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Abstract—Optical sensing modalities are extensively used in
autonomous vehicles (AVs). These sensors are, however, not
always reliable, particularly in harsh or difficult sensing con-
ditions, such as with smoke or rain. This limitation can impact
their application potential due to safety concerns, since optical
sensors can fail to reliably perceive obstacles in such harsh
conditions. To address this, it would be desirable to include other
modalities, such as radar, into the perception sensor suites of
these AVs. However, this is difficult because many recent state-of-
the-art navigation algorithms are designed specifically for LiDAR
sensors. In this work, we propose a modality prediction method
that allows for the addition of a single-chip mmWave radar
sensor to an existing sensor setup consisting of a 2D LiDAR
sensor, without changing the current downstream applications.
We demonstrate the increased reliability of our method in
situations where optical sensing modalities become less accurate
and unreliable.

Index Terms—Sensor systems, mmWave Radar, Autonomous
vehicles, Navigation, Deep learning

I. INTRODUCTION

While autonomous vehicles (AVs) have shown potential in

various domains, from consumer to industrial and agricultural

applications [1], [2], [3], [4], their safe and robust deployment

is not always guaranteed. It is evident that the sensors used

to perceive the environment play a crucial role in achieving

safe and reliable AVs. To observe the surroundings and create

a representation of the environment for use by navigation and

detection algorithms, the majority of current state-of-the-art

vehicles are mostly equipped with cameras and time-of-flight

(ToF) sensors (e.g., LiDAR) [5]. By only using these optical

sensors, the reliability of these AVs operations is significantly

reduced in scenarios that have difficult conditions for these

sensors, such as smoke, rain or sun-flare [6]. While safety and

reliability are the priority, AVs have an immense application

potential that is limited by only equipping these AVs with

optical sensor suites [7].

Due to the widespread use of camera and LiDAR sensors,

most research efforts focus on extending and improving al-

gorithms and models designed for these sensors. In addition

to these research achievements, these methodologies have also

been widely adopted in various application domains, creating
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Fig. 1. An overview of the proposed method that aims to abstract the sensors
used in the navigation stack. By converting measurements from a multimodal
sensing system into a desired representation, the navigation stack remains
static, while the best modality can be selected for a given scenario.

a large (commercial) community that has tested, deployed,

and improved upon them. Therefore, it would be desirable to

extend these methodologies to other sensing modalities. With

the approach outlined in this paper, we aim to add single-chip

mmWave radar to new and existing sensing setups, without the

need to completely replace or change the processing designed

for the current sensing modalities.

In this paper, we build upon our previous work and incor-

porate mmWave radar into the sensing setup for a 2D LiDAR

SLAM (Simultaneous Localisation and Mapping) application,

as shown in Figure 1. We believe that our contributions

with this paper are twofold: first, increased applicability of

mmWave radar by enabling its use with popular methodologies

designed for LiDAR; and second, a framework that allows for

dynamic switching between sensor measurements. Section II

provides the background for the proposed approach introduced

in Section III. Finally, Section IV discusses the research results

and introduces potential future directions.

II. BACKGROUND

In the following subsections, we briefly introduce our

previous work on predicting LiDAR data using a 3D in-air

ultrasonic sensor (eRTIS), developed within our research group

[8]. We also provide an overview of the state-of-the-art in radar

sensors for perception and navigation.

A. LiDAR point cloud prediction

In previous work, we introduced a method for incorporating

the eRTIS sonar sensor into an existing sensor setup with-

out making any changes to the downstream processing and



Fig. 2. Samples of the radar, R2L and LiDAR scan data, from left to right. Field-of-view is limited to that of the radar sensor, with a maximum range of 8
meters and angular field-of-view of 100 degrees.

decision-making. We showed using a stacked convolutional

autoencoder to predict how a LiDAR sensor would perceive

an environment based on the ultrasonic measurements. We

designed and trained S2L-Net (pronounced “Sonar to Li-

DAR”), using a data-driven supervised learning method. These

S2L-Net predictions are then converted to 2D point-clouds

and used in off-the-shelf 2D LiDAR-SLAM (S2L-SLAM).

We concluded that a data-driven, learning-based method is

suitable for approaching an ill-posed inverse problem such

as modality conversion, especially when large datasets can

be easily obtained through either simulation or real-world

measurements. For a detailed discussion on S2L-Net and S2L-

SLAM we redirect the reader to [9] and [10] respectively.

B. Radar in autonomous navigation and mapping

The increased availability of low-cost, single-chip mmWave

radar devices has led to increased activity in the research field,

particularly for navigational purposes. Numerous works have

focused on increasing the resolution of radar data [11], [12],

[13], [14]. Other works have focused on obtaining odometry

and mapping information using radar data [15], [16] as well

as the application of scan matching techniques and sensor

fusion techniques with IMU (Inertial Measurement Unit) or

LiDAR data [17]. While most methods are designed to perform

specific tasks using radar, our goal is to maintain reliable

environment measurements for safe and robust operation of

the downstream applications even in situations with difficult

optical sensing conditions. We demonstrate this by using laser-

scan predictions based on mmWave radar alongside LiDAR

scans in 2D LiDAR-SLAM to increase reliability.

III. R2L-SLAM

Our goal is to increase the reliability of AVs by incorporat-

ing a single-chip mmWave radar sensor into an existing sensor

setup designed for LiDAR. To achieve this, we developed

R2L-Net (pronounced “Radar to LiDAR”) that predicts how

an environment is perceived by a LiDAR sensor based on

radar measurements. In the following subsection, we explain

the R2L-Net architecture more in-depth and present the design

considerations that enable us to obtain high-resolution LiDAR-

like point clouds as the output of our model.

A. R2L-Net design and data considerations

When comparing the heat-maps generated from mmWave

radar to the LiDAR data, in figure 2, it becomes clear that the

radar measurement provides a much sparser representation of

the environment than LiDAR. This difference can be attributed

to the distinct sensing modalities and physical aspects that

each sensor measures. In typical man-made environments, the

mmWave radar will only receive sparse (specular) reflections

due to the large Helmholtz number of the used radar signals

[18]. On the other hand, a LiDAR will also receive dense

(diffuse) reflections by using light. Our R2L-Net model’s task

is to upscale the sparse point-cloud obtained by the mmWave

radar into a dense LiDAR-like point-cloud. For designing

R2L-Net, we created a stacked convolutional autoencoder,

inspired by S2L-Net [9] and U-Net [19], customized for the

radar data. This model encodes the range-azimuth heat-map

images using five encoder layers, creating a lower-dimensional

latent representation consisting of multiple channels, each

of which contains different features. To solve the vanishing

gradient problem, most of the encoder layers feature residual

connections [20]. After several intermediate residual layers,

the latent representation is up-scaled to a range-azimuth image

by the decoder layers. At the input of our R2L-Net model, we

use a sequence of five range-azimuth heat-map images, as this

represents the data in an orthogonal grid, which is best suited

for use with the 2D convolution kernels throughout the model.

For the kernel sizes, we opted for rectangular kernels with an

aspect ratio similar to the input data and an size that becomes

smaller towards the center of the network. These rectangular

kernels, along with the network depth, allows far-away pixels

to exchange information, which improves results significantly

according to our previous work. The model is trained with a

weighted combination of the mean-square-error (MSE), cross

entropy loss and structural similarity index. The cross-entropy

loss provides a classification for each angle across the possible

ranges, determined by the minimum, maximum range and

resolution. For each angle, the model is trained to predict

the closest ‘range class’. If the desired range for a specific

angle is out of bounds the field-of-view, the range class is set

to 0 meters. Performing this classification provides an output

image suitable to convert to a point-cloud, with out-of-bounds

measurements detected when the range class is set to 0 meters.

We collected our own dataset to obtain training and valida-

tion data. To our knowledge, no public dataset exists in the

correct format that includes time-synchronized, raw mmWave

radar data and LiDAR measurements. Most publicly available

datasets, such as the nuScenes dataset [21], only consist of

processed radar data, which is not suitable for our purposes.

To create our own dataset, we used a single-chip mmWave TI
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Fig. 3. Pose-graph and occupancy grid plots for comparison between SLAM
on LiDAR an R2L scans, respectively, in a smoke-filled room. Reference data
for the pose-graphs is obtained from the vehicles odometry data.

TABLE I
SLAM APE W.R.T TRANSLATION (M)

Scenario RMSE MEAN STD. SSE

LiDAR [smoke] 0.285 0.267 0.100 845.00
R2L [smoke] 0.121 0.101 0.067 151.78
LiDAR + R2L [smoke] 0.113 0.087 0.072 130.84

LiDAR [no smoke] 0.249 0.214 0.126 1723.60
R2L [no smoke] 0.415 0.343 0.234 4727.24
LiDAR + R2L[no smoke] 0.235 0.208 0.107 1516.14

IWR1443 radar sensor [22] and a Hokuyo UST-20L [23] on a

small robotic platform. The platform performed measurements

along 15 trajectories in an indoor office and lab environment,

providing approximately 10,000 synchronized samples for our

training dataset and 1,500 samples for our validation dataset.

The TI IWR1443 radar sensor was configured to the 77-

81 GHz frequency band with an angular field-of-view of

approximately 100 degrees and a maximum range of 8 meters

with a 5 cm range resolution. Samples of our datasets are

presented in figure 2.

IV. RESULTS AND DISCUSSION

We used an off-the-shelf 2D LiDAR SLAM method to ver-

ify our model predictions. We opted for Google Cartographer

[24] as this is a very mature and capable method. A standard

configuration is used for which odometry data is used, based

on the wheel encoders of the robot, along with laser-scans

to build the occupancy grid. The laser-scan data is either

provided by the LiDAR sensor or predicted R2L-Net data.

Experiments were performed by switching between LiDAR

and R2L scans at several steps along the trajectory, as well as

experiments with only R2L scans to compare against LiDAR.

We created multiple validation trajectories using our platform,

both in indoor office and lab environments. For one of the

validation scenarios, we constructed a small smoke chamber

equipped with a smoke machine having an emission volume of

Fig. 4. Office environment, filled with smoke and used as test dataset.

approximately 110 m³/min, presented in figure 4. The smoke

was allowed to spread across the room, and the machine was

started before the measurements were recorded. We observed

that the LiDAR sensors would quickly become noisy and

stop perceiving the environment, even with a limited amount

of smoke. The results from this smoke test are presented in

figure 3 the output pose-graph and occupancy grid are shown

from Cartographer SLAM on LiDAR and R2L-Net scans

along the complete trajectory. These results show that, even

with the available odometry data along with relative position

information obtained by scan-matching, the results of LiDAR

affected by smoke become uncertain and unreliable, while

the results with R2L predictions based on mmWave radar are

stable and closely match the ground-truth. Table I presents

absolute position error (APE) of the approximated positions

obtained by Cartographer over our validation trajectories.

These results demonstrate that using only R2L-Net scans

performs slightly worse in situations with good conditions for

optical sensors, but performs better in situations where, for

example, smoke is present. The slightly less accurate results

of R2L-SLAM compared to LiDAR-SLAM can be attributed

due to the lower maximum range the radar sensor and the R2L-

Net predictions are able to achieve. While this is something

that can be mitigated by a different sensor, with our method

we wanted to demonstrate the flexibility of changing between

sensor measurements, and selecting the best modality given

the situation, without changing the processing stack.

With this work we wanted to underline the benefit of using

multi-modal sensing setups to dynamically select the most

suitable sensing modality without changing the processing

stack. Based on the results presented in this paper, we conclude

that our modality prediction framework has the potential to

succeed in its aim of abstracting the sensors used from the

processing stack, allowing for addition of different sensors

and dynamic sensor fusion. In an extension on this work, we

will investigate improving resolution and maximum achievable

range, as well as the addition of range-Doppler information as

extra input for our model. We anticipate that this will improve

predictions with moving objects in dynamic environments.
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