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HIGGS ALGEBRAS IN CLASSICAL HARMONIC ANALYSIS

DAVID EELBODE
(UNIVERSITY OF ANTWERP - DEPT. OF MATHEMATICS)

Dedicated to John Ryan

Abstract. In this paper, we will prove that the reproducing kernels Zk(x, u)
for the spacesHk(R

m,C) of k-homogeneous harmonics can be seen as elements
of an infinite-dimensional ladder operator representation for a cubic PAMA
(polynomial angular momentum algebra) which is known as the Higgs algebra.
This algebra will be shown to be one of two direct summands in a transvector
algebra which is related to the harmonic Fischer decomposition in two vector
variables.

1. Introduction

Classical Clifford analysis is often described as a higher-dimensional function
theory refining harmonic analysis on R

m, and generalising complex analysis in the
plane. Historically speaking, this connection with complex analysis has served
as an important source of inspiration during the first few decades. This started
with quaternionic analysis, for which Fueter is often quoted as a prime instigator,
but expanded into a mathematical framework in arbitrary dimension (see for in-
stance [2, 7, 10, 11]). Whereas these more ‘classical’ approaches towards Clifford
analysis focused on the ‘classical’ Dirac operator (a generalisation of the operator
/∂ on R

1,3 introduced by Dirac), it has become clear in the past few decades that
there are interesting extensions possible in several different directions. Without
claiming completeness, we refer for instance to the Dirac operator in superspace
(a combination of fermionic and bosonic variables), the so-called Hermitean and
quaternionic Hermitean Dirac operators (based on a suitable reduction of the
symmetry group), the higher spin Dirac operators (other conformally invariant
generalisations, of which the Rarita-Schwinger operator is the most well-known
example), Dunkl-Dirac operators (symmetry reductions to a finite subgroup of
the orthogonal group), q-deformed Dirac operators (based on generalised commu-
tation relations between variables and partial derivatives) and symplectic Dirac
operators (switching from the orthogonal to the symplectic group).

Although these theories branch into several (seemingly unrelated) directions,
there are a few common themes. Not only the results share a common ground (for
instance having a Fischer decomposition is an important result in most function
theories), but also the underlying techniques. The latter are usually algebraic in
nature, whereby choosing a certain group or Lie (super)algebra somehow fixes
the intricacies of the resulting function theory. This means that Clifford analysis
can also be seen as a function theoretical framework in which models for algebraic
structures are studied, an observation which allows to study these structures in
terms of for instance functions belonging to the kernel of a collection of invariant
operators. The contents of this paper should be understood from this point of
view: we will relate reproducing kernels for spaces of harmonics to an algebraic
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structure known as a PAMA (short for polynomial angular momentum algebra).
In full generality, these are ‘ladder operator’ algebras satisfying the relations

[K0, K
±] = ±2K± and [K+, K−] =

n
∑

j=0

cjK
j
0 ,

whereby the classical sl(2)-relation [K+, K−] = K0 is a special case. One can thus
interpret a PAMA as a polynomial deformation of a classical Lie algebra. Special
cases of these algebras already made their appearance in Clifford analysis: the
Racah and Bannai-Ito algebras studied in for instance [6], the transvector algebra
introduced in [5] and the Higgs algebra used in [9] to realise the Pizzetti formula
on the (oriented) Grassmann manifold Gr0(m, 2) are examples of algebras which
generalise the more ubiquitous Lie algebras appearing in Clifford analysis.

In this paper we will show that the Higgs algebra is in a sense canonically
connected to harmonic analysis. Not only will we relate this (cubic) algebra
to the ladder operators for harmonic reproducing kernels (for the Fischer inner
product), we will also revisit the transvector algebra defined in [5] and show that
this is a direct sum of two Higgs algebras.

2. The Jordan-Schwinger realisation

Starting from two (not necessarily different) commuting realisations for the
Lie algebra sl(2), one can define a cubic PAMA known in the literature as the
Higgs algebra. This algebra first appeared in [12] to describe symmetries for the
so-called isotropic oscillator, and has since then been connected to for instance
SUq(2) and generalised oscillator algebras (see [13, 1]). The method described
in this section is completely general (i.e. can be described in terms of abstract
generators), but will come in handy later when we have concrete realisations for
the Lie algebra sl(2). Let Aj = Alg(Xj, Yj, Hj) with j ∈ {1, 2} be a realisation
for sl(2), whereby the classical commutation relations are satisfied:

[Hj, Xj] = +2Xj [Hj, Yj] = −2Yj [Xj, Yj] = Hj .

We can then introduce generators (for a ‘new’ algebraic structure) in A⊗A with
A = A1 ⊕ A2 the vector space defined as the sum of both realisations for sl(2).
As the Lie-generators are supposed to be mutually commuting, we will omit the
tensor product symbol and define the following elements:

K+ = X1Y2 K− = Y1X2 K0 =
1

2
(H1 −H2) C0 =

1

2
(H1 +H2) .

First of all, an easy calculation quickly leads to the relations [K0,K
±] = ±2K±.

Moreover, it is readily verified that the element C0 is central, as it commutes with
K±. The third relation is more complicated and brings us outside the realm of
typical Lie algebra commutation relations. Let us introduce the Casimir operator
Cj ∈ U(sl(2)) for j ∈ {1, 2}, by means of

Cj = H2
j + 2{Xj, Yj} = Hj(Hj − 2) + 4XjYj = Hj(Hj + 2) + 4YjXj .

Note that the subscript does not refer to the degree of the Casimir operator here
(as usual in this context), but rather to the realisation for the Lie algebra sl(2)
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we are using. A quick calculation then shows that

[K+,K−] = [X1Y2, Y1X2] = H1X2Y2 −H2X1Y1

=
1

4
H1

(

C2 −H2(H2 − 2)
)

−
1

4
H2

(

C1 −H1(H1 − 2)
)

.

We can now use the fact that H1 and H2 can be rewritten in terms of K0 and
the central element C0 to arrive at the relation

[K+,K−] =
1

4
(K0 + C0)

(

C2 − (C0 − K0)
2 + 2(C0 − K0)

)

−
1

4
(C0 − K0)

(

C1 − (K0 + C0)
2 + 2(K0 + C0)

)

= −
1

2
K3

0 +
1

2
K0

(

C2
0 +

1

2
(C1 + C2)

)

−
1

4
C0(C1 − C2) .

What this says is that the commutator [K+,K−] gives a cubic term plus a linear
term and ‘a constant’ (expressed in terms of central elements).

3. The conformal Lie algebra

In this section we will consider the Lie algebra of generalised symmetries for the
Laplace operator ∆x on R

m. It is well-known that this operator is conformally
invariant, which means that its (generalised) symmetries realise a copy of the
(real) Lie algebra so(1,m+1) inside the Weyl algebra Alg(xi, ∂xj

: 1 ≤ i, j ≤ m).
We briefly recall the following:

Definition 3.1. An operator ϕ is a generalised symmetry for a (differential)
operator D if there exists another operator ψ such that [ϕ,D] = ψD.

Note that for ψ = 0 one obtains a so-called proper symmetry for D, and
that although generalised symmetries do not commute with D one still has that
ϕ ∈ End(kerD) maps solutions for D to solutions. The first-order generalised
symmetries for the Laplace operator, which generate a corresponding Lie algebra,
belong to one of the following spaces:

R
m = span

(

ξa := |x|2∂xa
− xa(2Ex +m− 2) : 1 ≤ a ≤ m

)

so(m) = Alg
(

Lab := xa∂xb
− xb∂xa

: 1 ≤ a < b ≤ m
)

R = span
(

Ex +
m

2
− 1
)

R
m = span

(

∂xa
: 1 ≤ a ≤ m

)

.

The operator Ex =
∑

a xa∂xa
is the Euler operator, acting as a constant on

functions (such as polynomials) which are homogeneous of a fixed degree. Note
also that ξa = I∂xa

I, with I the harmonic Kelvin inversion (a conjugation of
the partial derivative with the inversion). These symmetries ξa are the so-called
special conformal transformations. The full algebra of conformal symmetries
for the Laplace operator, a subalgebra of the universal enveloping algebra for
so(1,m+1), has been determined by Eastwood in [8]. An easy calculation leads
to the following:

Lemma 3.2. For a fixed index 1 ≤ a ≤ m, we have that

sl(2) ∼= Alg(ξa, ∂xa
, 2Ex +m− 2) ,
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whereby the operators are listed in the order X, Y and H.

In a later section, we will use these Lie algebras to construct a Higgs algebra,
using the realisation from the previous section. We will also consider harmonic
functions (polynomials, to be more precise) in two vector variables in R

m. This
then means that we will have access to two copies of the Lie algebra so(1,m+1),
in the variables x and u respectively. Since both Lie algebras contain two copies
of the abelian subalgebra Rm each, one can consider four ‘mixed’ operators which
are orthogonally invariant: these then appear as Euclidean inner products, i.e.
contractions R

m × R
m → R. In order to have a compact notation for these

four operators, we first introduce the notations ξa,x and ξa,u for the generalised
comformal transformations (this means that an additional letter is added to the
symbol ξa to make clear which vector variable is being considered).

Definition 3.3. The following differential operators are orthogonally invariant
endomorphisms acting on functions f(x, u) in ker∆x ∩ ker∆u:

Sx :=
m
∑

a=1

ξa,x∂ua
Su :=

m
∑

a=1

ξa,u∂xa
C :=

m
∑

a=1

ξx,aξu,a A :=
m
∑

a=1

∂xa
∂ua

.

Note that these operators were used in [5] to obtain a new type of Howe duality
for harmonic functions in two vector variables, whereby the classical dual partner
sp(4) was replaced by a transvector algebra (which made it possible to define a
Pizzetti formula for the integral over the Stiefel manifold St(m, 2), see also [4]
for a different approach). In what follows, we will consider the PAMA spanned
by these operators and investigate the connection with the reproducing kernel
for the space of k-homogeneous (polynomial) harmonics.

4. The harmonic reproducing kernel

In this section, we switch our attention to the spaceHk(R
m,C) of k-homogeneous

harmonics on R
m, i.e.

Hk(R
m,C) = Pk(R

m,C) ∩ ker∆x ,

with Pk(R
m,C) = Ck[x1, . . . , xm] the space of k-homogeneous polynomials in

the variable x ∈ R
m. In order to talk about reproducing kernels, one needs an

inner product and for polynomials on R
m this is classically done in terms of the

so-called Fischer inner product:

〈·, ·〉F : P(Rm,C)× P(Rm,C) → C :
(

P (x), Q(x)
)

7→
[

P (∂x)Q(x)
]

0
,

which means that we let the ‘dual’ of P (x), the operator obtained by replacing
each variable by a partial derivative, act on the polynomial after which we just
put x = 0 to obtain a scalar. It is easy to see that homogeneous polynomials
of different degree are orthogonal with respect to this inner product, but one
can also show that the spaces |x|2pHk(R

m,C) and |x|2qHℓ(R
m,C) are orthogonal

to each other for k 6= ℓ, even if 2p + k = 2q + ℓ (without going into too much
detail, this means that all summands in the harmonic Fischer decomposition are
orthogonal to each other). With respect to this inner product, the (symmetric)
polynomial

Kk(x, u) :=
1

k!
〈x, u〉k
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acts as a reproducting kernel for the space Pk(R
m,C), in the sense that

〈Kk(x, u), Pk(u)〉F = Pk(x) .

To obtain a reproducing kernel for the subspace of k-homogeneous harmonic
polynomials it then suffices to project this kernel onto the space of harmonic
polynomials (in either variable, the symmetry will automatically ensure that the
result is harmonic in both x and u ∈ R

m). This reproducing kernel, which we will
denote by means of Zk(x, u) in what follows, is expressed in terms of Gegenbauer
polynomials depending on the inner product 〈x, u〉 ∈ R.

Definition 4.1. The reproducing kernel for the space Hk(R
m,C) is defined as

Zk(x, u) := ck|x|
k|u|kC

m−1

2

k

(

〈x, u〉

|x||u|

)

,

where the constant ck is given by

ck =
Γ
(

m−1
2

)

2kΓ
(

k + m−1
2

) .

One then has that 〈Zk(x, u), Hk(u)〉F = Hk(x), for all Hk(u) ∈ Hk(R
m,C).

Explicitely expanding this reproducing kernel, hereby using the definition for
the Gegenbauer polynomial, one finds that

|x|k|u|kC
m−1

2

k

(

〈x, u〉

|x||u|

)

= |x|k|u|k
(

2kΓ
(

k + m−1
2

)

k!Γ
(

m−1
2

)

〈x, u〉k

|x|k|u|k
+ L.O.T.

)

,

which explains the constant ck. Indeed, to arrive at the harmonic projection our
kernel must be equal to Kk(x, u) plus correction terms (expressed in terms of
lower order terms in 〈x, u〉 multiplied with squared norm factors). As can be
seen in the following lemma, this kernel can (up to a constant) be obtained in
terms of the ‘raising operator’ C from the previous section acting on the constant
1 (note that our symbol C stands for ‘creation’ here).

Lemma 4.2. For each k ∈ N, one has that

Zk(x, u) = γkC
k[1] = γk

( m
∑

a=1

ξx,aξu,a

)k

[1] ,

where the constant γk is given by

γk =
c2k
k!

=
1

k!

(

Γ
(

m−1
2

)

2kΓ
(

k + m−1
2

)

)2

.

Proof: first of all, we note that the action of C on 1 generates polynomials, as can
be seen from the explicit definition for the conformal symmetry ξa ∈ so(1,m+1).
Moreover, this polynomial is clearly harmonic and symmetric in x↔ u. It then
suffices to note that it is also invariant under the action of the orthogonal group
to conclude that it must be a multiple of the kernel Zk(x, u). This is based on
the (algebraic) observation that there is a unique summand C ⊂ Hk⊗Hk, where
the spaces Hk(R

m,C) are models for the irreducible so(m)-representations with
highest weight (k, 0, . . . , 0). To retrieve the constant of proportionality, it suffices
to note that the operator C can be written as

C = 〈x, u〉(2Ex +m− 2)(2Eu +m− 2) + · · · ,



6 DAVID EELBODE (UNIVERSITY OF ANTWERP - DEPT. OF MATHEMATICS)

whereby the omitted terms will not contribute to the maximal power in 〈x, u〉.
This means that under the k-fold action on 1 ∈ R, the leading term is given by

Ck[1] = [(m− 2)m(m+ 2) . . . (m+ 2k − 4)]2〈x, u〉k + L.O.T. ,

which can be written as

Ck[1] =

(

2kΓ
(

k + m−1
2

)

Γ
(

m−1
2

)

)2

〈x, u〉k + L.O.T.

This then leads to the constant γk mentioned above. �

Corollary 4.3. If we define H(Rm,C) as the space of harmonic polynomials, the
direct sum of all spaces Hk(R

m,C) of a fixed degree (with k ∈ N), the reproducing
kernel for this space (with respect to the Fischer inner product) can formally be
defined as

∞
∑

k=0

Zk(x, u) =
∞
∑

k=0

1

k!

(1
4
C)k

[(

m−1
2

)

k

]2 [1] ,

where (a)k stands for the Pochammer symbol a(a + 1) . . . (a + k − 1). This can
be rewritten in terms of a particular hypergeometric function:

∞
∑

k=0

Zk(x, u) = 0F2

(

;
m− 1

2
,
m− 1

2
;
1

4
C

)

[1] .

We now claim that the set RH := {Zk(x, u) : k ∈ N} with the reproducing
kernels for the spaces Hk(R

m,C) of k-homogeneous harmonic polynomials, can
be seen as an infinite-dimensional representation space for a certain PAMA. For
that purpose, we will prove a result which essentially tells us that the operators
C and A act as raising and lowering operators between these reproducing kernels
(note that the raising property clearly follows from the previous lemma). Let
us first prove the following result, in which we consider the action of the so-
called ‘mixed Laplace-Beltrami operator’ on our reproducing kernels (we adopt
the notation from [3] to write this operator as ∆S,xu):

Lemma 4.4. The operator ∆S,xu acts as a constant on Zk(x, u), given by

∆S,xuZk(x, u) =

(

∑

a<b

L
(x)
ab L

(u)
ab

)

[Zk(x, u)] = k(k +m− 2)Zk(x, u) .

Proof: the Casimir operator Cso for the regular representation on functions in
(x, u) ∈ R

2m, acting by means of the angular momentum operators, is given by

Cso =
∑

a<b

L2
ab =

∑

a<b

(L
(x)
ab + L

(u)
ab )

2 = ∆S,x +∆S,u + 2∆S,xu .

The (non-mixed) Laplace-Beltrami operator ∆S,x (and ∆S,u), corresponding to
the Casimir operator for the regular action on functions depending solely on x
(resp. u) can be expressed in terms of the Laplace operator:

∆S,x =
∑

a<b

(

L
(x)
ab

)2
= |x|2∆x − Ex(Ex +m− 2) ,

and similarly for ∆S,u. This means that
(

∑

a<b

L
(x)
ab L

(u)
ab

)

[Zk(x, u)] =
1

2

(

Cso −∆S,x −∆S,u

)

Zk(x, u) .
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It then suffices to observe that the Casimir operator Cso will act trivially (since
Zk(x, u) comes from the action of Ck on 1 ∈ R, with [Cso, C] = 0 and Cso[1] = 0),
and that for instance

∆S,xZk(x, u) =
(

|x|2∆x − Ex(Ex +m− 2)
)

Zk(x, u) = −k(k +m− 2)Zk(x, u) ,

because Zk(x, u) is harmonic in x (and u). This leads to the desired result. �

Corollary 4.5. The action of the mixed Laplace-Beltrami operator on Zk(x, u)
can be written as

(

∑

a<b

L2
ab

)

[Zk(x, u)] =
1

4
(Ex + Eu)(Ex + Eu + 2m− 4)[Zk(x, u)] .

Note that one can also omit the restriction that the action is only considered on
the reproducing kernels Zk(x, u). This essentially means that Cso is taken into
account in the calculations above (it can be omitted when acting on the trivial
representation, like in the lemma above).

Proposition 4.6. The algebra generated by the operators C = K+ and A = K−,
considered as ladder operators on harmonic functions in (x, u) ∈ R

2m with equal
degrees in x and u, is a (cubic) PAMA defined by the following relations:

[K0, K
±] = ±2K± and [K+, K−] = −2K3

0 + (m− 2)(m− 4)K0 ,

with K0 = Ex + Eu +m− 2.

Proof: the relation [K0, K
±] = ±2K± is trivially verified, so that we are left with

the commutator:

[K+, K−] = [C,A] =
m
∑

a=1

m
∑

b=1

[ξa,xξa,u, ∂xb
∂ub

] .

We will consider the cases a = b and a 6= b separately. First of all, for a < b we

invoke the relation [∂xa
, ξx,b] = 2L

(x)
ab to calculate

[ξa,xξa,u, ∂xb
∂ub

] = ξa,x∂xb
[ξa,u, ∂ub

] + [ξa,x, ∂xb
]∂ub

ξa,u

= 2ξa,x∂xb
L
(u)
ab + 2L

(x)
ab ∂ub

ξa,u

= 2ξa,x∂xb
L
(u)
ab + 2L

(x)
ab ξa,u∂u,b − 4L

(x)
ab L

(u)
ab .

To this expression, we then add the expression corresponding to the case a > b
(which corresponds to the same formula, but where a and b are swapped), which
gives (still for a 6= b)

[ξa,xξa,u, ∂xb
∂ub

] + [ξb,xξb,u, ∂xa
∂ua

]

=− 8L
(x)
ab L

(u)
ab + 2

(

ξa,x∂xb
− ξx,b∂xa

)

L
(u)
ab + 2

(

ξa,u∂ub
− ξu,b∂ua

)

L
(x)
ab .

Using the definition for the conformal symmetry ξa, this can be reduced:

[ξa,xξa,u, ∂xb
∂ub

] + [ξb,xξb,u, ∂xa
∂ua

] = −4(Ex + Eu +m− 2)L
(x)
ab L

(u)
ab .

Summing over all a < b, the previous lemma tells us that the resulting operator
will act as the constant µk := −4k(k+m−2)(2k+m−2) on Zk(x, u). Note that
we hereby used the fact that this polynomial has equal degree in x and u. Note
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that this expression is cubic in k. As a matter of fact, in terms of the operator
K0 we thus have that

∑

a 6=b

[ξa,xξa,u, ∂xb
∂ub

] = −K0

(

K2
0 − (m− 2)2

)

. (4.1)

Let us then consider the ‘missing’ indices a = b in our commutator [A,C]. We
will use the Jordan-Schwinger realisation here, where our two commuting copies
of sl(2) are defined as follows (the index 1 ≤ a ≤ m is fixed here, so we are in
fact defining 2m Lie algebras in total):

sl1(2) = Alg(X1, Y1, H1) = Alg
(

ξa,x, ∂xa
, 2Ex +m− 2

)

sl2(2) = Alg(X2, Y2, H2) = Alg
(

∂ua
, ξa,u,−2Eu − (m− 2)

)

.

Note that the role played by the special conformal symmetry and the partial
derivative is not the same for these realisations. The reason for this is that we
can now define the operators K+ = X1Y2 = ξa,xξa,u and K− = Y1X2 = ∂xa

∂ua
,

which means that

[ξa,xξa,u, ∂xa
∂ua

] = −
1

2
K3

0 +
1

2
K0

(

C2
0 +

1

2
(C

(a)
1 + C

(a)
2 )

)

−
1

4
C0(C

(a)
1 − C

(a)
2 ) ,

where the correct identifications are still to be made:

K0 =
1

2
(H1 −H2) = Ex + Eu +m− 2 = K0

C0 =
1

2
(H1 +H2) = Ex − Eu = C0 .

Note that we use two different fonts here: K and so on for the sl(2)-realisations
from above, and italic capitals such as K for the operators we are interested in
(i.e. defined in terms of A and C). Note also that C0 acts trivially on Zk(x, u), as
these kernels have equal degrees in x and u. Finally, these Casimir operators are
still to be determined. Note that these still depend on the index a (in contrast
to the operators K0 and C0), but since we will eventually sum over this index we
determine the following:

m
∑

a=1

C
(a)
1 = mH1(H1 − 2) + 4

m
∑

a=1

(|x|2∂xa
− xa(2Ex +m− 2))∂xa

= mH2
1 − 2mH1 − 4(2Ex +m− 4)Ex

m
∑

a=1

C
(a)
2 = mH2(H2 + 2) + 4

m
∑

a=1

(|u|2∂ua
− xa(2Eu +m− 2))∂ua

= mH2
2 + 2mH2 − 4(2Eu +m− 4)Eu ,

where we have used that our operators will act on harmonic polynomials in x
and u to omit the Laplace operators ∆x and ∆u. First of all, we have that

m(H2
1 +H2

2 )− 2m(H1 −H2) = m
(

(K0 + C0)
2 + (K0 − C0)

2
)

− 4mK0 .

Again invoking the fact that we restrict our attention to polynomials of equal
degree in x and u, which means that Ex and Eu can be used interchangeably, we
thus also have that

−4(2Ex +m− 4)Ex − 4(2Eu +m− 4)Eu = −4(K0 − 2)
(

K0 − (m− 2)
)

.
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This means that we finally arrive at the following:
m
∑

a=1

[ξa,xξa,u, ∂xa
∂ua

] = −
m

2
K3

0 +
1

4
K0

m
∑

a=1

(C
(a)
1 + C

(a)
2 )

= −K3
0 − 2(m− 2)K0 .

We can then add the previous result to (4.1) to arrive at the desired conclusion. �

As a simple test, we will let this commutator act on Z1(x, u) = (m − 2)2〈x, u〉
(which follows fom letting C = K+ act on the constant 1 ∈ R). It is immediately
seen that

K−Z1(x, u) = (m− 2)2〈∂x, ∂u〉〈x, u〉 = m(m− 2)2 .

On the other hand, a direct calculation tells us that

K0[1] = −2(m− 2)3 + (m− 4)(m− 2)2 = −m(m− 2)2 .

It then suffices to see that K−Z1 = K−K+(1) = [K−, K+](1) = −K0(1).

5. The harmonic transvector algebra revisited

Note that one can also drop the condition that the degree in x and u ∈ R
m

must be equal. This will still lead to a (cubic) PAMA, with a slight modification.
As a matter of fact, the only thing that changes is that the Casimir operator
Cso will still appear in the commutation relation between K+ and K−. It is
quite remarkable that one can still ignore C0 = Ex−Eu, despite the fact that de
degrees in x and u are not necessarily equal. The reason for this is the following:
the operators K± are symmetric in (x, u), whereas C0 is not. Hence, [K+, K−]
is still symmetric and thus cannot contain C0.

Theorem 5.1. The algebra spanned by K+ and K− ∈ End
(

ker∆x ∩ ker∆u

)

is
a Higgs algebra (i.e. a cubic PAMA), defined in terms of the following relations:

[K0, K
±] = ±2K± and [K+, K−] = −2K3

0 +
(

(m− 2)(m− 4)− 2Cso
)

K0 ,

with K0 = Ex + Eu +m − 2 and Cso the Casimir operator for so(m) defined in
terms of the regular representation on functions in two vector variables.

We can again consider a simple example here, whereby we will let K+ act on the
(harmonic) polynomial x1. Note that since

Cso

∣

∣

∣

∣

Hk

= −k(k +m− 2)Id

∣

∣

∣

∣

Hk

,

it is immediately clear that [K+, K−]x1 = −(m − 1)(m − 2)(m + 2)x1. On the
other hand, we have that K+K−x1 = 0 (because K− = 〈∂x, ∂u〉 acts trivially)
and

K+x1 = 〈∂x, ∂u〉

m
∑

a=1

ξa,uξa,x[x1]

= ξ1,u|x|
2 −mx1

m
∑

a=1

ξa,uxa

= −(m− 2)u1|x|
2 +m(m− 2)x1〈x, u〉 ,
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which is a harmonic polynomial of degree (2, 1) in (x, u). Letting the operator
K− act on this polynomial, we get

〈∂x, ∂u〉

(

− (m− 2)u1|x|
2 +m(m− 2)x1〈x, u〉

)

= (m− 1)(m− 2)(m+ 2)x1 .

This means that we again obtain [K+, K−]x1 = −(m− 1)(m− 2)(m+ 2)x1.

Now that we have the algebra generated by K± ∈ End
(

ker∆x ∩ ker∆u

)

, we
will look at the transvector algebra Z(sp(4), so(4)) considered in [5]. This means
that instead of considering the operators K± only (something we did above, in
view of the connection with harmonic reproducing kernels), we will again add
the remaining operators Sx and Su from section 3.

Theorem 5.2. The algebra generated by the operators A,C, Sx and Su is semi-
simple, and decomposes into a direct sum of commuting subalgebras:

Alg(A,C, Sx, Su) = Alg(A,C)⊕ Alg(Sx, Su) .

Proof: first of all, we have that

[A, Sx] =
∑

a,b

[∂xa
∂ua

, ξb,x∂ub
] =

∑

a,b

[∂xa
, ξb,x]∂ua

∂ub

=
∑

a,b

(

2L
(x)
ab − δab(2Ex +m− 2)

)

∂ua
∂ub

.

The second term is zero when acting on harmonics, whereas the first term is a
(trivial) contraction between a symmetric and an anti-symmetric tensor. This
means that [A, Sx] = 0. As for the other operator, we note that

[C, Sx] =
∑

a,b

[ξa,xξa,u, ξb,x∂ub
] =

∑

a,b

[ξa,u, ∂ub
]ξa,xξb,x

=
∑

a,b

(

δab(2Eu +m− 2) + 2L
(u)
ab

)

R(a)
x R(b)

x .

The last term again vanishes as the (trivial) contraction of a symmetric and an
anti-symmetric tensor. In order to explain why also the first term disappears,
we observe that

m
∑

a=1

ξ2a,x =
m
∑

a=1

(

|x|2∂xa
− xa(2Ex +m− 2)

)2

= |x|4∆x + 2|x|2Ex − |x|2(m+ Ex)(2Ex +m− 2)

− |x|2Ex(2Ex +m) + |x|2(2Ex +m)(2Ex +m− 2) ,

which is indeed zero on harmonics. This proves the result. �

The first algebra (generated by K±) as identified as a Higgs algebra (see above),
and somewhat surprisingly the same thing can be said about the second algebra
(generated by Sx and Su).
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Theorem 5.3. The algebra generated by the operators Sx and Su satisfies the
following commutation relations:

[Sx, Su] = −2C3
0 +

(

(m− 2)(m− 4)− 2Cso
2

)

C0

[C0, Sx] = +2Sx

[C0, Su] = −2Su .

The operator C0 hereby stands for C0 = Ex − Eu.

Proof: this time, we get that

[Sx, Su] =
∑

a,b

[∂ua
, ξb,u]ξa,x∂xb

−
∑

a,b

[∂xb
, ξa,x]ξb,u∂ua

.

The first summation above reduces to
∑

a,b

(

2L
(u)
ab − δab(2Eu +m− 2)

)

ξa,x∂xb

= Ex(2Ex +m− 4)(2Eu +m− 2)− 2(2Ex +m− 4)
∑

a<b

L
(x)
ab L

(u)
ab .

Similarly, the second summation gives

−
∑

a,b

(

2L
(x)
ba − δab(2Ex +m− 2)

)

R(b)
u ∂ua

= 2(2Eu +m− 4)
∑

a<b

L
(x)
ab L

(u)
ab − Eu(2Ex +m− 2)(2Eu +m− 4) .

Bringing all these expressions together, we find that

[Sx, Su] = −4C0

∑

a<b

L
(x)
ab L

(u)
ab +

(

C0K
2
0 − C2

0 − 2(m− 2)C0

)

.

In a sense, this is a weird intermediate result, since the operator K0 appears
here. Indeed, since [Sx, Su] changes sign when x and u are swapped, we do not
expect the (symmetric) operator K0 to appear here. However, plugging in the
expression for the mixed Casimir operator, which is equal to

∑

a<b

L
(x)
ab L

(u)
ab =

1

2
Cso +

1

4

(

C2
0 +K2

0 − (m− 2)2
)

,

it is easy to see that the term involving K0 indeed cancels, and that we are left
with the desired expression. �

Corollary 5.4. The transvector algebra Z(sp(4), so(4)) can actually be seen as
a direct copy of two mutually commuting Higgs algebras:

Z(sp(4), so(4)) = H3 ⊕H3 ,

where H3 is a shorthand notation for the (cubic) Higgs algebra. As a matter of
fact, defining H3 := Alg(K+,K−) with

[K+,K−] = −2K3
0 + αK0

and [K0,K
±] = ±2K±, we have two copies for

(K+,K−,K0) = (C,A,Ex + Eu +m− 2) and (K+,K−,K0) = (Sx, Su,Ex − Eu)
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respectively, with α = (m−2)(m−4)−2Cso. The Casimir operator Cso can hereby
be seen as a central element, which gives a constant when acting on a (simplicial)
harmonic polynomial.

Finally, we note that the setRH := {Zk(x, u) : k ∈ N} we have introduced earlier,
containing the reproducing kernels for the spaces of harmonic polynomials, can
be seen not just as an irreducible representation for the Higgs algebra H3 but
also for the transvector algebra as a whole. For that purpose it suffices to see
that SxZk(x, u) = SuZk(x, u) = 0, which follows from the fact that [Sx, C] and
[Su, C] are both trivial, and the property that our kernels Zk(x, u) are up to a
constant equal to Ck1].
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