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Directed Real-World Learned Exploration

Matthias Hutsebaut-Buysse1, Ferran Gebelli Guinjoan2, Erwin Rademakers2, Steven Latré1,

Abdellatif Bey Temsamani2, Kevin Mets1, Erik Mannens1 and Tom De Schepper1

Abstract— Automated Guided Vehicles (AGV) are om-
nipresent, and are able to carry out various kind of pre-
programmed tasks. Unfortunately, a lot of manual configuration
is still required in order to make these systems operational, and
configuration needs to be re-done when the environment or task
is changed. As an alternative to current inflexible methods, we
employ a learning based method in order to perform directed
exploration of a previously unseen environment. Instead of re-
lying on handcrafted heuristic representations, the agent learns
its own environmental representation through its embodiment.
Our method offers loose coupling between the Reinforcement
Learning (RL) agent, which is trained in simulation, and
a separate, on real-world images trained task module. The
uncertainty of the task module is used to direct the exploration
behavior. As an example, we use a warehouse inventory task,
and we show how directed exploration can improve the task
performance through active data collection. We also propose
a novel environment representation to efficiently tackle the
sim2real gap in both sensing and actuation. We empirically
evaluate the approach both in simulated environments and a
real-world warehouse.

I. INTRODUCTION

Automated Guided Vehicles (AGV) have started to emerge

in various industry settings. These vehicles are often utilized

to transport various goods from one place to another. In order

to perform these tasks, they often rely on navigation systems

which are based on markings on the floor, or rely on way

points outlined in static prior maps [1], [2]. These systems,

however, often rely on highly accurate sensors and dynamics

models, require intensive prior configuration, are not able to

handle dynamic environments well, and lack robustness [3].

Besides these limitations, it is also often yet unclear how to

move beyond pure transportation tasks. For example, if one

wants an AGV to find a certain object in the environment,

heuristic modules which are prone to error propagation, are

often required in order to go from object class input to a

specific set of navigation world coordinates.

Reinforcement Learning (RL) has been utilized as an end-

to-end learning based alternative approach in which noisy

(high-dimensional) inputs can be directly utilized in order to

output low-level actuation control actions. RL utilizes trial-

and-error learning to allow the agent to come up with a

policy and task oriented state representation solely from a

reward signal, provided during training. In this manner, RL

is capable of implicitly learning the agent affordances and

world dynamics, without requiring explicit access to them.
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Fig. 1. A RL agent is trained in simulation. As the introduced state
representation (middle) can be either obtained from the simulator, or real-
world sensors, the trained policy can be directly used on a real-world AGV
platform. In order to direct the exploration, a separate task module is utilized.

RL has been successfully applied in various domains

including controlling stratospheric balloons [4] and nuclear

reactions [5]. Unfortunately RL approaches are also plagued

with a sample efficiency issue. The amount of required

interactions with the environment is often too large, or too

unsafe, in order to currently offer a practical solution [6].

This problem is aggravated in the typical RL setup, because

a new policy is often trained from scratch for each new

encountered task.

In this paper, a novel RL approach is presented which

goes beyond pure navigation, allowing an AGV to perform

various directed exploration [7] tasks. Such tasks require the

agent to actively explore a previously unseen environment

in an intelligent (directed) manner. Examples of such tasks

might consist of patrolling, searching a specific object, or

counting warehouse inventory.

In order to make it feasible to utilize an RL based

directed exploration approach in a real-world environment,

we propose a novel method for training a directed exploration

policy in simulation, which can then be utilized for various

downstream real-world exploration tasks, without expen-

sive retraining. Training in a simulated environment allows

running multiple environment instances in parallel, allows

executing actions safely and at a much higher frequency than

would be possible in the real world.

However, when simulating sensors, inconsistencies be-

tween simulated sensors and their real-world counterparts

are often unavoidable. This gap is called the sim2real gap.

In order to minimize this gap, a Light Detection And Ranging

(LiDAR)-based state representation is introduced in this

paper. We demonstrate that this approach is robust to sensor

noise, and thus qualified to bridge the sim2real gap. While

LiDAR-based simulations are often very compute intensive

[8], the presented approach is less compute intensive, sup-

porting above real-time simulation.



The introduced approach of directed exploration addi-

tionally offers a loose coupling between the exploration

navigation policy and a task module. This loose coupling

allows the re-usage of a trained navigation policy in order

to perform multiple tasks, without re-training the navigation

policy. We demonstrate how a separately supervised trained

task module steers the RL policy in order to reduce the

uncertainty of its predictions by actively navigating towards

better observations.

The presented framework can be applied to a wide range

of applications. For the evaluation of the framework, the task

of automated warehouse inventory will serve as a use case.

In this use case the uncertainty of an inventory box counter

will be utilized in order to direct the exploration.

The contributions of the work are the following:

• A novel approach to make learned RL exploration

directed through integration with a separately trained

task specific module.

• An embodied training approach capable of (1) learning

AGV affordances end-to-end, and (2) balancing directed

and more generic exploration.

• A novel representation based on LiDAR point clouds

that is able to robustly bridge the sim2real gap between

training in simulation and real-world usage.

• A warehouse simulator with procedurally generated

warehouse layouts, that can be utilized to further build

upon the presented work.

II. PRELIMINARIES

A. Reinforcement Learning

The problem studied in this paper can be modeled as

a Markov Decision Process (MDP), represented as a tuple

⟨S,A,P,R, γ⟩. On each time step t, the agent samples an

action at ∈ A from its policy π(at|st), and the environment

produces in turn a state st ∈ S according to an to the

agent unknown transition function P(st+1|st, at). The agent

receives feedback from an to the agent unknown reward func-

tion rt(st, at). The goal of RL consists of finding a policy

π which maximizes the sum of rewards Rt, discounted by a

factor γ ∈ [0, 1], through interaction with the environment.

B. Proximal Policy Optimization (PPO)

PPO [9] is the on-policy RL algorithm used for training

in this study. In this algorithm the agent alternates between

a policy evaluation phase, in which the current policy is

utilized to collect new samples, and a policy improvement

phase, in which the agent updates the policy based on the

collected samples from the last evaluation phase. Key to

PPO is that during the improvement phase the new policy

is constrained in order to not deviate too much from the

previous policy. This approach emulates monotonic policy

improvement [10] without getting stuck in a local optimum.

Different RL algorithms explore in different ways. PPO

handles exploration by sampling actions from the current

policy stochastically. The amount of randomness is typically

reduced over time during training, as the agent gains more

confidence which action will result in the highest return. The

proposed method is however not limited to PPO, other RL

algorithms can also be used for training.

III. RELATED WORK

A. Navigation and Exploration

Classic navigation pipelines typically construct a map,

and localize the agent within the map. These so called Si-

multaneous Localization and Mapping (SLAM) approaches

(surveyed in [3]) then allow a planner [11], [12], [13] to

construct a plan given a navigation destination. However,

this still requires a different module to set destinations. This

is often done in a greedy fashion by iteratively navigating

to the frontiers between what is known and the unknown

space [14], [15]. The results of these methods, however,

heavily depend on the quality of the sensor observations [16].

Furthermore, the major limitation of these methods, and the

delta with our approach, is that prior methods often ignore

any semantic cues that can be found in the environment, and

consider the problem to be of a purely geometric nature.

B. Learned Exploration

Exploration is a key component of RL, and is utilized to

test out actions in order to find a suitable policy, capable

of solving the task at hand. However, if the task consists

of exploring the environment efficiently the task is called

learned exploration.

In order to perform this task, [16] generates a map from

depth camera observations and utilizes the improvement in

coverage of the constructed map as its reward signal. [17]

learns to construct a map in a supervised fashion, and utilizes

this map as input to a policy trained on maximizing coverage

of this map.

Curiosity based exploration aims to reward the agent for

visiting states which the agent could not accurately predict.

Using only a curiosity reward, [18] demonstrated an agent

capable of solving a sparsely rewarded navigation task.

Most similar to our work is [19], which rewards the agent

for removing uncertainty of a separately trained perception

model. In [19] all experiments are limited to a single task.

C. Sim2real

A straightforward way to minimize the sim2real gap is to

make the simulator as close to the real world as possible.

However, this is a complex task as RL agents tend to

overfit on low-level details in the simulated environment

[20]. In order to combat this, [21] demonstrated that a lower

fidelity simulator actually performs better when transferring

policies to a real-world context. Furthermore, a lower fidelity

simulator tends to be less compute intensive, and thus allows

for better scaling. Similarly to the setup introduced in this

paper, [22] trains both on a geometrically accurate simulator

and a collection of localized real-world images.

Using a LiDAR as an input to an RL setup has been

studied before [23] in a pure low-level motion planner set-

ting. The presented approach however goes further and also

handles high-level autonomous goal selection (e.g., uncertain

areas to explore).
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Fig. 2. An overview of the architecture of the navigation module. The different inputs are either coming from a real AGV or the simulator. These inputs
are processed into an egocentric 3 channel image. Together with the safety state this can be utilized to directly output actions. On the right a top-down
view of the simulator is plotted. Racks are plotted in white or red squares depending on whether the agent (yellow rectangle) has explored near them.
Through the environment obstacle square boxes of various sizes are added randomly. The agent has no access to this ground truth map.

D. Automated Inventory

Industrial warehouses are dynamic environments, where

different assets are changing continuously over time. Au-

tomating warehouse management, such as inventory analysis,

enables faster operations and fewer errors. There are two

main challenges: having a good inventory detector, and

avoiding counting the same inventory item multiple times.

There are several commercial solutions for automated

inventory which are based on having unique identifiers per

detected object. In other cases, there is a predefined route

where objects are never re-visited relying on a 2D Multi-

Object Tracking (MOT) [24], [25] that gives unique identi-

fiers between frames. The fusion of LiDAR and camera data

for 3D detection [26], [27] and tracking [28] normally relies

on annotations for both image and LiDAR data. In contrast,

the proposed approach only requires image annotation, which

makes it also feasible to incorporate existing datasets.

IV. PROPOSED METHOD

A. Environment Representation

In order to efficiently explore a previously unseen environ-

ment, the agent needs a representation of this environment in

order to sample an appropriate action. In prior work, depth

camera’s and RGB camera’s have been utilized [16], [17],

[18], [19] to carry out exploration tasks. However, these

sensors are plagued by a large sim2real gap, and are often

noisy and dependent on the environmental conditions (e.g.,

lighting). A LiDAR sensor is a commonly used environment

invariant and less noisy sensor in navigation tasks. The

output of a LiDAR is typically represented utilizing a 3D

point cloud consisting of coordinates on which the laser

encountered an obstacle.

Our method however, does not require a 3D representation

as an egocentric 2D map-like representation is sufficient in

order to perform 2D navigation. In order to obtain this 2D

representation, the 3D point cloud is projected onto a 2D

plane by flattening the height dimension. Points which are

too close, or too far in distance are also ignored in order

to mimic the minimum and maximum range of a real-world

sensor. While this resembles a laser scan representation, by

flattening a 3D representation possible voids in the laser scan

due to local holes are avoided.

A second input channel containing the local past trajectory

of the agent is used in order for the agent to avoid visiting

the same place multiple times.

B. Directed Exploration

In order to direct the exploration behavior of the agent,

the proposed architecture allows an additional flattened point

cloud map as input. This point cloud should mark regions

which have been classified by a separate task module as in-

teresting, and require further exploration. An object detector

could for example communicate points of which it has only a

low certainty about its classification accuracy. Navigating the

AGV close to these points could allow the object detector to

improve its classification results through actively obtaining

better viewpoints.

When the task module becomes certain of its prediction

(e.g., the classification probability becomes higher than a pre-

defined threshold) the points are removed from the directed

exploration point cloud.

C. Policy Architecture

In the presented approach the agent has a visual pipeline

which consists of an egocentric local map with obstacles, an

egocentric local directed exploration map and an egocentric

local map with the past trajectory of the agent. This visual

pipeline is processed by three CNN layers.

In turn, this output is concatenated with a boolean variable

which indicates if the safety scanner of the AGV is active

in the current state. This safety scanner is an independent

system which prevents physical damage due to collisions.

This input can be utilized by the policy to maneuver away

from obstacles invisible to the visual pipeline. The safety

scanner is simulated by checking if the result position of an

action would cause a collision before actually moving the

simulated AGV.

This concatenated output is then utilized to output a

distribution over the discrete set of actions. This distribution

of actions can be utilized to stochastically sample actions,

leaving room for exploration of novel strategies. The full

architecture is displayed in Figure 2.



D. Action Specification

While an RL policy could directly output a continuous

value for the steering angle θ and forward velocity V , this is

generally regarded as a more demanding setting [29]. Action

discretization has been proposed as a viable less challenging

alternative [30]. We have chosen in our approach to discretize

the possible actions into 15 discrete actions (small step

forward V = 0.3m/s, reverse straight V = 0.3m/s, large

step forward V = 0.5m/s, small δ = 0.17rad/s, medium

δ = 0.4rad/s, large δ = 0.7rad/s turn left/right and

small/medium/large reverse turn). These steering angles and

velocities have been obtained from human demonstrations

collected utilizing a real world AGV. Actions are executed

at 0.5Hz in both the real world and the simulator.

E. Training

In order to train the agent, the PPO algorithm [9] is

utilized. As the reward function the agent is provided with a

small slack penalty of -0.01, which prevents the agent from

slacking off. In order to study the problem of exploration,

three different options for the second term of the reward

function are studied:

• Directed: receive 0.5 reward when positioning the AGV

near an area marked for exploration in the directed

exploration point cloud input.

• Floor coverage: the environment is divided in a virtual

grid with tiles of each 1m2. When visiting a new tile

the agent receives a positive reward of 0.1.

• Combined: in this setting the agent receives both 0.1

for visiting a new tile in the virtual grid, and 0.5 for

positioning near areas marked for exploration.

A collision penalty of 0.05 is deducted upon a collision

with an obstacle. The different values utilized in the pro-

posed reward functions are obtained through hyperparameter

searches.

The agent should be able to function in an environment it

did not see before. In order to achieve this behavior the sim-

ulated environment is procedurally generated during training.

In order to provide the agent with enough instances of

seen/unseen trajectories the environment is reset after a fixed

amount of 500 steps. In each episode a variable amount of

box obstacles are added in different sizes in order to extend

the dynamic navigation capabilities of the agent. Through

the introduction of these random obstacles, the agent will be

able to handle cluttered real-world environments. The agent

is spawned in a random starting position in each episode. A

top-down view of an episode can be seen in Figure 2. This

view is not available to the agent.

V. WAREHOUSE SIMULATOR

The simulator was build on top of the MiniWorld environ-

ment [31]. It was modified in order to support our customized

egocentric point cloud based representation.

A. Layout

The goal of our simulator is to allow the agent to learn

how to navigate in typical warehouse settings. We consider

a typical warehouse setting in which multiple rows of racks

are placed.

In each episode the environment is procedurally generated

using horizontal racks, vertical racks or empty spaces. An

example containing two sets of horizontal racks is displayed

on the right of Figure 2.

B. Lidar Simulation

When using the real LiDAR, the local point cloud can be

utilized directly. In the simulator, a ray casting approach is

utilized in order to obtain the same presentation (as plotted

in Figure 1).

The proposed environment representation is not only an

efficient way of representing the environment in navigation

tasks, it is also a representation which is computation-

ally inexpensive to simulate. This is currently an essential

property when choosing an RL-based approach. As RL-

based navigation approaches often require large amounts of

interactions with the environment [32].

Through utilizing 8 environments in parallel, an average

of 250 actions can be executed and evaluated each second on

a modest GPU-enabled system (Intel Core i7-9700, Nvidia

GTX1060). The real-world AGV in contrast only operates at

0.5 actions per second (on purpose).

C. Simulated Vehicle Dynamics

While prior work in sim2real and RL has focused on

differential drive, the introduced simulator supports Ack-

erman steering, which is more complex to simulate, but

allows the method to be deployed on a wider range of

platforms. In order to simulate the movement of the AGV in

the simulator, a kinematic bicycle model is utilized, which

allows to calculate the position of the AGV according to the

following set of equations:

ẋ(t) = V (t) cos θ(t)

ẏ(t) = V (t) sin θ(t)

θ̇(t) =
V (t) tan δ(t)

l − a tan δ(t)

(1)

In this equation V is the forward velocity, θ represents

the yaw angle and δ the steering angle. The vehicle specific

l is the distance between front and rear wheels, and a is

the lateral distance of the front wheels in respect to the

longitudinal center-line. Prior research [33] has demonstrated

that this type of model can be successfully utilized to produce

consistent and feasible trajectories given a limited lateral

acceleration. Through embodied trial and error the agent is

capable of learning navigational affordances (e.g. can I steer

into this narrow corridor from this position).

VI. CASE STUDY: WAREHOUSE INVENTORY TASK

MODULE

In the setting of autonomous warehouse inventory count-

ing [34] there are two main challenges: (1) having a capable



Fig. 3. A visualization of the real-world setup. The 3D map of the inventory
is displayed on the right. In the current state the task module is uncertain
about the object displayed in front (green bounding box). The navigation
policy is instructed to explore the uncertain object by navigating towards it
(yellow arrow). The agent does not have access to the warehouse camera
and the 3D environment representation, those are included for visualization
purposes.
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Fig. 4. Main inputs, outputs and building blocks of the perception module
utilized in the warehouse inventory use case.

inventory detector, and (2) avoid counting inventory items

multiple times.

Directed exploration helps to solve the first challenge,

by providing the inventory detector with the capability of

actively obtaining better observations through navigation,

and thus reducing its uncertainty. The second challenge is

addressed by constructing a 3D inventory map in world co-

ordinates through combining past detections. The navigation

policy will also autonomously steer the AGV to previously

unvisited regions in the warehouse in order to allow the 3D

inventory map to be fully constructed, and thus allow all

boxes to become accounted for.

In Figure 3 the entire setup is displayed while executing

the inventory task. The principal block is the 3D inventory

map creator, which takes the vehicle position, bounding

box detections and per pixel depth information (aligned

with bounding boxes) and provides the detected objects 3D

location and size, as well as a point cloud with the uncertain

detection areas. The architecture of the perception module is

plotted in Figure 4.

A. Inventory Detection

The detector uses only RGB camera data for classification

purposes. LiDAR information is utilized to get and merge the

3D locations of inventory items. A fused approach where

LiDAR is also used for detection would require 3D anno-

tations as well. Because these kinds of industrial datasets

are not publicly available, and labeling point clouds is an

effort which makes the application infeasible in real cases,

only RGB annotations were utilized for training the inventory

detector. The tracker hands out consistent identifiers to the

detections of the same objects in consecutive frames.

In order to run at real-time, the YoloV7 object detector

[35] was selected. Starting from a pre-trained version on the

COCO dataset [36], 4 videos recorded in the test warehouse

have also been annotated in order to fine-tune the object

detector. Around 1500 frames were annotated. The detector

is trained to learn only the ”box” class. When evaluated

upon short recorded trajectories a precision of 89%, and a

recall of 85% could be observed. This was however without

any directed exploration, which should further improve the

observed recall and precision of the model.

B. Object Tracker

BYTETrack [24] is utilized, which is a multi-object tracker

based on spatial information. It implements a Kalman filter

with a constant speed model for the bounding box detections

position and size, and provides two loops where old tracks

are matched with new detections, one for high confidence

detections and a second for low confidence ones. Tracking

provides unique identifiers across frames, but does not solve

the problem of tracking objects when they re-enter the

camera field of view. This is addressed in the 3D map creator.

C. Object Positions

Although a RGBD camera would already provide per

pixel depth information, after some testing with several depth

cameras (Intel Realsense D435, Stereolabs ZED Mini) it was

found that the depth accuracy was not high enough, so a

3D LiDAR mounted next to the camera was used instead.

The point cloud from the LiDAR is projected on the camera

plane, with some radial inflation for closer points to have a

richer depth image.

D. 3D Map Creator

This module iterates over the bounding boxes and merges

them with the previous map, taking into account the vehicle

location. The map contains for each detected box the iden-

tifier, confidence, point cloud, centroid and cuboid size. It

also differentiates between certain and uncertain detections.

For each detected bounding box, there are two reasons to

consider it as uncertain:

• Uncertainty in the detector output: If the confidence

score provided by the detector is below a certain

threshold, then the corresponding object is marked as

uncertain.

• Uncertainty in the object location: Using the domain

knowledge that boxes have flat surface, a sample con-

sensus algorithm to fit a plane is computed. In case there

are not enough inliers to the plane model, the plane is

too far away, or the plane is not seen frontally, then the

corresponding object is marked as uncertain.
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Fig. 5. Training performance in simulation. Utilizing a coverage-based
reward does allow the agent to maximize its coverage, however it fails to
navigate the agent to areas of interest. Utilizing a guiding reward signal
allows navigating to the specific regions of interest. A combination of both
reward signals has a slightly worse performance for both metrics.

In case of certain detections, they need to be merged to

the map. There are two possibilities:

• The identifier of the current detection being merged into

the map is already the map. In that case, an overlapping

comparison is done with all the other detections already

in the map, and if there is sufficient overlapping, they

are merged. Otherwise, it is merged with the map object

with the shared identifier.

• The current detection is not in the map. The same

overlapping test is done as in the case above. If there

is not enough overlapping it is a new detection and a

new object is initialized in the map. Otherwise, if the

overlapping is above the minimum threshold, the new

detection is merged into the matched object in the map.

VII. EMPIRICAL EVALUATION IN SIMULATION

A. Training in Simulation

When solely optimizing for coverage, the agent chooses to

stay far away from obstacles, and avoids going into narrow

corridors. Going into narrow corridors has a higher chance

of getting stuck, or colliding. The agent has learned to avoid

these situations, because they lead to a negative reward.

In contrast, when specifically training utilizing a reward

signal encouraging directed exploration, the overall floor

coverage of the agent is reduced, but it manages to reach

a significant amount of the specified areas of interest within

the allocated 500 timesteps. The combination of both reward

signals performs best in terms of directional exploration (as

measured by the visited marked areas). Figure 5 shows the

performance during training utilizing the different proposed

reward signals.

B. Evaluation in Simulation

In order to evaluate the performance of the presented

approach in simulation, results are collected on a set of 100

fixed warehouse configurations (floor plan, obstacles, starting

position) in order to make sure that all runs are equally

complex. Each episode is allowed to run for a maximum

of 2000 steps, which should be enough for an optimal agent

to fully complete the task.

When looking at the amount of obstacles (Table I) it

is clear that the coverage (C) is heavily influenced by the

navigational complexity of the environment. The percentage

of visited areas (V) marked as interesting does however not

remarkably decreases when making the environment more

challenging.

In simulation the combined reward signal achieves better

results overall in terms of directed exploration results. With

no obstacles the agent is able to visit on average 91% of the

areas marked as interesting. While the agent trained using

only the directed exploration reward signal is able to visit

78% of the marked areas. The coverage part of the reward

signal allows the agent to efficiently navigate in parts of the

environment with no areas marked as interesting.

TABLE I

INFLUENCE OF OBSTACLES

# Obstacles Coverage Directed Combined

0 C=0.46 C=0.14 C=0.18
V=0 V=0.78 V=0.91

5 C=0.34 C=0.11 C=0.15
V=0 V=0.63 V=0.78

10 C=0.27 C=0.09 C=0.14
V=0 V=0.51 V=0.68

C. Robustness to Noise

During training, the navigation policies are trained with

perfect sensors. As real-world sensors are often far from

perfect, and are often subject to various kinds of noise, it

is important that the navigation policy is able to withstand

some amounts of noise added to the sensor observations.

In Table II, the results are plotted when only keeping a

certain percentage of the points observed through the LiDAR.

This essentially simulates how well the approach can work

with a less expensive lower resolution LiDAR. Keeping 0%

of the points essentially makes the agent blind.

TABLE II

POINTS SAMPLING (WITH 3 OBSTACLES)

Coverage Directed Combined

100% C=0.37 C=0.13 C=0.13
V=0.0 V=0.71 V=0.72

50% C=0.38 C=0.12 C=0.13
V=0.0 V=0.68 V=0.73

10% C=0.27 C=0.08 C=0.09
V=0.0 V=0.50 V=0.51

1% C=0.06 C=0.05 C=0.17
V=0.0 V=0.2 V=0.17

0% C=0.03 C=0.01 C=0.04
V=0.0 V=0.02 V=0.05

While this blind agent is not able to cover or explore the

environment, the trained agents are able to take a significant

hit in terms of the amount of points coming from the LiDAR

input.

Limiting the resolution is however only one source of a

potential mismatch between the simulator and the real world.

It is also possible that due to a non-perfect accuracy obstacles

are detected which in fact are no obstacles, or it could be

that obstacles are not detected. In order to simulate these

possibilities, and to test the robustness of the trained agents,

various amounts of salt&pepper noise are added to the input

maps (Figure 7).



Combined

Coverage

Directed

Fig. 6. Trajectories taken by the different policies during real-world evaluation. The points marked with stars are the fixed starting positions.

TABLE III

SALT&PEPPER NOISE (WITH 3 OBSTACLES)

Coverage Directed Combined

p=0 C=0.37 C=0.13 C=0.13
V=0.00 V=0.71 V=0.72

p=0.001 C=0.34 C=0.16 C=0.13
V=0.00 V=0.76 V=0.73

p=0.005 C=0.37 C=0.16 C=0.14
vis=0.00 V=0.76 V=0.77

p=0.01 C=0.35 C=0.17 C=0.14
V=0.00 V=0.81 V=0.71

p=0.1 C=0.21 C=0.16 C=0.15
V=0.00 V=0.56 V=0.61

p=0.5 C=0.04 C=0.07 C=0.10
V=0.00 V=0.16 V=0.19

p=0.001 p=0.005 p=0.01 p=0.1 p=0.5

Fig. 7. Examples of the various levels of Salt&Pepper noise.

From Table III it can be concluded that while degrading

the accuracy of the observations has a significant impact on

the performance, the agent is still able to carry out its task

with noisy sensors.

D. Ablation study: Trajectory Information

The requirement of adding the past trajectory as input to

the agent is an expensive one in the real-world setup, as

accurate indoor localization is a challenging problem, often

requiring expensive hardware setups.

TABLE IV

INFLUENCE OF TRAJECTORY INFORMATION (WITH 3 OBSTACLES)

Coverage Directed Combined

Enabled C=0.37 C=0.13 C=0.13
V=0.00 V=0.71 V=0.72

Disabled C=0.22 C=0.12 C=0.10
V=0.00 V=0.69 V=0.63

As seen in Table IV, removing the past trajectory does

have a big impact on the performance of all three studied

agents both in terms of coverage, and in terms of interesting

areas visited.

VIII. REAL-WORLD EVALUATION

A. Setup

An open experimental platform has been built on top of a

standard Still forklift (Figure 1). Localization is provided by

a commercial system with reflector landmarks with known

positions across the warehouse. An Ouster OS1 LiDAR with

64 vertical layers has been used. It has a vertical field

of view of 45° and a maximum range of 120m. A Zed

mini camera is used for the inventory detection. The layout

and contents of the warehouse has been kept consistent

throughout evaluation. The AGV was started consistently in

different positions throughout the evaluation.

B. Real-world Performance

In order to evaluate the performance of the approach in a

real-world warehouse, 5 positions were selected to run the

different trained policies for as long as they made noticeable

progress. The average results of these 15 runs are presented

in Table V. The different trajectories taken by the AGV in

each scenario are plotted in Figure 6.

TABLE V

REAL WORLD EVALUATION

Coverage Directed Combined

Average steps taken 160.4 142.6 106.6

Average coverage 44m2 33m2 21m2

Average reduced uncertainty 26.67 19.67 18.33
Rel. reduced uncertainty 0.61 0.60 0.87

In simulation the directed exploration capabilities were

evaluated by recording if the AGV would position itself

close to the objects marked as interesting. In the real-world

setting the directed exploration capabilities are evaluated

through recording the reduction in uncertainty of the task

module. Concretely, in each run we track how many objects

were marked as certain after they were first marked as

uncertain (due to the prediction probability being lower then

the specified threshold).

While this is only a small scale evaluation done in a

highly realistic but complex environment filled with obstacles

and small passages, some conclusions can be drawn. For

example, unsurprisingly, the coverage agent is on average

able to cover the largest area of the warehouse. However, by

covering a larger area of the warehouse, this agent is also

able to achieve the highest absolute uncertainty reduction

scores.

When looking at agents which also take the uncertainty

of the task module into account (directed, combined) we see

that they take radically different trajectories (Figure 6). We

noticed that these agents often propose more difficult paths,

which led to lower floor coverage scores. If we however take

efficiency into account the combined agent is able to reduce

the most uncertainty per square meter coverage.



IX. CONCLUSION

In this paper, we demonstrated how deep RL can be

utilized to perform real-world directed exploration of an un-

seen environment, relying on egocentric observations coming

from a LiDAR sensor, and through training in simulation.

The proposed framework can be utilized in a wide range

of different tasks without having to retrain the exploration

policy. This was made possible due to the abstracted interface

introduced between a task specific module and the navigation

policy.

As an example the task of inventory management is

studied. Within this study a supervised trained model was

utilized to detect pieces of the inventory. The uncertainty of

this model was utilized to steer the exploration behavior of

the agent. The novel method is empirically evaluated both in

simulation and through utilizing a real-world AGV.

In future work exploration of how to achieve similar re-

sults from cheaper, and more broadly available sensors such

as depth cameras would further increase the applicability of

the proposed approach.
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nens, S. Latré, and H. Van Hamme, “A multi-modal ai approach for
agvs: A case study on warehouse automated inventory,” ICAS 2023,
vol. 15, p. 34, 2023.

[35] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “YOLOv7: Trainable
bag-of-freebies sets new state-of-the-art for real-time object detectors,”
2022.

[36] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in ECCV14, pp. 740–755, Springer, 2014.


