

This item is the archived peer-reviewed author-version of:

Seasonal variations in the response of soil respiration to rainfall events in a riparian poplar plantation

Reference:

Zhu Mengxun, de Boeck Hans, Xu Hang, Chen Zuosinan, Lv Jiang, Zhang Zhiqiang.- Seasonal variations in the response of soil respiration to rainfall events in a riparian poplar plantation

The science of the total environment - ISSN 0048-9697 - 747(2020), 141222

Full text (Publisher's DOI): https://doi.org/10.1016/J.SCITOTENV.2020.141222

To cite this reference: https://hdl.handle.net/10067/1715820151162165141

uantwerpen.be

Institutional repository IRUA

1 Seasonal variations in the response of soil respiration to rainfall

2 events in a riparian poplar plantation

- 3 Mengxun Zhu^{1,2}, Hans J De Boeck³, Hang Xu^{1,2}, Zuosinan Chen^{1,2}, Jiang Lv⁴,
- 4 Zhiqiang, Zhang^{1,2*}
- 5 1 Key Laboratory of Soil and Water Conservation and Desertification Combating,
- 6 State Forestry and Grassland Administration, P. R. China
- 7 2 College of Soil and Water Conservation, Beijing Forestry University, Beijing
- 8 100083, PR China; zhumengxun@163.com(M.Z.); <u>xuhang_bjfu@163.com (H.X.)</u>;

9 <u>zuosinan.chen@gmail.com(Z.C.);</u>

- 10 3 Research group PLECO (Plants and Ecosystems), Universiteit Antwerpen, 2610
- 11 Wilrijk, Belgium; <u>hans.deboeck@uantwerp.be</u>
- 12 4 Gongqing Forest Farm, Beijing 101300, China; lvjianggongqing@163.com(J.L.)
- 13 * Correspondence: zhqzhang@bjfu.edu.cn; Tel.: 86-10-6233-8097
- 14

15 Abstract

16	Rainfall events have profound influence on the soil carbon release in different
17	forest ecosystems. However, seasonal variations in soil respiration (RS) response to
18	rainfall events and associated regulatory processes are not well documented in
19	riparian forest ecosystems to date. We continuously measured soil respiration in a
20	riparian plantation ecosystem from 2015 to 2018 to explore the relationships between
21	soil respiration and rainfall events. Across the 4 years, 83 individual rainfall events
22	were identified for spring, summer and autumn. We found that mean RS rate after rain
23	(post-RS) was significantly higher than that before rain (pre-RS) (p <0.05) in spring,

24	and the relative change in soil respiration (RSrc) increased against rainfall size due to
25	the stimulation by the significant increases in soil moisture content (Δ SM). In contrast,
26	mean post-RS was lower than pre-RS and RSrc was significantly decreased with the
27	increasing rainfall size ($p < 0.01$) in summer and autumn. Reduced changes in soil
28	temperature (ΔTS) and increased soil moisture content after rain (post-SM)
29	contributed to the decreased RS due to frequently occurring heavy rain events in
30	summer. Increased Δ SM following rainfall events coupled with groundwater level
31	increase suppressed RSrc in autumn, even though increased ΔTS could offset the
32	negative effects of SM on RS to some extent. In addition, we found that higher
33	post-SM after large rainfall events (>10mm day ⁻¹) changed the response of RS to soil
34	temperature (TS) by reducing the temperature sensitivity (Q_{10}) even in this riparian
35	plantation ecosystem. Our study highlights the importance of integrating seasonal
36	difference in soil respiration response to rainfall events and the impact of large rainfall
37	events on soil C release for estimating forest soil carbon cycling at multiple scales.
38	
39	Keywords
40	Carbon cycling; Riparian forest ecosystem; Rainfall regime; Soil moisture; Soil

- 41 temperature

1. Introduction 43

44	Soil respiration (RS), the second largest terrestrial carbon efflux from ecosystems
45	to the atmosphere, consists mainly of autotrophic and heterotrophic respiration (Raich
46	et al., 2002; Shabaga et al., 2015; Vargas et al., 2008). Numerous studies have shown
47	that there are significant seasonal patterns in different forest ecosystems (DeForest et
48	al., 2006; Gong et al., 2012; Wu et al., 2015) and these are regulated by many abiotic
49	(e.g., soil moisture, temperature and substrate availability) and biotic factors (e.g.,
50	microorganisms, fine roots, and photosynthesis) (Hanson et al., 2000; Liu et al., 2017;
51	Ryan and Law, 2005). Among those factors, soil moisture (SM) and soil temperature
52	(TS) are the main environmental factors that directly drive the seasonal variations of
53	root and microbial activities (Shi et al., 2012; Yoon et al., 2014). However, the degree
54	to which soil temperature and soil moisture affect RS depends on soil condition and
55	seasonal climate (Afreen and Singh, 2019; Singh et al., 2017).
56	Most of the growing season rainfall in temperate monsoon climate regions is
57	generated by discrete thunderstorm events (Chen et al., 2012; Xia et al., 2018), which
58	can lead to rapid increase or decrease of RS (Deng et al., 2011; Niu et al., 2019). On
59	one hand, rainfall events could alter SM and TS, which in turn affect RS(Afreen and
60	Singh, 2019; Liu et al., 2019a). On the other hand, rainfall events may affect RS
61	through physical degassing or absorption induced by changes in pressure gradient(Fa
62	et al., 2015; Huxman et al., 2004). Therefore, episodic rainfall events may change the
63	well-established response relationship between RS and TS on shorter timescales (Han $_3$

64	et al., 2018) leading to the uncertainty and errors in quantifying soil carbon
65	efflux(Drake et al., 2018; Ni et al., 2019; Yan et al., 2014). Due to a lack of
66	understanding on the dynamic responses of RS to rainfall events, current
67	process-based ecosystem models have not integrated the carbon cycling responses to
68	the rainfall events (Liu et al., 2016). Often time, widely used empirical model of
69	respiration and soil temperature does not fully incorporate the complexity of the soil
70	processes, limiting its predictive ability, especially over short time scales (Curiel
71	Yuste et al., 2005; Yan et al., 2019).
72	Previous field measurements and manipulation experiments have shown that, in
73	most water-limited ecosystems, RS may be stimulated by rainfall events due to SM
74	increase as this could lead to higher availability of substrates for microorganisms and
75	enhanced ecosystem photosynthesis (Knapp et al., 2008; Afreen and Singh, 2019;
76	Wang et al., 2019). However, in water-rich ecosystems, RS can be depressed by
77	rainfall events as the increased SM may lead to limitations on the diffusion of oxygen
78	and microbial activity (Han et al., 2018; Luo and Zhou, 2006; Wang et al., 2012).
79	Although prior studies have explored RS responses to rainfall events for different
80	ecosystems, seasonal variations of such responses are not explicitly considered (Liu et
81	al., 2016, 2019a; Peng et al., 2013). With changes in phenology (Radville et al., 2016)
82	and precipitation distribution variability under climate change (Beier et al., 2012;
83	IPCC, 2014; Pfahl et al., 2017), the uncertainty regarding the impact of rainfall events
84	on soil carbon efflux will increase further.

85	A recent meta-analysis found that increasing RS stimulated by rainfall events
86	was consistently observed in regions where annual rainfall is lower than 800 mm (Ni
87	et al., 2019). Nevertheless, SM of riparian ecosystems in semi-humid and semi-arid
88	regions can be affected by both rainfall events and shallow groundwater (Perry et al.,
89	2012; Smith et al., 2017). In addition, riparian forest ecosystems generally display
90	higher biological activity and more gas diffusion compared with non-riparian
91	ecosystems in semi-arid and semi-humid regions due to the seasonal hydrological
92	fluctuation and frequent water infiltration (Chang et al., 2014; Poblador et al., 2017;
93	Scott et al., 2004). In such systems, intra-annual switches between aerobic and
94	anaerobic states are possible, which in turn affect the RS (Castelli et al., 2000; Han et
95	al., 2018; Xu et al., 2018). Moreover, climate change is expected to have dramatic
96	influence on the rainfall patterns and hydrological conditions such as changes in flow
97	regime, groundwater supply, and plant-available water(Nilsson et al., 2013; Nunes et
98	al., 2008). Such changes may also alter the species richness, disrupt nutritional and
99	symbiotic interactions in dryland riparian ecosystems, and even widen /narrow the
100	riparian zone(Perry et al., 2012; Stromberg et al., 2013). As a result, variations in
101	carbon fluxes of riparian ecosystems are significant in global carbon cycling
102	projections, especially as these systems are considered as early warning systems for
103	climate change (Capon et al., 2013; Perry et al., 2012; Singh et al., 2017). Clearly,
104	quantifying the impact of rainfall events on RS can improve our understanding of the
105	biophysical changes in these ecosystems and enable our advances in model

106 development for more accurate prediction of the role of riparian ecosystems in the

107 global carbon cycle under changing rainfall patterns.

108	In this study, soil CO ₂ fluxes were continuously measured in a riparian plantation
109	ecosystem across four years (2015-2018). We hypothesized that the soil respiration
110	responses to the rainfall events in the riparian plantation ecosystem have seasonal
111	variations and governed by coupled interactions of rainfall regime and groundwater
112	fluctuation. Specifically, our research objectives are to: (1) determine the seasonal
113	variation in RS responses to rainfall events; (2) explore the regulatory mechanisms of
114	RS response to rainfall events in different seasons, and (3) quantify the effects of
115	rainfall size on RS.
116	
117	2. Materials and methods
118	2.1 Site description

119	This study was conducted in a riparian poplar plantation along the Chaobai river
120	in Gongqing Forest Park (40° 06′ 30″ N, 116° 42′ 30″ E, 9 m a.s.l.), located in
121	Shunyi District, Beijing, China. The temperate continental monsoon climate is
122	characterized by hot and humid summers, and cold and dry winters. Long-term
123	observations (1985-2015) from the Shunyi Meteorological Station show that the
124	average annual air temperature is 13.4°C, with a mean monthly temperature of -2.9°C
125	in January and 26.8°C in July. Mean annual precipitation is 546 mm and about 94%
126	falls between April and October, with over 67% occurring in summer (June-August) 6

127	mainly resulted from locally intense convective storms. Study site is topographically
128	flat and about 500 meters away from Chaobei River, where there was no over-bank
129	flow occurred throughout the study period. The groundwater table depth was around
130	2m, with seasonal fluctuation of about ± 0.5 m.
131	The field experiment was setup in a poplar (Populus euramericana) plantation
132	which was approximately 35 years-old. Fine roots (<2mm) are mainly distributed at
133	0-60 cm, and the fine root biomass decreases as the soil layer deepens. Stand density
134	is 367 trees ha ⁻¹ with mean tree height of 17 ± 1.2 m (mean ± SD) and mean diameter
135	at breast height of 26 ± 4.3 cm in 2016. The understory vegetation is dominated by
136	Swida alba (L.) Opiz., Pinus bungeana Zucc. ex Endl., Flos Caryophylli, Sabina
137	vulgaris Antoine, and Gaillardia aristata Pursh. The bulk density of the well-drained
138	riparian sandy soil is 1.51 ± 0.05 g cm ⁻³ . Soil texture was 92% sand, 2% silt, and 6%
139	clay. Soil nutrient concentrations decrease with soil depth, and the average soil
140	organic carbon and soil organic nitrogen at 0-30cm depth was 2.79 ± 0.23 g kg ⁻¹ and
141	0.13 ± 0.01 g kg ⁻¹ , respectively. More details about the soil characteristics can be
142	found in the study by Zhu et al. (2019).
143	
144	2.2 Soil respiration measurement
145	Soil respiration was measured during the growing season (April-October) for

- 146 four consecutive years from 2015 to 2018, using a LI-8100 automated RS
- 147 measurement system and LI-8150 multiplexer with four 8100-104 long-term

148	chambers (Li-Cor Inc, Lincoln, NE, USA). Four soil collars (11.4 cm in height and
149	21.3 cm in diameter) were randomly distributed in the study site and inserted 3 cm
150	into the soil one month before the first measurement. The soil collars were left in
151	place throughout the study period, with measurements made at least once every 2
152	hours. Each measurement took 120 seconds and the linear increase of CO_2
153	concentration in the chamber was used to estimate RS. Hourly means were computed
154	as the mean of the 4 chambers, and daily means were computed as the average of the
155	hourly means. During the entire study period, all living plants inside the collars were
156	carefully clipped regularly from the soil surface to exclude aboveground plant
157	respiration.
158	
159	2.3 Meteorological measurement
160	Precipitation was measured using an InteliMet Advantage Weather Station
161	(Dynamax Inc., USA), which was located outside of the forest, about 200 m from the
162	research site. Soil temperature and soil moisture were measured at depths of 10 cm
163	and 5 cm by a LI-8150 system equipped with LI-8150-203 and LI-8150-202 sensors,
164	respectively (Li-Cor Inc., Lincoln, NE, USA). Both TS and SM sensors were placed
165	near the RS monitoring points. Furthermore, additional SM was measured by three
166	soil moisture probes (CS616, Campbell Scientific Inc., USA) installed at depths of 25,
167	60, 100 cm, respectively, in the center of the measurement field from 2016 to 2018.
168	

2.4 Data analyses 169

170	The growing season was defined as the period when average net ecosystem
171	productivity (NEP) of three years (2015, 2016, and 2017) exceeded 1 g C m ⁻² d ⁻¹
172	(Richardson et al., 2010), which is from the day of the year (DOY) from 96 to 302. In
173	addition, we divided the growing season into spring (DOY 96-151), summer (DOY
174	152-243), and autumn (DOY 244-302). When analyzing the response of RS to rainfall
175	event during the growing season, we focused on discrete rainfall episodes, i.e. events
176	lasting less than a day, while rainfall events spanning more than one day were
177	excluded. The relative change of soil respiration rate (RSrc) after rainfall event was
178	calculated by the difference between daily soil respiration rate on the day after rainfall
179	(post-RS) and the day before the rain (pre-RS) divided by pre-RS [i.e. (post-RS -
180	pre-RS) / pre-RS]. To explore the influence of rainfall events on SM and TS, we
181	calculated changes of soil moisture (Δ SM) and soil temperature (Δ TS) between the
182	day after rainfall and the day before the rain. In addition, according to the
183	classification standard of precipitation intensity issued by China National
184	Meteorological Administration, the cumulative rainfall within 24 hours a day was
185	divided into three levels: light (< 10 mm), moderate (10-25 mm), and heavy (> 25
186	mm).
187	Prior to statistical analysis the data was tested for normal distribution and the
188	non-normal data was log or reciprocal transformed. Paired t-tests were used to
189	analyze the differences in daily RS, TS, and SM before and after rainfall in each 9

190	season. However, soil temperature and moisture data among three seasons were still
191	non-normally distributed after transformation. We therefore used non-parametric
192	Kruskal-Wallis H test to conduct the analysis. One-way ANOVA was used to analyze
193	the differences in daily mean RS among three seasons, before and after rainfall, and
194	post hoc least significant differ (LSD) test if significant. Also, regression analysis was
195	used to determine the effects of rainfall size on RSrc, Δ SM, and Δ TS. In order to
196	understand the impacts of environmental variables on RSrc in different seasons,
197	stepwise multiple regressions were performed, with RS as the dependent variable, and
198	soil temperature before rain (pre-TS), soil temperature after rain (post-TS), soil
199	moisture content before rain (pre-SM), soil moisture content after rain (post-SM),
200	Δ SM, Δ TS as the independent variables. Furthermore, Spearman rank correlation
201	analysis was applied to identify the relationships between daily RS and SM and TS
202	following rainfall events The relationship between daily RS and TS before and after
203	rainfall was fitted using a simple empirical exponential model: $RS = a \times e^{bTs}$, (TS is
204	the soil temperature (°C), and a and b model parameters). After the exponential
205	relationship was linearized, the difference of the regression relationship before and
206	after rainfall was compared by covariance analysis. The temperature sensitivity (Q_{10})
207	was estimated from the classical equation: $Q_{10} = e^{10b}$. All analyses were performed
208	using SPSS 19.0 for Windows (SPSS Inc., Chicago, IL).

210 **3. Results**

220

211 3.1 Environmental conditions and soil respiration in different seasons

212 The contribution of rainfall from June to August to the growing season total was

213 relatively high in all four study years (Fig. 1). Eighty-three independent daily rainfall

events were identified, with 22, 39, and 22 events occurring in spring, summer, and

autumn, respectively (Fig. 2). The majority (75%) of rainfall events in spring

amounted to less than 5 mm (Fig. 2). The variation of rainfall size in summer was the

217 greatest, and more than 50% of the rainfall events exceeded 10 mm (Fig. 2). Although

218 the mean and variation range of rainfall event size in autumn were larger than those in

Fig. 1 Daily rainfall and soil moisture (upper panel a-d) and averaged daily soil respiration and soil temperature (lower panel e-h) from 2015 to 2018. Vertical bars represent the standard error of four soil chambers (lower panel). Breaks in the connecting line indicate missing data due to instrument failure.

Fig. 2 Distribution of 83 individual daily rainfall events in different seasons across the four-year study period. The median, mean, 25th/75th percentile, 10th/90th percentile, and 5th/95th percentile are shown as solid line, dashed line, box, whiskers and dots, respectively. The letter n represents the number of rainfall events in each season.

230

sizes leading to stronger increases in SM (Fig. 1 and Fig.S.1). The average post-SM

was significantly higher than the average pre-SM in summer (p < 0.01, Fig. 3a).

Although the averaged post-SM was also higher than pre-SM in spring and autumn,

the difference was not significant (Fig. 3a) due to the small size of rainfall events

- 236 (Figs. 1 and 2). In addition, the three-year (2016, 2017, and 2018) averaged daily SM
- at different soil depths (25cm, 60cm, and 100cm) showed obvious seasonal
- fluctuation (Fig. S.2) governed by the temperate monsoon climate.
- 239

Fig. 3 Averaged soil volumetric moisture content (SM± SD) (a) and soil temperature (TS± SD) (b)

242 before and after rainfall events in different seasons across the four years. Uppercase letters

243 indicate significant differences between seasons (pre-RS and post-RS, respectively). Lowercase

244 letters represent the differences between pre- and post-rain events within the same season. More

information about the analyses can be found in Tables S.1 and S.2.

246

that rainfall events had a significant effect on TS (p < 0.05, Fig. 2b and Fig. S.1d-f). In

addition, among the three seasons, the lowest averaged TS was in autumn (Fig. 3b).

250 The seasonal variations in RS were similar for each of the 4 years, increasing from

spring, peaking in summer, and then decreasing gradually in autumn (Fig. 1).

252

253 3.2 Soil respiration response to rainfall events

Although the seasonal variations in RS were in general consistent with the

255 seasonal changes in TS, there were distinct mismatched periods (many outliers of

daily RS) when rainfall events (especially large sized ones) occurred (Fig. 1). The mean post-RS was significantly higher than the mean pre-RS in spring, while mean post-RS was significantly lower than mean pre-RS in autumn (p < 0.05, Fig. 4a). Although mean post-RS was also lower than mean pre-RS in summer, this difference was not statistically significant (Fig. 4a).

Fig. 4 Averaged daily soil respiration (a) and the relative change of soil respiration (RSrc) (b) in

263 different seasons. Uppercase letters indicate significant differences between seasons (pre-RS,

264 post-RS, respectively, lowercase letters refer to significant differences between pre- and post-rain

events within the same season (p < 0.05). The median, $25^{\text{th}}/75^{\text{th}}$ percentile, $10^{\text{th}}/90^{\text{th}}$ percentile, and

266 5th/95th percentile are shown as solid line, box, whiskers and dots, respectively. Black short dash

line at RSrc = 0. More information about the analyses can be found in Tables S.1 and S.3.

3.3 Effect of soil moisture and soil temperature on soil respiration following rainfallevents in different seasons

271	There was a significant positive correlation between RS and SM following
272	rainfall events in spring (Table 1 and Fig. 5a-c). However, the relationship between
273	RS and TS was decoupled (Fig. 5a-c and Table 1). The change in SM after rainfall
274	(Δ SM) explained 82% of the variation in RSrc in spring, with the relationship
275	between them being positive (p < 0.01, Table 2). In contrast to spring, RS
276	significantly decreased as soil was wetter following rainfall in summer and autumn
277	(Fig.5d-i and Table 1,). TS was not significantly correlated with RS after rainfall in
278	summer (like in spring), though the lack of a significant relationship may have been
279	caused by the small temperature range (unlike in spring) (Table 1 and Fig. 5). Indeed,
280	when considering Δ TS, we find a positive effect of temperature (Table 2). Taken
281	together, ΔTS (positive effect) and post-SM (negative impact) together explained 33%
282	of changes in RSrc in summer ($p < 0.01$). Finally, in autumn, we found a significant
283	negative relationship between SM and RS after rain, and a significant positive
284	relationship between TS and RS (Table 1). Together, 64% of the variance in RSrc
285	could be accounted for by Δ SM (negative effect, R ² =0.53, <i>p</i> < 0.01) and Δ TS
286	(positive effect, $R^2=0.11$, $p < 0.05$) (Table 2).
287	

289 Fig. 5 Soil respiration, soil moisture, soil temperature and daily rainfall amount during the

sampling periods for the four years and spring (a-c), summer(d-f), autumn (g-i). Error bars

291 represent the standard error of four soil chambers. Our sampling periods generally contains more

- than two rainfall sizes including light (< 10 mm), moderate (10-25 mm), and heavy (> 25 mm).
- However, there were no distinct rainfall events >10mm occurring in the spring of 2018 and only
- three years of data are presented here.
- 295

296 3.4 Effects of rainfall event size on soil respiration in different seasons

- 297 Soil respiration had different responses to the size of rainfall event in the three
- different seasons (Fig. 6 and Fig. 5). RSrc was stimulated more if the size of
- 299 precipitation events was larger in spring (Fig. 6a). In contrast, the correlation between

300 RSrc and rainfall size was generally negative in summer and autumn (Fig. 6). In

- 301 summer, these suppressive effects especially occurred after heavy rainfall (> 25 mm)
- 302 events (inserted panels in Fig. 6b, c and Fig. 5 d, e, h, i).
- 303 Rare heavy rain events in spring and autumn made it impossible to perform
- 304 meaningful analysis on the seasonal difference in relationships between RS and TS
- 305 per rainfall class. Therefore, we pooled data over the three seasons for subsequent
- analysis. Reflecting minor and insignificant difference in Δ SM, the temperature
- 307 sensitivity (Q_{10}) of RS before and after light rainfall (< 10 mm) was similar (Fig. 7a).
- 308 However, more intense rain events led to a significant increase in SM (p < 0.05)
- 309 (insets in Fig. 7a-c), and this was mirrored by a lower influence of temperature on RS
- 310 (lower Q_{10}) especially after heavy rainfall (> 25 mm) (Fig. 7 b and c).
- 311

312

Fig. 6 Relationship between the relative change in soil respiration (RSrc) and the rainfall event size. The insert panel shows the mean relative change in soil respiration for three rainfall size classes L: light (< 10 mm), M: moderate (10-25 mm), H: heavy (> 25 mm) in each season. The letter n represents the number of samples of rainfall events in each rainfall size class. Rain and

317 RSrc were log transformed (Ln) before regression analysis.

334	the rainfall events were large. Liu et al.(2019a) also suggested that there are seasonal
335	changes in the impact of rainfall events on RS in a non-riparian ecosystem. Yet they
336	found that rainfall events stimulated RS throughout the growing season, with only the
337	degree of stimulation differing throughout the year (Liu et al., 2019a). The influence
338	of rainfall events on RS mainly depends on the abiotic factors such as post-TS and
339	pre-SM in the same ecosystem(Han et al., 2018; Yoon et al., 2014). In the present
340	study, there were different the relative changes in RS following rainfall events due to
341	the variations in the dominate role of Δ SM, post-SM and Δ TS in different seasons.
342	Such factors are strongly regulated by rainfall events, and substantial change occurred
343	when rainfall size increased. The Δ SM, representing rapid changes in soil moisture or
344	wetting intensity(Lado-Monserrat et al., 2014; Rey et al., 2017), plays an important
345	role in driving the RS response to rainfall events in spring and autumn. The negative
346	effects of SM on RS in summer and autumn were seemingly amended by a direct
347	stimulation of biological activity under higher TS.
348	Regardless of seasonality, positive effects of rainfall events on RS have been
349	found both in field studies and rainfall manipulation experiments conducted in a
350	variety of ecosystems, even in humid and semi-humid areas (Peng et al., 2013; Liu et
351	al., 2017b; Wang et al., 2019). In our study, RS was significantly increased by rainfall
352	events and there was a significant positive correlation between RS and SM following
353	rainfall events only in spring. This associated with a number of abiotic and biotic
354	mechanisms. First, compared with other seasons, rainfall events in spring were

355	relatively small, the interval between events was longer, and the mean season pre-SM
356	of surface soils in spring was lowest of the three seasons. Although there is a
357	relatively low groundwater tables in the riparian ecosystems, deep SM cannot be
358	effectively replenished due to the size and frequency of rainfall events during spring
359	(Fig.S.2). Low SM can inhibit soil microbial activity (Almagro et al., 2009), and
360	increased available SM following rainfall events would induce RS through improved
361	diffusion of substrates (Lado-Monserrat et al., 2014). Secondly, lower rainfall
362	frequency in spring may increase the amount of CO ₂ accumulated in soil pores (Liu et
363	al., 2019b); with the occurrence of rainfall events, the CO_2 in the pores could be
364	replaced by soil moisture, pushing the CO ₂ out (Huxman et al., 2004). Thirdly,
365	re-activated root growth in spring could imply higher sensitivity to SM (Schwinning
366	et al., 2005), with increased SM after rainfall quickly stimulating root growth and
367	induce RS (Liu et al., 2019a).
368	Conversely, RS decreased with increasing rainfall size in summer and autumn.
369	Previous studies have shown that RS was inhibited when rainfall events occurred in a
370	wet soil environment (McLain and Martens, 2006; Wang et al., 2012; Han et al.,
371	2018). Increases in SM caused by rainfall events can reduce the soil oxygen
372	concentration when the soil pore spaces are filled with water (Van Straaten et al.,
373	2010). The ensuing anoxic stress would inhibit the activity of aerobic microorganisms
374	and even suppress the metabolism of plants and aerobic respiration of roots, thus
375	reducing RS production (Lado-Monserrat et al., 2014;Singh et al., 2017). Notably, 20

376	riparian ecosystems are usually characterized by sandy soils in dryland regions, and
377	the macropore space allows diffusion of atmospheric gases and even provides
378	sufficient oxygen for aerobic microorganisms in the deep soil (McLain and Martens,
379	2006; Schjønning et al., 2003). Also, coarse-textured soils have lower water holding
380	capacity and higher permeability rate(Gao et al., 2018). Rainfall events are therefore
381	more likely to cause anoxic conditions and inhibit decomposition and respiration in
382	the riparian ecosystem. Furthermore, heavy (> 25mm) rainfall events occurred more
383	frequently in summer than in spring and autumn, which resulted in high post-SM even
384	if the pre-SM was low (Fig.5).On the other hand, the rainfall amount in summer
385	accounts for a large proportion of the annual total, and the SM level in summer was
386	relatively high, reaching 51-65% of the water holding capacity. The threshold value of
387	SM at which RS begins to decline is near 60% of the field capacity(Shi et al., 2011).
388	Taken together, this implies that the potential for suppression of RS by high SM
389	values was highest in summer in our study system. Moreover, compared with silt and
390	clay, the stability of sandy soil protective aggregates is poor, and heavy rainfall could
391	therefore easily cause dissolved organic carbon leaching from the surface, thus
392	reducing CO ₂ efflux (Knapp et al., 2008).
393	Surprisingly, we found that RS was more easily suppressed by rainfall in autumn,
394	although the seasonal mean SM of surface was lower than in summer, both before and
395	after rainfall events. After the replenishment of frequent heavy rain events in the late
396	summer, the groundwater level of the riparian ecosystem was increased, resulting in 21

397	relatively high values of SM in the deep soil layers in autumn (Fig. S.2). In addition,
398	poplar trees have high water consumption and root system with strong SM absorption
399	capacity that can take up SM both from surface and deep soil layers (Liu et al., 2020;
400	Lu et al., 2009). When deep SM supply is sufficient, on one hand, capillary rising
401	water will supplement the SM of upper dry soil and fill the fine pore spaces (Han et
402	al., 2018; Smith et al., 2017). On the other hand, hydraulic lift (i.e., upward
403	redistribution of water by plant roots) increases water availability in the dry top soil,
404	which would help maintain the activity of microbial communities and fine roots near
405	the soil surface (Almeida-Rodriguez et al., 2011; Bauerle et al., 2008). Thus,
406	additional water from rainfall events could suppress RS also in autumn, especially
407	under more intense rainfall. Nevertheless, the deciduous poplar plantation could
408	provide more fast-degradable carbon sources for microbial activity in autumn.
409	However, relatively low TS and the reduction in the number of microbes following
410	rainfall could negatively affect the decomposition of substrates immediately and
411	inhibit RS (Lado-Monserrat et al., 2014; Peng et al., 2013; Rey et al., 2017). Our
412	results indicate that the influence of rainfall on RS in this riparian forest ecosystems
413	was not only related to the short-term effects of rainfall, but also to the interplay
414	between longer term, rain-associated seasonal fluctuations in groundwater levels and
415	immediate rain events.

4.2 Impact of rainfall size 417

418	While initial SM conditions, both at the surface and in the deeper layers, are
419	important in affecting RS response, rainfall size was important as well (Table 2).
420	Especially in spring and autumn, the Δ SM (which depended on the rainfall size) was a
421	major driver of soil carbon emissions. Other studies have also reported on the
422	importance of rainfall size on RS (Rey et al., 2017; Zeppel et al., 2014). Furthermore,
423	the size of rainfall events could also determine the magnitude of RS responses in
424	different months (Niu et al., 2019). In our study, rainfall size seemed to mostly
425	reinforce the seasonal trends: increased RS when rainfall was moderate or high in
426	spring, decreased RS after moderate or high intensity events in summer and autumn.
427	Light rainfall had only minor or insignificant effects. Moreover, our results also
428	demonstrate that the sensitivity of soil respiration to soil temperature (Q_{10}) can be
429	decreased if daily precipitation intensity is higher. The water status of the riparian
430	ecosystem is thought to in turn influence such effects (Suseela et al., 2012; Yu et al.,
431	2020). In the last 50 years, the number of extreme rainfall events in China has
432	increased in the period April-July, and slightly decreased in the late summer and
433	autumn (Fu et al., 2013). As we have shown that rainfall size and seasonal factors can
434	both influence RS, changes in rainfall patterns expected under climate change in
435	China and elsewhere in the world (IPCC, 2014) may significantly alter soil respiration.
436	Regional and global carbon budget assessments would thus benefit from more
437	accurate quantification of the impact of different rainfall sizes on RS. 23

5. Conclusions

440	Seasonal differences in response of soil respiration of a riparian poplar plantation
441	ecosystem to individual rainfall events were found over the four years study period. In
442	spring, characterized by dry background soil conditions, soil respiration was more
443	significantly coupled with soil moisture than soil temperature. As a result, rainfall
444	events generally stimulated RS during this season. In contrast, RS was reduced in
445	summer and autumn after rainfall. Higher overall soil moisture levels in these seasons,
446	including a higher water table in autumn, led to faster water saturation of the soil,
447	especially when daily rainfall exceeded 25 mm. Regardless of season, heavy rainfall
448	tended to decrease the sensitivity of RS to soil temperature. This suggests that
449	changes in the seasonal distribution of rainfall or rainfall sizes will increase the
450	uncertainty for evaluating terrestrial ecosystem carbon emission by current empirical
451	and processes based models at multiple scales.
452	
453	Acknowledgements
454	This study was financially supported by the National Natural Science Foundation
455	of China [grant number 31872711]. We also gratefully acknowledge the Beijing
456	Municipal Education Commission for their financial support through Innovative
457	Trans-disciplinary Program of Ecological Restoration Engineering and to the first
458	author by Postgraduate Training Project (No.BLCXY2016) .The support of National

459	Forestry Welfare Research Program "Forest Management Affecting the Coupling of
460	Ecosystem Carbon and Water Exchange with Atmosphere" (No.201704102) is also
461	greatly acknowledged.
462	
463	References
464	Afreen, T., Singh, H., 2019. Does change in precipitation magnitude affect
465	the soil respiration response? A study on constructed invaded and uninvaded
466	tropical grassland ecosystem. Ecol. Indic. 102, 84-94.
467	https://doi.org/10.1016/j.ecolind.2019.02.022
468	Almagro, M., Lopez, J., Querejeta, J., M.Martínez-Mena, 2009.
469	Temperature dependence of soil CO ₂ efflux is strongly modulated by seasonal
470	patterns of moisture availability in a Mediterranean ecosystem. Soil Biol.
471	Biochem. 41, 594-605. https://doi.org/10.1016/j.soilbio.2008.12.021
472	Almeida-Rodriguez, A.M., Hacke, U.G., Laur, J., 2011. Influence of
473	evaporative demand on aquaporin expression and root hydraulics of hybrid
474	poplar. Plant, Cell Environ. https://doi.org/10.1111/j.1365-3040.2011.02331.x
475	Bauerle, T.L., Richards, J.H., Smart, D.R., Eissenstat, D.M., 2008.
476	Importance of internal hydraulic redistribution for prolonging the lifespan of
477	roots in dry soil. Plant, Cell Environ.
478	https://doi.org/10.1111/j.1365-3040.2007.01749.x
479	Beier, C., Beierkuhnlein, C., Wohlgemuth, T., Penuelas, J., Emmett, B., 25

480	Körner, C., de Boeck, H., Christensen, J.H., Leuzinger, S., Janssens, I.A.,
481	Hansen, K., 2012. Precipitation manipulation experiments - challenges and
482	recommendations for the future. Ecol. Lett. 15, 899–911.
483	https://doi.org/10.1111/j.1461-0248.2012.01793.x
484	Capon, S.J., Chambers, L.E., Mac Nally, R., Naiman, R.J., Davies, P.,
485	Marshall, N., Pittock, J., Reid, M., Capon, T., Douglas, M., Catford, J., Baldwin,
486	D.S., Stewardson, M., Roberts, J., Parsons, M., Williams, S.E., 2013. Riparian
487	Ecosystems in the 21st Century: Hotspots for Climate Change Adaptation?
488	Ecosystems 16, 359-381. https://doi.org/10.1007/s10021-013-9656-1
489	Castelli, R.M., Chambers, J.C., Tausch, R.J., 2000. Soil-plant relations
490	along a soil-water gradient in great basin riparian meadows. Wetlands 20,
491	251-266. https://doi.org/10.1672/0277-5212(2000)020[0251:SPRAAS]2.0.CO;2
492	Chang, CT., Sabaté, S., Sperlich, D., Poblador, S., Sabater, F., Gracia, C.,
493	2014. Does soil moisture overrule temperature dependency of soil respiration in
494	Mediterranean riparian forests? Biogeosciences Discuss. 11, 7991-8022.
495	https://doi.org/10.5194/bgd-11-7991-2014
496	Chen, M., Wang, Y., Gao, F., Xiao, X., 2012. Diurnal variations in
497	convective storm activity over contiguous North China during the warm season
498	based on radar mosaic climatology. J. Geophys. Res. Atmos. 117, 1–14.
499	https://doi.org/10.1029/2012JD018158
500	DeForest, J.L., Noormets, A., McNulty, S.G., Sun, G., Tenney, G., Chen, J.,

501	2006. Phenophases alter the soil respiration-temperature relationship in an
502	oak-dominated forest. Int. J. Biometeorol. 51, 135–144.
503	https://doi.org/10.1007/s00484-006-0046-7
504	Deng, Q., Zhou, G., Liu, S., Chu, G., Zhang, D., 2011. Responses of soil
505	CO 2 efflux to precipitation pulses in two subtropical forests in Southern China.
506	Environ. Manage. 48, 1182–1188. https://doi.org/10.1007/s00267-011-9732-2
507	Drake, J.E., Macdonald, C.A., Tjoelker, M.G., Reich, P.B., Singh, B.K.,
508	Anderson, I.C., Ellsworth, D.S., 2018. Three years of soil respiration in a mature
509	eucalypt woodland exposed to atmospheric CO2 enrichment. Biogeochemistry
510	139, 85-101. https://doi.org/10.1007/s10533-018-0457-7
511	Fa, K.Y., Liu, J. Bin, Zhang, Y.Q., Wu, B., Qin, S.G., Feng, W., Lai, Z.R.,
512	2015. CO2 absorption of sandy soil induced by rainfall pulses in a desert
513	ecosystem. Hydrol. Process. https://doi.org/10.1002/hyp.10350
514	Fu, G., Yu, J., Yu, X., Ouyang, R., Zhang, Y., Wang, P., Liu, W., Min, L.,
515	2013. Temporal variation of extreme rainfall events in China, 1961-2009. J.
516	Hydrol. 487, 48–59. https://doi.org/10.1016/j.jhydrol.2013.02.021
517	Gao, W., Huang, Z., Ye, G., Yue, X., Chen, Z., 2018. Effects of forest cover
518	types and environmental factors on soil respiration dynamics in a coastal sand
519	dune of subtropical China Effects of forest cover types and environmental factors
520	on soil respiration dynamics in a coastal sand dune of subtropical Chi. J. For. Res.
521	29, 1645–1655. https://doi.org/10.1007/s11676-017-0565-6

522	Gong, J., Ge, Z., An, R., Duan, Q., You, X., Huang, Y., 2012. Soil
523	respiration in poplar plantations in northern China at different forest ages. Plant
524	Soil 360, 109–122. https://doi.org/10.1007/s11104-011-1121-3
525	Han, G., Sun, B., Chu, X., Xing, Q., Song, W., Xia, J., 2018. Precipitation
526	events reduce soil respiration in a coastal wetland based on four-year continuous
527	field measurements. Agric. For. Meteorol. 256-257, 292-303.
528	https://doi.org/10.1016/j.agrformet.2018.03.018
529	Hanson, P., Edwards, N., Garten, C., Andrews, J., 2000. Separating root
530	and soil microbial contributions to soil respiration: A review ofmethods and
531	observations. Biogeochemistry 48, 115–146.
532	https://doi.org/10.1023/A:1006244819642
533	Huxman, T.E., Snyder, K.A., Tissue, D., Leffler, A.J., Ogle, K., Pockman,
534	W.T., Sandquist, D.R., Potts, D.L., 2004. Precipitation pulses and carbon fluxes
535	in semiarid and arid ecosystems. Oecologia 254–268.
536	https://doi.org/10.1007/s00442-004-1682-4
537	IPCC, 2014. Climate change 2014: Impacts, adaptation, and vulnerability.
538	Part B: Regional aspects.In V. R. Barros, C. B. Field, D. J. Dokken, M.D.
539	Mastrandrea, K. J. Mach, T. E. Bilir, L. L. White (Eds.), in: Contribution of
540	Working Group II to the Fifth Assessment Report of the Intergovernmental Panel
541	on Climate Change. Cambridge, UK: Cambridge University Press., pp. 64-65.
542	Knapp, A.K., Beier, C., Briske, D.D., Classen, A.T., Luo, Y., Reichstein, 28

543	M., Smith, M.D., Smith, S.D., Bell, J.E., Fay, P.A., Heisler, J.L., Leavitt, S.W.,
544	Sherry, R., Smith, B., Weng, E., 2008. Consequences of More Extreme
545	Precipitation Regimes for Terrestrial Ecosystems. Bioscience 58, 811–821.
546	https://doi.org/10.1641/b580908
547	Lado-Monserrat, L., Lull, C., Bautista, I., Lidón, A., Herrera, R., 2014. Soil
548	moisture increment as a controlling variable of the "Birch effect". Interactions
549	with the pre-wetting soil moisture and litter addition. Plant Soil 379, 21–34.
550	https://doi.org/10.1007/s11104-014-2037-5
551	Liu, L., Wang, X., Lajeunesse, M.J., Miao, G., Piao, S., Wan, S., Wu, Y.,
552	Wang, Z., Yang, S., Li, P., Deng, M., 2016. A cross-biome synthesis of soil
553	respiration and its determinants under simulated precipitation changes. Glob.
554	Chang. Biol. 22, 1394–1405. https://doi.org/10.1111/gcb.13156
555	Liu, Y., Liu, S., Miao, R., Liu, Y., Wang, D., Zhao, C., 2019a. Seasonal
556	variations in the response of soil CO ₂ efflux to precipitation pulse under mild
557	drought in a temperate oak (Quercus variabilis) forest. Agric. For. Meteorol. 271,
558	240-250. https://doi.org/10.1016/j.agrformet.2019.03.009
559	Liu, Y., Liu, S., Wan, S., Wang, J., Wang, H., Liu, K., 2017a. Effects of
560	experimental throughfall reduction and soil warming on fine root biomass and its
561	decomposition in a warm temperate oak forest. Sci. Total Environ. 574,
562	1448-1455. https://doi.org/10.1016/j.scitotenv.2016.08.116
563	Liu, Y., Shang, Q., Wang, Z., Zhang, K., Zhao, C., 2017b. Spatial

564	Heterogeneity of Soil Respiration Response to Precipitation Pulse in A
565	Temperate Mixed Forest in Central China. J. Plant Anim. Ecol. 17, 1863.
566	https://doi.org/10.14302
567	Liu, Y., Zhao, C., Shang, Q., Su, L., Wang, L., 2019b. Responses of soil
568	respiration to spring drought and precipitation pulse in a temperate oak forest.
569	Agric. For. Meteorol. 268, 289–298.
570	https://doi.org/10.1016/j.agrformet.2019.01.029
571	Liu, Z., Jia, G., Yu, X., 2020. Variation of water uptake in degradation
572	agroforestry shelterbelts on the North China Plain. Agric. Ecosyst. Environ. 287,
573	106697. https://doi.org/10.1016/j.agee.2019.106697
574	Lu, N., Wilske, B., Lu, N., Wei, L., Chen, S., Zha, T., Liu, C., Xu, W., 2009.
575	Poplar plantation has the potential to alter water balance in semiarid Inner Poplar
576	plantation has the potential to alter the water balance in semiarid Inner Mongolia.
577	J. Environ. Manage. 90, 2762–2770.
578	https://doi.org/10.1016/j.jenvman.2009.03.004
579	Luo, Y., Zhou, X., 2006. Soil Respiration and the Environment, Soil
580	Respiration and the Environment.
581	https://doi.org/10.1016/B978-0-12-088782-8.X5000-1
582	McLain, J.E.T., Martens, D.A., 2006. Moisture Controls on Trace Gas
583	Fluxes in Semiarid Riparian Soils. Soil Sci. Soc. Am. J. 70, 367–377.
584	https://doi.org/10.2136/sssaj2005.0105 30

585	Ni, X., Liao, S., Wu, F., Groffman, P.M., 2019. Short-term precipitation
586	pulses stimulate soil CO_2 emission but do not alter CH 4 and N 2 O fluxes in a
587	northern hardwood forest. Soil Biol. Biochem. 130, 8–11.
588	https://doi.org/10.1016/j.soilbio.2018.11.021
589	Nilsson, C., Jansson, R., Kuglerová, L., Lind, L., Ström, L., 2013. Boreal
590	Riparian Vegetation Under Climate Change. Ecosystems.
591	https://doi.org/10.1007/s10021-012-9622-3
592	Niu, F., Chen, J., Xiong, P., Wang, Z., Zhang, H., Xu, B., 2019. Responses
593	of soil respiration to rainfall pulses in a natural grassland community on the
594	semi-arid Loess Plateau of China. Catena 178, 199–208.
595	https://doi.org/10.1016/j.catena.2019.03.020
596	Nunes, J.P., Seixas, J., Pacheco, N.R., 2008. Vulnerability of water
597	resources, vegetation productivity and soil erosion to climate change in
598	Mediterranean watersheds. Hydrol. Process. https://doi.org/10.1002/hyp.6897
599	Peng, S., Piao, S., Shen, Z., Ciais, P., Sun, Z., Chen, S., Bacour, C., Peylin,
600	P., Chen, A., 2013. Precipitation amount, seasonality and frequency regulate
601	carbon cycling of a semi-arid grassland ecosystem in Inner Mongolia, China: A
602	modeling analysis. Agric. For. Meteorol. 178–179, 46–55.
603	https://doi.org/10.1016/j.agrformet.2013.02.002
604	Perry, L.G., Andersen, D.C., Reynolds, L. V., Nelson, S.M., Shafroth, P.B.,
605	2012. Vulnerability of riparian ecosystems to elevated CO ₂ and climate change

606	in arid and semiarid western North America. Glob. Chang. Biol. 18, 821-842.
607	https://doi.org/10.1111/j.1365-2486.2011.02588.x
608	Pfahl, S., O'Gorman, P.A., Fischer, E.M., 2017. Understanding the regional
609	pattern of projected future changes in extreme precipitation. Nat. Clim. Chang. 7,
610	423-427. https://doi.org/10.1038/nclimate3287
611	Poblador, S., Lupon, A., Sabaté, S., Sabater, F., 2017. Soil water content
612	drives spatiotemporal patterns of CO_2 and N_2O emissions from a Mediterranean
613	riparian forest soil. Biogeosciences 14, 4195–4208.
614	https://doi.org/10.5194/bg-14-4195-2017
615	Radville, L., McCormack, M.L., Post, E., Eissenstat, D.M., 2016. Root
616	phenology in a changing climate. J. Exp. Bot. 67, 3617–3628.
617	https://doi.org/10.1093/jxb/erw062
618	Raich, J.W., Potter, C.S., Bhagawati, D., 2002. Interannual variability in
619	global soil respiration, 1980-94. Glob. Chang. Biol. 8, 800-812.
620	https://doi.org/10.1046/j.1365-2486.2002.00511.x
621	Rey, A., Oyonarte, C., Morán-López, T., Raimundo, J., Pegoraro, E., 2017.
622	Changes in soil moisture predict soil carbon losses upon rewetting in a perennial
623	semiarid steppe in SE Spain. Geoderma 287, 135–146.
624	https://doi.org/10.1016/j.geoderma.2016.06.025
625	Richardson, A.D., Black, T.A., Ciais, P., Delbart, N., Friedl, M.A., Gobron,
626	N., Hollinger, D.Y., Kutsch, W.L., Longdoz, B., Luyssaert, S., Migliavacca, M., 32

627	Montagnani, L., Munger, J.W., Moors, E., Piao, S., Rebmann, C., Reichstein, M.,
628	Saigusa, N., Tomelleri, E., Vargas, R., Varlagin, A., 2010. Influence of spring
629	and autumn phenological transitions on forest ecosystem productivity. Philos.
630	Trans. R. Soc. B Biol. Sci. 365, 3227–3246.
631	https://doi.org/10.1098/rstb.2010.0102
632	Ryan, M.G., Law, B.E., 2005. Interpreting, measuring, and modeling soil
633	respiration. Biogeochemistry 73, 3–27.
634	https://doi.org/10.1007/s10533-004-5167-7
635	Schjønning, P., Thomsen, I.K., Moldrup, P., Christensen, B.T., 2003.
636	Linking soil microbial activity to water- and air-phase contents and diffusivities.
637	Soil Sci. Soc. Am. J. 67, 156–165. https://doi.org/10.2136/sssaj2003.1560
638	Schwinning, S., Starr, B.I., Ehleringer, J.R., 2005. Summer and winter
639	drought in a cold desert ecosystem (Colorado Plateau) part I: Effects on soil
640	water and plant water uptake. J. Arid Environ. 60, 547–566.
641	https://doi.org/10.1016/j.jaridenv.2004.07.003
642	Scott, R.L., Edwards, E.A., Shuttleworth, W.J., Huxman, T.E., Watts, C.,
643	Goodrich, D.C., 2004. Interannual and seasonal variation in fluxes of water and
644	carbon dioxide from a riparian woodland ecosystem. Agric. For. Meteorol. 122,
645	65-84. https://doi.org/10.1016/j.agrformet.2003.09.001
646	Shabaga, J., Basiliko, N., Caspersen, J.P., Jones, T.A., 2015. Seasonal
647	controls on patterns of soil respiration and temperature sensitivity in a northern 33

648	mixed deciduous forest following partial-harvesting Seasonal controls on
649	patterns of soil respiration and temperature sensitivity in a northern mixed
650	deciduous for. For. Ecol. Manage. https://doi.org/10.1016/j.foreco.2015.03.022
651	Shi, W., Tateno, R., Zhang, J.G., Wang, Y.L., Yamanaka, N., Du, S., 2011.
652	Response of soil respiration to precipitation during the dry season in two typical
653	forest stands in the forest-grassland transition zone of the Loess Plateau. Agric.
654	For. Meteorol. 151, 854-863. https://doi.org/10.1016/j.agrformet.2011.02.003
655	Shi, W.Y., Zhang, J.G., Yan, M.J., Yamanaka, N., Du, S., 2012. Seasonal
656	and diurnal dynamics of soil respiration fluxes in two typical forests on the
657	semiarid Loess Plateau of China: Temperature sensitivities of autotrophs and
658	heterotrophs and analyses of integrated driving factors. Soil Biol. Biochem. 52,
659	99-107. https://doi.org/10.1016/j.soilbio.2012.04.020
660	Singh, R., Singh, H., Singh, S., Afreen, T., Upadhyay, S., Singh, A.K.,
661	Srivastava, P., Bhadouria, R., Raghubanshi, A.S., 2017. Riparian land uses affect
662	the dry season soil CO ₂ efflux under dry tropical ecosystems. Ecol. Eng. 100,
663	291-300. https://doi.org/10.1016/j.ecoleng.2017.01.002
664	Smith, A.P., Bond-Lamberty, B., Benscoter, B.W., Tfaily, M.M., Hinkle,
665	C.R., Liu, C., Bailey, V.L., 2017. Shifts in pore connectivity from precipitation
666	versus groundwater rewetting increases soil carbon loss after drought. Nat.
667	Commun. 8, 1–11. https://doi.org/10.1038/s41467-017-01320-x
668	Stromberg, J.C., Mccluney, K.E., Dixon, M.D., Meixner, T., 2013. Dryland 34

669	Riparian Ecosystems in the American Southwest: Sensitivity and Resilience to
670	Climatic Extremes. Ecosystems. https://doi.org/10.1007/s10021-012-9606-3
671	Suseela, V., Conant, R.T., Wallenstein, M.D., Dukes, J.S., 2012. Effects of
672	soil moisture on the temperature sensitivity of heterotrophic respiration vary
673	seasonally in an old-field climate change experiment. Glob. Chang. Biol. 18,
674	336-348. https://doi.org/10.1111/j.1365-2486.2011.02516.x
675	Van Straaten, O., Veldkamp, E., Köhler, M., Anas, I., 2010. Spatial and
676	temporal effects of drought on soil CO ₂ efflux in a cacao agroforestry system in
677	Sulawesi, Indonesia. Biogeosciences. https://doi.org/10.5194/bg-7-1223-2010
678	Vargas, R., Allen, M.F., Allen, E., 2008. Environmental controls and the
679	Influence of vegetation type, fine roots and rhizomorphs on diel and seasonal
680	variation in soil respiration. New Phytol. 179, 460-471.
681	https://doi.org/10.1111/j.1469-8137.2008.02481
682	Wang, Y., Li, X., Zhang, C., Wu, X., Du, E., Wu, H., Yang, X., Wang, P.,
683	Bai, Y., Wu, Y., Huang, Y., 2019. Responses of soil respiration to rainfall
684	addition in a desert ecosystem: Linking physiological activities and rainfall
685	pattern. Sci. Total Environ. 650, 3007–3016.
686	https://doi.org/10.1016/j.scitotenv.2018.10.057
687	Wang, Y., Wang, Z.L., Wang, H., Guo, C., Bao, W., 2012. Rainfall pulse
688	primarily drives litterfall respiration and its contribution to soil respiration in a
689	young exotic pine plantation in subtropical China. Can. J. For. Res.

https://doi.org/10.1139/X2012-017 690

691	Wu, X., Yuan, J., Ma, S., Feng, S., Zhang, X., Hu, D., 2015. Seasonal
692	spatial pattern of soil respiration in a temperate urban forest in Beijing. Urban
693	For. Urban Green. 14, 1122–1130. https://doi.org/10.1016/j.ufug.2015.10.009
694	Xia, R., Zhang, D.L., Zhang, C., Wang, Y., 2018. Synoptic control of
695	convective rainfall rates and cloud-to-ground lightning frequencies in
696	warm-season mesoscale convective systems over North China. Mon. Weather
697	Rev. 146, 813-831. https://doi.org/10.1175/MWR-D-17-0172.1
698	Yan, L., Chen, S., Xia, J., Luo, Y., 2014. Precipitation regime shift
699	enhanced the rain pulse effect on soil respiration in a semi-arid steppe. PLoS One
700	9. https://doi.org/10.1371/journal.pone.0104217
701	Yoon, T.K., Noh, N.J., Han, S., Lee, J., Son, Y., 2014. Soil moisture effects
702	on leaf litter decomposition and soil carbon dioxide efflux in wetland and upland
703	forests. Soil Sci. Soc. Am. J. 78, 1804–1816.
704	https://doi.org/10.2136/sssaj2014.03.0094
705	Yu, S., Mo, Q., Chen, Y., Li, Y., Li, Y., Zou, B., Xia, H., Jun, W., Li, Z.,
706	Wang, F., 2020. Effects of seasonal precipitation change on soil respiration
707	processes in a seasonally dry tropical forest. Ecol. Evol. 10, 467-479.
708	https://doi.org/10.1002/ece3.5912
709	Zeppel, M.J.B., Wilks, J. V., Lewis, J.D., 2014. Impacts of extreme
710	precipitation and seasonal changes in precipitation on plants. Biogeosciences 11, 36

711	3083-3093. https://doi.org/10.5194/bg-11-3083-2014
712	Zhu, M., Xue, W., Xu, H., Gao, Y., Chen, S., Li, B., Zhang, Z., 2019.
713	Diurnal and seasonal variations in soil respiration of four plantation forests in an
714	urban park. Forests 10, 1–15. https://doi.org/10.3390/f10060513
715	
716	