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Abstract—The twinning paradigm is a concept that embraces
end-to-end amalgamation and bridging the physical and cyber
worlds. Harnessing the power of twinning to cyber-physical
systems offers several benefits and opportunities, that are en-
countered by multiple challenges. Data integration, knowledge
representation, reasoning, and inferencing are crucial for pro-
viding dependable services to the twinned systems. To address
these challenges, an ontology-enabled approach for modelling
cyber-physical systems and their twins is proposed, which is
incorporated with an intelligent agent-driven representation of
the different elements of the system. Applied to a case study,
this approach enables representing the knowledge of the system
and its environment, capturing different aspects and integrating
heterogeneous data from various sources. This allows performing
reasoning and inferencing on the system to obtain valuable
insights and information.

Index Terms—Ontology, Agent-based Approach, Twinning
Paradigm, Cyber-physical Systems

I. INTRODUCTION

The manufacturing industry is encountering several chal-

lenges and complications (modelling the knowledge of the

system and the environment as it evolves through time,

handling data from heterogeneous components and sources,

providing dynamicity and adaptability, defining autonomous

behaviours, and managing heterogeneous components and

distributed decision-making of Cyber-Physical System (CPS))

following the massive integration of CPS and Internet of

Things (IoT) technologies within different systems to achieve

automation and smart operations [1].

The twinning paradigm or Digital Twin (DT) [2] refers

to a virtual representation of a real-world process or sys-

tem, closely mirroring its physical counterpart from multi-

perspectives in terms of properties, data and behaviour. Ob-

viously, DTs would offer several benefits to model and build

smart systems utilising the interaction between the physical

and digital worlds that establishes a dependable connection to

integrate industrial information effectively [3]. Accordingly,

designing and implementing DT for a complex CPS in a

dynamic environment requires modelling their components on

different levels of abstraction. For instance, physical systems

of DT should be provided with autonomous capabilities to

react and adapt to changes in the dynamic environment. This

task can be accomplished using an agent-based approach

[4] emphasising the individual entities, or agents, within a

system. These agents possess features and capabilities such as

autonomy, intelligence, pro-activity, and the ability to interact

with others to achieve their goals. On a more abstract level,

DTs should be able to carry on more intensive, intelligent

and complicated operations that support and provide valuable

services to the system [5].

The agent-based approach supports modelling CPS and

their DTs from different perspectives and at different layers

of abstractions. The agent-based approach can capture this

heterogeneity by modelling DTs for each component as an in-

dependent agent, accommodating variations in capabilities and

decision-making processes of each component. Thus, DTs can

be scaled up or down depending on complexity. Ultimately,

the agent-based approach has been leveraged to model and

build DTs for CPS. Monitoring, anomaly detection, and other

services can be quickly built and integrated with agents in the

CPS components and their DTs, utilizing the flexibility and

scalability of this architecture. Despite all the features powered

by agent-based DTs, they still lack managing the knowledge of

the different components in the system, inferring and reasoning

on this knowledge on demand to acquire specific information,

and defining the system components on different abstraction

levels to perform intensive and complicated tasks that require

detailed contexts and deep overview of the system’s status.

As stated in the literature, ontology is a facilitator for

providing domain knowledge of independent components of

CPS [6], [7], bridging the real-world knowledge to a digital

space. Some of the works, such as [8], utilize ontology

to cover the fundamental concepts necessary for mapping

physical devices and developing DTs, [9] present ontology-

based implementation to enhance decision-making between

collaborative entities, and [7] suggest modelling the behaviour

of the production system as a semantic data model. However,

[10] reports that there is insufficient attention to the twin

data (components knowledge) and its internal evolutionary

mechanisms as separate entities. Accordingly, agents can han-

dle the autonomous, distributive and individual encapsulation

of DTs and CPS elements. At the same time, ontology can

efficiently represent, maintain and update the knowledge of

these elements in a repository where they can be easily

retrieved.



Ontology-driven modelling methods help to represent the

systems’ knowledge by incorporating them into ontology,

which defines the concepts and relationships within the target

domain of the System under Study (SuS). The modelling

process becomes more structured and standardised. Ontology

provides a shared vocabulary and a formal representation of

knowledge, enabling effective communication and interoper-

ability between the different actors within a single system

and other systems. The integration of ontology offers pow-

erful querying, analysis, and reasoning capabilities. Specific

states, situations, and system details can be easily accessed

and analysed using ontological reasoning. This facilitates the

extraction of valuable insights and supports decision-making

processes.

By leveraging ontology capabilities and an agent-based

approach, this paper aims to establish an advancement in

modelling DTs for complex systems. Thus, it contributes to de-

veloping more robust, flexible, inter-operable, and knowledge-

rich DTs deployment. This work has shown promising results

of combining ontology and the agent-based approach to model

the knowledge and different aspects of CPS. This provides an

effective and practical approach for modelling, designing, and

implementing intelligent DTs of complex systems.

The remainder of the paper is structured as follows. Sec-

tion II describes our proposal for digital twin systems employ-

ing ontologies and agent-based systems. Section III shows how

we apply our approach in the context of a multi-robot system

for warehouse automation. Finally, Section IV presents our

final remarks and future directions.

II. THE PROPOSED APPROACH

The proposed approach leverages the power of ontologies

coupled with the agent-based DTs deployment [11], [12].

This way, the system represents CPS entities distributively

as autonomous agents with their capabilities and behaviours.

Ontology representation can capture and model complex rela-

tionships, semantics, and domain knowledge. This enables us

to gain a contextual understanding of the system’s behaviour,

interactions, and dynamics in the environment, which might

comprise a set of other operational and related systems, as

envisioned in Fig. 1.

Fig. 1. The Generic Overview of the Ontology Enabled Agent-based DTs.

The architecture describes the realization of the ontology-

integrated agent-based digital twins, which comprise twofold

and is exemplified in Fig. 2.

A. Agent-based DTs

The box on the right side in the architecture given in

Fig. 2 is the Agent-based Digital Twins deployment,

which is the actual implementation of DTs of a particular CPS

elements (e.g., sensors and actuators of the robot) powered

by agents as in the multi-robot case study. This system

consists of multiple mobile robots modelled as autonomous

agents (Physical Agents) in the Physical Agents

Layer to collect information, operate and control (movement,

orientation and navigation) the system. Then, DTs agents

(Digital Agents) are virtualized and twinned for each

component of the implemented CPS to provide the Digital

Twin Services in the Digital Agents Layer.

B. Ontology Integration

The proposed architecture benefits from ontology and lever-

ages its concretisation (Knowledge Graph) as elucidated

in Fig. 2, which describes the deployment of the second part.

The ontology is designed, defined and instantiated considering

the system’s requirements and identifies precisely which parts

of system knowledge should be modelled. It might contain

knowledge of the system components or other processes and

states or the environment knowledge, including its character-

istics, conditions and dynamics.

We have used Ontology Modeling Language (OML) and

its IDE (Rosetta1) to define ontologies. From the OML

vocabularies, we can derive the Web Ontology Language

(OWL)/Resource Description Framework (RDF) specifications

that are loaded in a Fuseki Server2. Fuseki is part of Apache

Jena, a Java framework for building applications based on

semantic web technologies like RDF and OWL. With Fuseki,

it is possible to deploy a server for storing graph structures

based on RDF triplestores. The graph can be queried using

SPARQL3, which is a W3C standardised declarative language

to query RDF using a notation similar to SQL. SPARQL

provides statements not only to retrieve data but also to

insert or delete data in the RDF graph, enabling updating the

knowledge of agents-based DTs. Using Fuseki, we can expose

SPARQL endpoints in order to allow external applications to

execute SPARQL statements for updating or querying the RDF

graph. Fuseki also has a built-in Web Graphical User Interface

(GUI) that enables users to perform SPARQL statements.

Therefore, in our architecture, we use the OWL/RDF seriali-

sation to represent the knowledge graph that follows the ontol-

ogy defined in OML. This graph is materialised in the Fuseki

server, and we expose SPARQL endpoints to allow interaction

with the knowledge graph. This interaction is orchestrated by

a REST API that exposes services for the Agent-based

Digital Twins to interact with the knowledge graph. The

1https://github.com/opencaesar/oml-rosetta
2https://jena.apache.org/documentation/fuseki2/
3https://www.w3.org/TR/rdf-sparql-query/



exposed services provide capabilities for both keeping the

knowledge graph up-to-date with the digital twin, but also,

to perform reasoning on the data to support the digital twin’s

decision-making. Lastly, the web GUI provided by Fuseki can

also be used to interact with the knowledge graph, for instance,

to execute some query that is not yet available as a service.

Nevertheless, the user must own skills to manipulate SPARQL

and be aware of the concepts and relationships of the ontology.

Fig. 2. The System Architecture of Ontology-integrated Agent-based DTs.

III. CASE STUDY & SCENARIOS

This section presents a specific case study to illustrate our

exploration of using ontologies for agent-based twinning.

A. Case Study

Warehouse logistics refers to an automated multi-robot

warehouse that shifts from traditional manual labour to more

automated methods using mobile robots, which are self-driving

vehicles that carry products, packages and materials within the

warehouse [13].

Implementing multi-autonomous robots within a warehouse

environment offers several benefits by improving processes,

such as task allocation, picking, sorting, and transportation.

However, designing and building such a complex system and

modelling the dynamics of the environment where the robots

operate puts several challenges and requirements (safety,

knowledge representation, managing operations, data integra-

tion, power management and handling scalability) that should

be addressed and satisfied. Thus, an effective modelling ap-

proach is needed to design, model and manage the knowledge

and data of the CPS components and the environment. Knowl-

edge and data are used to analyse, measure, and monitor the

system’s behaviour to take the most appropriate actions.

In order to establish this system, the proposed approach

is used to model the agent-based part, and the ontology

deployment is also realised accordingly. Thus, the agent-based

DTs implementations (i.e., the box on the right of Fig. 2) of

the warehouse system are provided by utilizing the framework

presented in [12]. That being the case, the DTs of the multi-

robot warehouse is deployed by agents (using the JADE4 MAS

4https://jade.tilab.com/

platform) and ready to be used but without any ontological

reasoning capabilities.

Integrating ontology into such a bare-bone system enriches

and adds several advantages in the context of knowledge repre-

sentation, managing data from different sources, and inferring

the knowledge to support reliable decision-making of this

system. For this reason, the realisation of the ontology (i.e.,

the box on the left of Fig. 2) is considered using the stack of

technologies presented in Section II. Fig. 3 depicts a simplified

graphical representation of the developed ontology in OML.

Here we have concepts to represent the warehouse digital

twin, its physical environment and layout, and the robots that

drive through this layout. The robots move according to their

movement task, which indicates a motion through a line of

the layout from one vertex to the other. Other types of tasks

may exist, for instance, picking a package, but they are not

depicted here for simplicity.
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Fig. 3. Partial Ontology Representation for the Warehouse Case Study.

Once the ontology is developed and validated in Rosetta,

we generate the OWL/RDF files to be loaded into the Fuseki

server to materialise our Knowledge Graph (KG). Once the

Agent-based Digital Twins part is running, it uses

the REST API to feed the KG with data. Likewise, it reasons

and performs inference over this data.

The end of this step results in an ontology-integrated agent-

based DTs of the target system. The following subsection is

dedicated to presenting some real-case scenarios of the benefits

of this integration and how it would favourably add powerful

features and capabilities to the system.

B. Multi-Robot Warehouse Scenarios

The studied and inspected scenarios are given in the con-

text of the multi-robot warehouse system. The warehouse’s

environment and the setup are sketched in Fig. 4. Simply, a

determined map of the warehouse environment contains lines

and vertices (A, B, etc.), which are connected to define the

trajectories the robots should follow. The vertices represent

either a package destination (picking or delivery) or a charging

station. The warehouse is equipped with ultra-wideband tech-

nology for indoor localization in the warehouse system. Thus,



the trajectories mentioned earlier are virtually determined

in the warehouse. Basically, missions and movement tasks

are distributed and assigned to various robots through the

warehouse control system. Every individual robot can have

several movement tasks, and every single movement task is

represented by one directed line between two vertices. The

robot can start from any location along the movement task

between two vertices. For example, it can be denoted as A⃗B,

which connects an initial point A with a terminal point B and

vice versa, as illustrated in Fig. 4.

Fig. 4. The Schematic Overview of the Warehouse Map.

a) Collision Detection Scenario: Collision detection is

essential for maintaining the safe and effective mobility of the

robots throughout the warehouse. The main goal of collision

detection is to prevent robots from crashing into one another or

other objects, reducing the possibility of downtime, damage,

and potential safety risks.

Predicting a collision usually relies on incorporating extra

external sensors, such as onboard visual systems or RGB-

D cameras strategically positioned in the surroundings [14].

Many methods and algorithms have been developed to im-

plement collision-free robots. Yet, based on the screened

literature, ontology has not been considered to model and

address this problem. In this scenario, we show how the

robots and the environment are modelled using ontology (KG)

and integrated into the agent-based DTs of the warehouse.

Every robot agent updates its corresponding instance’s status

(e.g., position, speed, etc.) in the KG. Based on the queried

situation, the agent gets information about possible collisions

by inferring the available knowledge.

Collision detection has been deployed with ontology by

identifying and calculating some of the properties of the robot

and the environment. We list some possible collision scenarios:

(1) Find the Estimated Time of Arrival (ETA) of every robot

that drives to the same vertex (located on different lines) to

detect a possible collision at that specific vertex; (2) Identify

a possible collision between two robots driving to the same

vertex but at different speeds. In this case, the faster robot will

collide with the slow robot’s rear part; (3) Detect a collision

between robots located on the same line but driving in opposite

directions towards each other. Listing 1 illustrates a concrete

example of a SPARQL query used to calculate ETA for the

first collision scenario.

In principle, robots have different velocities, and they oper-

ate in the environment in different locations as they perform

different tasks. The KG is updated accordingly based on

the new information and the environment dynamics. Thus,

this query calculates the ETA by considering the robot’s

velocity, current position and the distance to reach a particular

intersection point where a collision might happen.

1 PREFIX rob: <http://ua.be/warehouserobots/vocabulary

→֒ /robot#>

2 PREFIX base: <http://ua.be/warehouserobots/

→֒ vocabulary/base#>

3 PREFIX wh: <http://ua.be/warehouserobots/vocabulary/

→֒ warehouse#>

4 PREFIX afn: <http://jena.apache.org/ARQ/function#>

5 SELECT ?robotID ?robV ?dis ?eta WHERE {

6 ?robot a rob:Robot .

7 ?robot base:hasIdentifier ?robotID .

8 ?robot rob:hasCurrentPosition ?pos .

9 ?robot rob:hasVelocity ?robV .

10 ?pos rob:hasX ?robX .

11 ?pos rob:hasY ?robY .

12 ?robot rob:hasTask ?task .

13 ?task rob:hasIndex 0 .

14 ?task rob:fromVertex ?fromV .

15 ?task rob:toVertex ?toV .

16 ?fromV base:hasIdentifier ?fromVID .

17 ?toV base:hasIdentifier ?toVID .

18 ?toV wh:hasX ?vX .

19 ?toV wh:hasY ?vY .

20 bind((?vX-?robX)*(?vX-?robX) as ?subx)

21 bind((?vY-?robY)*(?vY-?robY) as ?suby)

22 bind(afn:sqrt(?subx+?suby) as ?dis)

23 bind(?dis/?robV as ?eta)

24 }

Listing 1. Finding the Estimated Time of Arrival (ETA) of Every Robot.

Lines 1-4 define prefixes that are used in the query to make

it more concise. Line 5 specifies what is being returned, in

this case, the robot identifier, the robot velocity, the calculated

distance to the vertex, and the ETA. Lines 6-19 determine the

patterns to be found in the KG. For instance, Line 6 defines a

variable ?robot that must be typed by rob:Robot (see Fig. 3).

Using these patterns and mapping elements to variables, we

can access the relevant data in the KG. For calculating the ETA,

we need the current position of the robot (?pos), its velocity

(?robV), and the position of the vertex the robot is going

(?toV). Then, from lines 20-23, we perform the calculations

for the ETA, binding the results to variables.

TABLE I
RESULTS OF THE ETA QUERY.

robotID robV dis eta

r1 14.0 1328.0 94.85

r2 24.0 2500.0 104.16

r3 28.0 772.0 27.57

r4 20.0 1078.0 53.90

r5 20.0 1078.0 53.90

Table I shows the results of conducting such a query for

five robots. The query shows information about every robot,

the robot ID (robotID), its velocity (robV), the distance to

reach a particular destination (dis) based on that situation, and

finally the estimated time of arrival to that destination (eta).

However, this query is part of a more extensive query that

calculates each robot’s ETA and compares the ones that aim



to reach the same vertex. Considering a threshold determined

to anticipate the future closeness of every robot to each of the

other robots that drive towards the same destination, we can

return the ones that will probably collide at that point based

on the difference of the calculated ETA.

Collision detection includes several queries, and multiple

factors are considered. Agent-based DTs can use the REST

API to update the shared knowledge in the KG instances and

seamlessly access and retrieve the information by executing

queries autonomously and collaboratively with other agents

making the most appropriate decision in such a dynamic and

uncertain environment to avoid the collision.

b) Power Efficient Scenario: The lack of efficient power

management systems and methods for mobile robots in large

dynamic/unknown environments limits their usage and appli-

cations [15]. Therefore, robust and long-haul power manage-

ment solutions in mobile robots are required. For this reason,

users can benefit from using our proposed approach to model

and design energy-efficient mobile robots.

The goal of this scenario is to enable the robots to au-

tonomously navigate in their environment and effectively esti-

mate their battery consumption for a particular movement task

and then select the closest charging station and most efficient

route from their location if the battery level is insufficient

to complete the task. This is performed by inferring the

information from the current knowledge of the robots and

the environment. The steps considered in this scenario are

enumerated as the following, (1) Calculate the Estimated

Battery Consumption (EBC) for the final destination if the

robot has multiple movement tasks; (2) Compute the EBC for

every line (the whole path) and calculate the EBC for the

closest charging station.

First, we identify the EBC, which depends on how much

power the battery the robot consumes every second. Since we

are using a LEGO Raspberry Pi-BrickPi5, as an estimation, a

robot powered by fresh AA batteries may have a consumption

rate of around 1-2% per minute during active operation. Thus,

we assume the battery consumption rate to be 0.025% per

second. This leads to multiplying ETA by the consumption rate

(0.025%) in order to compute the EBC of a robot’s mission.

Finally, a query is executed to find the difference be-

tween the current battery level and the calculated EBC

to decide whether the robot can reach the destination (if

EBC <= RobotBatteryLevel → Continue) or must

charge its battery in the nearest battery station (if EBC >

RobotBatteryLevel → Charge). Note that these concepts,

like batteryLevel and batteryConsumptionRate, are available in

the ontology. This allows us to reason on the desired property,

in this case, the EBC.

IV. CONCLUSION

In conclusion, this paper has explored the concept of

enabling CPS with agent-based DTs integrated with ontolo-

gies. Integrating ontological knowledge and the agent-based

5https://www.dexterindustries.com/brickpi

approach has shown significant potential in enhancing the

capabilities and effectiveness of DTs in the context of CPS

and its environment. By leveraging ontologies, which formally

represent domain knowledge, such as in the implemented case

study of the multi-robot warehouse, DTs of the robots can

better understand and reason about the system they represent,

leading to improved decision-making, system performance and

utilisation of resources in the warehouse.

Through the deployment of agents, DTs become intelligent

entities capable of autonomously interacting with the physical

world through their representative physical agents, acquiring

and processing data, and making decisions by inferring and

reasoning on existing and updated knowledge. The ontology-

enabled agent-based DTs show a good potential to design

complex CPS where the system is comprised of heterogeneous

distributed components, and the knowledge of the system

comes from different sources. We plan to explore scenarios

like this in the future using federated KG, including the con-

cerns with scalability and performance of the whole system.
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