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Abstract—This paper presents a novel wireless digital stetho-
scope design that integrates multiple sensing modalities into a
compact form factor. The proposed stethoscope aims to enhance
the auscultation data quality by capturing high-quality audio and
precise vibration data for improved diagnosis and monitoring of
respiratory and cardiac conditions. To enable wireless connec-
tivity, the auscultation device incorporates the latest Bluetooth
technology, enabling real-time transmission of auscultation data
to a compatible device, such as a smartphone or computer. This
allows future healthcare professionals to visualize and analyze
the captured data using dedicated software, providing enhanced
visualization tools, signal processing algorithms, and machine
learning techniques for accurate interpretation and diagnosis.
The compact form factor and low-cost design of the stethoscope,
makes it suitable for various medical applications, including
remote healthcare and long term monitoring.

Index Terms—Sensor arrays, Accelerometers, Digital Auscul-
tation

I. INTRODUCTION

Stethoscopes have long been a symbol of the medical

profession, serving as the primary tool for auscultation, or

the act of listening to internal sounds of the body. Since

its invention [1], the classic acoustic stethoscope has been a

reliable companion to physicians, allowing them to detect and

diagnose various conditions. However, with the advancements

in technology, a new era of stethoscopes has emerged: the

digital stethoscope has become a valuable tool in diagnosing

and monitoring respiratory and cardiac health. This technology

combines the traditional idea of a stethoscope with digital

sensors and advanced signal processing algorithms to enhance

the detection and analysis of auscultatory sounds.

The use of digital stethoscopes has many advantages. First,

electronic stethoscopes are not dependent on (intra-person-

varying) human hearing, as microphones can be used that are

more sensitive than the human ear. Second, electronic stetho-

scopes are able to digitally store their auscultation recordings

which allows for the computerized analysis of auscultation

recordings. Heart sound anomalies and lung sound artifacts

can be detected using various machine learning algorithms in

an objective manner [2]–[6]. Studies have shown physicians

are often not in consensus on their subjective auscultatory

findings [7]. Moreover, multiple systems have been proposed

that automatically (partially) diagnose patients based on their

respiratory recordings [3]. Additionally, visual representations

of the recordings, such as spectrograms, can be made to aid

the interpretation process of the medical expert.

Next to computer-aided analysis of recordings, digital

stethoscopes also offer great potential for remote patient mon-

itoring applications [8], [9]. With the advent of telemedicine

solutions, healthcare providers can now listen to patients’ lung

sounds in real time, even if they are located in different geo-

graphical areas. By transmitting the recorded sounds through

secure digital platforms, physicians can evaluate respiratory

status, provide remote consultations, and offer timely inter-

ventions. This capability is particularly valuable for patients

who have limited access to specialized respiratory care or live

in remote regions.

In the remainder of this paper the hardware architecture

of the developed auscultation unit, also referred to as the

Modernized Auscultation (ModAu) sensor, will be presented

in combination with an overview of its capabilities. In the

subsequent section the experimental setup and its results are

described. In the final section, we will discuss our proposed

system, the experimental results and the envisioned road map

for this auscultation unit as future work.

II. HARDWARE ARCHITECTURE

While the traditional stethoscope uses a combination of a

cup-shaped bell with a diaphragm to capture body sounds and

air-filled hollow tubes to transmit the sounds to the physicians’

ears, the digital counterpart needs to be able to capture the

sound pressure waves emitted by a patient’s body and digitize

these. This implies combining sensing modalities capable of

capturing sound pressure waves with an embedded device that

can interpret and relay this information to a computer (being

either a PC, tablet or other mobile device).

Given the envisioned application of using this compound

sensing device as an auscultation unit, the proof-of-concept

sensor system could not be constructed as a combination of

off-the-shelve IC (Integrated Circuits) development kits since

such a system would be too bulky or clumsy to provide
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Fig. 1. a) System architecture of the ModAu auscultation device with the
STM32WB5MMGH6TR at its core. b) The assembled sensor measuring
40mm in diameter.

sensible data and also affect the body sounds due to its

relatively large size and weight. Therefore, the envisioned

auscultation unit needs to be a compromise of minimizing

form-factor and weight while maximizing functionality to

provide us with a varied set of sensible data. To reflect the

traditional stethoscope, the size of the ModAu sensor was

restricted to 40mm where all the electronics fit within a

diameter of 32mm, giving a small edge for adhering the device

with medical tape to a subject.

A. Hardware Components

The core of this sensing device consists of the STMicro-

electronics STM32WB5MMGH6TR module, as can be seen

in the hardware architecture in figure 1. This module com-

bines the STM32WB55VGY wireless dual-core Cortex-M4

and Cortex-M0+ microcontroller with indispensable system

components, e.g. frequency and switched-mode power supply

circuits together with an integrated antenna, antenna matching

and internal passive devices for harmonics rejection and RF

matching. While some GPIO becomes unavailable, the System

on Module enables miniaturizing the overall PCB (Printed

Circuit Board) in combination with a simplified and verified

RF (Radio Frequency) design. The module also offers a Full-

speed USB interface that can be used for either programming

the module or as a data interface for communication with a

computer.

While the USB connection can provide power, the module

also has an add-on board that features a coin cell retainer

compatible with 2016 lithium coin cells in order to power

the sensing device for untethered operation. Given that these

cells have up to 90mAh of capacity and the sensing module

uses approximately 45mA, without any power optimizations,

it offers about 2 hours of operation time. To improve the

autonomy, the firmware can be optimized with (deep) sleep

modes or by choosing a different battery type. The latter,

however, is also a trade-off between battery capacity and its

weight that will influence the measurements.

In order to assess a patients condition and capture

their bodily sounds, a multitude of sensing modalities has

been incorporated into the ModAu device. Two three-axis

MEMS accelerometers have been integrated on the PCB, the

STMicroelectronics LIS344ALHTR and the Analog Devices

ADXL372. These devices were deemed interesting due to

their wide bandwidth characteristics and presumed adequate

sensitivity for picking up the body’s vibrations. Accompanying

these sensors, a third accelerometer was added to the system

design, being the Vesper VA1210 Piezoelectric MEMS voice

accelerometer which is marketed as a type of bone conduction

microphone. As a fourth sensor modality a more traditional

bottom port digital MEMS microphone from Knowles, a

SPH0645LM4H-B, was also integrated into this sensor. When

we add up the PCB and component costs for this sensing

device, the unit price of the auscultation unit adds up to

e143 which can be further reduced when ordered in larger

production quantities.

B. Supported Wireless Protocols

The proposed wireless digital auscultation device with its

built in RF-coprocessor is designed to support multiple wire-

less protocols that operate on the 2.4GHz ISM band for seam-

less connectivity. It incorporates Bluetooth LE 5.3, 802.15.4,

Zigbee, Thread, and Matter protocols, ensuring compatibility

with various platforms. Bluetooth LE 5.3 enables efficient

transmission of auscultatory data to smartphones, tablets, or

computers. Its compatibility with 802.15.4, Zigbee, Thread,

and Matter protocols facilitates integration with wearables and

healthcare systems while ensuring secure data transmission

and complying with healthcare regulations. The device’s ver-

satility allows for easy integration with different devices and

systems, enhancing collaborative healthcare practices.

C. Multi-lead Auscultation

While digital auscultation can already provide improved

medical diagnosis, multi-lead auscultation provides a more

comprehensive assessment of respiratory and cardiac sounds

compared to single-lead methods. By using multiple sensors or

stethoscope placements, it captures information from different

anatomical locations simultaneously, allowing for better detec-

tion of abnormalities and localized variations. This approach

enhances diagnosis accuracy, especially in cardiovascular con-

ditions. Additionally, multi-lead auscultation facilitates noise

reduction, improves signal quality, and enables the study of

sound propagation. Synchronization of data from multiple

leads aids in comparing timing and intensity, leading to a more

precise understanding of auscultatory findings. Our proposed

ModAu sensor is inherently designed to support multi-lead

auscultation by using the latest Bluetooth 5 standard, which

supports up to seven devices simultaneously on one host, and

features a built-in synchronization methodology. For the latter,



an infrared photodiode receiver circuit [10] was integrated

and is connected to one of the module’s ADC enabled GPIO

pins. By generating infrared light pulses with random on-off

times using an infrared LED array, a random 1-bit signal will

be embedded into the sensor data stream. Multiple ModAu

sensors can be synchronized in post-processing by calculating

and adjusting for the time-shift between the 1-bit random data

streams from every device which can be found by using the

cross correlation, as demonstrated in our previous work [11].

III. EXPERIMENTAL RESULTS

For evaluating the proposed digital auscultation sensor with

its multiple sensor modalities, an experimental setup was

created using a Focal Alpha 50 studio monitor that emits linear

frequency sweeps between 20Hz and 2kHz. This allows us

to measure the frequency response of the different sensors

present on the ModAu prototype. To create a surface that

mimics the human chest, an intermediate layer of ballistic

gel was laid on top of the loudspeaker with a Bruel & Kjaer

Type 8104 hydrophone incorporated into the gel to provide

reference acoustic data. We also recorded the response of the

ThinkLabs One stethoscope as a reference for a commercially

available digital stethoscope. A sketch of the setup is shown in

figure 2. To generate the 30s frequency sweep and to record the

hydrophone signal, a National Instrument USB-6356 (BNC)

data acquisition device was utilized with a sample frequency

of 44.1kHz.

To calculate the power spectra of the signals recorded by

the ModAu prototype, the ThinkLabs One stethoscope and

the hydrophone, first, the DC-component of all signals was

removed. Next, the signals were resampled (if needed) to

44.1kHz. Finally, we calculated the power spectrum utilizing

Welch’s method [12] using a Hann window with a length of

22050 samples and an overlap of 90%. To measure the actual

frequency response of the sensors present on the ModAu and

the ThinkLabs One stethoscope, we divided the frequency

spectra of the sensor signals by the frequency spectrum of the

hydrophone signal. This was done to counteract the frequency

characteristics of the loudspeaker and ballistic gel. The fre-

quency responses were also normalized w.r.t. their respective

noise floors. The noise floor for each sensor was defined as the

average signal power within the frequency range 20Hz to 2kHz

when the speaker was powered off. The results can be seen in

figure 3. The results of the the ADXL372 accelerometer were

not included since the SNR was too low and was thus found

not to be sensitive enough for the intended application.

IV. DISCUSSION AND CONCLUSION

In this paper we propose the ModAu sensor as a compact,

low-cost digital wireless auscultation device that incorporates

multiple sensors to capture bodily sounds. Given the nature of

the application this device can also be seen as an experimental

platform for evaluating the chosen sensor modalities. When

we assess the frequency response curves of the raw sensor

data, we can see that the Knowles microphone resembles the

characteristics of the Thinklabs One digital stethoscope for

Loudspeaker

Gel

Hydrophone
ModAuThinkLabs

a) b)

Fig. 2. Schematic representation and photograph of our experimental setup
to measure the sensors’ frequency responses shown in respectively a) and b).
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low frequencies, and even outperforms it in the frequency

range 600Hz to 2kHz. This is a desirable characteristic

for the recording of respiratory crackles which are present

within the frequency range 100Hz to 2kHz [13]. While the

ADXL372 accelerometer and the VA1210 voice accelerometer

appeared to be least suitable for auscultation purposes, the

LIS344ALHTR accelerometer does show some promise due

to its sensitivity and bandwidth. We therefore believe that a

combination of the Knowles microphone and the Z-axis of

the LIS344ALHTR could be key to achieve more qualitative

auscultation recordings while using the X and Y-axis of the

accelerometer to detect and help suppress motion artifacts.

As future work, we want to use deep learning denoising

neural networks [14]–[16] that make use of the aforementioned

best-candidate sensing modalities to further improve the aus-

cultation data. Another method for improving the quality of

the auscultation data would be transitioning the PCB design

from a rigid FR4 material to a flexible PCB that fits to

a patient’s body curvature. In order to further improve the

battery autonomy, the data acquisition could make use of a

technique called compressed sensing [17]–[20] which would

allow sampling the sensor data at a rate below the Nyquist rate,

thus reducing power consumption due to lower clock-speeds

but also requiring lower (wireless) data transmission rates.
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