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Abstract

Digital Twin (DT) mainly acts as a virtual exemplification of a real-
world entity, system, or process via multi-physical and logical models,
allowing the capture and synchronisation of its functions and attributes.
The bridge between the actual system and the digital realm can be
utilized to optimize the system’s performance, forecast and predict its
behaviour. Incorporating intelligent and adaptive reasoning mechanisms
into DTs is crucial to enable them to reason, adapt, and take effi-
cacious actions in complex and dynamic environments. To this end,
we introduce an approach for deploying agent-based digital twins for
cyber-physical systems. The foundation pillars of this approach are (1)
integrating the concepts, entities, and relations of Zeigler’s modelling
and simulation framework from the perspective of agent-based digital
twins; (2) utilizing an expandable and scalable architecture for design-
ing and materializing these twins, which handily enables extending and
scaling physical and digital assets of the system; finally, (3) a two-tier rea-
soning strategy; reactive and rational models are conceptually redefined
in the context of modelling and simulation framework of agent-based
digital twins and technically deployed to boost adaptive reasoning and
decision-making function of DTs. As a result, an implemented simula-
tion and control platform for a multi-robot system demonstrates the
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approach’s applicability and feasibility, manifesting its usability and effi-
ciency. The platform represents physical entities as autonomous agents,
creates their DTs, and assigns adequate reasoning capability to pro-
mote adaptive planning, autonomous resource management, and flexible
logical decision-making to handle different situations and scenarios.

Keywords: Agent-based Modelling, Multi-agent Systems, Digital Twins,
Reasoning, Multi-robot Systems

1 Introduction

Over the past decade, significant and rapid technological progress has been
made in various fields, leading to a new era in industry and manufacturing.
This shift in technology, driven by digitization, leads to replacing traditional
systems with smart, self-organized, and adaptive systems as requirements and
the complexity of systems significantly increase.[49] Besides achieving inter-
operability and easy integration with other solutions, new systems promise to
provide better efficiency, accuracy, speed, and reliability.

Digital Twin (DT)[18] is becoming a momentous technological concept
and primary tool to achieve digitization and digital transformation in differ-
ent domains, such as smart manufacturing.[65] With the emergence of DT
technology, previously challenging and tedious tasks can now be performed
virtually while connecting with the real-world environment. A dependable way
of designing, testing, and studying a system is by using computer simula-
tion. With respect to that and not exclusively, computer simulation is used to
understand a system and develop an operational solution.[40] Consequently,
exploiting and integrating DT as a simulation tool has countless opportunities
and advantages.

Cyber-physical systems (CPS) and the Internet of Things (IoT)[22, 42]
play a crucial role in fulfilling the requirements for building complex physical
systems. However, CPS/IoT contains multiple interconnected parts and com-
ponents. Their complexity increases as more subsystems and sub-components
are included and connected. Exploiting DT capabilities for these systems is
crucial in tackling the complexity and enhancing various aspects of the sys-
tem’s life cycle. However, creating DT for complex, large-scale, distributed,
and heterogeneous systems such as CPS is a non-trivial task.

From this perspective, agent technology and multi-agent systems (MAS)
have several advantages to seamlessly design and build complex industrial
CPSs[32] and create/integrate/deploy their DTs.[36] Some of their significant
merits: (1) modularity of agents enables easy scaling up/down of the designed
system depending on its complexity and requirements; (2) distributed agent
architecture supports parallel control/processing and decentralized decision-
making; (3) the high degree of flexibility and adaptability make agents



well-suited for designing, modelling, and deploying complex and dynamic sys-
tems that contain a massive number of components whose requirements are
subject to updates, changes, and modifications; (4) intelligent and collabora-
tive decision-making of agents is ideal for representing systems where multiple
actors must collaborate to accomplish a mutual objective. Overall, using agents
and the MAS paradigm can make a leap forward and support the design and
assembly of flexible, adaptable, scalable, sustainable, and robust DTs for CPS.

Multi-robot system (MRS)[53] is a type of robotic CPS that involves mul-
tiple robots working together. These robots may be physically connected or
completely separate and have different capabilities and roles within the system.
MRS is a complex and dynamic system that requires coordination capabilities,
allowing the robots to communicate and collaborate effectively to achieve their
tasks accurately. According to the current statistics and a forecast prepared
by the International Federation of Robotics (IFR)1, the number of operational
robots, especially in the industry has increased during the last few years and
will continue to do so, as reported in Fig. 1. Besides industry, robotic sys-
tems such as MRS can be leveraged in various applications, such as logistics,
medical, and environmental domains.

Fig. 1 Annual installation of industrial robots.

Leveraging the advantages of agents and MAS technology, a distributed,
flexible, adaptable, and scalable agent-based[31] cognitive DTs[1, 14, 3] can be
designed and implemented for any CPS such as MRS. Multiple heterogeneous
elements and components of a system can be associated with agents to sup-
port decision-making and problem-solving procedures during the operation of

1International Federation of Robotics - https://ifr.org/



agents in a dynamically changing environment. To realize this conceptualiza-
tion, different types of autonomous agents that encompass simple and complex
cognitive reasoning capabilities should be incorporated into the DTs of the sys-
tem components (e.g., robots) to enable them to solve any problem they face
efficiently and make the most appropriate actions according to the situation
and the scenario.

However, supporting DTs with simple and advanced cognitive decision-
making capabilities requires understanding the requirements of the correspond-
ing physical twins and how they behave/operate in the real environment. In
addition, incorporating different operational characteristics, behaviours, and
actions inside an individual agent may cause a conflict in their decisions and
result in contradicting solutions and actions for a specific problem. Conse-
quently, it is of paramount importance to provide a framework amalgamated
and empowered by modelling and simulation capabilities for managing and
orchestrating different types of agents within the DT of the system and mak-
ing them available seamlessly on the fly so the system operator can painlessly
assign the proper type of agent reasoning for the suitable task.

For instance, in a scenario where real-time stimuli/action is needed, an
agent with reactive capabilities can be assigned to this situation where the
response/action of the agent is based on perception, and actions are taken in
a real-time manner. On the other hand, rational agents are designed to handle
dynamic and uncertain environments and provide goal-oriented reasoning and
long-term cognitive thinking.[3]

The two primary types of agents, reactive and cognitive, present diamet-
rically opposing solutions, but in reality, they can be seen as complementary.
Hence, it is feasible to develop hybrid architectures that integrate both
approaches to construct more adaptable and flexible solutions (agents) for
problem-solving by considering factors like response time, precision, efficiency,
and long-term benefits.[41]

Aligning with what was previously mentioned, the major contributions of
this paper are enumerated in the following points:

1. It strives to introduce a conceptual framework that takes advantage of
agent technology and uses a well-founded architecture for designing DTs
for complex CPS according to the modelling and simulation concepts and
relations.

2. It expounds the twinning concept in the proposed framework and mate-
rializes it between physical and digital worlds via agents; besides, it
incorporates a reactive and rational decision-making capacity into DTs of
the actual system and redefines how these cognition abilities operate and
communicate inside the physical and digital representations of a DT.

3. It implements a simulation and control platform that deploys agents repre-
senting the physical system of the MRS and its DTs. The platform offers
multi-perspective reasoning and cognitive mechanisms (e.g., reactive and
rational). It can assign reasoning methods for the robot’s DTs on the fly, and
it enables real-time control and simulation of the physical robots by means



of their DTs, which analyze and examine the available knowledge and envi-
ronment dynamics that the actual systems convey. Then, they extrapolate
and take actions and decisions based on their reasoning capabilities.

2 Background

This section presents the background and the basic concepts of intelligent
agents and multi-agent systems, their application in the domain of CPS and
multi-robotic systems, the DT concept, and finally, the positioning technology
used for navigation in MRS.

2.1 Intelligent Agents and Multi-Agent Systems

The term software agent has roots in the early times of computer science and
artificial intelligence (AI) discipline. Obviously, software or a computer sys-
tem operating in an environment and taking action to achieve its objective
is an agent. Following this definition, agents that function stably and rigidly
in dynamic, unpredictable, rapidly, and constantly changing environments are
considered intelligent or autonomous agents[60] due to their abilities to adapt,
react, and take proactive procedures. In alignment with this definition, a MAS
is a system that consists of multiple agents deployed in an environment to
influence its perimeter. The primary objective of a MAS is to solve complex dis-
tributed problems autonomously and collaboratively, which cannot be solved
by individual agents.

Several systems require more advanced, adaptive, and autonomous
decision-making mechanisms[58, 13] that can be efficient, reliable, and agile
as some systems are time-sensitive and must take immediate actions in spe-
cific situations. Thus, a dedicated intelligent and autonomous software agent
should be in charge of executing such missions. However, in general, and at a
high level of the agent theory, an agent can embody various forms of entities,
such as a machine, part or software.[2]

Conventionally, to call software as intelligent is a philosophical and open
argument. But at least minimum requirements should be met to have intel-
ligent characteristics in software. In this paper, we define intelligent agent
software as one that operates in its environment robustly and flexibly, avoids
failures, and eventually is capable of achieving its designed objectives.[60, 2]
In the following points, we summarise some properties and characteristics of
Intelligent Agents.[60]

• Reactivity: in order to understand the environment and its
surroundings, an intelligent agent should be able to perceive and
sense the environment, respond and act accordingly.

• Pro-activity: agent pro-activity is the ability to initiate and
operate based on goal-oriented behaviour that makes the agent
able to reach its goals and objectives without waiting for
external triggers



• Sociability: intelligent agents should communicate and inter-
act with other agents in the same or an external environment;
this interaction could be as a source of information required to
complete a specific task internally or to reach a mutual objective
on the level of a whole system.

Beyond the abstract definition of agents, an agent can be classified based on
its internal structure and how it functions and operates in the environment.[60]
For instance, there are two common architectures of agents: reactive model
and rational model, such as the belief-desire–intention (BDI).[10, 52]

2.2 CPS and Multi-Robotic Systems

CPS is a type of system that integrates both physical and computational
components. CPS usually requires interaction between physical and virtual
computational entities to observe and perceive the environment using physical
components, such as sensors, or control and regulate the environment using
actuators.

MRS is a system that comprises multiple robots (i.e., CPSs or Cobot)
that work together to achieve their internal goals and the system’s common
objective.[53] These robots can be either physically linked or separated, as they
have different roles, capabilities, and features within the system’s functionality.
MRS can be classified into two types: (1) homogeneous, which is composed
of robots that have the same physical characteristics and capabilities, and
(2) heterogeneous, which is comprised of robots that have distinct physical
characteristics and components.

Integrating the software agent into CPS, such as MRS, may facilitate the
programming of these systems at a higher level of abstraction than conven-
tional methods. When a software agent deployed into the cyber part acquires
control of the somatic components of a CPS instance, it can influence its
environment via behavioural definition. However, deploying these agents onto
an existing system may not be feasible considering the cost, safety, and
size that emerged from the physical constraints. The target system can be
scaled down as an alternative, preserving the main functions and require-
ments and considering composability and modifiability. The LEGO may be
utilized as a technology[44, 8] to mimic a CPS instance as it has (de)-
composable and reusable concrete materials, including sensors and actuators.
Consequently, LEGO was preferred for providing miniaturization and instru-
mentation for actual robotic CPS implementations for the purpose of research
and experiments.

2.3 Digital Twin (DT)

Life-cycle management of complex systems requires new approaches to reduce
resource use, cost, and time, from development and deployment phases to run-
time sustainability. Modelling and simulating these physical systems in the
cyber world (i.e., virtual space) can be a solution to achieve the mentioned aims



and provide better interpretation and monitoring of the system’s behaviours.
DT, which inherits the modelling and simulation methods, is an advancing
concept to deal with the various behavioural problems that emerge in the
complex system of systems.[19]

The DT can be defined as a technology that digitalizes a physical entity,
object, or process based on the feature of interest in those entities. This twin
can be constructed in the cyber domain from the flow of digital information
between itself and the system it represents through its life cycle. A real-time
data flow between the physical and digital parts is essential to represent the
twinned entity digitally. The continuous data gathered on the cyber side can
be used to develop a new product version, improve the operational system,
manage and analyze its behaviour, reason about its current status, and predict
its future attitude.

Generally, a complex system and its functionalities may require a deep
understanding of its heterogeneous correlated sub-functions and components.
Therefore, the twins’ data play a vital role, and it can be visualized to provide
insights for the human actors, raising awareness and allowing better interpre-
tation of these complex systems. The past states of the system can also be
preserved as historical data and evaluated irrespective of the current state of
their physical counterparts.

Moreover, the collected data can be perused to predict the physical sys-
tem’s global status or any centre of attention property based on its twin.
This way, unpredictable and undesirable emerging behaviours/scenarios can
be minimized or even mitigated. In our study, the system’s DTs (atomic twins)
control the agent-based CPS instances, collect the data, analyze the status of
each instance, and send action and feedback to the corresponding cyber twin
according to their states.

2.4 Positioning System

The technology used in this study for positioning and localization of CPS ele-
ments is the Ultra-Wide-Band (UWB). It is a radio technology that operates
in a short range and consumes low energy. Its high bandwidth makes it a suit-
able choice for indoor environments as it is more interference-resistant than
Wi-Fi technologies. Therefore, it works in a concentrated material environ-
ment with high accuracy.[30] This way, mobile MRSs utilize this technology
to achieve indoor localization. In addition, UWB signals can operate in an
environment where other short/large-range wireless communications signals
exist. This enables us to use Wi-Fi-based embedded boards to achieve wireless
communication and deploy agent software on mobile robots.

3 Related Work

Due to the wide range of DT applications, the research community and
industry have put much effort into realizing and implementing dependable
DT systems. Thus, multiple literature review studies have been conducted



to explore the potential of the twinning paradigm, enabling technologies,
challenges, and road blockers, to name but a few.[61, 22, 23, 56]

Building a DT for a CPS system typically involves mimicking the behaviour
and collecting information about physical components to form virtual represen-
tations. DTs’ distributed and heterogeneous nature, as they compose physical
and cyber components and sub-processes, raises several challenges that hin-
der DTs’ easy design and deployment. Thus, well-grounded technologies and
design approaches are necessary to address and handle these challenges. In our
study, we aim to leverage the agent-based paradigm as an enabling technol-
ogy to address several challenges, such as representing heterogeneous physical
and digital actors, implementing intelligent reasoning mechanisms, and man-
aging the distributed nature of CPS systems as we deploy our solution in a
distributed multi-robotic system.

This section categorizes related works into four categories: intelligent agents
and MAS, agent-based CPS and robotic systems, DTs for multi-robotic sys-
tems, and agent-based DTs. A comparison table is then provided to show the
gap we aim to fill with this study.

3.1 Agents and Multi-Agent Systems

Nowadays, MAS is widely regarded as a practical approach and efficient
programming paradigm for modelling, designing, and implementing different
distributed system applications and understanding the complex interactions
between individual entities.[40] Different systems are deployed using the MAS
approach in grid energy management[54], energy optimization[17], oil and gas
industry[20], manufacturing and control[50], supply chain and logistics[26],
robotics[48] and numerous other domains[50].

This broad utilization of MAS and agents in various domains makes
them an interesting topic for academic research and industrial applica-
tions. Thus, several surveys and reviews have been conducted to expose
the potential, advantages, challenges, and current trends of MAS in differ-
ent topics.[43, 33, 41, 62, 34, 25] In essence, the core scope of MAS mainly
focuses on designing, simulating, and implementing systems where many com-
ponents interact with each other, and they have complex dynamics, significant
variability, and different constraints.[41]

Now, more than ever, MAS relates to the realms of industrial digital trans-
formation and achieving sustainability in industrial solutions.[25] Nevertheless,
the advent of CPS and its implementation in different fields has opened up
opportunities for agent-based methodologies. The rationale behind this lies in
the seamless alignment of agents’ inherent attributes and abilities, which can
be harnessed to tackle the CPS challenges effectively.[24]

Agent technology could powerfully support dealing with and managing
CPS from different aspects and be one of the key enablers for realizing Indus-
try 4.0-compliant CPS solutions. For this reason, this paper delves into the



theoretical and technical implementation of MAS and intelligent agents. It pro-
motes deploying DTs for CPS integrated with advanced reasoning mechanisms
powered by MAS and agent paradigms.

3.2 Multi Agent CPS and Robotic Systems

Over the years since the agent-based theory was founded, more attention
has focused on providing agent-based conceptual architectures, middle-ware
structures, and implementations for real-world applications.

Soriano et al.[57] proposed a multi-agent platform to address collision
avoidance in mobile robot systems using a systematic approach. They utilize
the advantages and cooperative capabilities of MAS. Their proposed method
has four stages: detecting collisions, identifying obstacles, negotiating, and
avoiding collisions.

Lee et al.[28] introduced a five-layer architecture to implement CPS for
Industry 4.0-oriented manufacturing systems. Their proposed architecture con-
sists of a smart connection level for acquiring data from physical components,
a data-to-information conversion, a cyber level as a central information hub, a
cognition layer for generating knowledge of the component, and lastly, a con-
figuration level for providing feedback from the cyber domain to the physical
world.

Introducing an architecture for agent-based CPS, Sanislav et al. [55] con-
sidered a cloud layer where simple-reflex agents developed using the JAVA
Agent DEvelopment Framework (JADE) are located. The middle networking
layer delivers the control actions to the bottom sensing and actuation layer.
The information exchange between the CPS components is done in the net-
working layer. The approach provides benefits such as modular composition,
efficient resource utilization, and adaptation. Modularisation can enable flex-
ible and scalable system extension in a combinational manner. The collected
data and captured events can be used for optimization. Adapting to environ-
mental changes can be achieved by providing self-adaptive capacity based on
the data collected from the operation perimeter.

Qi et al.[51] inspected the CPSs’ evolution through the DT paradigm.
After defining the cyber and physical world spaces, the DT enhances the CPS
interaction and integration, considering real-time data flow. Moreover, they
examine the harmony of the DT and CPS under three levels: unit level, system
level, and system of systems (SoS) level.

Yahouni et al.[63] presented a three-layer conceptual architecture similar to
what Sanislav et al.[55] demonstrated in a previous study. Agents are employed
to program CPSs in the manufacturing domain. The agents are deployed with
JADE and are utilized at the management layer to gather data and extract
the KPIs of the system for decision-making, while the application layer retains
databases, algorithms, and system status. Lastly, the physical layer is defined
for sensing and actuating purposes.



Onyedinma et al.[47] explained connecting the Robot Operating System
(ROS) with the BDI reasoning mechanism. This was demonstrated in a simu-
lated environment. ROS manages the links to low-level sensors and actuators,
while the BDI reasoning process manages high-level reasoning and decision-
making. Sensory information is sent to the reasoning system as perceptions
through ROS. The perceptions are analyzed, and an action string is returned
to ROS for interpretation, which makes the required actuator act accordingly.

3.3 Agent-Based Digital Twins for CPS

Agent-based digital twin extends the capabilities and the value of the agent-
based CPS by creating digital representatives of the agentive versions of the
physical instances. This section highlights prior works on DTs, focusing on
those incorporating the agent paradigm.

Focusing on cloud technology, Alam and El Saddik[4] propounded an archi-
tecture for a cloud-based CPS DT (C2PS) using a model that helps to identify
the level of interaction between basic and hybrid modes of computation, com-
munication, and control. The implementation connects physical components
with cloud-based counterparts and uses a Bayesian belief network and fuzzy
rules for self-reconfiguration.

In another DT application, Braglia et al.[9] presented an agent-based simu-
lation model for a paper products warehouse that uses UHF RFID technology
and DT to optimize routes and handle congestion.

Ambra and MacHaris[6] demonstrated a proof-of-concept of constructing
a DT by integrating physical and virtual spaces, using ABM and MAS to
provide self-awareness to agents.

Considering the IoT technologies, Clemen et al.[11] discussed implementing
a DT in smart cities, using IoT tools and modelling and simulation approaches
with the MARS framework for large-scale MAS.

Zheng et al.[65] suggested a DT modelling approach based on a MAS archi-
tecture. The method concentrates on quality control during the manufacturing
processes and offers solutions to gather relevant information and assess the
effects on product quality. The model is based on five parts: physical enti-
ties, virtual models, DT data, services, and finally, communication channels
between components.

Lee et al. [28] provided guidelines for implementing CPS based on a uni-
fied 5-level architecture. Later on, Latsou et al.[27] adopted that architecture
and provided a 5-layer architecture for the deployment of DTs and agent-
based CPS by integrating a multi-agent cyber-physical manufacturing system
(CPMS) and RFID technology to enhance the traceability and trackability
of complicated manufacturing processes. The implementation considers inter-
actions within a single complex manufacturing system and between different
locations within a supply chain.

In another industrial application, Ocker et al.[46] described utilizing DTs,
specifically the Asset Administration Shell (AAS), to implement MASs in the
manufacturing industry. A parser gathers information automatically from the



DTs and initializes agents in a MAS, such as the Python agent development
framework (PADE).

Recently, in 2021, Erkoyuncu et al.[15] discussed an intelligent agent-
based architecture for DTs. The architecture is utilized to enhance the DT’s
robustness (including the accuracy of representation) and resilience (includ-
ing prompt updates). The approach is demonstrated using a case study of
cryogenic secondary manufacturing.

3.4 Digital Twins for Robotic Systems

In the extension of a previous conceptual design and architecture.[28], Lee et
al.[29] considered integrating DT and learning approaches to enable the shift
towards intelligent manufacturing and Industry 4.0 as the implementation has
been utilized in a shop floor case study.

Zong et al.[66] presented a method for a multi-robot monitoring sys-
tem using DT technology. The system gathers information through the data
exchange standard (OPC UA) to simulate the motion of a six-degree-of-
freedom robot (6-DOF) and provide collision detection during multi-robot
collaboration.

Table 1 compares related works reported previously. From the investigated
literature, we can conclude that providing solutions to CPS based on agents
and/or integrated with DTs has received considerable attention in recent
years. Even though DT implementations cover multiple domains, we observed
a shortage of research in the domain of agent-based digital twins for MRS.

For instance, Alzetta and Giorgini[5] presented a BDI agent-based solu-
tion for multi-robotics, but a DT integration was not considered. In contrast,
other researchers presented solutions targeting agent-based CPS driven by
DT [65, 15] in the manufacturing domain. In addition, Zong et al.[66] intro-
duced a DT for a multi-robot system for manufacturing. Meng, Wei, et al.[39]
focused on the initial exploration of combining DT, 5G, cloud platforms, and
virtual reality (VR) technologies to advance the development of autonomy in
unmanned aerial vehicles (UAVs). Regardless, the agent paradigm was not uti-
lized to design and build the system in the two latter. Besides, no reasoning
mechanisms were provided in all the aforementioned DTs.

In a nutshell, this paper attacks the gap of lacking agent-based digital
twins for CPS supported by modelling and simulation capabilities, besides
the non-availability of implementations that support adaptive multi-logical
reasoning mechanisms for DTs. It applies the principles and concepts of the
agent paradigm for conceiving and building DTs customized to the field of
mobile MRS. Also, it provides a novel approach for defining and simulating
agents during run-time and determining their reasoning model that exemplifies
and supervises the internal agent behaviour, making agents more context-
aware inside the dynamic environment.



Table 1 Comparison table of the related work

Paper Agent Inte-
gration

DT Deploy-
ment

Multi-
Reasoning

Application
Domain

Lee et al.
(2015)[28]

✓ ✗ ✗ Manufacturing
and Supply Chain

Erkoyuncu et al.
(2021)[15]

✓ ✓ ✗ Manufacturing

Soriano et al.
(2013)[57]

✓ ✗ ✗ Multi-robotic
System

Zong et al.
(2021)[66]

✗ ✓ ✗ Smart Manufac-
turing and Multi-
robotic System

Clemen et al.
(2021)[11]

✓ ✓ ✗ Smart Cities

Alzetta and
Giorgini (2019)[5]

✓ ✗ ✗ Multi-robotic
System

Zheng et al.
(2020)[65]

✓ ✓ ✗ Manufacturing

Meng, Wei, et al.
(2023)[39]

✗ ✓ ✗ Robotics

This paper ✓ ✓ ✓ CPS & Robotics

4 The Proposed Approach

In this section, we delve into our overall approach, starting with introducing
the Modelling and Simulation Framework (MSF) for agent-based digital twins,
then discussing the fundamental and conceptual reasoning methods; after that,
we describe the adopted architecture for deploying agent-based digital twins,
and finally, we conclude with the implementation-specific details of the system
deployment.

4.1 Modelling and Simulation Framework (MSF)

From a foundation and conceptual point of view, Zeigler et al.[64] developed
an MSF that outlines specifications, basic entities, and relations of modelling
and simulation (M&S). Fundamentally, the Zeigler MSF is composed of five
primary elements:

1. Source System: represents a source of data, which can be from a virtual
or real system.

2. Behaviour Database: the collected data from the system and the
environment.

3. Experimental Frame: specifies under which conditions the experiments
and observations are conducted.

4. Model: is a specification and an abstract representation of the system.



5. Simulator: the computational tool that generates the model’s behaviours.

However, Zeigler’s work on MSF did not discuss the notion of twinning
or the integration of agents into the framework. From this perspective, our
developed MSF builds upon these presented concepts, adopts and extends
the fundamental entities, and adheres to the defined relations to be valid in
the field of modelling and simulation of agent-based digital twins. Therefore,
eight main entities are proposed that constitute the novel MSF specific for
agent-based digital twins, as illustrated in Fig. 2.

Fig. 2 The MSF of agent-based digital twins.

The essential entities of the agent-based digital twin MSF are clarified in
the following points:

1. Real System: represents the actual (e.g., physical or virtual) twinned
system that is the origin and main source of data in the framework.

2. Digital Twin: is a multi-model and frequently updated digital represen-
tation of the real system.

3. Digital Agent (DA): is an agent representation of the Digital Twin in a
virtual environment.

4. Physical Agent (PA): is the agent that encompasses the real sys-
tem’s behaviours, capabilities, and features and interacts with the physical
environment.

5. Behaviours and Dynamics: are a general representation space of the
events, actions, and reactions in a dynamic environment responding to
stimuli or specific situations.



6. Virtual Experimental Frame: specifies the parameters and conditions
of the simulated experiments.

7. Real World Experimental Frame: determines the controllable param-
eters and conditions of the experiments in the physical environment to
answer the raised questions.

8. Model: is a formal specification/representation (physical, mathematical,
or logical) of the mapping between virtual and physical entities at different
levels of abstraction.

All these entities and concepts are either modelled and included explic-
itly or implicitly in our approach and inside the implemented simulation and
control platform.

4.2 Agent Reasoning Strategies

The MSF of agent-based digital twins describes the twinning relation of the
PA representing the actual (real) system and its DA resembling the DT. Mak-
ing this bare-bone MSF of agent-based digital twins more intelligent, capable,
and effective in dealing with real-world problems, another layer is needed to
provide the agents of DTs with different decision-making processes. For that
reason, combining reactive and cognitive (rational) reasoning strategies[16, 52]
in the context of DTs can offer significant and practical benefits in the decision-
making process in real-world scenarios and situations. Hence, incorporating
reactive and rational agents, such as BDI, into the MSF of agent-based digital
twins provides several advantages, such as adaptability, real-time responsive-
ness, long-term planning and decision-making, and handling uncertainty in
DTs.

For example, reactive agents excel at real-time responsiveness, enabling a
DT to react quickly to sudden changes or events in the physical world. In
contrast, BDI agents enable a DT to utilize efficient planning and consider
long-term and future-oriented goals to make informed decisions based on rea-
soning about beliefs, desires, and intentions. BDI agents engage in reasoning
based on knowledge expressed using a symbolic formalism. This knowledge
explicitly captures information about their environment, including states,
properties, and dynamics of objects within the environment and information
about other agents involved.[41]

In real-world systems, uncertainties are inevitable. Reactive agents might
struggle to handle uncertain situations that deviate from their predefined rules.
However, BDI agents can utilize their flexible reasoning mechanism to rea-
son about uncertainties, making the DT more robust and reliable in uncertain
or unpredictable scenarios and adapting to dynamic and complex conditions.
This flexibility of having more than one type of reasoning in the MSF of
the agent-based digital twins boosts the performance of a physical system
that might encounter different situations that require different problem-solving
techniques. Table. 2 compares the planning and the behaviour of the two
reasoning methods that are exploited in our approach.



4.2.1 Reactive Agent:

This part provides a description of the abstract reactive agent model using a
pseudo-mathematical notation where the function and the relation of the PA

and the DA are represented as the following. Let:

• Agentreactive denotes the reactive agent’s behaviour.
• IPA be the set of collected sensory inputs (perceptions) in the
PA that determines its current state SPA.

• ADA be the set of possible action/s that are executed by the DA
according to the satisfied rule/s from the RDA.

Agentreactive(IPA, SPA) → (RDA, ADA)

A set of predefined reactive rules describe the agent’s behaviour as the
following:

Rulei : if conditioni then actioni, i ∈ 1, ..., n

The conditioni is a particular situation evaluated by rules based on sensory
inputs IPA and the state SPA of the real system indicated in the PA, while the
actioni is the selected action/s from the ADA determined by the fulfilled rule/s
from the RDA in the DA. If that condition is satisfied, the latter executes the
action in the simulation environment; simultaneously, the action is sent to the
PA to be executed and influence the real environment.

Fig. 3 Reactive reasoning model in a digital twin.

For adapting reactive behaviour in our approach, Fig. 3 conveys the pro-
cedures of making decisions based on the perceptions handled by the PA. In



the replication process, the DA is created to represent an up-to-date instance of
the PA and its current status in a digital environment. In fact, the PA updates
its state and propagates these updates to the DA frequently. In addition, the
PA receives the action/s from the DA to influence the real world; concurrently,
the latter affects the digital world.

4.2.2 Rational Agent:

In contrast to reactive agents, rational agents such as BDI exploit their capa-
bility to select a proper plan based on their collected information about the
world and the current goals they want to achieve. This behaviour makes them
more autonomous and flexible in different circumstances. The logic of the goal-
oriented behaviour of BDI agent is described using a more complex formalism
based on beliefs, desires, and intentions.[12, 52] In addition, the inclusion of
PAs and DAs and their coordination in the deliberation cycle is depicted in
Fig. 4. Also, the abstract model is described using the following notation. Let:

• Agentbdi denotes the BDI agent’s behaviour.
• BPA be the set of beliefs (dynamic internal knowledge base
about the real world) of the PA.

• DPA be the set of designated desires or goals of the PA.
• IDA be the set of the defined intentions (representing the agent’s
plans to achieve goals) of the DA.

Fig. 4 BDI reasoning model in a digital twin.

The general structure of the BDI model maps the belief set and the desires
of the PA to generate possible intentions that will be translated into actions



by the DA.
Agentbdi(BPA, DPA) → (IDA)

Overall, the BDI model’s decision-making process and its behaviour cycle are
described by the interaction between the PA and DA. This step entails updating
the belief set of the PA within a dynamic environment, appointing its preferred
desire, forming an intention in the DA, and executing an action according to
the formed intention. The details are described in the following steps:

1. Belief Update: The agent receives sensory inputs SPA and
updates its beliefs accordingly.

B′

PA = UpdateBeliefs(SPA, BPA)

2. Desire Selection: The agent evaluates the set of desires DPA,
and then selects a desire PAd wants to achieve based on the
updated beliefs and its internal motivation.

PAd = SelectDesire(B′

PA, DPA)

3. Intention Formation: The agent forms an intention DAi that
represents a plan to achieve the selected desire PAd.

DAi = FormIntention(IDA, PAd)

4. Plan and Action Execution: The agent takes action/s DAa

based on the plan execution of the formed intention DAi in the
DA.

DAa = ExecuteP lan(DAi)

The PA regularly updates its current status and thus refreshes its knowl-
edge and beliefs using UpdateBeliefs function. Then, it delegates a goal as
requested/needed using the SelectDesire function. Finally, it sends all the
relevant and required data/information and selected goals to its replica DA

once it is created in the replication process. The DA then handles the decision-
making capability via the two functions, FormIntention and ExecutePlan,
which are pursued sequentially to form and execute the best plan, turning
intentions into actions.

4.3 System Architecture

The architecture[37] of the agent-based digital twin utilized in this paper is
based on a previous work, where it introduced the main components and the
workflow[36] for designing and building intelligent agent-driven digital twins
for CPS.[35] So, this section covers the fundamental and essential parts of
the architecture used to develop this solution. Fig. 5 illustrates the generic
high-level representation of the agent-based digital twin MSF for an MRS.



Table 2 Comparison between characteristics of Reactive and BDI agents.

Criteria Reactive Agent(s) BDI Agent(s)

Design Paradigm Follow a reactive design
paradigm. A Set of predefined
rules or mappings from sen-
sory inputs to actions primarily
determine their behaviours.

Follow a more sophisticated
design paradigm. They execute
reasoning procedures based on
their beliefs, desires (goals),
and intentions (plans).

Knowledge Rep-
resentation

Use simple reactive informa-
tion of the immediate sensory
inputs for knowledge represen-
tation.

Maintain the knowledge about
their current state and the
world as beliefs.

Goal-Directed
Behaviour

They have stimulus-driven
behaviour, responding directly
to environmental triggers with-
out long-term planning.

They have high-level goals
(desires) they want to achieve.
They evaluate the most appro-
priate available plan (inten-
tions) to reach those goals uti-
lizing their beliefs.

Flexibility and
Adaptability

Less flexible in handling com-
plex and dynamic environ-
ments, and well-suited for tasks
that require quick and efficient
responses to specific stimuli.

More adaptable and flexible in
dealing with complex, dynamic,
and uncertain environments
due to their ability to reason
about beliefs and intentions to
adjust their behaviour based on
changing circumstances.

Complexity Simple in design and imple-
mentation, as they map inputs
to actions.

More complex to design and
implement since they are used
in applications requiring long-
term planning and decision-
making.

The agent-based digital twin mainly comprises two interconnected major
worlds/regions, the cyber and the physical worlds. The first region is the
Digital Assets layer powered by MAS and accommodates DAs. This layer
encompasses two types of agents: virtual representatives of the PAs, which are
situated inside Digital Agents Organization, and the second type, abstract
agents that have a distinct function and capability, such as a Reasoning Agent

(RA) for making context-aware decisions and inferring about various situations,
a Simulation Agent (SA) for conducting simulations, a Visualization

Agent (VA) for visualizing the obtained and processed information, and a
Learning agent (LA) for improving the system through learning iterations
from past experiences. The number of agents in the Digital Assets layer is
relative to the requirements and complexity of the desired features in the DT
of the system under study.

The second pivotal part in the architecture is the Physical Assets layer,
which is also powered by MAS technology and includes the physical system
and related components represented as PAs organized inside Physical Agents



Fig. 5 A high-level overview of the MSF agent-based digital twin deployment for the MRS.

Organization to control and operate physical components and communicate
with their corresponding DAs in the Digital Agents Organization.

The adopted architecture advocates following a hybrid architectural design,
where a decentralized MAS is followed for designing Physical Assets and
their digital representatives in the Digital Assets. This allows for avoiding
bottlenecks or a single point of failure in the system, as the components are
not tightly dependent on a central unit. This option can flexibly scale up the
system and handle enormous numbers of agents and complex interactions.

In contrast, in the service and application layer of the MAS-integrated DTs,
the centralized architectural choice was preferred to ensure effective collab-
oration and coordination between agents, manage possible conflicts, allocate
resources efficiently, and provide some services that cannot be acquired from
the individual agents. Accordingly, they can be exclusively obtained from the
DTs’ application layer, where a comprehensive system overview is maintained.
As a factual example, obstacle detection in robot agents can be realized inter-
nally by their PAs. In contrast, collision avoidance between multiple robots



should be managed and coordinated via a service where an overview of the
entire system (the environment and the relevant robots) is available.

4.4 Simulation and Control Platform

In essence, the simulation and control platform for the target CPS (MRS)
is designed and implemented based on the main concepts, entities, and rela-
tions introduced in the MSF of the agent-based digital twin and also according
to the previously proposed general architecture. Agents are used to design
and deploy the two layers; the Digital Assets and Physical Assets implic-
itly represent the two environments Virtual Experimental Frame and Real

World Experimental Frame respectively, where the DAs and PAs operate.
The two experimental frames encompass the relevant elements of each. The

Digital Twin deployed as a DA inside the Digital Assets. Moreover, the
Real System incorporated within a PA in the Physical Assets. The PA and
DA are designed by taking into account the specifications and the objectives
defined by the actual system Model that preserves a Simulation Relation

between the PA and DA, and it should guarantee that it correctly simulates the
model and generates a valid output within the Virtual Experimental Frame,
while, the Modelling Relation is precisely capturing the system behaviour
just to the extent defined by the system’s objectives. Agents allow bind-
ing the two worlds continually/continuously based on the characteristics and
requirements of the twinning.

The rest of this sub-section discusses the technical details of each compo-
nent and the technologies (starting from introducing JADE and concluding
with the implemented agent reasoning models) utilized to deploy the simu-
lation and control platform. Fig. 6 exemplifies the full implementation and
deployment details. Besides agent technology, other technologies and tools
are leveraged to enable and support executing tasks, such as simulation,
visualization, and data processing.

4.4.1 JADE:

Specifically, to realize the implementation of the agent-based digital twin sim-
ulation and control platform, we have utilized one of the most widespread and
well-known agent-oriented middle-ware called Java Agent DEvelopment frame-
work (JADE2). JADE is an open-source platform that has been widely utilized
in academic research and some industrial applications for building intelligent
agent systems. It offers several features[7] for developing MASs:

1. Agent Interaction: It provides a robust communication infrastructure that
enables agents to exchange messages, collaborate, negotiate, and coordinate
their activities.

2. Agent Management: It offers tools and services for agent lifecycle manage-
ment, such as agent creation, termination, migration, and monitoring.

2https://jade.tilab.com



Fig. 6 A detailed structure of the implemented simulation and control platform.

3. Agent Behavior: It allows developers to define agent behaviours, determin-
ing how agents respond and execute their tasks.

4. FIPA Compliance: It adheres to FIPA standards, ensuring interoperability
and compatibility with other FIPA-compliant MAS.

5. Agent Mobility: It supports agent mobility, enabling agents to move between
platforms or devices during runtime.

In addition, it provides a structured framework that is composed of
the main constituents: agents, their behaviours, and the environment where
agents live, and they are called containers. This environment can boost the
programming and deployment of MAS-based applications.

4.4.2 Communication:

In alignment with using the JADE platform. The Agent Communication Lan-
guage (ACL) is JADE’s main communication language. ACL is a standard
for agent communication proposed by the Foundation for Intelligent Physical
Agents (FIPA)3. This standard facilitates message exchange and interactions
between agents. Following a specific setup, an agent with ACL-based defined
information can establish a communication channel and exchange messages

3http://www.fipa.org



with the intended agent, which may be located at a separate machine or in a
different geographical area. Therefore, various agents in our DT platform (i.e.,
PAs and DAs) can interact and send information. However, ACL messaging is
not very efficient for high-volume real-time data communication. For this rea-
son, another alternative option from the IoT technologies (MQTT) was utilized
for this purpose.

4.4.3 UWB Technology:

UWB is a localization technology, and it was discussed in the background
section. Fig. 6 shows how UWB technology is deployed in our platform. Essen-
tially, UWB main anchors have been installed in a room to provide the required
coverage to have an operational positioning system to mimic a warehouse envi-
ronment. Then, another tag called the master tag is connected to a central
server to collect the sensory data from each tag attached to any robot oper-
ating in the warehouse. Then, the localization data for all tags are retrieved
from the cloud (i.e., UWB server). Afterwards, data is published through the
MQTT broker, and the subscribed agents of the robots or other applications
receive the position updates. As MQTT technology is highly dependable in
IoT applications, it can provide reliable data exchange appropriate for the
real-time positioning of moving robots.

4.4.4 Physical Asset:

Physical systems are usually composed of hardware and software parts. Thus,
Physical Assets combine the physical components and their software imple-
mentations, which are represented as agents in our implementation. Every
individual physical system (robot) has been designed and programmed with
agents as a digital entity (PA) and then has been coupled and mapped into its
digital counterpart (DA) as illustrated in Fig. 6.

Physical Robot is the operational and actual materialization, including
different models (e.g., kinematics, architectural, and logical processes) of the
actual robot system. Robots are basically implemented using LEGO MIND-
STORMS EV3 and Raspberry Pi-powered BrickPi4. The ev3dev5 operating
system, which is based on Debian Linux, is utilized for programming and
deploying PAs’ code programmed in JADE on the robots. Besides, a UWB
tag is mounted on the robot used for navigation and localization. The concrete
robot prototype has been demonstrated in our previous study.[35]

The PA controls and instruments the CPS (robot) hardware and uses its
different models to perform tasks as designed. The physical system consists of
sensors that vary from one system to another (e.g., ultrasonic sensor, speed
sensor, position sensor) and actuators (e.g., mechanical actuator). Outputs are
generated from those sensors, resulting in environmental perceptions. In con-
trast, actuators manipulate, influence, and eventually affect the environment
through their actions.

4https://www.dexterindustries.com/brickpi
5https://www.ev3dev.org/



The robot’s components, including the sensors and actuators, are embodied
inside a singular agent in our robot design. The role of the PA is to orchestrate
all the processes, functions, and procedures of the robot so it receives specific
input from its sensors and then issues commands and actions that control the
actuators.

Ultimately, in the Physical Assets, the PA represents the physical system
according to a particular perspective and properties of interest defined by the
DT’s requirements and objectives. In conformity with what we mentioned,
Fig. 6 exemplifies the integration of the physical robot and its PA within the
simulation and control platform.

4.4.5 Digital Asset:

This layer is critically important to provide functions in the simulation and
control platform, such as agent reasoning and decision-making strategies. In
essence, a DT requires virtual representations of Physical Assets in a virtual
space with meaningful information flow between them. This means a digital
instance is required for each physical component needed to be included in the
DT.

Thus, DTs should represent the essential properties and processes of the
physical components, such as sensors and actuators. The crucial aspect of
this mapping process is ensuring that the virtual entities are kept in sync
with their physical counterparts. By creating digital counterparts of Physical
Assets, we can add new intelligent features to these physical entities in a
modular manner. For example, a physical sensor in the physical layer only
senses and sends data to its digital instance, which can perform more complex
processes in the digital layer by taking advantage of the system’s flexibility
and computation capabilities.

The DA is located in the digital space, representing the PA, which in order
represents the Physical Assets in the physical space as highlighted in Fig. 6.
These agents operate in a digital environment (cloud) and communicate with
their physical counterparts. In the introduced platform, the DA operates in
the digital domain where most of the processing is done; thus, it plays the
instructor role and guides the PA in different situations.

In this context, twinning the properties of the interest of the physical sys-
tem components in the DT is a flexible and adjustable configuration that is up
to the designer to decide the level of granularity of every twin (i.e., twinning
every sensor, actuator, and sub-process in the DT or having a single twin that
encompasses all these components and their sub-processes). In our approach,
we have followed the peer-to-peer design. Thus, a single agent represents the
entire robot system, including all its elements, features, and behaviours. This
agent will have its twin in the Digital Assets. By doing so, the communica-
tion overhead between DAs and DAs is significantly decreased since not every
individual component of the robot is represented as an agent. Above that, the
complexity of designing and programming the robot can be straightforward,
and scaling the system is more manageable and flexible.



An agent named Control Agent (CA) functions as an orchestrator and
middleware that manages the other agents’ operations. It operates in two main
parts: the platform’s graphical user interface (GUI) and the JADE container
host. The GUI is connected to the Java JADE through Py4J to send GUI
events to the CA, which, in accordance, sends commands to other agents, the
PAs and DAs. Essentially, Py4J allows Python scripts executed within a Python
interpreter to access the Java objects dynamically in a Java Virtual Machine.
This enables Java methods to be invoked from Python applications. Using
such a connection, we can send messages to the PAs and DAs in the JADE
container from the Python side of the GUI through the CA. Furthermore, CA
receives messages from the DA and passes them to the GUI.

4.4.6 Simulation and Control GUI:

The GUI is part of the presented simulation and control platform, as shown
in Fig. 6. It was designed and developed using Python and the PyQt6 library.

Mainly, the main menu interface, as depicted in Fig. 7, is intended to enable
the users of the agent-based digital twin of the MRS to perform several tasks:
(1) create DAs for physical robots, (2) define the reasoning mechanism of each
agent, (3) define paths, destinations, charging station in the environment, (4)
run simulations and perform similarity measure calculations.

The three dots with distinct colours appearing in Fig. 7 represent the posi-
tion of each robot, which is localized in real-time by a UWB tag and updated
regularly. Different configurations can be defined in the agent menu, such as
the reasoning type and unique identifier names of PAs and DAs.

4.4.7 Agent Reasoning Model:

The introduced approach takes advantage of the reasoning models provided
in the DT to deliver more intelligent feedback and instructions to the actual
system. In the following parts, we explain and clarify the deployment of the
two reasoning mechanisms.

Reactive Reasoning Deployment. As mentioned before, JADE pro-
vides an environment for programming and deploying MASs. The behavioural
model of JADE agents is based on a reactive model that makes agents act
in a stimulus-response fashion. In this reasoning mechanism, the agent per-
ceives the environment and surroundings and acts based on its programmed
behaviours toward those perceptions. Therefore, the reactive model for DA is
designed so that it reacts to messages sent from the PA, as illustrated in Fig. 3.

Examples of agent perceptions include a low-battery notification, mission-
completed acknowledgement, or obstacle detection alert. These events change
the agent’s state in the environment and are communicated between JADE
agents using ACL messages. In the situation when the physical robot runs
out of battery, it sends a low-battery message to the DA indicating the robot’s
battery has reached a threshold level, so the DA acts according to the reactive
reasoning mechanism and the predefined rules (e.g., pause the current mission
and move immediately to the closest charging station, then continue).



Fig. 7 The main interface menu in the simulation and control platform.

BDI Reasoning Deployment. The JADE platform does not support the
BDI architecture. Therefore, to deploy BDI agents within JADE, a compati-
ble implementation with JADE is required. Hence, we used a BDI extension
named BDI4JADE 6. It is provided as a layer on top of the JADE platform.
This extension offers an infrastructure to implement agents using the JADE
platform, utilizing the Java language to develop BDI-based agents.[45]

BDI agent consists of a dynamic beliefs base, a plan library, and a set of
defined goals. Plans are composed of rules that define specific procedures that
dictate when a plan should be executed to achieve a goal or update the agent’s
beliefs. Utilizing the BDI4JADE, features provided by JADE are reused and
leveraged as much as possible to model the beliefs, plans, and goals of the BDI
agents. Therefore, using the JADE platform and BDI4JADE, the BDI and
Reactive reasoning mechanisms are designed and programmed in our platform.

As indicated, a DA implements two reasoning capabilities (BDI and Reac-
tive). Any reasoning mechanism can be selected and specified for a particular
DA. Hence, heterogeneous agents with different reasoning mechanisms can
operate simultaneously in the environment.

6https://github.com/ingridnunes/bdi4jade



5 Case Study

To drill down further and gain a better understanding, we show a comprehen-
sive case study to shed light on the features and capabilities of our approach
and the realized platform. These details are elaborated on using an example
of a smart logistics warehouse. Warehouse management demands employing
intelligent and automated methods to reduce the load on workers and achieve
efficiency, accuracy, and low cost. In this regard, the robots in MRS mimic a
semi-real-world context in a warehouse. MRS is integrated with the simulation
and control platform for creating DTs for the robots to provide efficient and
intelligent reasoning methods to achieve their tasks.

In fact, achieving this requires considering several requirements and con-
straints, such as accuracy, time, and energy efficiency. Accordingly, our case
study example demonstrates how the proposed approach is applied and utilized
to develop the platform and finally provides results regarding the performance
of the robots using the reasoning mechanisms offered in the platform.

In essence, we can have as many robots as we want in the case study,
depending on the availability of the physical hardware and components. How-
ever, in the next two subsections, we explain how to configure DTs, define
missions for robots, and set the environment. Later on, Section 6 provides a
detailed examination of the conducted experiments in the case study.

5.1 Defining the Cases

In Fig. 7, the main menu interface of the simulation and control platform is
viewed. This interface comprises several tabs. Every tap provides a function
in the platform. Map tap shows the map of the warehouse (floorplan) used in
our application, and this map can be changed and calibrated with the UWB
anchors. MQTT Log tap lists all the messages retrieved from the UWB
broker, which contain the information of the UWB tags. The Agent tap in
the platform is used to create DAs and define the relevant reasoning capability.

The coloured points in Fig. 7 represent the active physical robots in the
system (except the yellow one that represents the master tag, which serves
as a hub to collect data for other tags). UWB tags continuously propagate
the information (i.e., location) for every robot. A new agent window appears
by clicking on a particular robot. In this agent menu, DTs (i.e., DAs) can
be defined for every physical robot with a unique name GUID in the JADE
container. From that menu, the type of agent bdi or reactive can be selected,
and by doing so, it defines the reasoning mechanism of the DA and creates a
DT (replication), particularly for that robot. The DAs and PAs have specific
colours that can be changed during initiation or run-time to discriminate them
from each other in the environment. The main activities and the use cases for
using the simulation and control platform of the agent-based digital twins of
the MRS are explicitly illustrated in Fig. 8.

The initialization of the MRS simulation and control platform, then the
process of creating DTs for the robots in the replication process, are highlighted



Fig. 8 The use case diagram of using the simulation and control platform for the MRS.

in Fig 9. The user selects the target robot to create a DT. After that, the
platform executes the replication function that creates an up-to-date instance
with all features of interest, which are cloned from the PA into the DA.

The procedures of defining and scheduling a mission that might include
more than one destination, the place of charging stations, and executing these
missions for a specific robot agent are depicted in the Fig 10 sequence diagram.

6 Experiments and Analysis

This section discusses the experiments conducted to emphasize the advantages
of the proposed approach. Then, it evaluates the implemented simulation and
control platform for the MRS and, more specifically, assesses the performance
of the agents’ reasoning mechanisms and monitors the difference between the
physical and virtual instances.

The first experiment deployed two robots; one robot used reactive reason-
ing, while the other used BDI reasoning. An identical setup and conditions in
the experiment environment are defined for both robots to compare the per-
formance of their DAs based on particular criteria. In the second experiment,
we compared a DA with a PA of an operational physical robot to observe and
determine the simulation to reality gap.

Practically, we followed the processes explained in the previous section of
defining a particular reasoning model for an agent (reactive or BDI), then
we created DAs and assigned destinations and defined charging stations, and
finally, we executed the mission.

It is important to emphasize that both experiments assume that a PA fol-
lows the behaviour of a DA. The latter is responsible for reasoning and making
decisions that ultimately guide the PA to execute the mission. This assumption
is made because robots represented as PAs tend to be affected by environmen-
tal conditions, especially if the robots are just prototypes used in a proof of
concept. Consequently, many requirements, such as friction force, weight, and



Fig. 9 The sequence diagram of creating digital twins (DAs).

other motion dynamics that can affect the robot’s behaviour, are unsatisfied.
In many cases, anomaly and jittering in UWB sensors, as we experienced, can
make the robot’s motion and behaviour abnormal.

Accordingly, in the first experiment, we considered comparing and analyz-
ing the behaviour of DAs in the simulation and control environment, where
the primary objective is to evaluate and assess their reasoning and internal
behaviour. On the other hand, the second experiment monitors and observes
how the PA behaves in contrast to the behaviour of its DA.

6.1 Reactive and Rational Agents Comparison

Four destinations and four charging stations have been defined in this experi-
ment. Destinations are global because they are loaded from a file; therefore, all
destinations are accessible to all active robots in the environment that already



Fig. 10 The sequence diagram of defining and executing a mission.

have DAs. Above that, the user can still define exclusive destinations using the
dynamic option. Nonetheless, charging stations are always global destinations.
However, in this experiment, the scenario should be identical for both agents
to evaluate and observe the similarities and differences between them.

This experiment has been conducted to compare the behaviour and perfor-
mance of the two types of reasoning mechanisms supported by DAs (Reactive
and Rational). As given before, the constraints and the scenario are precisely
the same in the two agents. Both agents should execute the mission from the
start point to the final destination. At a certain and exact point in the tra-
jectory, a low-battery message was sent to the two agents to observe their
behaviour and reaction.



6.1.1 Reactive Agent:

The reactive agent reacts to stimuli and takes action accordingly, as described
in the context of DTs in section 4. Its operation mechanism is given in Fig. 3.
Applying reactive reasoning in the considered case of MRS, the robot agent
perceives the surroundings from its sensors, such as an ultrasonic sensor, to
detect obstacles, a battery sensor to determine the available battery capacity
and a UWB sensor to localize and identify its position in the environment to
avoid collisions.

In this experiment, the focus is on the DT’s reactive reasoning efficiency
to (1) follow the most suitable path, (2) consume less energy, and (3) reduce
the charging times as much as possible. In simple terms, the algorithm of the
reactive agent monitors the state of the PA, then updates and communicates
with the DA, which reasons in the digital environment and can communicate
with other agents to get a broader context of the systems state, after that,
it takes an action based on a set of predefined rules that affects the physical
world via the PA.

Fig. 11 shows a drawn solid blue line that originated from the blue dot.
Basically, It is the trace of the reactive agent of that robot executing the spec-
ified mission. Clearly, the reactive agent visited all the defined destinations.
First, it receives a list of all destinations and charging stations; then, it calcu-
lates the distance of all destinations and selects the one with the shortest path
according to its current location determined by the UWB tag.

In reality, a low-battery message is received from the PA when the battery
level is low. Immediately, the reactive agent reacts, pausing the current mission
and then moving to the closest charging station to its current location. It is
essential to mention that, in our implementation, messages from PA to DA,
such as low-battery messages, are sent only if both are deployed in the JADE
container. Still, to make debugging relatively easier, the simulation platform
provides simulation messages such as a low-battery message that can be sent
to the DA, which is identical to the actual message usually sent from the PA.
So, according to the defined scenario, the red circle in Fig. 11 points to the
instant when the reactive agent received a low-battery message that resulted
in chanting its direction to the closest charging station.

6.1.2 Rational Agent:

The same procedures were followed to conduct the experiment with the BDI
agent. The reasoning algorithm of the BDI is more complex than the reactive.

Conceptually, the reasoning cycle of the BDI agent is initiated once the
PA is twinned into a DA with the BDI reasoning capability. Accordingly, the
agent sets and updates the beliefs and desires (goals) based on the status of
PA, while the plans are determined solely in the DA. The system’s motivational
state is embodied by goals, which are the desires the PA wants to achieve or
reach, such as reaching a destination or going to a charging station in the case
of insufficient battery level. Meanwhile, intentions represent the deliberative



Fig. 11 An experiment showing a digital twin executing a mission as a reactive agent in
the blue trajectory.

component of the system. When an agent has an intention, it chooses the most
appropriate plan to attain that goal until it is reached, no longer desired, or
tagged as unachievable. The plans in our implementation are a message plan,
movement plan, and charge plan. On the other hand, beliefs capture environ-
mental characteristics that are updated regularly after detecting changes in
the robot’s status. They can be viewed as the informative component of the
whole system and the dynamic environment. In the BDI agent, beliefs such as
the battery level and position information are updated within every robot.

However, the essence here is to show the primary reasoning and cogitation
features of the BDI agent. Once the agent executes its reasoning, it moves
towards the defined destinations, following the shortest path. As in the reactive
agent scenario, a low-battery message is sent from the simulation platform at
the exact same point.

The BDI agent visited all the assigned destinations. In contrast to the
reactive agent, it continued its current mission after receiving a low-battery
message. Still, the distinction is that the former had reasoned about the sit-
uation and chose to continue its mission and then go to a charging station,
which is considered the optimal charging station along the followed path to the
final destination. Fig. 12 elaborates on the difference between the two agents’



Fig. 12 An experiment showing a digital twin executing a mission as a BDI agent in the
purple trajectory.

behaviour and executed paths. The figure shows the BDI agent as the pur-
ple dot drawing a purple line representing its trajectory while executing its
mission, visiting all destinations, and ultimately arriving at the final one.

6.1.3 Evaluation and Results:

The efficiency and performance of the two agents are evaluated by calculating
the elapsed time of the two agents during executing the same mission and the
total cost of each agent’s path from the start of the mission until the end.

Elapsed Time and the Total Path Cost. These values identify the
more efficient and optimized agent as in Fig. 13 while executing the defined
scenario. Straightforwardly, we compared the time needed for each agent to
complete its mission. In addition, the total path cost is calculated during the
agents’ run-time. The total distance units needed to reach the final destination
goal denotes the total path cost.

The graph in Fig. 14 contains two axes. The horizontal x-axis represents
the measurement units of the elapsed time for the agent to reach the last des-
tination. The vertical y-axis represents the distance measured in centimetres
(cm) to reach every destination within the entire trajectory.



Fig. 13 Comparison of the total path length between the two trajectories of Reactive and
BDI.

The graph contains sharp increases (peaks) and declines (valleys). Every
valley point represents the agent’s arrival at a particular destination along
the path where the distance between the robot and that destination must be
around zero on arrival. On the other hand, peaks describe the start of a new
movement to a new destination, where the robot should travel the calculated
distance of that destination, decreasing gradually until it reaches that goal.
This is repeated until the robot reaches its final destination. From Fig. 14, we
can observe the performance and efficiency of the two agents, where we can
see that the Reactive agent has longer peaks than the comparison BDI agent,
which has shorter peaks leading to travelling a shorter path and taking less
time thanks to its efficient long-term reasoning algorithm.

Comparing the two agents while executing the same mission shows that
BDI and reactive agents required about (44 seconds, 9900 distance units) and
(57 seconds, 13380 distance units) respectively, to reach the final destina-
tion. These insights are significant as they demonstrate which agent is more
optimized to execute this exact mission. This powerful approach enables the
exploitation of DTs in a simulation environment connected to the real world,
employing different decision-making processes to obtain the optimal solution
for different scenarios. This experiment can be repeated in different complex
situations to observe the more efficient agent that takes a well-planned route.



Fig. 14 Time comparison between Reactive and BDI agent.

6.2 Digital and Physical Agents Comparison

This experiment focuses on comparing a DA with the PA. It aims to provide a
concrete overview of the simulation-to-reality gap. Therefore, the dissimilarity
between the behaviour of either a DA and its corresponding PA is demonstrated.

6.2.1 Physical Agent:

Implementing a PA in the platform enables a deep examination of how the PA
for a real system operates in a real environment constrained by laws of physics,
environmental conditions, and uncertainties. Hence, in this experiment, a PA is
deployed on the robot, which should receive instructions from its DA to execute
the mission based on the selected decision-making model.

6.2.2 Digital Agent:

The DA operates in a more ideal environment than the PA as it functions in a
simulation where most external factors and unpredictable behaviours are mit-
igated. The agent can utilize one of the available reasoning models to execute
the defined mission.

The DA representation of the PA robot is specified as a reactive agent. Via
the platform, a path containing five destinations is defined as a mission for this
robot. The DA executes the mission by selecting the shortest path considering
all destinations and sending the commands to the PA to do the same as depicted
in Fig. 15.



Fig. 15 An experiment showing the trajectories of the PA in green and the DA in blue.

6.2.3 Evaluation and Results:

In the case of the DA, the trajectory of this agent is explicitly drawn in the sim-
ulation environment by following the shortest path to accomplish the assigned
mission. The DA solely mirrors the current status of the PA (i.e., its current
position and battery level, etc.). However, during execution, it is detached
from the actual environmental conditions as they exclusively affect the PA.
As a consequence, the DA is not impacted directly by environmental dynamics
and uncertainties, and it operates ideally in the simulated world, as elucidated
in Fig. 15. On the other hand, once the PA (robot) receives the instruction
from the DA, it starts executing the mission. However, the circumstances in a
physical environment are often unexpected, and the behaviour of the robot is
significantly influenced by physics, errors, malfunctions, instabilities, and the
fluctuations that might occur in one of its components, such as sensors (UWB)
or actuators (servo motor) and other parts (tires) as in our case.

Fig. 15 reveals a clear picture of the PA behaviour. Due to some anomalies
in the positioning sensor readings and some slippery movements caused by the
motors and robot’s wheels with the environment floor (this is quite evident
when the robot rotates at the fourth destination), the robot trajectory was
rather oscillatory while moving and executing the mission.



DTs are utilized for several purposes. Utilization of this technology allows
for performing multiple tasks, including monitoring, operating, anomaly detec-
tion, optimization, and improving the system under study, to mention a few. In
this case study, DTs control, monitor, and provide intelligent reasoning capa-
bilities for the actual systems (the robots). Thus, leveraging the platform’s
features, monitoring and detecting abnormal behaviour of the robots can be
observed in this experiment. This gives information about the simulation-
reality gap and performance of the actual robot. In addition, a similarity
measure such as Fréchet Distance is used to identify this gap, providing
feedback about the needed improvement.

Fréchet Distance. Measuring the similarity of trajectories is a crucial
activity when analyzing moving objects. Measures such as Fréchet Distance
are used to detect the variation and similarity between any two trajectories.

Given two sequences of poly-points in R
d, where p = {p1, p2, p3...pn}

and q = {q1, q2, q3...qm}, then, the Fréchet distance, denoted by f(x, y), is
determined by finding the maximum value among the minimum distances
between corresponding points pi and qi in two given trajectories p and q.
Mathematically, the Fréchet distance [21] between two curves f(x, y) is defined
as:

max
(

||pi(t) − qj(t))||,min
(

f(x− 1, y), f(x, y − 1)
))

Intuitively, the parameter (t) can be taught as the instant of “time” when
the snapshot of that point is captured from a time series.

Using Fréchet distance to measure the similarity or dissimilarity between
two trajectories/curves has two main benefits: (1) Trajectory Analysis, which
involves analyzing trajectories and comparing the traces of moving objects;
(2) Path Planning, particularly in robotics, this can aid in path planning and
motion planning. By comparing a planned trajectory with the actual executed
trajectory, like in this experiment, the system can assess how well the planned
path matches the real movement, which is crucial in robot navigation.

Accordingly, the Fréchet distance between the PA and DA is calculated, and
both paths are recorded. As illustrated in Fig. 15, the actual path of the PA con-
tains vividly and noticeable noisy data caused by the UWB sensor’s instability.
This noise was excluded while comparing both paths since it occurred just
while the robot was rotating. The final clean version of the paths is provided
in Fig. 16.

The results show that the Fréchet distance is about 2.889 m. In this case,
the smaller is the better as the gap between the PA and DA becomes less.
However, these results could definitely be improved by addressing the UWB
sensors’ jittering problem, considering surfaces with enough friction with the
robot’s wheels, and using robots that are more stable/reliable than LEGO
MINDSTORMS. However, the ultimate goal of doing such experiments is to
show the applicability and feasibility of the introduced framework and the
developed and implemented platform to manage complex CPS such as MRS
and provide services such as controlling, managing, and reasoning for these
systems.



Fig. 16 Trajectory comparison between physical and digital agents.

7 Discussion

A DT is a technology that integrates physical and digital entities. Designing
and building DTs for complex systems such as CPSs, which can be decen-
tralized and distributed and can comprise a vast number of heterogeneous
elements, makes this task very complicated. Therefore, a well-found frame-
work that establishes and provides the essential tools for implementing a DT
for such systems is needed. This framework should provide a flexible, mod-
ular, and adaptable architecture that enables the construction of a DT and
allows the incorporation of advanced features to enhance the intelligence and
robustness of the system.

To address and overcome these challenges, our study introduces a novel
approach integrated with MSF that utilizes the capabilities, potential, and
intelligence of the agent-based approach and MAS to deploy and build a simu-
lation and control platform of a distributed and autonomous DT for MRS. The
introduced platform is built and designed by considering the concepts, entities
and relations of the Zeiglers’ MSF, which are combined and blended into the
context of agent-based and MAS-driven DTs. Specific reasoning techniques
are modelled inside DAs; these decision-making capabilities can be assigned on
the fly to the physical systems according to the situation or the condition in
which the physical system will operate.



From the implementation point of view, a MAS toolchain called JADE and
BDI4JADE plugin are utilized to develop and deploy the agent-oriented DTs
for an intelligent MRS integrated inside a simulation and control platform and
boosted by two versions of reasoning models (reactive and BDI). The platform
is supported with simulation capabilities where DAs can be created and initi-
ated with their physical counterparts and simultaneously can be monitored in
the simulation and the real world.

The materialization of reasoning techniques in agents such as the reac-
tive and BDI models provided the DAs with different but complementary and
powerful reasoning capabilities. The two reasoning techniques operate with
different cognitive computing mechanisms, where (1) BDI agents utilize their
internal planning and reasoning cycle by considering parameters represented
in beliefs and desires updated in the PAs, and intentions processed in the DAs,
which enable them to make decisions in different situations by deploying dif-
ferent plans. Furthermore, the BDI agent reasoning approach provides flexible
and adaptable components that respond to changes and operate efficiently in
a dynamic environment. This flexibility is crucial in complex systems where
events occur frequently and unpredictably. In the reactive reasoning approach,
(2) the agent responds to environmental events in PAs quickly and directly
without using a complicated reasoning cycle and planning. Reactive agents
are designed to react to the current state of the environment and produce
actions based on a predefined set of rules and behaviours in DAs. Reactive
agents are often used when quick and straightforward responses are required
and preferred, such as in robotics or sensitive real-time control systems. Their
main advantages are speed and efficiency, as they can respond quickly to
environmental changes without requiring intensive computation, planning, or
deliberation.

A case study for a warehouse where an MRS is integrated into the simu-
lation and control platform demonstrates the proposed approach’s potential,
applicability and capability. In addition, an experiment was conducted to
observe and analyze the behaviour of the two DAs while another one was
performed to identify the gap between the PAs and DAs.

The scenario in the first one shows a significant advantage of using a BDI
agent over the reactive one, especially for long-term planning, where a situation
is more complex, including many choices. Yet, in several situations, there is a
need to use a more straightforward approach for taking action/s and decision/s
immediately without delays. Therefore, both agents can be utilized hybridly
according to the system requirements, constraints, environment conditions,
and the level of reasoning required in CPS systems.

In the second experiment, the gap between the real world and the simu-
lated environment is compared. The results show that this gap is relatively
associated with the physical system’s performance and is also affected by real-
world physics. Thus, high-fidelity modelling of the physical system and the
environment should always be considered; a physical system with high-quality
components is more accurate and reliable. In our case, the low performance



of some parts of the robots (fluctuation of UWB sensors’ readings, motors’
inaccurate rotations, slippery tires, etc.) increased this gap.

Although the two conducted experiments are relatively simple, their impli-
cation could be reflected in more complex systems and scenarios. Nevertheless,
the main goal at this stage is to prove the applicability and showcase the
promising results of the proposed approach and the developed platform. Later
on, more experiments with more industrial relevance applications and use cases
will be targeted.

The proposed platform supports two different reasoning methods for DAs,
which can be initiated on the fly. Still, in many cases, they have to be re-
designed and evolved as the requirements of the physical system are modified
or extended. Agent technology and MAS are the key elements of the plat-
form. Thus, enhancing the existing components by adding new features or
adding new components to the system can be done distributively in a modular
way. This would make providing more reasoning mechanisms to the platform
relatively manageable and uncomplicated.

Overall, this work covers significant research area that addresses exploiting
MAS tools and the agent paradigm to construct distributed, autonomous, and
intelligent DTs for CPS designed according to M&S concepts. However, pro-
viding multiple and hybrid reasoning methods to these DTs has extended the
applicability and flexibility of the introduced approach to support operating
CPS (e.g., robots) in different situations and circumstances. The latter part
has not been tackled in previous research studies. Hence, our work is leading
the way in contributing to this direction.

8 Conclusion & Future Work

8.1 Conclusion

DT is a key technology in the digitalization headway. It has been exploited
enormously in a wide range of applications and several contexts. The task of
constructing dependable and sustainable DTs for CPS is intricate due to the
complexity of mapping digital and physical components and providing auton-
omy, modularity, flexibility, and appropriate reasoning and decision-making
capacity that makes DTs intelligent enough to provide deep insights and
enough information to boost the performance and function of CPS.

In this regard, this paper discusses an approach for developing DTs enabled
by agent paradigm and integrates different types of reasoning in DTs’ agents.
The pillars of the suggested approach are the proposed MSF combined with
multi-reasoning mechanisms and extensible architecture for agent-based digital
twins, which are utilized for designing and deploying a simulation and control
platform for a mobile MRS case study.

Utilizing the capabilities of agents (autonomy, reactive, proactive, hetero-
geneity modelling, communication, etc.) provides an extra edge in developing
flexible, modular, and scalable DTs. In addition, the reasoning techniques
employed in the agent-based platform for MRS boost the performance of the



robots’ DTs to reason about simple cases, such as what-if analysis, or a mul-
titude of complex scenarios within dynamic/uncertain environments such as a
warehouse.

8.2 Future Work

Despite the practical and functional usage of the implemented platform for
managing, controlling, and simulating CPS, such as robots through their DTs,
and the substantial importance of including different reasoning behaviours in
these twins that allowed the physical systems to have various attitudes and
employ different decision-making strategies, there are still multiple tracks of
improvements and research directions that should be investigated to enhance
the proposed approach.

An example of these directions is the difficulty of managing high-frequency
generated data from the physical system during operation and how it can be
processed, analyzed, and fed to DAs to support the planning and reasoning
cycle. In addition, anomalies and inconsistencies in this data can result in unde-
sirable behaviour in the physical system, as the DTs are incapable of making
the correct decisions. To tackle these implications, some suggested solutions
aim to integrate dependable mechanisms such as time-series technologies in
agents for handling big data and using complex-event processing methods to
detect deviations.

Although using agents in DT modelling has considerable advantages, most
agent-based and multi-agent system programming languages and frameworks
are not trivial. Using them efficiently requires effort, time, and adequate pro-
gramming skills. Besides, different DT implementations are almost entirely
implemented following an ad-hoc approach.

For this reason, we plan to incorporate model-driven engineering concepts
and techniques to add more services such as monitoring[59], simplifying, and
expediting the process of building and updating the design models[38] of DTs.
This would provide a layer of abstraction that facilitates the creation of multi-
purpose models that can be modified and used for other DT implementations
that target different systems and domains. Doing such will reduce the gap
between high-level design and actual code implementation. So, different rea-
soning methods can be defined in high-level models, deployed in the target
systems, and also might be reused in other systems.

Learning from previous experiences can potentially enable the development
of intelligent and adaptive systems. Therefore, we aim to exploit multi-agent
reinforcement learning (MARL). In MARL, each agent learns to make decisions
based on the feedback received from the environment and other agents; such
technology can make the system more intelligent and adaptive.

References

[1] Sailesh Abburu, Arne J Berre, Michael Jacoby, Dumitru Roman, Ljil-
jana Stojanovic, and Nenad Stojanovic. Cognitwin–hybrid and cognitive



digital twins for the process industry. In 2020 IEEE International Con-
ference on Engineering, Technology and Innovation (ICE/ITMC), pages
1–8. IEEE, 2020.

[2] Rashi Agarwal, Supriya Khaitan, and Shashank Sahu. Intelligent agents.
Distributed Artificial Intelligence: A Modern Approach, page 19, 2020.

[3] Mohammad Abdullah Al Faruque, Deepan Muthirayan, Shih-Yuan Yu,
and Pramod P Khargonekar. Cognitive digital twin for manufacturing
systems. In 2021 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pages 440–445. IEEE, 2021.

[4] Kazi Masudul Alam and Abdulmotaleb El Saddik. C2ps: A digital twin
architecture reference model for the cloud-based cyber-physical systems.
IEEE access, 5:2050–2062, 2017.

[5] Francesco Alzetta and Paolo Giorgini. Towards a real-time bdi model for
ros 2. In WOA, pages 1–7, 2019.

[6] Tomas Ambra and Cathy MacHaris. Agent-based digital twins (abm-dt)
in synchromodal transport and logistics: The fusion of virtual and pysical
spaces. Proceedings - Winter Simulation Conference, 2020-December:159–
169, 12 2020. ISSN 08917736. doi: 10.1109/WSC48552.2020.9383955.

[7] Fabio Luigi Bellifemine, Giovanni Caire, and Dominic Greenwood. Devel-
oping multi-agent systems with JADE, volume 7. John Wiley & Sons,
USA, 2007.

[8] Alexey A Bobtsov, Anton A Pyrkin, Sergey A Kolyubin, Sergey V Shave-
tov, Sergey A Chepinskiy, Yuriy A Kapitanyuk, Alexander A Kapitonov,
Vladimir M Bardov, Anton V Titov, and Maxim O Surov. Using of
lego mindstorms nxt technology for teaching of basics of adaptive control
theory. IFAC Proceedings Volumes, 44(1):9818–9823, 2011.

[9] M. Braglia, R. Gabbrielli, M. Frosolini, L. Marrazzini, and L. Padellini.
Using rfid technology and discrete-events, agent-based simulation tools to
build digital-twins of large warehouses. 2019 IEEE International Con-
ference on RFID Technology and Applications, RFID-TA 2019, pages
464–469, 9 2019. doi: 10.1109/RFID-TA.2019.8892254.

[10] Michael Bratman. Intention, Plans, and Practical Reason. Cambridge,
MA: Harvard University Press, Cambridge, 1987.

[11] Thomas Clemen, Nima Ahmady-Moghaddam, Ulfia A. Lenfers, Florian
Ocker, Daniel Osterholz, Jonathan Ströbele, and Daniel Glake. Multi-
agent systems and digital twins for smarter cities. In Proceedings of the



2021 ACM SIGSIM Conference on Principles of Advanced Discrete Sim-
ulation, pages 45–55. Association for Computing Machinery, Inc, 5 2021.
ISBN 9781450382960. doi: 10.1145/3437959.3459254.

[12] Philip R Cohen, Hector J Levesque, et al. Rational interaction as the
basis for communication. CSLI Stanford, 1987.

[13] Louise A Dennis, Jonathan M Aitken, Joe Collenette, Elisa Cucco,
Maryam Kamali, Owen McAree, Affan Shaukat, Katie Atkinson, Yang
Gao, Sandor M Veres, et al. Agent-based autonomous systems and
abstraction engines: Theory meets practice. In Towards Autonomous
Robotic Systems: 17th Annual Conference, TAROS 2016, Sheffield, UK,
June 26–July 1, 2016, Proceedings 17, pages 75–86. Springer, 2016.

[14] Pavlos Eirinakis, Kostas Kalaboukas, Stavros Lounis, Ioannis Mourtos,
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[58] Okan Topçu. Adaptive decision making in agent-based simulation.
Simulation, 90(7):815–832, 2014.

[59] Michael Vierhauser, Hussein Marah, Antonio Garmendia, Jane Cleland-
Huang, and Manuel Wimmer. Towards a model-integrated runtime
monitoring infrastructure for cyber-physical systems. In 2021 IEEE/ACM
43rd International Conference on Software Engineering: New Ideas and
Emerging Results (ICSE-NIER), pages 96–100, 2021. doi: 10.1109/
ICSE-NIER52604.2021.00028.

[60] Michael Wooldridge. Intelligent agents. Multiagent systems: A modern
approach to distributed artificial intelligence, 1:27–73, 1999.

[61] Jiaju Wu, Yonghui Yang, X. U.N. Cheng, Hongfu Zuo, and Zheng Cheng.
The development of digital twin technology review. Proceedings - 2020
Chinese Automation Congress, CAC 2020, pages 4901–4906, 11 2020. doi:
10.1109/CAC51589.2020.9327756.

[62] Jing Xie and Chen-Ching Liu. Multi-agent systems and their applications.
Journal of International Council on Electrical Engineering, 7(1):188–197,



2017.

[63] Zakaria Yahouni, Asma Ladj, Farouk Belkadi, Oussama Meski, and
Mathieu Ritou. A smart reporting framework as an application of multi-
agent system in machining industry. International Journal of Computer
Integrated Manufacturing, 34(5):470–486, 2021.

[64] Bernard P Zeigler, Herbert Praehofer, and Tag Gon Kim. Theory of
modeling and simulation. Academic press, 2000.

[65] Xiaochen Zheng, Foivos Psarommatis, Pierluigi Petrali, Claudio Turrin,
Jinzhi Lu, and Dimitris Kiritsis. A quality-oriented digital twin modelling
method for manufacturing processes based on a multi-agent architecture.
Procedia Manufacturing, 51:309–315, 2020.

[66] Xueyan Zong, Yan Luan, Hongliang Wang, and Shu Li. A multi-robot
monitoring system based on digital twin. Procedia Computer Science,
183:94–99, 2021.

Author biographies

Hussein Marah is currently pursuing a PhD at the Department of Computer
Science at the University of Antwerp. His research interests include the mod-
elling and simulation of intelligent complex systems, Agent-based Modelling,
Cyber-physical Systems, Internet of Things, and Robotics.

Moharram Challenger received his PhD in IT from the International Com-
puter Institute at Ege University (Turkey) in Feb 2016. From 2010 to 2013, he
was a researcher and team leader of a bilateral project between Slovenia and
Turkey (TUBITAK). From 2012 to 2016, he was the R&D director of UNIT
IT Ltd, leading one national project funded by TUBITAK and two European
projects. He was also an external post-doc researcher at the IT group of the
Wageningen University of Research from 2016 to 2017. In 2017 and 2018, he
has been a faculty member as an assistant professor at Ege University. From
Jan 2019 to July 2020, he was a post-doc researcher at the University of
Antwerp, working on Flanders Make projects. He is currently a tenure-track
assistant professor in the Department of Computer Science at the University of
Antwerp. His research interests include domain-specific modelling languages,
multi-agent systems, Cyber-physical Systems, and the Internet of Things.


	Introduction
	Background
	Intelligent Agents and Multi-Agent Systems
	CPS and Multi-Robotic Systems
	Digital Twin (DT)
	Positioning System

	Related Work
	Agents and Multi-Agent Systems
	Multi Agent CPS and Robotic Systems
	Agent-Based Digital Twins for CPS
	Digital Twins for Robotic Systems

	The Proposed Approach
	Modelling and Simulation Framework (MSF)
	Agent Reasoning Strategies
	Reactive Agent:
	Rational Agent:

	System Architecture
	Simulation and Control Platform
	JADE:
	Communication:
	UWB Technology:
	Physical Asset:
	Digital Asset:
	Simulation and Control GUI:
	Agent Reasoning Model:


	Case Study
	Defining the Cases

	Experiments and Analysis
	Reactive and Rational Agents Comparison
	Reactive Agent:
	Rational Agent:
	Evaluation and Results:

	Digital and Physical Agents Comparison
	Physical Agent:
	Digital Agent:
	Evaluation and Results:


	Discussion
	Conclusion & Future Work
	Conclusion
	Future Work


