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Abstract—As mechatronic systems become more complex, their
design requires different engineering teams, each specialized in
their own domain, to cooperate. This is often accomplished
through a co-design process, which aims to parallelize the engi-
neering work and therefore improve the time-efficiency and cost
of system development. However, the integration step following
the concurrent design often fails due to incorrect or incomplete
assumptions made regarding other domains. In this paper, we
propose to use a combination of two different views on the
system. One view is the traditional system design methods that
aim at system decomposition. The other view aims at defining the
system-level properties and their interrelations. By means of a
drone case study, we demonstrate how to decompose the system
into manageable components, while still capturing relationships
between these components and their related properties. For the
drone modeling and decomposition, we use ARCADIA, whereas
for the management of the cross-domain system relations, we use
a knowledge model and tool that we presented in previous work.

Index Terms—Mechatronics, MBSE, Co-Design, Knowledge
Base

I. INTRODUCTION

Mechatronic systems, such as vehicles, machines, medical

devices, etc., are systems that consist of various components,

each of them associated with one or more engineering disci-

plines. A typical example of such a system is a robot arm.

Indeed, it has several components belonging to different en-

gineering disciplines. The mechanical team is responsible for

designing the robot arm’s physical structure, the control team

develops the control algorithm for moving the arm with the

required accuracy, and the embedded engineers provide a suf-

ficiently embedded platform to execute this control algorithm.

As the amount of functionalities these systems must perform

rises, the involved domains become even more intertwined,

making the design even more complex. Therefore, new design

techniques are needed to deal with this complexity. Model-

Based Systems Engineering (MBSE) is one such technique

which has already been proven to be successful, whereby

models are used as a base for designing a system.

MBSE can be combined with a large variety of traditional

development processes, ranging from waterfall or V-model

type of processes that start from a fixed set of requirements, to

more agile-like development processes that are characterized

by smaller system increments. All of these processes adhere

to the central paradigm of system decomposition, federated

component development and finally system integration. In

this ‘divide-and-conquer’-approach, MBSE largely supports

the functional decomposition of the system into components

and the system integration thereafter.

For example, a waterfall-like development process starts

from system requirements to design the system. During the de-

sign, the system is decomposed into smaller, more manageable

subsystems which can then be further broken down into com-

ponents with their corresponding interfaces. Eventually, we

come up with a system architecture model usually created with

a standard formalism or method such as UML [1], SysML [2],

ARCADIA/Capella [3], etc. These components can then be

assigned to a specific engineering team. To accelerate the

development process, the individual engineering teams can

work in parallel on the detailed design and implementation of

the system components for which they are responsible. This

split out over different engineering teams allowing for parallel

development is also known as a co-design process. Next, all

components are integrated into a single system that is then

verified and validated. It is clear that during such a process, the

engineering viewpoint is primarily based on decomposing the

system. We call this the decomposition view on mechatronic

design in Figure 1.
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Fig. 1. Representation of the decomposition view and system view on
mechatronic system design and their related resulting artifacts.



At first glance, this seems like a valuable process in terms

of time efficiency and cost reduction. However, during parallel

development in the co-design process, design choices made in

one engineering team might influence several other elements

of the system assigned to other engineering teams. Also,

faulty assumptions might be made about other engineering

teams’ designs. Implementing these possibly wrong designs

may cause the system to work suboptimally or, even worse,

not work at all. Revisiting the example of the robot arm

further explains this. The mechanical team decides, e.g., to

change the material type of the robot arm, also causing its

weight to change. This weight change also affects the behavior

of the control algorithm. Thus, if this design change is not

communicated between the design teams, it causes the control

engineers to make an incorrect assumption of the robot arm’s

weight, which may cause the algorithm to perform suboptimal,

as it is designed for the old weight. It might also be that

multiple design changes lead to a change in the same system

parameter. E.g., the total weight of the system depends on the

weight of the individual components. Thus, changing these

components might lead to a drastic change of the total system

weight such that the system requirement regarding the total

system weight might not be satisfied anymore.

Part of the problem thus lies in the fact that engineers often

lack awareness of how their design choices affect properties

of the system across different engineering domains. While

certain influences might be obvious, such as the example of the

robot arm weight, others can be more intricate. As the system

decomposition does not cover such influences between design

properties, it is valuable to look at the system from a different

viewpoint. We refer to this new viewpoint as the system view

in Figure 1. Within this view, we explicitly note the implicit

relationships between the engineers involved, enabling us to

identify how their domain-specific design choices can affect

those of other domains. Eventually, this results in a cross-

domain knowledge model (CDKM) containing system-level

properties and their interrelations. We presented a tool to

model this in previous work [4]. In the current paper, we

propose to use the CDKM to support the design process

by providing information about dependencies between system

components. We examine how to weave the information about

the system decomposition obtained from the decomposition

viewpoint, with the system-level properties managed in the

CDKM obtained from the system viewpoint. Ultimately, the

goal is to obtain a system design with as little implementation

errors as possible at the time of system integration.

The remainder of this paper is organized as follows. In

Section II, we discuss related work. Then, in Section III,

we present a drone as a case study. Next, in Section IV,

we elaborate both the decomposition view and the system

view on this drone. The decomposition view is elaborated

with ARCADIA. For the system-level properties, we apply

our previous work to the drone case study. Then, Section V

presents the weaving of the two views. Finally, we conclude

our work and discuss future work in section VI.

II. RELATED WORK

Several attempts have already been made regarding dealing

with the complexity and consistent design of mechatronic co-

design. Vanherpen et al. [5] introduced a Contract-Based Co-

Design (CBCD) method to support the consistent design of

Cyber-Physical Systems (CPS) as an extension to the Contract-

Based Design (CBD) method of Benveniste et al. [6]. By using

an ontology, implicit domain knowledge can be made explicit

in the form of properties, which enables relating different

engineering domains to each other. Besides the ontology, they

also make use of a mapping contract containing the design

variables and their required value (or range). By relating

the design variables in the mapping contract with the cor-

responding properties in the ontology, they can derive which

design variables have an influence on each other. This way,

Assume/Guarantee (A/G) contracts can be derived for each

involved engineering domain, to support a co-design process.

The concepts and ideas presented in this work are used as a

base for our work.

In the openCAESAR initiative [7], they try to deal with the

rising system complexity by providing a rigid modeling and

analysis methodology that is tool-neutral. For realizing this

modeling and analysis method, they found that Semantic Web

technologies, such as ontologies, were the most appropriate

and flexible formalism. However, they also found that using

the Web Ontology Language v2 (OWL 2) [8] for this purpose

was too cumbersome regarding the added accidental complex-

ity and patterns one has to know. Therefore, they created the

Ontological Modeling Language (OML) [9], which serves as

the core of the openCAESAR project. OML is an ontology

language designed for systems engineering that fully trans-

lates into OWL 2-DL and the Semantic Web Rule Language

(SWRL) [10], which enables existing reasoners to check for

logical consistency of the ontology. Other analysis tools can

also be used with OML by mapping the information from

OML to the tool-specific format [11]. OML consists of four

kinds of ontologies: vocabulary, vocabulary bundle, descrip-

tion, and description bundle. With a vocabulary, one can define

the architectural framework of the system. It describes the

terms of a domain or methodology such as types, properties,

and interrelations. Reasoning about vocabularies uses the Open

World Assumption (OWA). An OWA states that information

that is not modeled is assumed to be unknown, thus it is not

true or false. In contrast, a Closed World Assumption (CWA)

states that everything that is not modeled is assumed to be

false. Vocabulary bundles combine one or more vocabularies

and use this CWA for reasoning. With a description, we can

instantiate the defined vocabulary/vocabularies to describe the

system itself. As with a vocabulary bundle, the description

bundle is a combination of one or more descriptions using

the CWA for reasoning, whereas the OWA is used for a

description [12]. In relation to the topic of the current paper,

we observe that openCAESAR provides a formalism which

could potentially be used to model the system-level properties

and their interrelations.



The Embedded Systems Institute (ESI) has also noticed

that systems are becoming increasingly complex to design.

Therefore, they have developed a methodology, the DAARIUS

methodology, which is based on domain knowledge of the

different involved stakeholders in the design [13]. With this,

they want to better handle the complexity regarding the

system design. By using explicit reasoning, it also ensures

that the impact of a design alteration on the system can be

better understood. Also, it ensures better communication and

collaboration between the different stakeholders as their inter-

relations are modeled. The DAARIUS methodology consists

of four main elements: a method, a structure, a language,

and a tool. The first element, the method, is concerned

with obtaining information about the stakeholders’ needs,

the involved Knowledge Domains (KDs) in the design, early

definable relations between KDs, etc. Different concepts are

explored and it is found where the trade-offs lie. At the

end, a decision is made regarding the design choices for the

system configuration. The second part of the methodology,

the structure, establishes the different abstraction layers in

which to model the knowledge and information. The first

level, i.e., system level, contains the information required to

verify that the requirements are met. The lowest level, i.e.,

realization level, contains the components of the system and

their corresponding properties. These two levels can then be

connected to an intermediate level, called the quality level.

This contains the realized values obtained by the configuration

at the realization level. These realized values can then be

compared to the values needed to validate if the stakeholders’

concerns are met [14]. To effectively express the system in

this structure, a language is needed. This language serves as

the formalism, consisting of eight language elements, whereby

the KDs and their interrelations are modeled, following the

previously discussed method and structure. E.g., it can be

defined which relations exist between parameters, how these

parameters are related, or how to validate them [15]. The final

element of DAARIUS is a web-based tool that supports the

structure and language [16]. The current paper takes a similar

approach regarding the different abstraction layers present in

the structure. Some elements are related to the requirements,

as some other elements are realization-oriented. However, the

DAARIUS methodology is more focused on the conceptual

design of a product whereas we are also concerned with the

detailed design and development itself as we focus on co-

design.

III. DRONE CASE STUDY

Throughout this paper, we use a drone as a case study.

A drone was chosen as it is considered a complex mecha-

tronic system where engineers of multiple domains need to

collaborate to design the full system. Indeed, a drone contains

components belonging to several engineering domains, e.g.,

a battery (electrical domain), a frame (mechanical domain),

a control algorithm (control domain), etc. We identified five

main engineering domains on which we focus. These are

the mechanical, electrical, control, embedded and software

domain.

When designing a system, we typically start with a set

of system requirements and specifications. In this paper, we

assume that the necessary system requirements for the drone

are already available. Their acquisition or the format in which

they are presented is not pertinent to the scope of this research.

The mission the drone has to perform is to take-off and hover

as long as possible at a height of 1.5 m. This hover height

may not be exceeded by more than 50 mm in both directions.

During its operation, the drone must be able to carry a payload

which weighs maximum 1 kg. Table I shows an overview of

the requirements.

TABLE I
SYSTEM REQUIREMENTS FOR THE DRONE.

ID System Requirement

R1 The drone shall take off and hover at a height of 1.5 m.
R2 The drone shall not exceed the maximum absolute distance

error of 50 mm relative to the hovering height.
R3 The time duration at hovering height shall be maximized.
R4 The drone shall be able to carry a payload of 1 kg.

IV. MODELING THE MECHATRONIC DESIGN VIEWS

A. Modeling the System Decomposition

In this section, we present ARCADIA/Capella as the

methodology we used to create an architectural decomposition

of the drone. ARCADIA is a model-based engineering method

to design systems and is inspired by SysML, UML and

NAF standards [3]. The method consists of four different

engineering phases, all with a variety of diagrams that can be

used to model the system under design. The first phase, called

Operation Analysis, considers what the user should be able

to do with the system, i.e., defining user operations. “Place

the drone in position” and “switch on the drone” are such

examples of functions a user can perform. The second phase

is called System Analysis. Here, we focus on what functions

the system itself must carry out to achieve the desired behavior

and meet the requirements, e.g., “provide thrust”, “calculate

movement action” and “receive data”. After this, we can divide

the system into logical components in the third phase called

Logical Architecture. We can link the functions previously

defined in the System Analysis to a logical component which is

responsible for it. It enables us to think about how the system

will work in order to meet the expectations. Important to note

is that we only think about what the system should perform in

this phase. In the final phase, Physical Architecture, we break

down the system into its physical components and the required

behaviors these components perform. E.g., the drone contains

a propulsion system which consists of a propeller and BLDC

(brushless direct current) motor. Also, a flight controller unit is

included on which a control algorithm runs to let the drone fly.

As we can see, in this final phase, we focus on how the system

is built. With this information in mind, we can better support

and explain the concepts and ideas we discuss in Section V.



It also allows us to identify which information is available

or missing in each design phase and how the system-level

properties could help with this.

B. Modeling the System-Level Properties

In the previous section, we focussed primarily on the tradi-

tional system decomposition. Now, we switch our viewpoint

and focus on the properties related to the full system. In order

to formally capture these properties, we already created a tool

in previous work [4]. As we use this tool to also model the

CDKM of the drone, we first give a brief overview of its

structure and possibilities. As shown in Figure 2, the tool

consists of two main parts: a modeling part and a reasoning

tool. With the modeling part, which is fully developed with

the Eclipse Modeling Framework (EMF) [17], we can create

the CDKM instance model. Modeling can also be done partly

graphically with Sirius [18] for easier and faster population.

After modeling the CDKM, we want to reason about it

to derive new information by using the reasoning tool. To

achieve this, we use an ontology as the fundamental formalism

such that we can use already existing reasoners such as

HermiT [19]. The Web Ontology Language v2 together with

additional SWRL rules are used to realize this. The reason we

do not directly use OWL 2 as the modeling language lies in

the accidental complexity that comes with it. The modeling

part of the tool hides this ontology-specific complexity by

only focussing on the essential complexity related to modeling

system-level properties of mechatronic systems. After trans-

forming and serializing the CDKM to an OWL 2 ontology

and other artifacts, they can then be used in the reasoning

tool. The reasoning tool is a GUI developed in Python (with

accompanying API for tool interfacing), with which the user

can reason on the CDKM by using an ontology reasoner as

a base in the background. Some reasoning functions are, but

not limited to:

• Deriving the interdependencies between various engineer-

ing domains and their scopes.

• Deriving trade-offs between design variables, assuming

sufficient detail about the data is available.

• Generate Assume/Guarantee engineering contracts to en-

able co-design between different engineering domains.

We can now start modeling the drone CDKM with the

modeling part of the tool. The final model, which we will

gradually build up, is shown in Figure 3. Note that we

only included the necessary amount of details to explain the

concepts and to keep a clear drawing. After obtaining the

system requirements, engineers start thinking about how they

can realize these. Hereby, they ask themselves questions with

regard to what the system design must do to satisfy the

system requirements. These questions can be referred to as

properties that are ontological concepts of a (mechatronic)

product. They can be regarded as requirements, as they tell

something about the system as a black box, and the system

obviously also has to fulfill these ontological questions, i.e.,

these properties. This concept is based on the work of Van-

herpen [20]. This brings us to the first part of the model,

 Modeling Part

Sirius

Eclipse Modeling
Framework DSL Reasoner 

output
 Reasoning Tool

cross-domain
knowledge model 

(.xmi)

OWL 2 ontology 
(.owl)

transform & serialize

input

OWL 2 Reasoner 
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 Legend

Software - Framework Artifact (file type) Eclipse Python

other artifacts

Fig. 2. A visual representation of the different elements of the tool from [4].
It contains a modeling part, shown on the left, as well as a reasoning tool,
shown on the right. A cross-domain knowledge model can be created with
the modeling part, containing system-level properties and their interrelations.
This model is then transformed and serialized to an OWL 2 ontology, which
can be used by the reasoning tool to derive information.

which is called the Property Ontology. Here, we typically

start by defining a root property, e.g., ValidSystem?. This

property tells something about the validity of the system, i.e.,

whether the system meets all requirements. To determine if

this is the case, we need to break down this property into

additional properties that can be connected via a requires-

relationship. These additional properties are directly derived

from the system requirements, therefore, we classify these

as properties at the requirements-level. Indeed, in order for

the system to be valid (ValidSystem?), it also requires that it

satisfies all requirements. Deriving these for the requirements

R1–4, we come up with the properties HoverHeightOK?,

IsMaxDistanceErrorSatisfied?, MaximizedHoveringTime? and

CarryEnoughPayload? respectively. As one can see, properties

represent questions, meaning that if we can answer “yes” to

these properties, we can say that these properties are satisfied.

As the answer to these questions propagate upwards, we can

infer that the property ValidSystem? is also satisfied when the

properties it requires are also satisfied. Important to note is

that properties at requirements level are always assigned to

the system domain as they directly relate to the entire system.

Next, engineers can model their implicit viewpoint-specific

knowledge on the system. This can also be done with prop-

erties in the Property Ontology, however, these properties

now represent domain-specific knowledge of the different

involved engineers about their viewpoint on the system. These

properties tell something about what the system must do in

order to meet the requirements. Consequently, during this

thinking process, the engineers already start thinking about

the domain-related elements (i.e. conceptual system functions

or components) the system could potentially involve. Given

that this is related to the conceptual architecture of the

total system, we classify these properties at the architectural

level. The properties can then be connected to either the

corresponding properties at requirements level or to other

properties at architectural level. Moreover, these properties can

also belong to one or more engineering domains. Some of
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Fig. 3. A (reduced) ontology for the drone case. The Property Ontology is shown at the top and the Dependency Model is shown at the bottom. Currently,
only three engineering domains are considered and not all satisfies-relations are shown in order to keep a clear drawing.

the domains are shown in the example. Taking a closer look

at MaximizedHoveringTime?, we see that it requires another

property SufficientPowerSupply?, belonging to the electrical

domain, and SmoothControlMovements?, belonging to the

control domain. These properties in itself can also require

other properties, e.g., SmoothControlMovements? requires Sta-

bleControl? which also requires SoftwareRunnable? and so

forth.

At the bottom of Figure 3, one can see the second main part

of the CDKM, called the Dependency Model. This is based on

the work of Vanommeslaeghe et al. [21] and corresponds to

the Dependency Model as proposed by [22]. This part of the

model is focused on the design parameters and performance

values per engineering domain, and their mutual relationships.

These design parameters and performance values are now

also related to the components obtained from the system

decomposition mentioned in Subsection IV-A. As can be

seen, the Dependency Model consists of various elements.

Firstly, there are domain models that contain the specific

elements associated with a domain. These domain models

are indicated with the dotted lines, e.g., Embedded Domain.

Secondly, there are Components, e.g., Battery, that contain

Design Parameters (DPs). These DPs can be seen as the

tuning knobs of the system design. Typically, a DP is a

setting that is decided by the designer, e.g., the DP Clock

Frequency of the Component Microcontroller. It may also be

possible that a DP changes when changing the component

itself. E.g., by changing the battery, we also change (some

of) the values of its DPs, such as Max. Motor Current,

KV , KT , etc. Thirdly, we have Performance Values (PV).

These are values that result from measurements, calculations,

simulations, etc. The determination of PVs is not entirely



arbitrary. As they will be used to validate whether the system

meets the requirements, we need to select them such that

they provide a value that gives a meaningful result for the

validation. E.g., R3 stated that the hover duration shall be

maximized. This requirement has to be validated somehow.

By evaluating the PV Operation Time, we can indeed validate

that the hovering time is maximized for the specific drone

configuration. We can formally model this by using a satisfies-

relation, to connect a PV of the Dependency Model with

a property in the Property Ontology. Two examples for the

satisfies-relation are shown to illustrate this concept. Finally,

we have the influence-relation, with which we indicate which

DPs or PVs affect other PVs. E.g., the PV Power Consumption

is influenced by the DP Max. Motor Current but also other

PVs like Max. Acceleration and MCU Power Consumption.

Note that the influence-relation is transitive. Thus, because

Max. Motor Current influences Power Consumption and Power

Consumption influences Operation Time, the DP Max. Motor

Current also influences the PV Operation Time. In practice,

these influence-relations can show different levels of detail,

but this is out of the scope of this paper.

V. WEAVING THE DECOMPOSITION AND SYSTEM VIEW

So far, we have defined the drone as a case study, for

which we then created a physical architecture, containing

the systems’ components, using the ARCADIA method. In

addition, we also created a CDKM containing the system-

level properties and their relations. In this section, we explore

how we can weave the information from the CDKM with the

system decomposition from ARCADIA such that the resulting

development process endorses a more collaborative system

design. Also, we try to formalize which information can be

used from a specific design phase to set up the CDKM.

Comparing the CDKM with the models obtained by following

ARCADIA serves as a mechanism to explore how these two

can be interleaved. The final objective is to ensure that the

information in the CDKM can be used with diverse system

design approaches, such as the V-model, Agile, DevOps, etc.

Therefore, we try to generalize everything such that we come

up with Figure 4. This figure summarizes the final result with

the general design steps. These steps will guide us through the

explanation that follows. We are aware that the design phases

may vary among different types of design methodologies.

However, it can be noted that the design phases included in

Figure 4 are found in the most common design methodologies.

This way, we want to enable one to easily apply the ideas we

present to their own design process used for their mechatronic

system, assuming that their design process incorporates similar

design phases as the ones presented here. Also, note the dotted

arrows at the start and end of the figure, suggesting that the

design process does not necessarily start or stop at these phases

and may even circulate between end and start in case of

incremental design processes. Requirements may indeed be

subject to change, causing the design phases to be executed

again. Also, system design is often considered as an iterative

process whereby more detailed information is obtained later

in the design process, which can further refine requirements

or design choices [23].

A. System Requirements

As shown in Figure 4, the initial phase of the design process

is called System Requirements. During this phase, the system’s

requirements are identified and defined. The specific details

on the elicitation of these requirements and how they are

represented are not in the scope of this paper. Our only concern

is that these files are accessible by the designers/engineers.

Subsequently, these requirements can be used as input for the

initial part of the Property Ontology. Indeed, recall that when

we set up the CDKM for the drone case in Section IV-B,

we initially derived properties that correspond directly to the

system requirements we imposed. These requirements are

typically associated with the “system domain” as they concern

the entire system. Hence, we obtain a Property Ontology

featuring properties at the requirements level.

In addition to the information obtained from the System

Requirements phase, there is a reciprocal exchange of infor-

mation that can occur between the Property Ontology and

the requirements. Indeed, properties allow us to verify that

the system meets the requirements. This verification process

is complemented by a satisfies-relation, on which we will

elaborate later. Thus, by evaluating a property positively, we

can infer that the corresponding requirement is fulfilled as

the property is directly derived from this requirement. For

instance, if the property CarryEnoughPayload? receives the

response “yes”, it indicates that the system fulfills require-

ment R4.

B. Architectural Design

After deriving and defining the requirements, we arrive at

the Architectural Design phase. This phase in itself consists of

several smaller steps to be performed, as we gradually go from

conceptual ideas to a physical architecture of the system under

design. Therefore, the Architectural Design also includes most

of the information required to build the CDKM.

Firstly, a system engineer or engineering teams starts ana-

lyzing the requirements for their feasibility and think about the

functions that must be performed by the system. Taking a look

at ARCADIA, this corresponds to the Operational Analysis

and System Analysis phases. Remember that in these phases,

we derive the user needs, that is, what the user should be able

to do with the system and what functions the system itself

should perform, respectively. With this, we can analyze the

requirements for their feasibility and already think about some

preliminary concepts for the design. Currently, we don’t see a

direct relation between this functional analysis of the system

and the CDKM, in which they could support each other.

However, the derived system functions can serve as input

to the conceptual design of the system. Here, engineers think

about what elements of the system are needed to perform the

predefined functions. We can model these elements in AR-

CADIA in the Logical Architecture phase. Here, we divide the

system into logical components, to which the system functions
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Fig. 4. Weaving of the knowledge information (bottom row) with the different stages of a design process (top row).

are assigned. In addition, we can also add more information

to the Property Ontology in this stage of the process. As

engineers think about what logical or conceptual components

are needed to perform the functions, they also implicitly think

about how they could realize this within their own domain.

This implicit knowledge can be modeled as properties at the

architectural level, as they are related to the architecture of the

system. This leads indirectly to traces between their domain-

specific design to ensure that the requirements are met by

executing the correct functions. Therefore, these architectural

properties are refinements of the requirements properties.

Thus, these architectural-level properties need to be satisfied

to also satisfy their upper requirement-level property(s). An

example makes this more clear. The requirement R3 states that

the hovering duration of the system shall be maximized. This

is indicated by the property MaximizedHoveringTime?. We can

break this property further down into architectural properties

that represent the knowledge engineers think of within their

own domain about how to realize this. E.g., the electrical

domain knows that, in order to fly as long as possible, a power

supply is needed that provides enough energy to enable this,

indicated by SufficientPowerSupply?. Also, control engineers

know that smooth control operations typically require less

power than jerky movements. Therefore, a property Smooth-

ControlMovements? is included. These properties themselves

can also be further refined. At this phase of the design,

there is often a lack of available system details to establish

a comprehensive Property Ontology right at once. However,

it should be noted that the Property Ontology is not static

but rather dynamically evolves with the system design. As the

system design progresses, additional knowledge is obtained,

which can be used to further update and detail the Property

Ontology. How and when to update the Property Ontology,

however, falls out of scope of this research and is considered

as future work.

The conceptual designs as well as the information in the

Property Ontology can now be used in the development of the

physical architecture. This physical architecture contains the

different components the system is made out of, with their

interfaces, as well as which functions they perform. This is

done in the Physical Architecture phase of ARCADIA. We can

use the reasoning tool to derive information from the Property

Ontology that can help design the physical architecture. E.g.,

we can ask which engineering domains influence each other

and also about which concepts of the system. Hereby, the

different teams can collaborate on the possibilities of the

component choices and what they need from each other.

For example, the architectural property PerformantProces-

sor? influences the properties SoftwareSchedulable?, Software-

Runnable?, StableControl?, SmoothControlMovements?, Hov-

erHeightOK?, MaximizedHoveringTime? and ValidSystem?. If

we use the reasoning tool to find the path between these

properties, we obtain Figure 5 representing a graphical no-

tation of the path. With this information, we not only know

which domains (and related properties) are influenced, we

also know something about the path between them. Hence,

we know that there is an intermediate domain between Per-

formantProcessor? and SmoothControlMovements?, i.e., the

software domain, for which it might also be convenient that

they participate in the negotiations between the engineering

domains since they are also influenced in this property chain.

Indeed, when an advanced control algorithm is used, it means

that it also needs a processor that runs the software fast enough

to obtain control actions on time.

Property (Engineering Domain) influence 
(inverse requires)

Legend

PerformantProcessor?

SoftwareSchedulable?

SoftwareRunnable? SmoothControlMovements?

MaximizedHoveringTime?

ValidSystem?HoverHeightOK?

StableControl?

(Embedded)

(Software)

(Software) (Control)

(System) (System)

(System)

(Control)

Fig. 5. Here, it is graphically shown which properties are influenced by
PerformantProcessor? and to which domains they belong.

After carefully analyzing the system, the engineers come

up with a physical architecture that consists of the different

components of the system and their interconnections. These

components are also assigned a set of adjustable parameters,

referred to as the Design Parameters. This system decom-



position is used as input to create the Dependency Model.

Previously, we have modeled some of the drone components

in its Dependency Model in Figure 3. Additionally, it can

be seen that the components have been assigned to specific

engineering domains. E.g., the electrical domain is responsible

for the BLDC Motor and Battery components, while the

embedded domain is responsible for the Microcontroller. In

addition to the DPs, there are Performance Values. As already

mentioned in Section IV-B, these PVs are chosen such that

they can represent a value that is used to validate a certain

property. This is done by connecting the appropriate PV with

the corresponding property through a satisfies-relation with an

evaluation function. This evaluation of PVs via such satisfies-

relation can be used in the validation stages to verify that the

system meets its requirements. As we can see, we essentially

“close the modeling process” with the satisfies-relation. As we

previously modeled the properties regarding the requirements

in the Property Ontology and the components with their DPs

plus PVs in the Dependency Model, we now connect these

two leading to trace back the physical system itself to the

corresponding requirements. While there is still some potential

for deriving additional information with this satisfies-relation,

such as reasoning about completeness of the CDKM, it is

beyond the scope of this paper. When all components, with

their corresponding DPs, and PVs are known, they can be

connected using the influence-relationship.

C. Detailed Design

At this stage, we have obtained a physical architecture that

divides the system into its components, on the one hand, and

a Dependency Model that relates these components and their

impact on the system, on the other hand. The Dependency

Model can now support the next phase of the design process,

which is the detailed design. As the architecture has been

defined at this point, each engineering team knows what they

have to develop. Therefore, they can start working in parallel

in order to accelerate development, i.e., work in a co-design

process. Engineering contracts are crucial for this co-design

in order to keep consistency, by specifying which values for

the variables they can assume and which values they have to

guarantee within their own design. We can use the reasoning

tool to generate these contracts. It will analyze how two

domains are related to each other via the relations in the

Dependency Model and provide us with an A/G contract for

each domain accordingly.

During the detailed design phase, the domain engineers

proceed to refine their part of the system’s design. E.g., the

hardware team designs the Printed Circuit Board (PCB), while

the mechanical team is responsible for constructing the frame

of the drone. It is possible that design changes made to the

components may lead to the violation of the predetermined

values outlined in the engineering contract. This could occur

because the modification may impact some of the performance

values, resulting in one or more properties not being satisfied

anymore. In such cases, the reasoning tool uses the information

in the Dependency Model to determine which domains are

affected and also proposes a possible solution to solve this.

Suppose the electrical engineering team opts for a different

BLDC Motor, which lead to a different value for Max. Motor

Current. With the Dependency Model, we can observe the

impact of this change on different PVs. This is illustrated in

Figure 3, where the bold arrows indicate the affected PVs,

which are also framed in bold. If the change of this DP results

in requirements not being met anymore, we can consider

potential modifications to the design to resolve the issue. To

do so, we examine other DPs that have a common influence

to the violated PV. For example, adjusting the value of Max.

Motor Current causes Operation Time to change, resulting in

the hovering duration time not being maximized anymore. To

resolve this issue, we need to make a change in the design

to keep the hovering time maximized. However, we wish to

keep the new choice of the BLDC Motor. Therefore, another

DP has to be changed. First, we determine which components

are suitable for this purpose. To do this, we examine which

other DPs influence Operation Time by following the influence

relations in the opposite direction until we reach a DP. All DPs

that meet these criteria are framed in bold. These also indicate

potential solutions to our problem. For example, to resolve

the issue, we could change the value of Battery Capacity.

Another potential solution is to change the value of Clock

Frequency. However, it is worth noting that a microcontroller

typically consumes much less power than a BLDC motor, so

this change may not have a significant impact, but it is worth

to be informed about the possibility.

D. Verification & (System) Validation

The last two steps of the design process are the verifica-

tion and validation of the individual components and/or the

system itself. During the verification process, we check if

the product we built actually is the right product. Currently,

the CDKM contains no information that can support this

verification process. Therefore, we do not further elaborate

on this. Nevertheless, we can assist the validation process by

using the satisfies-relations that we defined in the previous

design phase. Through this relation and its evaluation function,

we know which values of the system we have to analyze. If

these values are within the range specified by the evaluation

function, the corresponding property is fulfilled, which is

desirable. If this is not the case, we can use the reasoning tool

to identify the components that influence this PV and uncover

potential causes for this deviation from the required value. The

reasoning tool can also suggest potential solutions to solve the

issue by following a similar approach as previously discussed

with the example of selecting a new BLDC Motor.

VI. CONCLUSION & FUTURE WORK

In this paper, we proposed to integrate a mechatronic cross-

domain system design viewpoint with the viewpoint of the

traditional system decomposition. Practically, we presented

how we can capture engineering knowledge and system knowl-

edge as system-level properties in a CDKM and how this

system-wide information can be used to augment cross-domain



consistency. Essentially, we showed that this is a reciprocal

process between setting up the CDKM with information

obtained from the design process and providing information

about dependencies from the CDKM to the design process.

Through this study, we discovered how the different elements

of the CDKM can be woven with the different design phases of

system design and system decomposition. From this analysis,

we also hinted to other more incremental design processes to

generalize our results as much as possible.

Although we have already discussed the ideas presented

in this paper on a small drone case, there is still a need to

thoroughly validate these in future work. This involves further

extending the CDKM with more components and relationships

between the different parameters. This allows us to assess the

scalability of the proposed ideas and how they are practically

applicable to larger, more complex systems. Also, we see

a lot of potential in the satisfies-relationship between the

Property Ontology and the Dependency Model. By making this

connection, we can potentially derive additional information

that further supports the design and evaluation of mechatronic

systems. This can include checking for the completeness of the

CDKM, identifying potential inconsistencies, and providing

feedback on the correctness of the model. We also want to

examine how the information in the CDKM evolves during

the development. In the early design phases, the CDKM

contains less information, rather of a conceptual nature, as

not many details are already known about the system under

design. However, when more design decisions are made during

the further development stages, the model can be continually

updated. It is still a question how this evolution actually takes

place and from which point onwards the CDKM can provide

useful information to the system design.
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