = −𝑧2

2
√

1 − 𝑧2
(𝑢 cos𝜃 + 𝑣 sin𝜃) 𝑑𝑧

𝑧

+
√

1 − 𝑧2

2 ((−𝑢 sin𝜃 + 𝑣 cos𝜃) 𝑑𝜃 + cos𝜃𝑑𝑢 + sin𝜃𝑑𝑣) .

None of the differentials vanish in 𝑀0, so if there exists some point in
which the rank of the system is 1 there must exist some 𝜇 ≠ 0 such that
𝜇𝑑𝐿1 + 𝑑𝐻 = 0 at that point. Looking at each of the components of this
relationship, we get the system of equations

𝜇𝜌1 − 𝑧2

2
√

1−𝑧2 (𝑢 cos𝜃 + 𝑣 sin𝜃) = 0,
−𝑢 sin𝜃 + 𝑣 cos𝜃 = 0,
𝜇𝜌2𝑢 +

√
1−𝑧2

2 cos𝜃 = 0,
𝜇𝜌2𝑣 +

√
1−𝑧2

2 sin𝜃 = 0.

However, if we combine the first, third and fourth equations we can deduce
that

𝜇

(
𝜌1 + 𝜌2

𝑧2

1 − 𝑧2

(
𝑢2 + 𝑣2

))
= 0,

of which the only solution is 𝜇 = 0, in contradiction with the observation
that 𝜇 cannot vanish. In conclusion, there are no points in 𝑀0 such that
the rank of 𝑑𝐹 is 1.

Therefore, the rank of 𝑑𝐹 is 2 for all points outside of {𝑁, 𝑆}.

Proof of Proposition 5.2.5. We first prove that 𝐿1 : 𝑀 \ 𝑍 → R is surjective.
Moreover, each point has two preimages, each of them in one of the
connected components of 𝑀 \ 𝑍.

Indeed, it is clear that the equation 𝜌1 log|𝑧 | + 𝜌2
2 (𝑢2 + 𝑣2) = ℓ has two

solutions for any choice of 𝜌1, 𝜌2 > 0 and ℓ ∈ R: if ℓ = 0, then 𝑧 = ±1,
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(𝑢, 𝑣) = (0, 0) are its two preimages; if ℓ > 0, then we can take 𝑧 = ±1 and
(𝑢, 𝑣) such that 𝑢2 + 𝑣2 = 2ℓ

𝜌2
; and if ℓ < 0 we can take 𝑧 = ± exp

(
ℓ
𝜌1

)
and

(𝑢, 𝑣) = (0, 0).

Furthermore, we now show that 𝐻 is surjective when restricted to any
given fiber {𝐿1 = ℓ }.

For simplicity we restrict ourselves to the points (𝑥, 𝑦, 𝑧, 𝑢, 𝑣) ∈ 𝑀 such
that the vectors (𝑥, 𝑦) and (𝑢, 𝑣) are collinear in R2. In that case, 𝐻 can be
expressed as 𝐻 = ±1

2 ∥(𝑥, 𝑦)∥∥(𝑢, 𝑣)∥, where the sign depends on whether
(𝑥, 𝑦) and (𝑢, 𝑣) point in the same or in opposite directions. Since (𝑥, 𝑦, 𝑧)
lies in the sphere, we know that ∥(𝑥, 𝑦)∥ =

√
1 − 𝑧2. Let 𝑟 := ∥(𝑢, 𝑣)∥.

With these notations, the momentum map can be expressed as{
𝐿1(𝑧, 𝑟) = 𝜌1 log|𝑧 | + 𝜌2

2 𝑟
2,

𝐻(𝑧, 𝑟) = ±1
2

√
1 − 𝑧2𝑟.

Let us now assume that 𝐿1(𝑧, 𝑟) = ℓ for some ℓ ∈ R. We will study
separately the cases in which ℓ ≥ 0 and ℓ ≤ 0.

• If ℓ ≥ 0, then 𝑧 may take any value within [−1, 1], and we can isolate
𝑟 with respect to 𝑧,

𝑟 =

√
2
𝜌2

(
ℓ − 𝜌1 log|𝑧 |

)
,

which allows us to conclude that 𝑟 ≥
√

2ℓ
𝜌2

. Moreover, the expression

𝐻+ =
1
2
√

1 − 𝑧2𝑟 =
1
2
√

1 − 𝑧2

√
2
𝜌2

(
ℓ − 𝜌1 log |𝑧 |

)
may take any non-negative value (as𝐻+(1) = 0, lim

𝑧→0
𝐻+(𝑧) = +∞, and

𝐻+ is continuous), and thus𝐻 is surjective under the assumption that
𝐿 = ℓ .

• If ℓ ≤ 0, then 𝑟 may take any non-negative value, and we can isolate
|𝑧 | with respect to 𝑟,

|𝑧 | = exp
(

1
𝜌1

(
ℓ −

𝜌2

2 𝑟
2
))
,
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which means that |𝑧 | ≤ exp
(
ℓ
𝜌1

)
. We can conclude from this that the

expression 𝐻+ = 1
2

√
1 − 𝑧2𝑟 may take any non-negative value, and

therefore 𝐻 is surjective for the fiber {𝐿1 = ℓ }.

5.2.2 The reversed 𝑏-coupled spin-oscillator

In this part we will study the reversed 𝑏-coupled spin-oscillator from
Definition 5.2.1 and its critical points. Here is a summary of the results in
this section:

Proposition 5.2.6 The reversed 𝑏-coupled spin-oscillator has two fixed points,
𝑁 := ((0, 0, 1), (0, 0)) ∈ 𝑀 and 𝑆 := ((0, 0,−1), (0, 0)) ∈ 𝑀, and both are
elliptic-elliptic points.

Proposition 5.2.7 The reversed 𝑏-coupled spin-oscillator has four connected
components of elliptic-regular points, emanating from 𝑁 and 𝑆.

Moreover, the image of the momentum map consists of a double covering
of the region shown in Figure 5.1.

𝐿

𝐻

Figure 5.1: Image of the momentum map of the reversed 𝑏-coupled spin-
oscillator. The blue dot is the image of the elliptic-elliptic singularities.

Proof of Proposition 5.2.6. Direct computation shows that the rank of 𝐹 is 0
only at the points 𝑁 and 𝑆. We follow again the scheme from Lemma 2.6.5
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to prove that the poles are non-degenerate fixed points of elliptic-elliptic
type.

At 𝑁 and 𝑆, in coordinates (𝑥, 𝑦, 𝑢, 𝑣), we have:

𝑑2𝐿2 =

©­­­«
𝜌1 0 0 0
0 𝜌1 0 0
0 0 𝜌2 0
0 0 0 𝜌2

ª®®®¬ , 𝑑2𝐻 =
1
2

©­­­«
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

ª®®®¬ ,
Ω =

©­­­«
0 𝜌1 0 0
−𝜌1 0 0 0

0 0 0 𝜌2
0 0 −𝜌2 0

ª®®®¬ .
The matrices 𝑑2𝐿2 and 𝑑2𝐻 are independent and give rise to:

𝐴𝐿 := Ω−1𝑑2𝐿2 =

©­­­«
0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

ª®®®¬ , 𝐴𝐻 := Ω−1𝑑2𝐻 =
1
2

©­­­­«
0 0 0 −1

𝜌1

0 0 1
𝜌1

0
0 −1

𝜌2
0 0

1
𝜌2

0 0 0

ª®®®®¬
.

For any 𝛾 > 0, the linear combination 𝐴𝐿 + 2𝛾𝐴𝐻 has the form

©­­­­«
0 −1 0 −𝛾

𝜌1

1 0 𝛾
𝜌1

0
0 −𝛾

𝜌2
0 −1

𝛾
𝜌2

0 1 0

ª®®®®¬
,

and has eigenvalues ±𝑖
(
1 + 𝛾√

𝜌1𝜌2

)
,±𝑖

(
1 − 𝛾√

𝜌1𝜌2

)
. Then, the linear com-

bination 𝐴𝐿 + 2𝛾𝐴𝐻 has four different imaginary eigenvalues of the type
±𝑖𝑎,±𝑖𝑏 (except when 𝛾 is exactly √𝜌1𝜌2, but we just need to show that
there exists one linear combination of 𝐴𝐿 and 𝐴𝐻 with this property). This
implies that the two points are non-degenerate singularities of elliptic-
elliptic type.

Proof of Proposition 5.2.7. As in the proof of Proposition 5.2.4, the rank of
𝐹 = (𝐿2, 𝐻) restricted to 𝑃 = {(𝑥, 𝑦, 𝑧, 𝑢, 𝑣) ∈ 𝑀 | 𝑥 = 𝑦 = 0} is lower than
2 only at the fixed points 𝑁 and 𝑆.
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On 𝑀0, the complement of 𝑃 in 𝑀, we have that

𝑑𝐿2(𝑧, 𝜃, 𝑢, 𝑣) = −𝜌1
𝑑𝑧

𝑧
+ 𝜌2 (𝑢𝑑𝑢 + 𝑣𝑑𝑣) ,

𝑑𝐻(𝑧, 𝜃, 𝑢, 𝑣) = −𝑧2

2
√

1 − 𝑧2
(𝑢 cos𝜃 + 𝑣 sin𝜃) 𝑑𝑧

𝑧

+
√

1 − 𝑧2

2 ((−𝑢 sin𝜃 + 𝑣 cos𝜃) 𝑑𝜃 + cos𝜃𝑑𝑢 + sin𝜃𝑑𝑣) .

Neither 𝑑𝐿2 of 𝑑𝐻 vanish on 𝑀0, so 𝑑𝐹 has rank 1 at a point only if there is
some 𝜇 ≠ 0 such that 𝜇𝑑𝐿2 + 𝑑𝐻 = 0. Examining this equation termwise,

−𝜇𝜌1 − 𝑧2

1−𝑧2 (𝑢 cos𝜃 + 𝑣 sin𝜃) = 0,
−𝑢 sin𝜃 + 𝑣 cos𝜃 = 0,
𝜇𝜌2𝑢 + cos𝜃 = 0,
𝜇𝜌2𝑣 + sin𝜃 = 0,

⇒


𝑧2

1−𝑧2 = 𝜇2𝜌1𝜌2,

𝜇2𝜌2
2
(
𝑢2 + 𝑣2) = 1,

𝑢 sin𝜃 = 𝑣 cos𝜃.

The last system can be solved for any value of 𝜇 ≠ 0, and has no solu-
tion with 𝑧 = 0 or with (𝑢, 𝑣) = (0, 0). The space of solutions can be
parametrized using just 2 parameters. Explicitly, the set 𝐾1 of singu-
lar points of rank 1 on 𝑀0 is a 2-dimensional submanifold. 𝐾1 can be
parametrized by 𝜃 ∈ [0, 2𝜋[ and 𝑧 ∈ ]−1, 0[ ∪ ]0, 1[ as:

(𝑢(𝜃, 𝑧), 𝑣(𝜃, 𝑧)) = ±
√

𝜌1

𝜌2

√
1 − 𝑧2

𝑧
(cos𝜃, sin𝜃) .

Observe that, for any (𝜃, 𝑧) ∈ [0, 2𝜋[ ×
(
]−1, 0[ ∪ ]0, 1[

)
⊂ S2, there are

two points (𝑢, 𝑣) ∈ R2 that solve the system of equations. If we look
at the northern hemisphere, where 𝜃 ∈ [0, 2𝜋[ and 𝑧 ∈]0, 1[, there are
two of them, both emanating from the respective poles. The situation is
analogous in the southern hemisphere, which means that the submani-
fold of singular points of rank 1 is the disjoint union of four connected
components.

In the singular points of rank 1 the 𝑏-Hamiltonian vector fields 𝑋𝐿2 and
𝑋𝐻 are colinear and their flows generate S1-orbits. In 𝑀0 we have

𝑋𝐿2 =
𝜕

𝜕𝜃
− 𝑣 𝜕

𝜕𝑢
+ 𝑢 𝜕

𝜕𝑣
. (5.1)

Therefore, the S1-orbit of a singular point (𝑧, 𝜃, 𝑢, 𝑣) of rank 1 contains
all the singular points of rank 1 that can be reached from (𝑧, 𝜃, 𝑢, 𝑣) by a
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simultaneous rotation of (𝑧, 𝜃) around the vertical axis of S2 and of (𝑢, 𝑣)
around the origin of R2. The four families of S1-orbits, in coordinates
(𝑧, 𝜃, 𝑢, 𝑣), are the following:

(
𝑧, 𝜃,

√
𝜌1

𝜌2

√
1 − 𝑧2

𝑧
cos𝜃,

√
𝜌1

𝜌2

√
1 − 𝑧2

𝑧
sin𝜃

)
, 𝑧 ∈]0, 1[, 𝜃 ∈ [0, 2𝜋[,(

𝑧, 𝜃,−
√

𝜌1

𝜌2

√
1 − 𝑧2

𝑧
cos𝜃,−

√
𝜌1

𝜌2

√
1 − 𝑧2

𝑧
sin𝜃

)
, 𝑧 ∈]0, 1[, 𝜃 ∈ [0, 2𝜋[,(

𝑧, 𝜃,

√
𝜌1

𝜌2

√
1 − 𝑧2

𝑧
cos𝜃,

√
𝜌1

𝜌2

√
1 − 𝑧2

𝑧
sin𝜃

)
, 𝑧 ∈] − 1, 0[, 𝜃 ∈ [0, 2𝜋[,(

𝑧, 𝜃,−
√

𝜌1

𝜌2

√
1 − 𝑧2

𝑧
cos𝜃,−

√
𝜌1

𝜌2

√
1 − 𝑧2

𝑧
sin𝜃

)
, 𝑧 ∈] − 1, 0[, 𝜃 ∈ [0, 2𝜋[.

This concludes the analysis of the two 𝑏-symplectic variants of the coupled
spin-oscillator. A similar analysis for 𝑏-variants of the coupled angular
momenta (see Example 2.6.26) can be found in Brugués, Hohloch, Mir and
Miranda [BHMM23].

The question that follows naturally is the one regarding the classification of
such a system, which at this point is still open. In light of the classification
explored in Subsection 2.6.3 (from Guillemin, Miranda, Pires and Scott
[GMPS15]) and by Gualtieri, Li, Pelayo and Ratiu [GLPR17], it could be
an interesting idea to attempt to reproduce the same invariants that can
be found in classical semitoric systems to this context in the same sense
that the aforementioned works generalize Delzant’s theorem from toric
into 𝑏- or log-toric systems. Such an exercise, unfortunately, lies beyond
the scope of this thesis.
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