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Abstract—Echolocating bats can provide engineers with
tremendous inspiration for constructing active ultrasonic sensors
for airborne applications. Previous research has demonstrated
that the recognition of hand gestures can be facilitated by
means of ultrasonic sensing, often relying on classical engineering
principles. In this paper we merge the insights from research
into biological echolocation systems with gesture recognition, and
present a gesture recognition sensor inspired by the echolocation
system of bats, using spatiospectral features induced by the ge-
ometric shape of baffled microphones. We use the spatiospectral
features in combination with a support vector machine classifier
as gesture classification mechanism. We show the efficacy of
the proposed approach using experimental data gathered from
twenty persons performing four different gestures.

I. INTRODUCTION

Active ultrasonic sensing is a sensing modality which relies

on the emission of an ultrasonic signal and recording the

reflected echoes using one or multiple microphones. Airborne

active ultrasonic sensing, often called SONAR (Sound Nav-

igation and Ranging) is an established sensing modality in

a wide range of sensing challenges. Indeed, applications of

active sonar can be found in robotics [1], [2], the recognition

and mapping and of vegetation types [3], [4], human presence

detection [5], human pose estimation [6] and gait recognition

[7]. The common denominator in all of these applications is

that sonar is used as a low-cost and robust alternative sensing

modality to the more widely spread optical sensing modalities

such as 2D/3D cameras or LIDAR sensors. The sonar sensing

modality is inherently low-cost due to the low speed of sound,

which results in the fact that array-based sensors are quite

straightforward to construct, as has been demonstrated in [8],

[9], where a high-performance array based 3D imaging sensor

was developed for a prototype cost of around 150 euro.

Ultrasonic sensing has also been widely applied in hu-

man computer interaction [10], and more specifically in the

recognition of hand gestures. The literature presents a wide

variety of system for hand gesture recognition based on single

receivers or array-based receivers [11]–[16]. As most of the

proposed systems operate in a narrowband regime (40kHz with

a bandwidth often less than 1kHz), it is straightforward to

use the motion-induced micro-doppler signatures as dominant

features in the gesture recognition system [17]–[20].

Nature provides engineers with interesting insights into

solving challenging engineering tasks. This bio-inspiration

approach is especially true in the case of airborne ultrasound

sensing. Bats are expert users of advanced sonar sensing,

displaying unprecedented skill in a wide variety of tasks [21]–

[23]. The ability of bats for highly adaptive and intelligent

behaviour using their advanced sonar sensors has inspired a

wide range of researchers to construct sonar sensors based

on their biological counter part [24]–[28]. One of the main

enabling features in bat echolocation is the interplay between

the often large signal bandwidths used (ranging from 20kHz to

100kHz are common) and the intricate shapes of the bats outer

ears (pinnae). The pinnae act as direction-dependent filters,

forming a so-called Head-Related Transfer Function [29]–[31].

Analysing the spectral content of the received echoes allows

the bats to infer the direction of the impinging echo [32].

In this paper we present a gesture recognition sensor for

hand gestures inspired by the echolocation system of bats.

We constructed an array-based sensor with 3D printed plastic

covers which introduce direction-dependent spectral filters, in-

ducing additional cues which facilitate the gesture recognition

process. We describe the hard- and software architecture of the

sensor, and illustrate it’s efficacy by an experiment recognizing

four different gestures performed by twenty persons.

II. HARDWARE ARCHITECTURE

The hardware architecture of the sensor can be seen in figure

1. The sensor system was designed as a modular system for

a multitude of applications in robotics and human machine

interaction. The microcontroller board used in this sensor has

an ARM Cortex M4 (STM32F429) at its core and features a

great number of peripherals which have been made accessible

by distributing the I/O pins of the chip to two 50 pin headers on

either the top or the bottom for creating a stack of interconnect-

ing PCBs. For interfacing to a computer a second custom board

was used which uses a FTDI USB interface controller chip

that translates the USB protocol to four independent UART

communication channels. In order to use this system as an in-

air sonar sensor an extra board was designed that implemented

both the acoustic emitter and the receivers. As emitter a

Prowave 328ST160 ceramic transducer was chosen because

of its (relatively) broad bandwidth (30kHz-42KHz) and con-
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Fig. 1. Overview of the proposed system architecture. Panel a shows the overall hardware architecture of the gesture recognition sensor. Panel b) shows the
implementation on three distinct printed circuit boards (USB, Microcontroller and microphone puck board). Panels c) and d) show the baffled transducers
printed using two 3D printing mechanisms: the prototype in c) is printed using an FDM printer, while the prototype in d) is printed using the SLA production
process.

venient electrical specifications for driving it (low voltages

and currents). As the receivers Knowles SPU0410HR5H SMD

microphones were chosen because of their frequency response

in the ultrasonic spectrum, small footprint and low cost. The

STM32F4 microcontroller has three ADCs which can each

start quantizing a channel triggered by a single timer ensuring

synchronous measurements. Dependent on the configuration of

microphones (3, 6 or 9) the ADCs will sequentially measure

their assigned microphone channels with a neglectable time

difference.

We encased the microphones with 3D printed baffles, whose

shape is inspired on the pinna shape of echolocating bats. As

can be seen in figure 2, the baffle shape has an asymmetric

tragus positioned inside the pinna, which has been shown

to introduce spatiospectral cues in the received echoes. We

designed the baffles to be modular and exchangeable, as can be

seen in figure 1, panels c) and d). When measuring the direc-

tivity patterns of the baffled microphones, we have observed

significantly varying directivity patterns across frequency as

well as across the individual microphones. We hypothesize that

the spectrum of the received echoes contain rich information

about the performed gesture, which will be demonstrated in

the subsequent section.

III. FEATURE EXTRACTION AND MACHINE LEARNING

The bio-inspired gesture recognition system can be mod-

elled and understood from a linear systems point of view. A

signal st(t) is emitted by the transducer, which is in our case

a linear chirp from 36kHz to 42kHz in 1 millisecond. This

signal is reflected by a set of point reflectors (N ) originating

from direction ψn = [θ, ϕ]T , with θ the azimuth direction

and ϕ the elevation direction. The receiver array consists of

K microphones, and the k-th microphone signal can be written

as:

skr (t) =
N
∑

n=1

hψ
n

(t) ∗ st(t−∆tn)

with hψ
n

(t) the impulse response for the baffled microphone

in direction ψ, and ∗ denoting time-domain convolution. From

these K microphone signals we extract various describing

features to allow our machine learning algorithm to infer

the gesture identity. We use hand-crafted features instead of

the now-popular convolutional neural networks, due to the

fact that these algorithms require huge datasets to converge,
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Spectrum at 42kHz for Mic 3
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Fig. 2. Spatiospectral features introduced by the baffle shapes. The plot shows
the spatiospectral response of the system for a point reflector positioned at
various azimuth/elevation locations. We calculated the received spectra for a
frequency range from 30kHz to 42kHz. The system response is shown for
three distinct microphones.

which would be impractical to obtain. Furthermore, hand-

crafted features are to be preferred when the system has salient

features which can be easily extracted from the data.

As a first step, we perform a bandpass filter hbp(t) to remove

unwanted noise in acoustical frequencies in which we did not

ensonify the target. We use a sixth order Butterworth filter

with cut-off frequencies of 35kHz and 45kHz. Next,we extract

the envelope of the signal using full-wave rectification and

subsequent low-pass filtering using a second order Butterworth

lowpass filter hlp(t):

ske(t) = hlp(t) ∗
∣

∣hbp(t) ∗ s
k
r (t)

∣

∣

From these K envelope signals we extract the following two

features: the maximum of the first peak (which is the main

reflection of the hand), and the time at which this maximum

occurs. The first feature encodes the strength ekt of the echo

and the second one encodes the range rkt of the object in front



of the sensor. The temporal feature vector for a single sonar

emission at time τ is then equal to:

FTD(τ) =
[

e1t (τ) r1t (τ) . . . eKt (τ) rKt (τ)
]T

with K equal to 9 in our proposed system (as our sensor

has nine microphones). Each sonar measurement thus yields

an [18 × 1] vector of temporal features. The second set of

features are the spectral features, which we believe to convey

significant information about the performed gesture due to

the direction-dependent filtering which is introduced by the

baffles around the microphones. These features are extracted

by calculating the spectral content of the reflection signal. The

spectrum Sk
r (jω) of the k-th received signal is calculated using

the DFT. From these spectra, we extract the frequency fk(τ)
on which the spectrum reaches its maximum value ekf (τ).
These features are then combined to yield the spectral feature

vector of size [18× 1] at sonar emission at time step τ :

FTD(τ) =
[

f1(τ) e1f (τ) . . . fK(τ) eKf (τ)
]T

Finally, we combine the two feature vectors in to a single

feature vector at time step τ :

F (τ) =
[

FTD(τ)T FTD(τ)T
]T

which has a size of [36×1]. Each gesture recognition sequence

consists of 15 sonar measurements gathered at a rate of

approximately 10Hz. So each sonar gesture recording event

spans approximately 1.5 seconds. For each of these sonar

measurements we calculate the feature vector F (τ) which are

then combined into the overall feature vector G:

G =
[

F (1)T F (2)T . . . F (15)T
]T

which has a size of [15 · 2 · 18 × 1] = [540 × 1]. All

subsequent operations are performed on this feature vector

G, which we hypothesize to contain sufficient information to

perform gesture recognition through supervised learning by

support vector machines [33]. To validate this approach we

generate a labelled training dataset consisting of four gestures:

swipe left, swipe right, swipe up and swipe down, performed

by 20 test subjects. Each gesture is repeated 20 times in

randomized order, yielding 80 gestures per person, resulting

in 1600 performed gestures. We divide this dataset into 1000

training samples and 600 test samples. We concatenate the

training and test data into two matrices, Dtr for training data

([540 × 1000]) and Dte for the test data ([540 × 600]). We

then calculate a PCA basis from the training data to perform

dimensionality reduction [34]. We keep the 40 most prominent

eigenvectors, and construct a projection basis VPCA of size

[40 × 540]. The dimensionality-reduced feature vectors can

then be found by the matrix-product between the data-matrices

and the PCA-matrix:

DV
tr = VPCA ·Dtr DV

te = VPCA ·Dte

These dimensionality-reduced feature vectors are then clas-

sified using a multi-class support vector machine [33]. We
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Fig. 3. Confusion matrices for the four-gesture recognition task. The right
matrix shows the confusion for recognition using only temporal features while
the left matrix shows the confusion for the recognition using temporal+spectral
features. The machine learning algorithm was trained with 1000 gestures,
performed by 20 subjects, each performing the four different gesture classes.

use support vector machines with polynomial kernels of order

three and automatic kernel scaling. Using this approach, we

can show that the sensor is able to distinguish between the

different performed gestures with an average precision of 92%

(see figure 3, left panel). To verify the importance of the

spectral features introduces by the baffled microphones, we

retrain the machine learning algorithm using only the temporal

features FTD, more specifically, only the rk components

of FTD. This removes all amplitude information from the

data, which is induced mainly by the baffled transducers. As

expected, the performance of the gesture recognition drops

significantly, which can be seen in figure 3, right panel.

While the up and down gestures can still be recognized

appropriately, there is significant left-to-right confusion. This

can be explained that the up and down gestures have a large

impact on the time-domain information due to large variations

in range during these gestures. During the left and right

gestures the variability of the range is much less pronounced,

which is therefore poorly encoded by the temporal features.

The amplitude and spectral features encode these variations

much more saliently due to the baffled transducers, explaining

the improved performance of the gesture recognition system.

IV. CONCLUSIONS AND FUTURE WORK

In this paper we presented a novel ultrasonic gesture recog-

nition sensor based around baffled microphones. We inspired

the design of the microphone baffles on the outer ear structures

of echolocating bats. We show the spatiospectral cues intro-

duced into the echoes by the microphone baffles, and explained

the necessary signal processing steps for feature extraction. We

demonstrate the efficacy of the sensor in a gesture recognition

task with twenty subjects, each performing four gestures with

twenty repetitions. The system using spectral and temporal

features is capable of recognizing the gestures with high ac-

curacy, while the performance drops when only using temporal

features. In the future, we will expand the range of gestures

that the system can recognize, and increase the experimental

dataset, to allow more accurate gesture recognition due to

improved generalization of the machine learning algorithm.
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