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Abstract

Temperature sensitivity (TS) of the green-up date (GUD) of plants is crucial

for the prediction of grassland phenology that is important for animal hus-

bandry and pasture management. Spatial variations in the TS are known to

reflect interannual temperature variability and/or accumulated precipitation

preceding the GUD (pre-GUD). However, whether spatial TS variations are

related to the interaction between pre-GUD temperature variability and pre-

cipitation, which is a potential indicator of frost risk, remains unclear.

Furthermore, because the interaction between interannual temperature vari-

ability and accumulated precipitation following the GUD (post-GUD) can

exert selection pressure on the plant life cycle, it may also be involved in shap-

ing the spatial TS pattern. Using long-term ground observations of GUD on

the Tibetan Plateau, we show that TS is more negative (greater GUD advance

per unit temperature increase) in areas with more pre-GUD precipitation and

low pre-GUD interannual temperature variability, but less negative in areas

with more pre-GUD precipitation and high pre-GUD interannual temperature

variability. This result is likely because more pre-GUD precipitation facilitates

sprout and leaf development under stable temperature conditions, whereas it

increases frost risk when the temperature variability is high. In contrast, TS

magnitude decreases with increases in post-GUD precipitation in areas where

post-GUD interannual temperature variability is low, but increases with

post-GUD precipitation in areas where post-GUD interannual temperature

variability is high. We speculate that because hydrothermal demands for leaf

growth from the onset of green-up to maturity are more easily fulfilled when

interannual temperature variability is lower and precipitation is higher,

green-up need not be sensitive to pre-GUD temperature. In contrast, high

post-GUD precipitation likely aggravates low-temperature constraints on leaf

growth when temperature variability is high, resulting in greater TS to maxi-

mize growing season length. These results suggest that spatial TS variations on
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the Tibetan Plateau are likely associated with adaptations of leaf-out phenol-

ogy to background pre-GUD climatic conditions together with selection pres-

sure from post-GUD conditions.

KEYWORD S
alpine ecosystem, climate change, dryland, spring phenology, temperature sensitivity,
temperature variability

INTRODUCTION

Global surface temperature has been increasing at a rate
of approximately 0.2�C per decade since the 1970s, and
the warming rate has been even faster at higher altitudes
(Pepin et al., 2015; Yun et al., 2019; Zeng et al., 2015).
Changes in plant spring phenology, which are among the
most sensitive indicators of ecosystem responses to global
warming, have substantial implications for community
assemblies and ecosystem functions (Buermann et al.,
2018; CaraDonna et al., 2014; Prevey et al., 2019; Yang &
Rudolf, 2010). Generally, the plant green-up date (GUD)
has advanced as a result of climate warming in temper-
ate, alpine, and boreal ecosystems of the Northern
Hemisphere (Menzel et al., 2020; Piao et al., 2019).
However, the magnitude and even the direction of shifts
in the GUD differ among regions (Chen et al., 2015;
Menzel et al., 2020; Sun et al., 2021). Alongside differ-
ences in warming trends among regions, spatial differ-
ences in phenological temperature sensitivity (TS;
changes in the GUD per unit temperature increase) are
another important determinant of warming-induced
shifts in the GUD (Chmura et al., 2019; Shen, Cong, &
Cao, 2015; Zhang, Yuan, Liu, & Dong, 2015). Hence,
exploring the determinants of spatial variation in the TS
of the GUD is essential for understanding and predicting
the effects of climate warming on the GUD.

Most studies of plant phenology have been conducted
in humid, mid-latitude regions, especially in Europe
(Menzel et al., 2020; Schwartz, 2013). In such regions,
which are characterized by climate seasonality, tempera-
ture is the most important environmental driver of the
plant GUD (Cleland et al., 2007; Piao et al., 2019), with
photoperiod affecting the GUD to a lesser degree (Fu
et al., 2019). TS of the GUD is closely related to the
interannual variability of the background temperature
through local adaptation to reduce frost risk (Körner &
Basler, 2010; Zohner et al., 2017). In temperate regions
(Peaucelle et al., 2019), and especially in arid and semi-
arid regions, the GUD and its TS are also affected by
water conditions (Chen et al., 2015; Cleverly et al., 2016;
Du et al., 2019; Shen, Cong, & Cao, 2015; Zhang, 2005).
Compared to humid temperate regions, plant phenology

has received much less attention in arid and semiarid
regions (Piao et al., 2019; Schwartz, 2013), even though
they cover about 41% of the Earth’s land surface (Reid
et al., 2005; Reynolds et al., 2007). Hence, phenological
studies in arid and semiarid regions can enhance under-
standing of the response mechanisms of terrestrial eco-
system phenology to climate change and facilitate the
development of plant phenology models.

Background climatic conditions are involved in shap-
ing the spatial pattern of the TS of spring leaf-out phenol-
ogy (Park et al., 2018; Peaucelle et al., 2019). Intuitively,
the TS of the GUD should be regulated by climatic condi-
tions before the GUD (pre-GUD) (Du et al., 2019; Shen,
Cong, & Cao, 2015; Zohner et al., 2017). Indeed, in arid
and semiarid regions, TS of the GUD has been shown to
be regulated by pre-GUD precipitation (Du et al., 2019;
Shen, Cong, & Cao, 2015), because, in addition to tem-
perature, water availability is an important factor limiting
plant development (Cleverly et al., 2016). The trade-off
between the benefit derived from an advance of the GUD
under warmer conditions and drought risk due to
leaf-out before the rainy season explains a part of the spa-
tial variation in the TS of the GUD across the Tibetan
Plateau (Shen, Cong, & Cao, 2015). Thus, to maximize
the thermal benefit, the GUD generally displays greater
TS in areas with more pre-GUD precipitation if other fac-
tors allow. However, in areas with less pre-GUD precipi-
tation, warming potentially increases drought risk, and
plants adapt to this risk by reducing the TS of their GUD
(Du et al., 2019; Ganjurjav et al., 2020; Shen, Cong, &
Cao, 2015). Pre-GUD interannual temperature variability
is another determinant of the TS of spring phenology
(Zohner et al., 2017). In areas with high pre-GUD
interannual temperature variability, frost events occur
more frequently, and in these areas, the GUD tends to
show weaker TS to minimize the risk of frost damage
(Zohner et al., 2017). However, the fact that frost
damage is also related to water status should not be
ignored. Liquid water plays an important role as both a
solvent and reactant in biochemical reactions, and it is
also the primary medium via which plants absorb and
transport nutrients (Gurevitch et al., 2006). However, fro-
zen water cannot participate in biochemical reactions,
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and it can damage plant cells (Kawamura & Uemura,
2014). In regions with higher pre-GUD interannual tem-
perature variability, an increase in pre-GUD precipitation
may aggravate the risk of frost damage due to the crystal-
lization of water, to which plants again adapt by reducing
the TS of their GUD (Figure 1a). In contrast, when
pre-GUD interannual temperature variability is lower,
higher pre-GUD precipitation may not increase the frost
risk; rather, it may ease the constraint of low water avail-
ability on spring development and allow a higher TS of
the GUD. It is thus necessary to assess the interaction
effects of precipitation and temperature variations on the
TS of the GUD.

On the other hand, climatic conditions after the GUD
(post-GUD) can impose selection pressures on the leaf
life cycle and plant fitness, thereby inducing spatial varia-
tion in the TS of the GUD (Bennie et al., 2010; Peaucelle
et al., 2019). In regions where post-GUD climatic condi-
tions are more favorable for plant growth, plant leaves
mature faster (Klosterman et al., 2018), and under such
conditions, plants likely profit more from the better
post-GUD thermal conditions and avoid frost damage by
not leafing out earlier in years with warm springs; thus,
they adopt a conservative leaf-out strategy (i.e., smaller
TS of the GUD). By contrast, where post-GUD climatic
conditions are suboptimal, plant leaf growth is slower,
and under such conditions, plants may profit from a
warm spring by lengthening their growing season
(advancing leaf-out) despite the increased frost risk;
therefore, their GUD is more likely to exhibit high TS. In
cold arid and semiarid regions such as the Tibetan

Plateau, higher post-GUD precipitation combined with
low post-GUD interannual temperature variability
implies more favorable thermal and water conditions for
leaf growth. In these regions, therefore, such conditions
can be expected to favor a conservative GUD strategy to
minimize frost risk (i.e., smaller TS of the GUD). Hence,
spatially, an increase in post-GUD precipitation can be
expected to coincide with decreased TS of the GUD when
post-GUD interannual temperature variability is low
(Figure 1b). By contrast, higher post-GUD precipitation
combined with high post-GUD interannual temperature
variability may aggravate the low-temperature constraint
on leaf growth and impose higher risk of frost damage,
which can deplete carbon reserves and delay the buildup
of leaf area (Cong et al., 2017; Shen et al., 2016). This
combination of high post-GUD precipitation and temper-
ature variability would be expected to force plants to
invest more in frost resistance (Muffler et al., 2016),
which in turn would allow greater TS of the GUD to
maximize growing season length. Therefore, a spatial
increase in post-GUD precipitation may be expected to
lead to an increase in the TS of the GUD to maximize
growing season length whenever temperature allows.
Therefore, the interaction between post-GUD precipita-
tion and post-GUD interannual temperature variability
may also explain part of the spatial variation in the TS of
spring phenology, although this interaction has rarely
been studied.

The Tibetan Plateau, which has an area of more than
2.5 million km2, ranges from 2000 m to higher
than 6000 m in altitude; thus, it is the highest and largest

F I GURE 1 Schematic diagrams showing how temperature sensitivity (TS) of the green-up date (GUD) varies with background climatic

conditions in arid and semiarid alpine regions. (a) Variability in TS in relation to pre-GUD accumulated precipitation and pre-GUD

interannual temperature variability; the TS magnitude increases with an increase in pre-GUD precipitation when pre-GUD interannual

temperature variability is low, whereas it decreases with increased pre-GUD precipitation when pre-GUD interannual temperature

variability is high. (b) Variability in TS in relation to post-GUD accumulated precipitation and post-GUD interannual temperature

variability; the TS magnitude increases as post-GUD precipitation decreases when post-GUD interannual temperature variability is low, but

it increases with an increase in post-GUD precipitation when post-GUD interannual temperature variability is high.
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plateau in the world (Lu et al., 2011; Tang et al., 2009).
The Tibetan Plateau has been warming by more than
0.35�C decade−1 since the early 1980s, faster than the
global average (He et al., 2021; Wang et al., 2008).
Satellite remote sensing has well documented a general
advance in the vegetation GUD across the Tibetan
Plateau, but the magnitude of this advance exhibits large
spatial variability (Sun et al., 2020, 2021; Yang et al.,
2015; Zheng et al., 2016). The TS of the vegetation GUD
across the Tibetan Plateau ranges from −6 to 6 days �C−1

(Shen, Piao, et al., 2015). In most of the Tibetan Plateau,
the TS of the GUD is negative (i.e., GUD advance per
unit pre-GUD temperature increase), whereas positive TS
(i.e., GUD delay per unit pre-GUD temperature increase)
is found mainly in the southwestern Tibetan Plateau,
where it has been attributed in part to limited pre-GUD
cumulative precipitation (Shen, Cong, & Cao, 2015).
However, how pre-GUD and post-GUD background cli-
mate conditions contribute to spatial variations in TS of
GUD in the Tibetan Plateau remains an open question.
The Tibetan Plateau is also the world’s largest alpine dry-
land, with highly heterogeneous hydrothermal condi-
tions: mean annual temperature ranges from −15 to 10�C
(Qin et al., 2016; You et al., 2013), and annual cumulative
precipitation ranges from less than 100 mm to more than
1000 mm, although it is less than 600 mm in most areas
(Fang et al., 2019; Gao & Liu, 2013). Moreover, in most of
the Tibetan Plateau, because precipitation is far less than
potential evapotranspiration (Chen et al., 2006; Wang
et al., 2013, 2018), the climate is dry. These features make
the Tibetan Plateau an ideal region for exploring the
impacts of interactions between precipitation and
interannual temperature variability on the TS of spring
phenology across geographical spaces.

In this study, we used in situ phenological observations
across the Tibetan Plateau to test whether spatial variabil-
ity in the TS of the GUD is related to the interaction
between cumulative precipitation and interannual temper-
ature variability. Specifically, we tested the following two
hypotheses: First, we hypothesized that under low
pre-GUD interannual temperature variability, the TS of
the GUD is greater (more negative) in areas with higher
pre-GUD cumulative precipitation across the Tibetan
Plateau, whereas under high pre-GUD interannual tem-
perature variability, the TS of the GUD is smaller (less
negative) in areas with higher pre-GUD precipitation
(Figure 1a). Second, we hypothesized that under low
post-GUD interannual temperature variability, the TS of
the GUD is smaller in areas with higher post-GUD accu-
mulative precipitation, whereas under high post-GUD
interannual temperature variability, the TS of the GUD is
greater in areas with higher post-GUD accumulative
precipitation across the Tibetan Plateau (Figure 1b).

MATERIALS AND METHODS

Phenology observations and
meteorology data

We obtained field records of the GUD on the Tibetan
Plateau for the period from 1981 to 2012 recorded by the
nationwide phenological observation network, which was
established in 1980 by the China Meteorological
Administration (1993) (Chen, 2013). For woody species,
the GUD was defined as the date when the first leaves of
more than half of the observed individuals were fully
unfolded. For herbaceous species, it was defined as the
date when more than half of the observed individuals
displayed green leaves (China Meteorological
Administration, 1993; Sun et al., 2020). The phenological
status of the plants was recorded once every two days at
the species level at each phenological site (referred to as a
site–species hereafter). For each woody species, 3–5
middle-aged individuals were selected, and for each herba-
ceous species, 10 individuals were marked for phenologi-
cal observation. We removed site–species combinations
with less than 10 years of observations from our analyses.
The final dataset for analyses included 77 site–species (i.e.,
77 GUD time series) comprising 29 different species at 18
sites (Appendix S1: Table S1). The 18 sites were distributed
across the Tibetan Plateau; during 1981–2012, mean
annual temperature at the sites ranged from −1.7 to 9.1�C,
and annual cumulative precipitation ranged from 51 to
686 mm. Most precipitation occurred during May–September,
and winters were typically dry.

Daily mean temperature and daily cumulative precip-
itation at the exact locations of 14 phenological sites were
provided by the China Meteorological Data Service
System (http://data.cma.cn/). For the remaining four
phenological sites, data from the nearest meteorological
station, located 6, 21, 33, and 46 km away from the site,
were used. The geographical coordinates and altitude of
each phenological site and meteorological station and the
plant species observed at each phenological site are given
in Appendix S1: Table S1.

TS of the GUD

The GUD on the Tibetan Plateau was found to be driven
mainly by the temperature during a period before GUD
(referred to as the preseason), but precipitation also
played a role in controlling the GUD (Chen et al., 2015;
Shen, Cong, & Cao, 2015; Sun et al., 2018). The TS
(in days per degree Celsius) of the GUD is defined as the
change in the GUD per unit increase in the mean tem-
perature of the preseason. As in previous studies, we
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estimated TS as the coefficient of preseason mean
temperature in multiple interannual linear regression
results of GUD against preseason mean temperature and
cumulative precipitation (Fu, Zhao, et al., 2015;
Panchen & Gorelick, 2017; Wu et al., 2018). The length of
the preseason for each site–species combination was
determined as follows: we performed temporal partial
correlation analyses of GUD against preseason mean
temperature while controlling for preseason cumulative
precipitation (Fu, Zhao, et al., 2015; Jeong et al., 2011;
Matsumoto et al., 2003). Here, the candidate preseason
length was varied from 20 to 120 days preceding the
multiyear average GUD, with a step of five days, yielding
21 values of the partial correlation coefficients. The
preseason length with the highest absolute value of
the partial correlation coefficient was selected and used
as the preseason length in the analysis.

Analyses of spatial variations in TS

To explore the roles of background climatic temperature
and precipitation conditions in the spatial variation of
the TS of the GUD, we defined four climate variables: as
indicated in the Introduction section, the interannual SD
of mean temperature and the multiyear average of cumu-
lative precipitation in the period before the multiyear
average GUD (Tpre

SD and Ppre
mean, respectively), and the

interannual SD of mean temperature and the multiyear
average of cumulative precipitation in the period follow-
ing the multiyear average GUD (Tpost

SD and Ppost
mean, respec-

tively). To determine the period length for Tpre
SD and

Ppre
mean, we performed spatial linear regression analyses of

TS against Tpre
SD , P

pre
mean, and their interaction (Ppre

mean ×Tpre
SD )

by varying the period length from 20 to 120 days at inter-
vals of five days among the site–species combinations.
Then we used the period length for which the R2 value of
the regression was highest as the final period length for
Tpre
SD and Ppre

mean. We constrained the period lengths for
Tpre
SD and Ppre

mean to be identical, considering their interac-
tion. To avoid the effects of different period lengths on
the values of Tpre

SD and Ppre
mean and thus on the quantifica-

tion of the spatial variability of background climatic con-
ditions, the period length was not allowed to vary among
the site–species combinations. The period lengths for
Tpost
SD and Ppost

mean were determined in a similar way.
To assess how spatial variations in TS were related to

pre-GUD climatic factors, we linearly regressed TS
against Ppre

mean, T
pre
SD , and their interaction (Tpre

SD × Ppre
mean).

Similarly, we assessed the spatial relationship between
TS and post-GUD climatic factors by linearly regressing
TS against Tpost

SD , Ppost
mean, and Tpost

SD × Ppost
mean. The relative

importance of each independent variable was quantified

by hierarchical partitioning to calculate its contribution
to R2 (Chevan & Sutherland, 1991); this procedure was
implemented by using the R package “relaimpo”
(Grömping, 2006; Yin et al., 2020).

RESULTS

GUD and its TS

The multiyear average of each site–species GUD ranged
from day of year (DOY) 54 to DOY 144 across the plateau
(mean DOY 120, SD 18 days). TS ranged from −9.4 to
+2.6 days �C−1 with a mean (±SD) of −3.4 ± 2.3 days �C−1.
TS was negative for 71 site–species (statistically significant
for 49 site–species at p < 0.05). TS values for six site–species
were positive, but none of these differed significantly from
zero (p > 0.05).

Spatial relationships between TS and
background climatic conditions

One-way ANOVA results showed that the TS of the GUD
did not differ significantly among species (df = 28,
F = 1.24, p = 0.25).

Based on the largest R2 values of the spatial linear
regression analysis results (see Analyses of spatial varia-
tions in TS), the period length for Tpre

SD and Ppre
mean was

105 days, and that for Tpost
SD and Ppost

mean was 80 days.
When the interaction between Tpre

SD and Ppre
mean was not

considered, TS was significantly more negative at sites
with smaller Tpre

SD or less Ppre
mean (Figure 2a,b). When the

interaction between Tpost
SD and Ppost

mean was not considered,
TS significantly decreased toward sites with higher Tpost

SD ;
thus opposite to its relation with Tpre

SD (Figure 2a,c). The
relation between TS and Ppost

mean, however, was similar to
that between TS and Ppre

mean (Figure 2b,d).
When the interaction between pre-GUD temperature

variability and cumulative precipitation was considered,
the spatial linear regression between TS and Tpre

SD , P
pre
mean,

and Tpre
SD × Ppre

mean showed that the separate role of Tpre
SD on

TS of the GUD was not statistically significant (p>0.10;
Appendix S1: Table S2), and thus was ruled out in subse-
quent analyses. However, spatial differences in TS were
significantly affected by both Ppre

mean and Tpre
SD × Ppre

mean

(Table 1). Using only the preseason climate data, we
obtained the following linear regression model (Table 1):
TS¼ 0:2618× Tpre

SD − 0:9828
� �

× Ppre
mean − 4:0079. The rela-

tion between TS and Ppre
mean is thus regulated by Tpre

SD .
Where Tpre

SD was small (i.e., less than 0.9828�C), TS
increased toward sites with higher Ppre

mean, whereas where
Tpre
SD was large (i.e., more than 0.9828�C), TS decreased

ECOSPHERE 5 of 13
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toward sites with higher Ppre
mean (Figure 3). Further, TS

was smallest (i.e., least negative; fluctuating around
0 days �C−1) at sites with the highest Ppre

mean and highest
Tpre
SD values, and greatest (i.e., most negative) at sites with

the highest Ppre
mean and lowest Tpre

SD values (Figure 3).
Similarly, when only the post-season climatic data

were used, the linear regression model did not select
Tpost
SD as a significant explainer of the spatial variations in

TS of the GUD (Appendix S1: Table S3), whereas Ppost
mean

and the interaction between Tpost
SD and Ppost

mean

(Tpost
SD × Ppost

mean) were again selected by the model
(Table 2). However, the regulatory role of Tpost

SD in the
relation between TS and Ppost

mean was opposite to the

regulatory role of Tpre
SD observed in the relation between

TS and Ppre
mean. The obtained linear regression model was

TS¼ 0:0554 × 0:7599−Tpost
SD

� �
×Ppost

mean − 4:1615 (Table 2).
Where Tpost

SD was less than 0.7599�C, TS decreased toward
sites with higher Ppost

mean, whereas where Tpost
SD was higher

than 0.7599�C, TS increased toward sites with higher

F I GURE 2 Changes in temperature sensitivity (TS) of the green-up date (GUD) in relation to background climatic factors: (a) pre-GUD

interannual temperature variability (Tpre
SD ); (b) pre-GUD precipitation (Ppre

mean); (c) post-GUD interannual temperature variability (Tpost
SD ); and

(d) post-GUD precipitation (Ppost
mean). R is the linear correlation coefficient between TS and each factor.

TAB L E 1 Linear regression analysis results for quantifying the

spatial relationship between temperature sensitivity (TS) of the

green-up date (GUD) and pre-GUD cumulative precipitation

(Ppre
mean) and the interaction between pre-GUD interannual

temperature variability (Tpre
SD ) and Ppre

mean (Tpre
SD × Ppre

mean) across the

Tibetan Plateau.

Predictive variable Coefficient T p

Intercept −4.0079 −9.7572 <0.0001

Ppre
mean −0.2573 −3.5573 0.0007

Tpre
SD × Ppre

mean 0.2618 3.9898 0.0002

Note: For the linear regression model, R 2 = 0.22 and p < 0.01.

F I GURE 3 Spatial variation in temperature sensitivity (TS) of

the green-up date (GUD) in relation to pre-GUD cumulative

precipitation (Ppre
mean) and pre-GUD interannual temperature

variability (Tpre
SD ) (drawn from the linear regression model described

in Table 1). Color scale indicates TS values.

6 of 13 YANG ET AL.
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Ppost
mean (Figure 4). Further, TS was smallest (i.e., least neg-

ative; around 0 days �C−1) at the sites with highest Ppost
mean

and lowest Tpost
SD , and greatest (i.e., most negative) at the

sites with highest Ppost
mean and highest Tpost

SD (Figure 4).
When all of the selected pre-GUD and post-GUD cli-

matic factors (Ppre
mean, T

pre
SD ×Ppre

mean, P
post
mean and Tpost

SD ×Ppost
mean)

were included in a linear regression model to explain spa-
tial TS variations (Table 3), all four of these factors were
found to be significant determinants (p<0.01). This
model explained 32% of the spatial variation in TS, sub-
stantially more than that explained by the models based
solely on either pre- or post-GUD climatic factors (22%
and 16% for pre-GUD climate and post-GUD climate,
respectively). The relative importances of Ppre

mean,
Tpre
SD × Ppre

mean, P
post
mean and Tpost

SD ×Ppost
mean in the model were

25%, 36%, 20%, and 19%, respectively.
To evaluate the robustness of our results, we repeated

the above analyses under the condition that the pre-GUD
and post-GUD period lengths were determined simulta-
neously by the linear regression results for TS against
Tpre
SD , Ppre

mean, Tpre
SD ×Ppre

mean, Tpost
SD , Ppost

mean, and Tpost
SD ×Ppost

mean

with the largest R2. This analysis yielded similar results
(Appendix S1: Tables S4–S6; Appendix S1: Figures S1 and
S2) to those described above. In addition, we repeated
these analyses under the condition that neither the Tpre

SD

and Ppre
mean period lengths nor the Tpost

SD and Ppost
mean period

lengths were constrained to be identical. Again, the ana-
lyses yielded similar results (Appendix S1: Tables S7–S9
and Figures S3 and S4). The similar results obtained
under these conditions support the robustness of this
study.

DISCUSSION

The individual effects of Tpre
SD and Ppre

mean on spatial varia-
tion of the TS of the GUD have been previously explored
(Du et al., 2019; Fu, Piao, et al., 2015; Shen, Cong, & Cao,
2015; Zohner et al., 2017). In agreement with these

studies, our results show that the magnitude of TS
increases across sites with increasing Ppre

mean or decreasing
Tpre
SD . However, no previous studies have assessed the

impact of the interaction between Tpre
SD and Ppre

mean on TS.
This study revealed a significant interactive effect
between Tpre

SD and Ppre
mean on spatial variations in the TS of

the GUD on the Tibetan Plateau: namely, the magnitude
of TS increases (i.e., more negative) with Ppre

mean where
Tpre
SD is low, but decreases with Ppre

mean where Tpre
SD is high

(Figure 3).

TAB L E 2 Linear regression analysis results for quantifying the

spatial relationship between temperature sensitivity (TS) of the

green-up date (GUD) and post-GUD cumulative precipitation

(Ppost
mean) and the interaction between post-GUD interannual

temperature variability (Tpost
SD ) and Ppost

mean (Tpost
SD × Ppost

mean) across the

Tibetan Plateau.

Predictive variable Coefficient T p

Intercept −4.1615 −6.7306 <0.0001

Ppost
mean 0.0421 3.3642 0.0012

Tpost
SD ×Ppost

mean
−0.0554 −2.8142 0.0063

Note: For the linear regression model, R 2 = 0.16 and p < 0.01.

F I GURE 4 Spatial variation in temperature sensitivity (TS) of

the green-up date (GUD) in relation to post-GUD interannual

temperature variability (Tpost
SD ) and post-GUD precipitation (Ppost

mean)

(drawn from the linear regression model described in Table 2).

Color scale indicates TS values.

TABL E 3 Linear regression analysis results for quantifying the

spatial relationship between temperature sensitivity (TS) of the

green-up date (GUD) and pre-GUD precipitation (Ppre
mean), the

interaction between pre-GUD interannual temperature variability

(Tpre
SD ) and Ppre

mean (Tpre
SD × Ppre

mean), post-GUD precipitation (Ppost
mean), and

the interaction between post-GUD interannual temperature

variability (Tpost
SD ) and Ppost

mean (Tpost
SD × Ppost

mean) across the Tibetan

Plateau.

Predictive
variable Coefficient p

Contribution to
R 2 (%)

Intercept −3.5349 <0.0001

Ppre
mean −0.2531 0.0005 25.01

Tpre
SD × Ppre

mean 0.2604 0.0001 36.29

Ppost
mean 0.0355 0.0050 19.90

Tpost
SD × Ppost

mean
−0.0580 0.0021 18.80

Note: For the linear regression model, R 2 = 0.32, p < 0.01. R 2 contribution
metrics are normalized to sum to 100%. The R 2 contribution indicates the
relative importance of each independent variable to the spatial variation

in TS.
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Warming across the Northern Hemisphere (latitude
>30� N) has been shown to advance the GUD more than
the last spring frost date, implying that global warming is
increasing the risk of frost damage (Liu et al., 2018).
Moreover, this risk is most pronounced where Tpre

SD is
high and late frost events are more common (Zohner
et al., 2017). Thus, in areas with high Tpre

SD , an advance of
the GUD can subject plant leaves to a sharply increased
risk of frost damage, and in the long run, it is likely not
beneficial to plants for the TS of their GUD to be high.
Precipitation during frost events may further aggravate
the frost damage to young leaves due to the crystalliza-
tion of water (Muffler et al., 2016). Thus, where both Tpre

SD

and Ppre
mean are high, adopting a conservative phenology

with low TS of the GUD appears to be the best option for
plants to maximize survival, productivity, and competi-
tiveness. By contrast, in areas with low Tpre

SD (and thus a
lower occurrence frequency of frost events before the
GUD), higher Ppre

mean does not increase the potential frost
damage when the GUD is advanced; instead, it facilitates
plant development because water is a scarce resource in
arid and semiarid regions. In this case, higher Ppre

mean

allows the GUD of plants to have greater TS and maxi-
mize the growing season length during warm springs. In
support of our first hypothesis, our results illustrate for
the first time how Tpre

SD and Ppre
mean interactively shape the

spatial variability of the TS of the GUD across
the Tibetan Plateau.

In our results, the magnitude of TS was generally
inversely related to Tpre

SD , a finding consistent with the
conclusion of other studies (Körner & Basler, 2010; Wang
et al., 2014; Zohner et al., 2017). However, we found that
the individual effect of Tpre

SD on the TS of the GUD was
not significant across the Tibetan Plateau when the
effects of Ppre

mean and the interaction between Tpre
SD and

Ppre
mean were considered simultaneously (Table 1). This

result suggests that the relation between TS and Tpre
SD

depends on Ppre
mean. Interestingly, we found no relation

between TS and Tpre
SD across the driest study sites

(Figure 3). There are three possible reasons for that. First,
the GUD is not sensitive to the pre-GUD temperature in
the driest areas of the Tibetan Plateau (Shen, Piao, et al.,
2015), and as a result, TS values are close to zero, which
reduces drought risk at sites with high Tpre

SD and dryness.
Second, frost events damage plant tissues and cells by
changing the phase of water. Low amounts of water
would nullify the potential damage from frost events to
plant tissues and cells. Third, greater dryness might also
increase plant cell sap concentrations, which would
increase their tolerance to low temperatures. Thus, the
impact of frost events on plants with high drought toler-
ance may be less severe in extremely dry areas (Muffler
et al., 2016; Walter et al., 2013).

Previous studies mostly focusing on spring leaf-out phe-
nology in humid mid-latitude regions have attributed spatial
TS variations to Tpre

SD , reasoning that Tpre
SD is an indicator of

spring frost risk (Körner & Basler, 2010; Wang et al.,
2014; Zohner et al., 2017). Such attribution is reasonable,
because low temperatures can easily lead to freezing
injury under water sufficiency. However, our results
showed that Tpre

SD is likely not a determinant of spatial TS
variations in arid and semiarid regions, possibly because
Tpre
SD is a good indicator of frost risk only when water

availability is high and temperature is low. Although this
study was conducted in the Tibetan Plateau, which is
characterized by a cold, dry climate, our results provide
reference data for understanding the effect of frost risk
on leaf-out phenology in other arid and semiarid ecosys-
tems in climates with seasonality. Moreover, a consider-
able fraction of the Earth’s surface is projected to become
more arid under future climate scenarios (Huang et al.,
2016; Koutroulis, 2019). This study may thus provide a
foundation for better models of leaf-out phenology in
these future (semi)arid regions with cold winter.

A few studies have shown that in addition to the
pre-GUD climate, the post-GUD climate also affects
the TS of GUD (Bennie et al., 2010; Peaucelle et al.,
2019). Our study revealed that not Tpost

SD by itself, but both
Ppost
mean and the interaction between Ppost

mean and Tpost
SD are

involved in shaping spatial TS variations across the
Tibetan Plateau. The magnitude of TS decreased spatially
with an increase in Ppost

mean where Tpost
SD was low, but

increased with an increase in Ppost
mean where Tpost

SD was high
(Figure 4). This result indicates that post-GUD hydro-
thermal conditions likely exert selection pressure on the
TS of the GUD by modifying the balance between maxi-
mization of carbon gain and minimization of frost risk
(Bennie et al., 2010; Cannell, 1997; Zohner et al., 2017).
On the one hand, leaves grow to maturity faster under
favorable hydrothermal conditions (Klosterman et al.,
2018), and they can achieve sufficient carbon uptake
without increasing the pre-GUD frost risk by substan-
tially advancing the GUD whenever the pre-GUD tem-
perature is high, resulting in smaller TS of the GUD
(i.e., more conservative leaf-out strategy) with higher
Ppost
mean where Tpost

SD was low. On the other hand, in cold
areas such as the Tibetan Plateau, plants generally grow
under less-than-optimal temperature conditions, and veg-
etation activity is therefore expected to increase with
higher temperature (Chen et al., 2021; Huang et al.,
2019). However, given the high specific heat capacity of
water, wetter conditions imply a greater energy require-
ment to warm up the soil after the more frequent cold
spells under high-temperature variability. Therefore, high
Ppost
mean can aggravate the negative impact of low tempera-

tures on leaf growth under high Tpost
SD . If soil warming is
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slow after the GUD, plants would likely profit from
leafing out earlier (i.e., from the GUD’s being more sensi-
tive to pre-GUD temperature to lengthen the growing
season whenever possible), thereby gaining time for
developing a mature canopy. These new findings chal-
lenge our intuitive notion that spatial variations in the TS
of spring phenology are dominantly determined by
pre-GUD climatic conditions (Du et al., 2019;
Matthews & Mazer, 2016; Shen, Cong, & Cao, 2015;
Zohner et al., 2017). This study shows for the first time
how Tpost

SD and Ppost
mean interactively shape the spatial vari-

ability of the TS of the GUD across the Tibetan Plateau,
with implications for interpreting spatial variations in
leaf-out responses to temperature in other arid and semi-
arid ecosystems in climates with seasonality.

Although our analyses revealed Ppre
mean, Tpre

SD × Ppre
mean,

Ppost
mean, and Tpost

SD × Ppost
mean to be significant determinants of

spatial variations in TS (R2= 0.32), more than half of the
spatial variation in the TS of the GUD were not explained
by these four variables (Table 3). This result may be
related to a suite of confounding factors. First, TS,
defined here as the change in the GUD per degree of
change in the preseason temperature, does not directly
reflect the physiological sensitivity of plants to tempera-
ture, although it is widely used as a proxy for it (Cook
et al., 2012; Fu, Zhao, et al., 2015; Gao et al., 2020; Prevéy
et al., 2017; Wolkovich et al., 2012). Second, climatic fac-
tors alone may not explain all of the spatial variations in
the TS of the GUD; biotic factors, such as interspecific
interactions, may also affect TS (Liang et al., 2016; Singer
et al., 2013). The impact of species interactions on TS
should be explored in future studies conducted in plant
communities for which comprehensive information
about species composition, relative abundances, and phe-
nology of each species is available. Third, other factors,
such as photoperiod (Fu et al., 2019; Huang et al., 2020;
Rollinson & Kaye, 2012), soil properties (Ata-Ul-Karim
et al., 2020), nutrient availability (Falk et al., 2020;
Xi et al., 2015), carbon dioxide concentration (Inoue
et al., 2020), and microbes (O’Brien et al., 2021; Van
Nuland et al., 2021), may explain part of the spatial varia-
tion in the TS of the GUD. Fourth, the spatial variability
of TS may be related to species and phenotypes, although
the ANOVA results showed that the TS of the GUD did
not significantly differ among species in this study.
Lastly, the spatial relationship between TS and pre- and
post-GUD climatic factors may be nonlinear, a possibility
that should be addressed in further studies. These possi-
bilities mentioned above require further analysis with
more data to be determined. In fact, the 32% of explained
variance is not small if we compare it with the 15 models
concerning spatial variation in TS of spring phenology
whose R2 values ranged from 0.03 to 0.37 with the mean

and SD of 0.19± 0.09 in five previous studies (Dai et al.,
2014; Kopp et al., 2020; Lapenis et al., 2013; Zhang,
Yuan, Liu, & Dong, 2015; Zhang, Yuan, Liu, Dong, & Fu,
2015). More importantly, the fact that the effects of the
background climate variables we have considered are sta-
tistically significant (Table 3) indicates that the model in
this study is valid, and our qualitative inferences in the
introduction hold true. In addition, the models in previ-
ous studies were generally univariate linear regression in
which the environment variable included annual precipi-
tation, annual temperature, SD of annual temperatures
or SD of monthly temperatures, and so on (Dai et al.,
2014; Kopp et al., 2020; Lapenis et al., 2013; Zhang,
Yuan, Liu, & Dong, 2015; Zhang, Yuan, Liu, Dong, & Fu,
2015). Thus, we have done similar tests using univariate
linear regression with very small R values, which was
suggested to be inapplicable in the Tibetan Plateau
(Figure 2). To verify the progressiveness of our model, we
also used the data in this study to compare our model to
those in previous studies based on the Akaike informa-
tion criterion (AIC). Our model had larger R2 and
smaller AIC values than the univariate linear regression
models in previous studies (Appendix S1: Table S10),
suggesting a significant improvement irrelevance to the
additional complexity. In addition, it should be noted
that the threshold of pre-GUD temperature variability
(0.9828�C for Tpre

SD ) for reversing the effect of pre-GUD
precipitation on TS variations was based on a limited
sample size (77 GUD time series) and thus should be
interpreted with caution. Similarly, the threshold of
post-GUD temperature variability (Tpost

SD ¼ 0:7599�C)
needs to be interpreted cautiously.

CONCLUSIONS

Using ground-based phenological records across the
Tibetan Plateau, we showed that the interaction between
Tpre
SD and Ppre

mean and the interaction between Tpost
SD and

Ppost
mean shaped the spatial variability of the TS of the GUD.

We found that in areas with low Tpre
SD , a spatial increase

in Ppre
mean led to an increase in the magnitude of TS, proba-

bly owing to a greater availability of liquid water for plant
physiological processes. In areas with high Tpre

SD , a spatial
increase in Ppre

mean led to a decrease in the magnitude of
TS, likely because precipitation can aggravate the damage
of frost events to plant tissues and cells due to the crystal-
lization of water. Opposite to the interactive effect
between Tpre

SD and Ppre
mean, in areas with low Tpost

SD , high
Ppost
mean can help plant leaves reach maturity faster and

obviate the need to closely track temperature changes to
reduce frost risk. Therefore, a spatial increase in Ppost

mean

led to a decrease in the magnitude of TS in areas with
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low Tpost
SD . In areas with high Tpost

SD , high Ppost
mean can slow

plant leaf growth and maturation by aggravating low
temperature constraints. As a result, plants need to
closely track temperature changes to lengthen the grow-
ing season. Therefore, a spatial increase in Ppost

mean led to
an increase in the magnitude of TS in areas with high
Tpost
SD . The results of this study deepen the understanding

of spatial TS variation by showing the interactive effects
of pre-GUD temperature variability and precipitation,
shedding new light on the frost risk hypothesis in spring
leaf-out phenology. Moreover, our results suggest that
post-GUD precipitation and interactions between
post-GUD precipitation and temperature variability
might be involved in shaping spatial TS variability. Our
findings provide a reference for understanding leaf-out
phenology in other arid and semiarid ecosystems in sea-
sonally cold regions.
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