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Abstract
The development of artificial intelligence models for data driven decision making has a lot of potential for the manufacturing
sector. Nevertheless, applications in industry are currently limited to the actionable insights one can discover from the available
data and knowledge of a manufacturing system.We call the process to obtain such insights “ad hoc analysis”. Ad hoc analysis
at system level is very complex in an industrial setting due to the inherent heterogeneity of data and existence of data silos,
the lack of information and knowledge formalization, and the inability to meaningfully and efficiently reason about the data,
information and knowledge. In this paper, we provide and outline a framework for ad hoc analysis in manufacturing based
on knowledge graphs and influenced by the metamodelling paradigm. We derive its requirements and key elements from an
analysis of several industry application cases.We show howmanufacturing data, information and knowledge can be combined
and made actionable using this framework. The framework supports workflows and tools for the data consumer (i.e., data
scientist), and for the knowledge engineer. Furthermore, we show how the framework is integrated with existing data sources.
Then, we discuss how we applied the framework to several application cases. We discuss how the framework contributes
when applied, and what challenges still remain.
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Introduction

In Industry 4.0 data play a crucial role in companies. The
promise is that actionable insights in the data influence the
manufacturing system, offering previously untapped busi-
ness value, often through but not limited to the application of
artificial intelligence (AI) techniques. AI applications have
potential in cost reduction, selfmonitoring, self configuration
and self learning systems, insights and forecasting, decision
support, supporting new business models such as servitiza-
tion.

Nevertheless, the success of generating business value out
of these data is typically limited to specific applications such
as predicting tool wear or quality control using image recog-
nition. These applications are limited in scope, concentrating
on a single or limitedmachine, product type ormanufacturing
operation. To fully realize the goals of Industry 4.0, manu-
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facturing companies need to be able to create system-level
business intelligence applications that take into considera-
tion the complete manufacturing system Wang et al. (2018);
Zheng et al. (2022).

While a manufacturing company’s amount of data grows,
the ability to create more complex business intelligence
applications (bymeans of a process we call “ad hoc analysis”
in this paper) is heavily impeded by the inability to find the
necessary data insights in a manufacturing system Crowd-
Flower (2016). The key barriers for ad hoc analysis that
are identified in the state-of-the-art are heterogeneity of
data Nagorny et al. (2017); Wang et al. (2018), lack of infor-
mation and knowledge formalization Shilov (2020); Zheng et
al. (2022), and lack of inductive reasoning capabilitiesWuest
et al. (2016); Wang et al. (2018); Zheng et al. (2022). No
framework exists that addresses all of these challenges, and
that provides concrete workflows and software tools that can
be applied in the manufacturing domain.

This paper presents 24 system level requirements for a
framework for ad hoc analysis as a result of analysing several
ad hoc analysis application cases. We introduce a reference
architecture of a knowledge graph based framework for ad
hoc analysis, with concrete workflows and tools. We show
how the framework provides a solution to the three key
barriers and highlight key contributions on top of the state-
of-the-art. We validated the framework on three application
cases.

The paper starts with related work in Section “Related
work”. Section “Ad hoc analysis” analyses application cases
and results in requirements and a reference architecture of
a framework for ad hoc analysis. We define a knowledge
graph based framework that adheres to these requirements
in Section “Ontology-based knowledge graph framework”.
We define this framework’s components and workflows. We
show how we applied the framework to three application
cases in Section “Validation on application cases”. We dis-
cuss its value and open challenges in Section “Discussion”
and concludewith an outline for futurework in Section “Con-
clusion and future work”.

Related work

Knowledge graphs for manufacturing receive increasing
interest. The majority of the work can be classified a knowl-
edge fusion Buchgeher et al. (2021). Knowledge graphs
are used in specific application domains such as assembly
Kalaycı et al. (2020), quality monitoring Kwon et al. (2020)
for specific applications such as welding Svetashova et al.
(2020) or drilling Weckx et al. (2022), root cause analysis
Martinez-Gil et al. (2022) or in the context of Industry 4.0
Grangel-González (2019); Grangel-González et al. (2016).
Other work focuses on education Kumar et al. (2022). In

most of these cases, knowledge graphs are used for data inte-
gration and access, often connecting different data silos. One
popular technique to accomplish this by providing an abstrac-
tion layer on the data, is ontology based data access (OBDA)
Calvanese et al. (2016) or virtual knowledge graphs Xiao et
al. (2019). This has already been applied in a number of prac-
tical use cases Kalaycı et al. (2020); Kharlamov et al. (2017).
Another important reason for using knowledge graphs in
manufacturing is to capture and reuse manufacturing knowl-
edge, often obtained from unstructured data sources Kumar
et al. (2022).

A lot of work is being done representing manufacturing
knowledge on a more general level, through the develop-
ment of domain ontologies. This has been the case for robotic
path planning Gayathri and Uma (2018), welding Saha et al.
(2019), quality control Leitão et al. (2012), anomaly detec-
tion Steenwinckel et al. (2018), system design Arista et al.
(2023) and generally in the context of Industry 4.0 Sampath
Kumar et al. (2019), such as for decisionmakingKourtis et al.
(2019), context modelling Giustozzi et al. (2018), or interop-
erability Ameri et al. (2022). Formal, high-level ontologies
can then be used to connect these domain ontologies, thereby
easing the process of connecting different data silos together.
For example, in Hildebrandt et al. (2020), ontologies based
on standards are used for interoperability between systems in
manufacturing. Furthermore, there are ongoing efforts creat-
ing formal ontologies for industry, such as IOF Kulvatunyou
et al. (2018) or the Ontocommons1 project.

Using an ontology-based knowledge graph in manufac-
turing, automatic deductive and inductive reasoning can also
be applied to extract additional knowledge from the knowl-
edge graph Guimarães et al. (2022); Munch et al. (2019).
Knowledge graphs can be deployed to handle (semi-)live or
streaming data Kharlamov et al. (2016), so that they can sup-
port the construction of a data-based applications such as
digital twin models for manufacturing data for the alignment
of streaming data Ringsquandl et al. (2017), condition-based
monitoring Singh et al. (2021), and knowledge graph gener-
ation Banerjee et al. (2017). Furthermore, if the knowledge
graph is amenable to reasoning, it can also give rise to what
is referred to as a cognitive digital twin Zheng et al. (2022);
Lu et al. (2021) that offers intelligent decision support, for
example for systems engineering Jinzhi et al. (2022); Arista
et al. (2023). Grevenitis et al. (2019) uses a triple store as
landing zone for data, enriched with knowledge, and focuses
on data ingestion. It is applied in the context of zero-defect
manufacturing. For zero-defect manufacturing, an ontology
is proposed in Psarommatis et al. (2023) to semantically inte-
grate multiple data sources.

In order to use knowledge graphs in practice, tooling is
important. In particular, visualizing and designing ontologies

1 https://ontocommons.eu/. Last visited: 15/05/2023.
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Dudáŝ et al. (2018); Lohmann et al. (2016) is an important
part of creating and exploring the knowledge graph. Research
has been done on graph based representation of ontologies,
with tools such as VOWL Lohmann et al. (2016), ViSMod
García-Peñalvo et al. (2014) KC-Viz Motta et al. (2011), or
GLOW Hop et al. (2012), or in an UML-type diagram as a
UML profile Djuric et al. (2005), by defining a mapping to
classes and objects Bartalos and Bielikova (2007), or vice
versa Chávez-Feria et al. (2022).

In conclusion, while several applications, models and
tools exist for ad hoc analysis, the state-of the art presents no
framework to fully address the challenge of ad hoc analysis,
describing its requirements and concept, its implementation
with necessary software tools, and its validation in the man-
ufacturing industry.

Ad hoc analysis

In this section we describe ad hoc analysis and its role in cre-
ating business intelligence applications, its challenges from
industrial use cases, and the requirements for an ad hoc anal-
ysis framework that results from these challenges.

The ad hoc analysis challenge inmanufacturing

The generic high level workflow to create business intelli-
gence applications is shown in Fig. 1, with the operational
technology (factory) on the left, followed by data acquisi-
tion, i.e., ingestion, cleaning, and curation by a data engineer
whomanages the data lake. This data lake is used by data sci-
entists and subject matter experts to find interesting insights
in datawith the goal of creating business value, an activitywe
call “ad hoc analysis”. Once these insights have been found,
confirmed, modelled, etc., a specific business application can
be created by an application developer. We purposely define
this process to have an iterative life cycle, compatible with
the emerging vision on life cycle management of business
applications, such as ModelOps Hummer et al. (2019).

The main challenge for creating business applications is
“ad hoc analysis” (highlighted in Fig. 1), namely finding the
actionable insights in a manufacturing system that lead to
purposeful business applications. In ad hoc analysis, there is
a gap between the existing data and the consumer of this data
(the data scientist). Due to this gap, data scientists spend up
to 80

Requirements for a framework for ad hoc analysis

Figure 2 shows the overall research methodology of the
paper. We analyzed the ad hoc analysis needs of a num-
ber of industry-level application cases with different problem

Table 1 Industry-level application cases that were analysed for require-
ments

Sector Ad hoc analysis goal

Manufacturing of air com-
pressor core elements (see
Meyers et al. (2022))

Predictive and prescriptive
analytics for zero defect
manufacturing

Manufacturing of textile
machines

Flexible dashboard creation
for the monitoring of costs
such as material consump-
tion

Material bonding and
debonding

Predictive and prescriptive
analytics with uncertainties
for an experimentation lab

Additive manufacturing Development of real-time
corrective algorithms at run
time

Assembly of mechatronic
systems

Flexible root cause anal-
ysis with uncertainties for
pFMEA (process failure
modes and effects analysis)

Manufacturer of communi-
cation products

Test coverage analysis in
embedded software develop-
ment

Drivetrain design and testing Experimental design, and
reuse of experiments

Horticulture robotics Anomaly detection and
diagnostics of products

domains as shown in Table 1. Section “Validation on appli-
cation cases” explains the first three in more detail.

For each of these cases, we analyzed the common needs
of these application cases together with the state-of-the-art
and concluded that all cases share three main challenges:

• Main challenge 1: Heterogeneity of data Nagorny et
al. (2017); Wang et al. (2018); Adolphs et al. (2015). A
typical manufacturing system has a plethora of different
data sources (silos, databases) and formats (tabular, time
series, blob, etc.) for various aspects of themanufacturing
system (product design, manufacturing execution, qual-
ity assurance, sensor readings, etc.).
Acquiring the right data is often a highly iterative pro-
cess with data engineers, especially for manufacturing
system-wide analysis, e.g., linking product quality to pro-
duction circumstances.

• Main challenge 2:Lackof informationandknowledge
formalization Shilov (2020); Zheng et al. (2022). The
cognitive gap needs to be bridged, firstly between data
scientists and domain experts, and secondly between the
problem domain and technical solution domain. There-
fore, there is a need to formalize knowledge.
In an enterprise, information and knowledge is typi-
cally spread across different knowledge sources (sub-
ject matter experts, data scientists, machine manuals,
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Fig. 1 High level workflow for creating business intelligence applications

Fig. 2 Research methodology of this paper

research papers, AI/simulation models, etc.). Typically,
this knowledge remains implicit or tacit, or not read-
ily available to the data scientist. This leads to lack
of understanding, data analysis errors (wrong assump-
tions or conclusions), or inefficiencies (long iterations
and repetition of interpretation of the same data) in ad
hoc analysis. The challenge is making such knowledge
explicit and formal, and relating it to the data.

• Main challenge 3: Inability to meaningfully and
efficiently perform inductive reasoning Wuest et al.
(2016); Wang et al. (2018); Zheng et al. (2022). Ad hoc
analysis requires flexible experimentation with data and
knowledge. There is a need for efficiently carrying out
statistics, logical inferencing, and AI workflows, includ-
ing correlation analysis, feature modelling, training, and
validation.Moreover, discovered insights need to be find-
able and accessible in an enterprise for future use, and
explicitly linked to the concepts they are related to. Fur-
thermore, following the ModelOps paradigm Hummer

et al. (2019), there is a clear need formonitoring deployed
AI models, that need to be optimized or retrained when
necessary.

Based on analysis and user interviews of each of the appli-
cation cases, we refined the three challenges and elicited 24
system level requirements in 5 categories for a framework for
ad hoc analysis in Table 2. In the remainder of the paper, we
refer to these requirements and explain how our framework
fulfills them.

Ontology-based knowledge graph
framework

This section proposes a framework and shows how it imple-
ments the requirements of Table 2.While we are able to build
on existing tools and tool stacks, technical contributions are
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Table 2 System level requirements for a framework for ad hoc analysis

Metadata

REQ1 Abstraction.Theheterogeneous knowledge about the
problem domain as well as interpretation and seman-
tics of data (answering “how” and “why” questions)
must be explicit and linked to information and data

REQ2 Formalization. Data, information and knowledge
must be formalized, well-formed and consistent

REQ3 Explainability. The information for explainability of
data (categorization and typing, answering “who”,
“what”, “where”, “howmany” and “when” questions)
must be explicit and linked to data

REQ4 Traceability. Data must be traceable at system level,
so that the desired analysis can be performed. This can
be product, operator, resource traceability, depending
on the problem domain that needs to be tackled

REQ5 Visualization. It must be possible to visualise the data
structure in a graphical way

REQ6 Schemadiscovery.Extracting the structure of the data
must be automated

Data management

REQ7 Single point of access. A single point of access must
be available to all data, information and knowledge at
enterprise level

REQ8 Data flow. The framework must support a workflow
for ingesting new or existing data, information and
knowledge

REQ9 Heterogeneous data. Heterogeneous data (i.e., raw
observations) from different data silos must be explic-
itly linked

REQ10 Live data. The framework must provide support for
perpetually changing data, information and knowl-
edge

REQ11 Data operator.A user must be able to create new data
from existing data

Data exploitation

REQ12 Exploration. A user must be able to incrementally
explore and understand what data, information and
knowledge exist

REQ13 Querying. A user must be able to formulate queries
to retrieve data, information and knowledge

Workflow support

REQ14 Incremental workflow. The user must be able to
interact according to an incremental andflexiblework-
flow

REQ15 Reasoning. The framework must be able to automat-
ically reason about data, information and knowledge

REQ16 Automation.Repetitiveworkmust be automated. The
workflows must be managed and executed workflows
must be preserved

Framework and tooling

REQ17 Multi user. The framework must support interaction
of multiple users with the same enterprise level data,
information and knowledge

Table 2 continued

REQ18 Performance. The performance overhead for query-
ing data, information and knowledge must be accept-
able compared to state-of-the-practice querying

REQ19 Openness. The framework must support the defini-
tion of user-specific tools for the interaction with data,
information and knowledge

REQ20 Interoperability. The querying service must be well
integrated with existing software packages for data
science

REQ21 Extensibility. The framework must support an
extension mechanism for organization-independent
problem-specific knowledge

REQ22 Adaptability. The framework must support gradual
adoption, by ensuring that its value (i.e., the develop-
ment of an AI application) can be achieved without
having to setup a complete organization wide frame-
work first

REQ23 Flexible deployment. The framework must support
a flexible deployment allowing extension with new
tools, services and data sources tailored to an enter-
prise

REQ24 Cloud support. The tool must be usable from any
place using a browser

necessary in our framework. The main technical contribu-
tions presented in this paper to achieve this are:

• a framework with a (to our knowledge) functionally
complete set of data, information, knowledge access
methods (REQ1, REQ7, REQ9, REQ10, REQ11), and
interactionmethods (REQ5,REQ12,REQ13, including
workflows (REQ8, REQ14) and deployment architec-
ture (REQ23);

• a knowledge graph structure for modelling data, infor-
mation and knowledge that suits the needs of the man-
ufacturing domain that heavily relies on domain models
(REQ1, REQ2, REQ3, REQ4);

• an exploration tool to support efficient finding and under-
standing of data, information and knowledge (REQ5,
REQ6).

• a method for on demand calculation to improve rea-
soning capabilities of the framework (REQ11, REQ15,
REQ16).

The remainder of this section explains these contributions
in more detail and positions them in the overall framework.

Combining the ontology paradigm and the
metamodelling paradigm

Our framework for ad hoc analysis needs to have a founda-
tional approach to model data, information and knowledge,
and their relationships (REQ2). Our work is founded on a
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combination of the ontology paradigm and the metamod-
elling paradigm. In databases, this need is acknowledged and
partially addressedRazniewski andNutt (2014). In datamod-
elling, the metamodelling paradigm (e.g., database schemas)
is used, supporting explicit typing (needed for REQ6). In
order to model knowledge and classification2 (REQ3) and
link multiple types of data (REQ1,REQ4), and give specific
support for reasoning (REQ15), the use of ontologies is the
preferred paradigm Shilov (2020); Zheng et al. (2022).

For the ontology- and metamodel-based knowledge graph
implementation in our framework, we have chosen to use
the semantic web tool stack, which follows the ontology
paradigm, on which we impose explicit restrictions so that
we draw from the benefits of the metamodelling paradigm.

Outline of the architecture

The architecture for the knowledge graph based framework is
shown in Fig. 3. It positions a knowledge graph (center) as the
single point of access to all data, information and knowledge
of the manufacturing system (REQ7) to the data scientist,
for ad hoc analysis (top). Ad hoc analysis requires four types
of interaction with the knowledge graph, namely explore,
query, update and reason (see Sect. 4.4).

Based on the knowledge pyramid Rowley (2007) (center
of Fig. 3), a knowledge graph contains:

• data: the observed data, created by software, sensors,
operators. In our framework, this can be raw or curated
data;

• information: the structure and context of the data, such
as metadata;

• knowledge: the know-how of the manufacturing system.
This can be based on data (e.g., the definition of a predic-
tive machine learning algorithm) or not involve data at all
(e.g., the description of a suspected correlation between
two unmeasurable parameters in the manufacturing sys-
tem).

In this paper we will use the term knowledge graph con-
tent as umbrella term for all data, information, knowledge
(and wisdom) in a knowledge graph, and a knowledge graph
element as a single record of data, information or knowledge.
In our architecture, knowledge graph elements are typed by
domain models (see Section “Domain model”).

Manufacturing data is typically heterogeneous, so our
framework supports several ways to access data through the
knowledge graph (bottom of Fig. 3, see Sect. 4.3.2 for more

2 In metamodelling, the difference between typing and classifying is
defined by a linguistic and ontological metamodel Kühne (2006).While
in ontologies, the linguistic metamodel is left unrestricted, in metamod-
elling, the ontological metamodel is traditionally overlooked.

details) (REQ9). As illustration, some examples of informa-
tion sources are shown. Data in the knowledge graph can
be materialized data, virtual data, references to data or on
demand calculation of data (REQ16). The frameworkdefines
respective types of links to the manufacturing system’s data:
importing into, mapping onto or linking data to the knowl-
edge graph. Next to accessing existing data, the knowledge
graph typically contains standalone data, information and
knowledge.

The data acquisition workflow (left of Fig. 3) represents
the existingworkflow to ingest data,whichmaybe performed
by workers, operators, operational technology or deployed
digital twins. This includes the conversion of streaming data
to data lakes. This workflow is executed perpetually, inde-
pendent of the knowledge graph framework. This paper does
not contribute to the activity of data acquisition.

The knowledge engineering workflow (right of Fig. 3)
defines a workflow for building and extending a knowledge
graph and its relation to information sources (see Sect. 4.3)
(REQ8). This workflow is carried out by the knowledge
engineer role, who takes ownership of the knowledge graph.
Knowledge engineering requires a system level view on the
manufacturing system, modelling skills, domain knowledge
and data knowledge.

Knowledge engineering

Figure 4 shows the high level workflow and interaction of the
knowledge engineer with the knowledge graph. In order to
provide value as early as possible (REQ22), the knowledge
engineeringworkflowstartswith a business case or viewpoint
that is flagged to provide business value. In a traditional data
engineering context, this case directly leads to data engineer-
ing actions as shown at the bottom of Fig. 4. So, knowledge
engineering introduces an additional cost. An organisation
benefits once the same knowledge graph content is re-used
many times. Moreover, the use of a knowledge graph avoids
making similarmistakesmultiple times, thus improvingqual-
ity in the ad hoc analysis process. Also note that part of data
curation and data modelling is now transferred from the data
scientist to the knowledge engineer.

The high level workflow is highly collaborative and iter-
ative, and consists of the following activities:

1. Understand the business value together with the business
user, in order to understand the goal and the value of the
case.

2. Understand the problem domain with the domain expert.
This involves exploring several knowledge sources, such
as process engineers, machining tool providers, quality
engineers, product designers, etc.

3. Model the domain concepts in the problem domain by
creating or extending a domain model with ontologi-

123



Journal of Intelligent Manufacturing

Fig. 3 Knowledge graph
reference architecture

Fig. 4 Knowledge engineering
workflow and interaction with
the knowledge graph

cal concepts in the knowledge graph, explained more in
detail in Section “Domain model”.

4. Understand what data exists that is relevant to the case,
and understand this data, together with the data engineer.
There may be several issues with the data leading to data
engineering actions, such as ingesting, cleaning or curat-
ing new data, carrying out an experimental campaign to
acquire new data or acquisition of new sensors.

5. Map domain concepts to data, once high quality data is
available andwell understood by the knowledge engineer
(see Sect. 4.3.2).

6. Verify the knowledge graph is verified, if necessary
together with other stakeholders, to verify whether its

goal ismet, i.e., whether the data, information and knowl-
edge for the business case is available in the knowledge
graph.

Throughout the workflow, the knowledge engineer inter-
acts with the knowledge graph to explore its concepts
and data (REQ6, REQ12) (more detailed in Section 4.4),
create new concepts in a domain model (REQ8) (see Sec-
tion “Domain model”) and map concepts to data (REQ2,
REQ3, REQ4) (see Sect. 4.3.2).
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Domain model

The framework uses domain models to improve support
for defining system level semantics and accessibility of
the knowledge graph content (REQ1), formalization, con-
sistency and well-formedness of data, information and
knowledge (REQ2), explainability (REQ3), and traceabil-
ity (REQ4).

The domain model provides structure to all data, informa-
tion and knowledge as a single point of access (REQ7) in the
knowledge graph in terms of the problem domain, whereas
available information typically is defined in a technical solu-
tion domain. Figure5 shows by example how we position
domain models in a four layered architecture. Domain mod-
els are implemented as ontologies as defined in the semantic
web tool stack, but we provide several extensions that origi-
nate from the metamodelling paradigm that improve the use
of ontologies in manufacturing:

Ageneric,minimalupperontologybasedon theResource
Description Framework (RDF) The W3C and RDF Work-
ing Group (2014), RDF Schema (RDFS) The W3C and
RDF Working Group (2014) and the Web Ontology Lan-
guage (OWL2) The W3C and OWL Working Group (2012)
that defines a linguistic structure for domain models (first
layer in Fig. 5). The use of open standards ensures open-
ness (REQ19). In order to adequately use the metamodelling
paradigm, we defined our own minimal Metamodelling
(MM) upper ontology. We use the following idioms in the
upper ontology (some of which are shown in Fig. 5):

• Classification of elements (rdf:type, grey dashed arrows)
using rdfs:Class. The framework highly encourages the
use of class disjointness (owl:disjointWith) in order to
model explicity typing.

• The use of hierarchy to classify types (rdfs:subClassOf,
rdfs:subPropertyOf) where appropriate.

• Explicit modelling domain (rdfs:domain) and range
(rdfs:range) specifications for relations between elements
(rdf:Property) where appropriate.

• The use of mm:ownedProperty (an instance of owl:
ObjectProperty) to model a class’ exclusive ownership a
property, i.e., the property cannot exist without the class.

Restricting a domain model in terms of these idioms makes
nonsensical information explicitly invalid, e.g., a jml:Sample
cannot be an instance of jml:AdhesiveApplication. On the
other hand, the framework leaves the possibility open for
classification: a jml:Sample can be classified as a good sam-
ple or a bad sample (not shown in figure). Next to validity
checking, a second benefit is that tools in the framework
are able to leverage this additional information, for example
to provide more dedicated support for exploring the knowl-

edge graph compared to existing visualisation tools (see
Section 4.4).

Reusable domain ontologies define ontologies for dif-
ferent types of problem domains, such as digital twins,
or knowledge on influence factors, etc. (second layer in
Fig. 5). Figure5 shows an excerpt of the dt ontology to
model manufacturing systems, with sequences of manu-
facturing steps (dt:ProcessStepExecution), that have a start
time (dt:startTime), and that consume, produce, transform or
involve products andmachines (dt:Asset). The elements in dt
are typed by the upper ontology. Furthermore an excerpt of
the tacit ontology is shown, that models explicitly dependen-
cies (tacit:influence) between properties, which are useful for
correlation analysis and root cause analysis. The framework
can be extended with different domain ontologies (REQ21).

The domainmodel represents the company-specificman-
ufacturing system in the problem domain (third layer in
Fig. 5). The domain model in this layer is created during the
knowledge engineeringworkflowof Fig. 4. It instantiates and
extends the upper ontology anddomain ontologies of interest.
The example model glued (jml:AdhesiveApplication) sam-
ples for which the tensile strength (jml:maxBreakStress) is
important.

The individuals are the data, information and knowl-
edge of the knowledge graph (fourth layer in Fig. 5). In
our framework, the goal is to provide explicit types for all
individuals by domainmodel, in accordance to themetamod-
elling paradigm that assumes that all objects are typed. The
principle of strong typing improves human and computer
interpretability of knowledge graph content. Individuals are
modelled in terms of the problem domain (which may be of
different structure than the underlying data sources), making
them easier to understand by domain experts. Next to repre-
senting data and information about their context, additional
manufacturing knowledge is explicitly defined as an influ-
ence relationship (jml:humidityCausality) that states that
humidity during adhesive application influences the sample’s
maximum break stress.

The framework provides a base for ad hoc analysis that can
be extended to improve support for specific types of ad hoc
analysis (REQ21). The main extension method is to define
a new domain ontology, compliant to the upper ontology
(see Section “Domain model” and Fig. 5). A domain ontol-
ogymay have dependencieswith existing domain ontologies.
The application cases (see Section “Validation on application
cases”) made use of these extension mechanisms.

Mapping domain model to data sources

While the individuals layer in Fig. 5 represents a logical struc-
ture, there are several strategies to access the data without the
need for importing them in the knowledge graph triple store.
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Fig. 5 A simplified excerpt of the structure of a knowledge graph of a gluing process in terms of the problem domain

This section describes how data sources are mapped to the
domain model:

• By offering four different data access methods that can
be used and combined for all necessary types of data
sources (REQ9) to ensure performance (REQ18), allow-
ing gradual adoption (REQ22), supporting evolving data
(REQ10);

• By supporting a conversion from the problem domain
(domain model) to the solution domain (data structure)
(REQ1).

The four access methods are explained in the following,
and guidelines on when to apply them are given in Table 3.

Materialization: creating RDF triples by using existing
API libraries, for example in Python (rdflib3 and kglab4) or in
Java (Jena API5). This is the knowledge graph equivalent of
Extract-Transform-Load (ETL) scripts. For knowledge that
is tacit (i.e., only exists in the minds of people or is implicit
from documents), triples can be the format to materialize this
knowledge. As shown in Table 3, materialization is suitable

3 https://rdflib.readthedocs.io/en/stable/, accessed 24/04/2023.
4 https://derwen.ai/docs/kgl/, accessed 24/04/2023.
5 https://jena.apache.org/documentation/ontology/, accessed
24/04/2023.

for implicit or tacit information and data or knowledge that
represent relations between concepts. Materialization is not
suitable for data or knowledge that is represents calculation,
or for time series data;

Virtualization, also known as ontology-based data access
(OBDA) Kogalovsky (2012); Xiao et al. (2019): data is
not copied into the knowledge graph but is accessed on
demand via rules that map triples to databases. This has
become a popular data access method (e.g., Ontop Calvanese
et al. (2017), Mastro Calvanese et al. (2011), Stardog6).
OBDA removes the need of copying and keeping consis-
tent of data and managing ETL pipelines, while providing
reasonable query execution performance. The current state-
of-the-practice focuses on highly efficient virtualization of
relational databases using mappings to SQL. As shown in
Table 3, virtualization is suitable for databases that can
be queried with SQL, as well as semantic data types that
can be made accessible with SQL by virtualization tools
like Dremio7) or Denodo8). There is interesting research
to expand OBDA outside of SQL sources Kalayci et al.
(2019); Botoeva et al. (2019); Bereta et al. (2019), but these
approaches are not yet well supported by tools.

6 http://www.stardog.com, accessed 24/04/2023.
7 https://www.dremio.com/, accessed 24/04/2023.
8 https://denodo.com, accessed 24/04/2023.
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Referencing: data can be accessed through the knowl-
edge graph by storing a reference to the data in knowledge
graph (accessmethod, location, credentials). This can include
a URI, database client information, and low level queries.
Ontologies can be defined to define explicitly different ref-
erence methods depending on the data source. The actual
retrieval of data is in this case done in a separate step. This
decoupling of linking and retrieving data offers a benefit in
case of performance, when the actual retrieval is inherently
long in case of very large data sizes, as the data scientist can
delay the actual retrieval of data and the execution of their
analysis (e.g., in the case of training an AI model, which
may take several hours). Furthermore, as shown in Table 3,
referencing is suitable for blob data (images, videos, binary
data) and geometric data, and is potentially useful to pro-
vide queries to specialized databases, services or models
(time series, REST, simulation, SysML) in order to maxi-
mally exploit the features of these underlying databases.

On demand calculation: access by executing predefined
and parameterizable code. Our approach for on demand
calculationVanderhulst et al. (2023) allows users to code
customized access to underlying data, information and
knowledge sources. Our method allows registering “virtual”
predicates that will calculate triples on demand by custom
logic. For the user, they are semantically equivalent to regu-
lar triples.

While the idea of ondemandcalculation is not newRegalia
et al. (2016);Taelmanet al. (2018) and is supportedby tools in
the state-of-the-practice as magic predicates,9 our approach
completely shields the on demand calculation module from
the user, and provides optimization in terms of filtering. Fur-
thermore, our framework supports registering on demand
calculation as a REST service in a programming language
of choice. This allows optimal flexibility and separates the
calculationmodule from the knowledge graph, thus lowering
the barrier for creating new on demand calculation mod-
ules (REQ11). The REST service can implement any kind
of stateless parameterizable logic. As shown in Table 3, on
demand calculation is suitable for time series data, execut-
ing simulations, calling cloud services and for executable
knowledge that was previously created by a data scientist
(e.g., a correlation analysis, an AI based prediction module).
On demand calculation is not suitable for directly accessing
relational or columnar data, metadata or domain concepts,
and relational or modelled knowledge.

All access methods can be combined for a single knowl-
edge graph by our deployment architecture (see Sect. 4.5).

9 Ontotext GraphDB https://graphdb.ontotext.com/documentation/10.
2/pdf/GraphDB.pdf, accessed 02/05/2023.

Ad hoc analysis

Once a knowledge graph is constructed, it can be used by
data scientists for ad hoc analysis. The goal is to generate
insights that represent business value. Using a knowledge
graph improves the ad hoc analysis process by improving
data access (REQ7), making knowledge available (REQ1),
and improving reasoning capabilities on data and knowledge
(REQ15) in an automated way (REQ16), and integrating
well with the core activity of data scientists, namely data
analytics (REQ20). We position our knowledge graph based
framework in the complete data analytics life cycle, from
the creation of a model up to the business outcome. Due
to its iterative and flexible nature, this life cycle complies
with the ModelOps paradigm Hummer et al. (2019). In this
paradigmour framework providesmost value. In this section,
we present a generic incremental ad hoc analysis work-
flow (REQ14) that interacts with the knowledge graph in
four interaction patterns: explore (REQ12), query (REQ13),
update (REQ11) and reason (REQ15).We then explain what
methods and tools our framework for ad hoc analysis pro-
vides to support these interaction patterns for multiple users
andworkflows at the same time (REQ17), using cloud-based
tools (REQ24).

Figure 6 shows an iterative ad hoc analysis workflow.

1. Understand and agree on the goal of the business user,
and determine what insight they have in mind. For exam-
ple, the end product quality is insufficient and the cause
needs to be found, and quality needs to be improved
by changing settings in the manufacturing process. This
needs to be understood well: what is meant by quality?
In what range of products is quality insufficient? What
is considered to be an improvement? What are boundary
conditions?

2. Translate the business goal into one or more hypothe-
ses in the problem domain, together with the domain
expert(s). For example, how is quality measured in the
manufacturing process? Is quality measured for every
product? What are the production steps that are per-
formed before the qualitymeasurement?What influences
quality?What experiments have been done before related
to quality? The knowledge graph is used in this phase
as a replacement of a whiteboard, and as a way to
improve cross domain understanding by providing access
to nomenclature in the domain model, previous insights,
etc. Existing knowledge, domain concepts and insights
are the knowledge graph elements that are explored to
support determining hypotheses.

3. Look for the data, information and knowledge that is
needed to confirm or invalidate a hypothesis. In order to
efficiently do this, the knowledge graph is explored to
determine what data, information and knowledge exists,
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Fig. 6 Generic data scientist
workflow for ad hoc analysis
and interaction with the
knowledge graph

by exploring directly the domain concepts of the prob-
lem domain (rather than the technical solution domain).
In case the necessary data, information or knowledge is
not available to analyse the hypothesis, a knowledge engi-
neering workflow is started.

4. Retrieve data by querying (possibly including reason-
ing on) the knowledge graph in terms of problem domain
concepts. In this step, a single query may combine dif-
ferent data sources and access methods, shielding the
underlying technical structure and access of the data,
information and knowledge. In the example, a data sci-
entist may query the maximum break stress values of
tested samples, together with the process settings and
measurements during the gluing process that influence
the break stress (using the modelled knowledge in the
form of tacit:influence relationships as shown in Fig. 5).

5. With the necessary data, information and knowledge, the
core data analysis activity is performed. In our frame-
work this is considered to be the core expertise of the
data scientist and covers a wide range of activities statis-
tical analysis of data, feature modelling, training of an AI
model, executing simulations, etc. This activity is max-
imally supported through the other steps in the ad hoc
analysis workflow.

6. As a result of the data analytics step, an insight is explic-
itly formulated, and new actions are defined. The
insight may trigger a new iteration of the workflow, or
may trigger other workflows like creating an end user
application. The insight may be stored in the knowledge
graph, by using the domain model. For instance, analysis
of the datamay lead to a regressionmodel of the causation
between plasma settings andmaximum break stress. This
insight is saved as a tacit:ModelledInfluence instance in
the knowledge graph, and may lead to the development

of a dashboard application that predicts maximum break
stress. Based on this insight, a next iteration of the ad hoc
analysis workflow may be triggered to determine under
which conditions an additional quality assurance test is
needed.

As shown in Fig. 6, the data scientist uses four types of
interaction with the knowledge graph.

Query. The data scientist can query the knowledge graph
to retrieve data, information and knowledge in a computer
readable format (REQ13).

In the semantic web tool stack, SPARQL The W3C
SPARQL Working Group (2013) is the suggested language
to query an RDF triple store via a SPARQL service. A
SPARQL service is an HTTP service endpoint that can
process SPARQL queries. In our framework, we can use
the SPARQL language without any modification, since the
knowledge graph is fully compatible with the semantic web
tool stack. SPARQL can be used in typical data science envi-
ronments as it is compatible with e.g., Python and Pandas
REQ20).

In SPARQL, queries are graph patterns. As the knowledge
graph relies on explicit domain models, patterns over these
domain models are very intuitive.

Additionally, RDF allows SPARQLqueries across all four
layers of the knowledge graph, this allowing to query for data,
information, knowledge, and also domain concepts. For a
concrete example of such SPARQL queries, we refer to our
previous work Meyers et al. (2022).

Explore.
We developed a visual exploration tool that allows users

to interactively browse the knowledge graph content at the
level of the domain model (REQ5, REQ12).

This tool is designed according to the followingprinciples:
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• It shields the user from the different data sources of the
knowledge graph.

• It visualizes only knowledge graph concepts of inter-
est, at the level of the problem domain. The tool
avoids visualizing technical concepts like rdfs:domain,
owl:DatatypeProperty or owl:Thing, or technical data
structures of the solution domain.

• It provides an interactive interface that allows gradually
exploring domain elements. This allows the user to limit
themselves to a specific subdomain, without having to
find domain elements in a complete knowledge graph
visualization which can become unwieldy.

• Its content is kept synchronous with the knowledge graph
as it is based on SPARQL queries to retrieve the elements
that need to be visualised.

• It provides a combination of the ontology paradigm
and metamodelling paradigm, as discussed in Sec-
tion “Domain model”. This is achieved by supporting
on the one hand domain-based exploration. This fol-
lows themetamodellingparadigmwhere data is explicitly
typed according to an explicit domainmodel.On theother
hand, evidence-based exploration by querying instances
is also supported. This follows the ontology pattern,
where instances can be of multiple classes and an open
world is assumed where elements can be of no class.

• It is generic and works for any knowledge graph defined
according to the four-layer domainmodelling structure of
Section “Domain model”. Nevertheless, it is view based
and extensible, allowing dedicated views for each domain
ontology.

• It is browser based, implemented as a Theia IDE.10 A
screenshot is shown in Fig. 7 showing graph bases explo-
ration, data exploration based on plots, and an integrated
SPARQL editor and executor.

Update. The knowledge graph can be updated by the data
scientist to add new insights so that they can be explored,
queried and reasoned on (REQ11). This can be done in two
ways: by directly by adding calculated instance values or
knowledge as triples to the knowledge graph by means of a
SPARQL INSERT Query, or indirectly by adding the calcu-
lation code itself and make this a virtual predicate by means
of registering a REST-based on demand calculation module.

Reason. The knowledge graph can automatically reason
on data, information and knowledge to generate new knowl-
edge by semantic reasoning, execution of algorithms, trig-
gered by queries (REQ15,REQ16). For semantic reasoning
on the one hand, the semantic web tool stack supports various
means for logical inference, with wide spread reasoners that

10 https://theia-ide.org/

implement this logic, such as the OWL reasoner,11 which
we use for example in combination with the tacit domain
ontology for influence relationships to infer a property’s tran-
sitively influential properties. Execution of algorithms on
the other hand is implemented by on demand calculation.
The algorithms can be products of data analytics by the data
scientist, making them available and reusable through the
knowledge graph, or can be defined by the knowledge engi-
neer. They can be of arbitrary complexity, and can include
3rd party tools for simulation, AI inference, etc. For both
semantic reasoning and execution of algorithms the user is
shielded from the underlying mechanisms, as they can use
regular queries to trigger such computation.

Deployment

Our framework needs a versatile cloud based deployment
method (REQ24), that can be used depending on the needs
and data sources of each organization (REQ23). For this
reason, we deploy the tools as a containerized application,
which can be easily configured to deploy the containers that
an organization needs. The framework includes a template
based installation process that allows the quick configuration
of new knowledge graph deployments. An example deploy-
ment is shown in Fig. 8. The data sources are shown at the
bottom. All data sources are shown at the bottom, where
local storage represents csv, Parquet, json and Excel files.
In this configuration, we use Dremio12 to provide an SQL
interface for all data formats except InfluxDB.We use Ontop
to provide virtual access to these data. For InfluxDB, access
is via on demand calculation through a Python REST server
implemented using our framework. These on demand calcu-
lation modules and the Ontop endpoint are accessible to the
user through the on demand calculation (ODC) proxy end-
point. The ODC endpoint allows users (1) to register new
on demand calculation modules and (2) automatically route,
process and forward SPARQL queries. In this example, the
Exploration tool, ODC endpoint and Python REST server
are based on our own contributions of our framework, while
Ontop andDremio are existing tools that we use in our frame-
work.

Validation on application cases

In this sectionwe discuss howwevalidated our framework on
three application cases from the eight we used as input for the
requirements analysis in Sect. 3. For each, we briefly explain

11 A list of OWL reasoners is maintained on the W3C website
https://www.w3.org/2001/sw/wiki/OWL/Implementations. Visited on
12/05/2023.
12 https://www.dremio.com/. Visited 12/05/2023.
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Fig. 7 Exploration tool for manufacturing knowledge graphs

Fig. 8 Technical deployment architecture overview for the gluing
example

the context, the ad hoc analysis goal, how the three main
challenges of ad hoc analysis are present for the application

case, and how the framework was applied to overcome these
challenges.

Knowledge graph for zero defect manufacturing

Context. This application case investigates methods for zero
defect manufacturing of an Atlas Copco compressor air end,
the core element of a compressor. The case focuses on the
detection and prediction strategies of zero defect manufac-
turing Psarommatis et al. (2019). The role of data for these
strategies has been marked important for quality improve-
ment Psarommatis et al. (2022), and has been identified as a
key enabling technology in Powell et al. (2022). One of the
main manufacturing steps is a machining step using a CNC
(computer numerical control) machine to mill, drill, grind,
etc. the housings of these compressor core elements. Manual
(CAQ and coordinate-measuring machine (CMM) tests are
performed to measure the geometric quality of these hous-
ings after they have been machined. Geometric quality is
essential to ensure high performance of the compressor.

Ad hoc analysis goal. The goal is to reduce cost by reduc-
ing the number of quality tests, whilemaintaining confidence
in quality. For this, Atlas Copco is researching an adaptive
measurement strategy, that uses data based methods (i.e.,
machine learning) to predict quality based on machine and
environmental dataMeyers et al. (2022). This involves a com-
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plete AI life cycle: gather data, find and analyze insights
like correlations within the manufacturing system, machine
learning, deployment, execution and validation of an AI
model, and, whenever deemed necessary, retraining.

Challenges. The three main challenges were identified as
follows:

• Main challenge 1: Heterogeneity of data. To analyze
what influences quality, data must be combined from
sensors (time series), the MES system (SQL), a CAQ
database (a different SQL database), CMM (pdf).

• Main challenge 2:Lackof informationandknowledge
formalization. Traceability of products throughout the
production system needs to be explicitly formalized, in
order to link data at the level of individual products.

• Main challenge 3: Inability to meaningfully and
efficiently perform inductive reasoning. Without our
framework, this is a process that involve long itera-
tions for ad hoc analysis and (re)deployment of the AI
model. This is because data and knowledge unavailability
extends data retrieval times and undermines the quality
of insights. Due to the impractical retrieval process, it
may for example take weeks to discover that there are
not a sufficient number of data points to evaluate a given
hypothesis.

Solution. In this application case, we showed how our
knowledge graph based framework improves the AI life
cycle, as shown in Fig. 9. The AI life cycle is shown on the
right side. It is a specific variant of the data scientist workflow
shown in Fig. 1.

The goal of this workflow is finding useful correlations in
the data.During thisworkflow, the knowledge graph is gradu-
ally built up, when new data sets are needed for analysis. The
ML model that results from this workflow can be automati-
cally deployed in an automated consumer zone together with
a dashboard (see Fig. 10), where the model can be executed
for inference, in this case quality prediction and assessment
whether a test is needed. We deployed our architecture in an
experimental environment that is detached fromAtlas Copco
production. This environment is designed so that it mimicks
the manufacturing system by providing raw and streaming
data in the same format as the factory floor. At the time
of writing, Atlas Copco is still incrementally including new
hypotheses and data sources into this workflow, in order to
improve results.

Knowledge graph for flexible dashboard creation

Context. In this application case, we applied our knowledge
graph framework to an undisclosed machine builder. The
machines they build are equipped with a large number of
sensors, that measure its operation, material consumption,

etc. Machines are virtually unique, as are highly configured
with custom sensors, actuators and software, depending on
customer need.

Ad hoc analysis goal. There is a customer need to obtain
insight inmaterial consumption to improve performance. For
this reason, the machine builder is looking into expanding
their portfolio to offer data analytics dashboards for their cus-
tomers that are customized to their needs and their machines.

Challenges. The three main challenges were identified as
follows:

• Main challenge 1: Heterogeneity of data. As the
machines are real-time cyber-physical systems, a lot of
the data is stored as time series data. The major data
sources are InfluxDB, Parquet andMicrosoft SQL server.

• Main challenge 2:Lackof informationandknowledge
formalization. Reuse of information and knowledge is
hampered by a lack of formalization. Typical features
of the machine need to be explicitly formalized, such as
material consumption per machine subprogram.

• Main challenge 3: Inability to meaningfully and effi-
ciently perform inductive reasoning. For the creation
of custom dashboards, the ad hoc analysis is the major
bottleneck to find and validate the insights that need to be
converted into the dashboard applications.As dashboards
are custom, the demand for ad hoc analysis rises together
with the customer demand for new dashboards. The
machine builder has extensively investigated GraphQL
to address this challenge, but found that it still lacked
flexibility and extensibility.

Solution. We used the knowledge graph framework to
provide a single model at the functional (rather than techni-
cal) level to relate the data silos (relational vs. time series),
and to support the reuse of previous insights to build a data
analytics knowledge base. These insights take the form of
executable scripts for data analysis or AI and can be reused
for other customers.

The overview of the approach is shown in Fig. 11 where
a data scientist (top right) needs to acquire business insights
to create multiple customer dashboards from a technically
curated zone that includes SQL, InfluxDB and Parquet data.
We introduced a knowledge graph with a domain model that
takes the role of functional model and that enables the data
scientist to query for data scattered across the different data
sources. Insights in the form of data features, aggregations,
correlations or other calculations are stored as on demand
calculation modules and made available in the knowledge
graph. Data can be directly retrieved for ad hoc analysis by
means of the virtualization or on demand calculation access
methods. Data can also be retrieved indirectly via the ref-
erencing access method. The latter is used for creating the
dashboard applications that can be deployed at the customer.
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Fig. 9 Overview of the Atlas Copco case for zero defect manufacturing

Fig. 10 Dashboard of the deployed AI model for adaptive measurement (synthetic data)

The dashboards can operate on the technically curated cus-
tomer data at the customer (which is of the same format as the
technically curated zone), removing the need for a deployed
knowledge graph in the customer zone.

Knowledge graph for data analytics under
uncertainty

Context. In this application case bonding (gluing) and
debonding experiments for several materials are carried out
in an experimentation lab. In this manufacturing process, two
substrates are glued to form a sample. The goal is to obtain
a strong adhesion, which can be tested using a break stress
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Fig. 11 Custom dashboard creation using the knowledge graph framework

test, i.e., a tensile strength test that determines the maximum
break stress, while maintaining visual quality of a sample
(i.e., the sample is not burnt).

Ad hoc analysis goal. The goal is to understand how
process parameters influence properties of interest, and to
perform root cause analysis in case of quality problems. Sub-
sequently, the goal is to train a machine learning model that
is able to find optimal settings for new glues or materials
based on a minimal number of experiments. When analyzing
dependencies in a manufacturing system, it is often desirable
to take uncertainties into account, to obtain an answer to ques-
tions like “what is the probability that maximum break stress
will be within tolerance and the visual quality will be good,
given the plasma settings and contact angle measurements”.

Challenges. The three main challenges were identified as
follows:

• Main challenge 1: Heterogeneity of data. Data are
semi-formalized an partly automatically ingested (sen-
sors as Parquet, MES system as json), and partly manu-
ally created (quality measurements as Excel file).

• Main challenge 2:Lackof informationandknowledge
formalization. There is a need for explicitly reasoning
with uncertainties. The probabilistic variables need to be
explicitly formalized.

• Main challenge 3: Inability to meaningfully and effi-
ciently perform inductive reasoning. Given the data in
the process, the root cause analysis is a cumbersome pro-
cess that is not flexible for testing different hypothesis
in an efficient way. Data needs to be manually linked
and converted in a statistical model, in order to analyse
how parameters influence each other. For each analysis,
the process needs to be carried out from the start. This
process is inefficient, inflexible, and error prone.

Solution. We introduced a domain ontology for proba-
bilistic reasoning using Bayesian inference into the knowl-
edge graph. In this application case, we used the knowledge
graph to add all information that is needed to create a trained
Bayesian network in three steps:

• determine influence relationships between properties of
themanufacturing system (arrows in Fig. 12). The knowl-
edge graph allowed us to explicitly model these influence
relationships using the “tacit” domain ontology (see
Fig. 5). Such influencemay be found in the data, of which
their retrieval is supported by knowledge graph. We also
used different knowledge sources, i.e., the subject matter
expert, scientific publications, and machine manuals. All
knowledge is homogeneouslymodelled in the knowledge
graph;

• determine a semantically useful categorization for each
value (shown as annotations on properties in Fig. 12).
Starting from the requirement that the maximum break
stress must be at least 8 MPa and that the visual qual-
ity should be acceptable (i.e., the sample cannot be
burnt), categories for each property are determined by
analyzing the data. Multiple strategies are possible: by
simple discretization of the value range, by clustering,
or by regression analysis and intersection (as shown in
the graph on the bottom left of Fig. 12). The resulting
categories are stored using the PR-OWL domain ontol-
ogy Carvalho et al. (2017);

• determine the conditional probabilities in each table cell.
The probabilities need to be quantified for each cell in
the conditional probability tables. If sufficient data is
available in the knowledge graph, this can be done using
simple statistical methods. In other cases, an estimate
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can be inserted based on literature, know-how, etc. The
probabilities are stored according to PR-OWL.

Automated reasoning under uncertainty is implemented
in this application case in the form of Bayesian inference, by
extracting the Bayesian network elements from the knowl-
edge graph and generating a pgmpy13 Bayesian network.
With this network, pgmpy can infer given variables with
given evidence. We implemented an on demand calculation
module that defines a property of a sample that returns the
probability that the maximum break stress will be in tol-
erance. The module automatically extracts all existing data
for that sample from the knowledge graph to formulate the
evidence for the Bayesian inference. For the end user, this
results in the possibility to simply query for the probabil-
ity that the maximum break stress will be in tolerance for
any sample in an intuitive way, as if it were implemented
as a data field of sample. Since all data and all elements of
the Bayesian network are stored in the knowledge graph and
are connected, the barrier for determining model drift and
retraining the Bayesian network is lowered.

Discussion

The framework description and application cases show that
the framework fulfills the requirements defined in Sect. 3.
After analysis of our application cases we conclude that the
framework is functionally complete in terms of:

• access methods.We are able to adequately treat all differ-
ent data, information and knowledge methods using the
four access methods of Sect. 4.3.2. While some seman-
tic types are best addressed using materialization or on
demand calculation (see Table 3), a fall-back to materi-
alization may be required for performance issues, or, in
the worst case, referencing. In any case, the framework
still improves the capability to find and understand data;

• interaction methods. The full ad hoc analysis workflow
makes use of query, explore, update, reason interaction
with the knowledge graph as shown in Fig. 6. These inter-
actions and their supporting tools turn out to be efficient
to carry out the application cases.

Value proposition of the knowledge-graph based
framework

We discuss the value proposition of our framework in three
categories as determined in previous research on knowledge
graph adoption Atkin et al. (2022):

13 https://pgmpy.org/. Visited 14/05/2023.

• Capability enhancement. Our framework enhances the
level of complexity that can be dealt with, in three dimen-
sions: the number of concepts (data, information and
knowledge), the number of domains (with each differ-
ent people, goals for ad hoc analysis, domain ontologies
and views), and the number of reusable insights (action-
able insights, knowledge, AI models and life cycles).
In our framework, these dimensions are connected by
explicitlymodelling data, information and knowledge
in a knowledge graph. By providing this abstraction
layer, ad hoc analysis is expanded to span different data
and knowledge silos and multiple problem domains, and
obtained insights are introduced in the body of knowl-
edge of an organisation. For example, Sect. 5.1 shows
how the knowledge graph is used to find correlations in a
manufacturing system with multiple data and knowledge
sources. Section 5.2 improves the reasoning capabilities
on data by introducing obtained insights in the knowledge
graph for reuse. Section5.3 shows how complex analy-
sis can be done while taking a complete manufacturing
system into account.

• Control environment. Our framework allows to miti-
gate risks better by improving control over business
processes. Furthermore, the knowledge graph provides
better understanding and explainability of relation-
ships among data, information, knowledge. While the
adoption of the framework itself comes with an addi-
tional cost, the value driven, incremental adoption we
propose by starting frombusiness goals,mitigates the risk
of high initial cost. For example, Sect. 5.1 shows how the
technical risks can be mitigated to support the complete
AI life cycle from the first iteration of an AI model.

• Cost containment. Our framework provides means to
support ad hoc analysis workflows to reduce the time
it takes to find insights by introducing a single point of
access for data, information and knowledge. Data under-
standing and retrieval is improved by allowing exploring,
querying and reasoning at the right level of abstraction.
This is especially shown in Sect. 5.1 where correlation
analysis is made more efficient and Sect. 5.2 where the
cost to create flexible dashboards is reduced.

Open challenges

During our research, we identified the following open chal-
lenges.

Tools for the knowledge engineering workflow. Indus-
trial adoption is still hampered by the current tools, that are
still far from the maturity that is required. A lot of responsi-
bility is on the knowledge engineer to avoid mistakes when
creating a domain model, and there is no single tool to use
all data access methods. Additionally, a number of impor-
tant aspects are not addressed in this paper, such as security
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Fig. 12 Excerpt of the Bayesian network structure in the knowledge graph based on tacit:influence relations

and data governance, and validation and verification of the
knowledge graph.

Knowledge engineer role.Knowledge engineering requires
a system level view on the manufacturing system, modelling
skills, domain knowledge and data knowledge. This is typ-
ically not concentrated in one profile in an organisation.
Hence, good collaboration is required to fulfill the knowl-
edge engineering workflow, and all involved people must be
aligned in order to be successful.

Tools for the ad hoc analysis workflow. The query,
explore, update and reason tools must be well integrated with
the data scientist tool stack, e.g., notebooks in Databricks.
This can be done in the form of direct support for SPARQL
(similar to support for SQL), including input completion
and validation based on the domain knowledge content. Our
exploration tool can be expanded with different views to also
visualize data and knowledge, next to domain models.

Query execution performance. Query execution can be
unexpectedly bad, due to certain misuses of data access
constructs. Currently, improving performance is an ad hoc
process. There is a need for a better understanding and sup-
port for the data access methods we provide in terms of query
execution performance.

Systematic modelling of knowledge. Formalized knowl-
edge is almost always available in a manufacturing system.
It should be used optimally to build a knowledge graph’s
domain model. Existing standards for manufacturing such as
SOSA, SysML or ISA-95 can be used as a starting point for
creating an organization’s domain model. The evolution of
the knowledge graph must be made explicit, to allow query-
ing its status at a certain moment in time, and to support
what-if analysis.

Conclusion and future work

We provide a framework for system level ad hoc analysis in
manufacturing based on knowledge graphs. The novelty is:

• we identified framework requirements that are driven
by industrial cases and the three challenges of ad hoc
analysis, namely data heterogeneity, knowledge formal-
ization and reasoning capabilities;

• we generalized a framework structure and specific
workflows for knowledge engineers and data scientists,
so that the reader can understand the interaction with the
ad hoc analysis framework;

• we presented a technical implementation of our frame-
work combining existing tools from the semantic web
tool stack and our own tools that:

– combine theontological andmetamodellingparadigms
and introduce a four layered domain modelling
approach that structures data, information and knowl-
edge;

– introduces novel data, information and knowledge
exploration approach that exploits this domain mod-
elling approach, and that is implemented as a software
tool;

– combine all identified ways of data access depend-
ing on the data source and data user’s requirements
(rather than limiting to one or the other);

• we validated the framework on different application
cases from industry, indicating that the framework is ver-
satile and extensible. This is different from the state-of-
the-art, where framework propositions for system-level
analysis are at a conceptual level, or are tailored to a spe-
cific domain or case;

123



Journal of Intelligent Manufacturing

• weprovided an analysis of the value proposition and open
challenges of our framework.

In future work, we will focus on extending our framework
from the manufacturing domain to the product life cycle,
spanning design, manufacturing, operation and reuse. The
goal is to allow decision making that spans the full life cycle,
i.e., improving the ability to feed back insights from one life
cycle phase to another.We are looking into research on digital
passports and the asset administration shell (AAS) Neidig
et al. (2022).
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