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Abstract
Biallelic loss of SPG11 function constitutes the most frequent cause of complicated autosomal recessive hereditary spastic 
paraplegia (HSP) with thin corpus callosum, resulting in progressive multisystem neurodegeneration. While the impact of 
neuroinflammation is an emerging and potentially treatable aspect in neurodegenerative diseases and leukodystrophies, the 
role of immune cells in SPG11–HSP patients is unknown. Here, we performed a comprehensive immunological characteriza-
tion of SPG11–HSP, including examination of three human postmortem brain donations, immunophenotyping of patients’ 
peripheral blood cells and patient-specific induced pluripotent stem cell-derived microglia-like cells (iMGL). We delineate 
a previously unknown role of innate immunity in SPG11–HSP. Neuropathological analysis of SPG11–HSP patient brain 
tissue revealed profound microgliosis in areas of neurodegeneration, downregulation of homeostatic microglial markers and 
cell-intrinsic accumulation of lipids and lipofuscin in IBA1+ cells. In a larger cohort of SPG11–HSP patients, the ratio of 
peripheral classical and intermediate monocytes was increased, along with increased serum levels of IL-6 that correlated with 
disease severity. Stimulation of patient-specific iMGLs with IFNγ led to increased phagocytic activity compared to control 
iMGL as well as increased upregulation and release of proinflammatory cytokines and chemokines, such as CXCL10. On a 
molecular basis, we identified increased STAT1 phosphorylation as mechanism connecting IFNγ-mediated immune hyper-
activation and SPG11 loss of function. STAT1 expression was increased both in human postmortem brain tissue and in an 
Spg11–/– mouse model. Application of an STAT1 inhibitor decreased CXCL10 production in SPG11 iMGL and rescued their 
toxic effect on SPG11 neurons. Our data establish neuroinflammation as a novel disease mechanism in SPG11–HSP patients 
and constitute the first description of myeloid cell/ microglia activation in human SPG11–HSP. IFNγ/ STAT1-mediated 
neurotoxic effects of hyperreactive microglia upon SPG11 loss of function indicate that immunomodulation strategies may 
slow down disease progression.

Keywords  Multisystem neurodegeneration · Inflammation · IFNγ/ STAT1 signaling · Autosomal-recessive hereditary 
spastic paraplegia · Induced microglia-like cells · Disease-associated microglia

Introduction

Hereditary spastic paraplegias (HSP) are a heterogeneous 
group of genetic motor neuron disorders, characterized by 
progressive spasticity and weakness of the lower limbs due 
to degeneration of corticospinal motor neurons and ascending 

dorsal columns [8, 54, 56, 70]. The most frequent form of auto-
somal-recessive complicated HSP is caused by pathogenic bi-
allelic variants in the SPG11 gene leading to a loss of SPG11 
function [56]. In addition to spastic paraparesis, SPG11-related 
HSP (SPG11–HSP) is commonly characterized by cognitive 
impairment, thin corpus callosum, and amyotrophy [56]. 
While the precise function of SPG11 encoding spatacsin is 
not fully understood, its loss is suggested to be involved in fail-
ure of the autophagic lysosomal reformation, which results in 
accumulation of autophagosomes and depletion of lysosomes 
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[15, 18, 46, 99]. In addition, loss of spatacsin leads to impaired 
cholesterol trafficking and progressive ganglioside deposition 
in neurons [13, 14]. In patient-derived neurons from induced 
pluripotent stem cells (iPSCs), we have previously demon-
strated neurodevelopmental deficits as well as impaired neurite 
complexity and transport defects of SPG11 neurons [34, 60, 
71, 72, 77]. For other motor neuron disorders and neurodegen-
erative diseases, including Alzheimer’s disease (AD), Parkin-
son’s disease (PD), and amyotrophic lateral sclerosis (ALS), 
it is well-established that neuroinflammation contributes to 
neuronal loss [35, 80, 108]. These neuroinflammatory pro-
cesses involve brain resident myeloid cells including microglia 
exerting host defense against pathogens and maintaining brain 
homeostasis [78, 80]. In an increasing number of neurode-
generative disorders, specific microglia subtypes with distinct 
transcriptomic signatures including disease-associated micro-
glia (DAM) are considered to impact pathogenicity.

Neuroinflammatory changes, characterized by brain-
infiltrating CD8+ T cells, amplified neurodegeneration 
in a recently published Spg11–/– mouse model [41]. The 
exact mechanism of CD8+ T-cell invasion in Spg11–/– mice 
remained unclear. Activation of microglia, however, was 
observed in different brain regions, which could potentially 
initiate enhanced recruitment of pathogenic CD8+ T cells. 
SPG11 mRNA is highly expressed in human PBMCs and 
lymphoblasts [37], and levels of proinflammatory resistin 
were increased in SPG11–HSP patients which adds further 
indications for a role of innate inflammation in SPG11–HSP 
[81]. In this study, we hypothesized that altered myeloid cell 
states are an important disease mechanism in SPG11–HSP. 
Evaluation of SPG11–HSP postmortem brain tissues 
revealed severe and widespread microgliosis and disease-
associated microglia (DAM) marker expression. Elevated 
blood serum levels of proinflammatory monocytes and the 
proinflammatory cytokine IL-6 were detected in an SPG11 
patient cohort. Finally, stimulation by IFNγ triggered a 
hyperactivated state in patient-derived induced microglia-
like cells (iMGL) including increases in phagocytosis and in 
expression and secretion of proinflammatory cytokines and 
chemokines via a STAT1-dependent mechanism. Increased 
STAT1 signaling was confirmed in the SPG11 postmor-
tem case as well as an Spg11–/– mouse model. Moreover, 
conditioned media of IFNγ treated SPG11 iMGL induced 
neuronal cell death and this effect was prevented by inhibi-
tion of STAT1.

Materials and methods

Patients

This study was approved by the local Institutional 
Review Board of the Friedrich-Alexander-Universität 

Erlangen-Nürnberg (No. 17-259-B, No. 17-347-B, No. 
21-498-D, No. 484_20 B), and all individuals provided 
written informed consent. Brain sampling followed the 
ethical rules of each country.

Postmortem tissue

“SPG11 (UKER)” postmortem tissue was donated by a 
female SPG11–HSP patient (SPG11 donor SPG11-3 in 
the iMGL experiments, Online Resource Table 3) with a 
disease onset at the age of 31, progressive gait disorder, 
muscle cramps, and loss of dexterity. Genetic testing iden-
tified a heterozygous nonsense variant at c.267G > A/p.
Trp89X in exon 2 and the splice site variant c.1457-2A > G 
in intron 6 of SPG11. During disease progression, the 
patient developed a spastic paraparesis, muscle cramps, 
distal muscle wasting, and pseudobulbar dysarthria. At 
age 46, she had lost ambulation and exhibited progressive 
dementia and dysphagia. The patient died at the age of 
51 of aspiration, without clinical evidence of an inflam-
matory disorder, and without antibiotic or immunomodu-
latory therapy. Postmortem brain tissue derived from a 
female without neurological disease deceased at age 42 
from arterial lung embolism was used as non-inflamma-
tory “control”.

The “SPG11 (BG2)” case was previously described in 
Denora et al. 2016 [25]. Briefly, this postmortem tissue 
is derived from a female SPG11–HSP patient with dis-
ease onset at age 10, rapidly progressing spastic cerebel-
lar ataxic gait and mild intellectual disability. The patient 
died at the age of 46 years, and familial genetic testing 
revealed a homozygous truncating variant c.6739_6742del 
(p.Glu2247Leufs14) in exon 36 of SPG11. Corresponding 
control tissue derived from a female deceased at age 59 from 
the same center was used.

The “SPG11 (UWA)” postmortem tissue was donated 
by a male SPG11–HSP patient from the Genetic Medicine 
Clinic at University Washington Medical Center, USA, who 
died at the age of 42. This patient had delayed language 
acquisition as a child and required special education through 
high school. He presented at age 20 with gait and balance 
symptoms that had begun a few years earlier. Examination 
showed nystagmus, distal upper extremity amyotrophy and 
spasticity. He was diagnosed with optic atrophy at age 34. 
By the time of death, he was mute and markedly bradyki-
netic. Genetic testing in this case identified a homozygous 
4 base-pair deletion variant c.6439_6442del leading to a 
frameshift. A detailed clinical workup of this case will be 
published elsewhere (Scherpelz et al., in review). Corre-
sponding control tissues derived from two males deceased 
without neurological diseases at age 38 (control UWA1) and 
at age 42 (control UWA2) from the same center were used.
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Each SPG11 postmortem case was compared only with 
corresponding control tissue subjected to comparable pro-
cessing and staining procedures at the same facility.

Blood samples

Peripheral blood samples were collected from SPG11–HSP 
patients and healthy controls (Online Resource Tables 1 and 
2). All individuals were asked to avoid excessive physical 
activity within the preceding week, and blood samples were 
withdrawn in the morning (between 8 and 11 am) after a 
fasting period of at least 8 h, including abstinence from caf-
feine and sweeteners. Serum samples were cooled immedi-
ately after blood drawing, and supernatants were prepared 
within 4 h and subsequently stored at  – 80 °C [81]. Indi-
viduals receiving immunomodulatory medications were not 
included in the study. Peripheral blood mononuclear cells 
(PBMCs) were obtained from patients with non-neurodegen-
erative or non-inflammatory diseases (controls, n = 38) and 
SPG11 patients (n = 8). The PBMC control cohort consisted 
of non-inflammatory and non-degenerative neurological dis-
eases, i.e., meningioma (n = 1), idiopathic intracranial hyper-
tension (n = 8), dysesthesia (n = 7), pain syndrome (n = 2), 
primary headache (migraine, tension headaches; n = 6), 
normal pressure hydrocephalus (n = 2), somatization disor-
der (n = 2), polyneuropathy (n = 1), fatigue (n = 1), phobic 
vertigo (n = 1), non-specific white matter lesions (n = 4) and 
without a diagnosis (n = 3). PBMCs underwent processing 
using a Ficoll gradient method and were subsequently pre-
served in liquid nitrogen (Ficoll–Paque PLUS density gradi-
ent media, Cytiva) [84]. Viability rates exceeded 80%, and 
routine quality assessments showed unchanged phenotypes 
of frozen PBMCs compared to the analysis of fresh PBMCs 
[12, 84].

iPSC lines

IMGL were differentiated from iPSCs derived from three 
Caucasian females with compound heterozygous pathogenic 
variants in the SPG11 gene, including the “SPG11 (UKER)” 
postmortem case, and three age- and sex-matched healthy 
controls (Online Resource Table 3). Their precise clinical 
phenotype and generation of iPSCs have been described 
previously [5, 39, 72, 90].

Animals

Generation and characterization of Spg11–KO mice 
was described previously [46, 99]. All animal experi-
ments were approved by the “Thüringer Landesamt für 
Lebensmittelsicherheit und Verbraucherschutz” (TLLV) 
in Germany (Approval number: 02–039-14). Mice were 
housed in a 12 h light/dark cycle and fed on a regular diet 

ad libitum. Five Spg11+/+ and five Spg11−/− mice were 
analyzed at the age of 16 months.

MSD® multi‑spot assay system

Multiplex electrochemiluminescence (ECL) was per-
formed using the Meso Scale Discovery® system (MSD®; 
Rockville, MD, USA) according to the manufacturer’s 
instructions, using the U-PLEX Custom Biomarker Group 
1 (human) Assay (Cat.: K15067L-1), including U-PLEX 
10-Assay, 96-Well SECTOR Plate (Cat.: N05235A-1), 
U-PLEX Human Antibody Sets for IFNγ (Cat.: B21TT-2), 
IL-1β (Cat.: B21TU-2), IL-6 (Cat.: B21TX-2), IL-8 (Cat.: 
B21TY-2), IL-10 (Cat.: B21TZ-2), TNFα (Cat.: B21UC-
2), IP-10 (Cat.: B21UF-2), MCP-1 (Cat.: B21UG-2), IL-1α 
(Cat.: B21UN-2) and IL-18 (Cat.: B21VJ-2). In addition, 
calibrator 1 (Cat.: C0060-2), calibrator 2 (Cat.: C0061-
2) and calibrator 3 (Cat.: C0062-2) were applied together 
with the respective buffers, Diluent 43 (Cat.: R50AG) and 
Diluent 3 (Cat.: R50AP). Patient serum and cell culture 
supernatants were diluted 1:1 in Diluent 43. Provided 
plates were coated with Linker-coupled antibodies 1 day 
before the assay was performed. The biotinylated antibod-
ies were combined with the assigned Linker (Linker 1 for 
IFN-γ, Linker 2 for IL-1β, Linker 3 for IL-6, Linker 4 for 
IL-8, Linker 5 for IL-10, Linker 6 for TNF-α, Linker 7 for 
IP-10, Linker 8 for MCP-1, Linker 9 for IL-1α and Linker 
10 for IL-18) and adjusted to 6 ml with the Stop Solution 
(Cat.: R50AO-1). 50 µl of the coating solution was added 
to each well and the plates were subsequently incubated 
for 1 h at room temperature, washed trice with phosphate-
buffered saline (PBS)/ 0.05% Tween-20. The plates were 
stored at 4 °C overnight. The calibrators were diluted in a 
fourfold serial dilution using Diluent 43 to generate eight 
standards. 25 µl of Diluent 43 was added to each well, 
followed by 25 µl of prepared calibrator standards or sam-
ple dilutions. All standards and samples were measured 
in duplicates. The plates were incubated at RT with shak-
ing for 1 h. After the plates were washed three times as 
described above, 50 µl of detection antibody solution was 
added to each well. The 100X stock solution of the detec-
tion antibodies was diluted in Diluent 3. After an incuba-
tion for 1 h, the plates were washed again twice and 150 µl 
of MSD GOLD Read Buffer B was added to each well. 
The measurement was performed on MESO® QuickPlex® 
SQ 120MM (Cat.: Al1AA) and subsequent analysis were 
carried out using MSD® Discovery Workbench® Version 
4.0. Protein concentrations within the iMGL supernatants 
were further normalized to total protein amount, which 
was measured using the Pierce BCA protein assay Kit 
(Thermo Fisher) according to the manufacturer’s protocol.
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Immunohistochemistry (IHC) of human postmortem 
tissue

Formalin-fixed paraffin-embedded tissue blocks of corti-
cal areas and basal ganglia sectioned at 5 µm underwent 
standard analyses, including Hematoxylin and Eosin (H&E) 
and luxol fast blue (LFB) staining. Chromogenic (DAB) 
immunohistochemistry was performed for GFAP, CD8, 
CD4, CD68, STAT1 and IBA1. For immunofluorescence 
(IF) stainings, sections were deparaffinized at 60 °C for 
30 min and incubated in Neo-Clear (Sigma-Aldrich) for 
10 min. After rehydration, antigen retrieval was performed 
by incubating sections in 100X Tris Buffer (pH 10.0; abcam) 
using a pressure cooker (2100 Antigen Retriever, Aptum 
Biologics). Sections were permeabilized for 10 min with 
0.2% Triton-X-100 (Sigma-Aldrich) and 2% bovine serum 
albumin (BSA) in PBS followed by blocking of non-specific 
antibody binding by PBS with 2% BSA for 1 h at RT. Pri-
mary antibody incubation in PBS 2% BSA overnight at 4 °C 
(Online Resource Table 4). On the next day, sections were 
first blocked with 2% donkey serum (Pan Biotech) and 0.2% 
Triton-X-100 in PBS and afterward incubated in respective 
secondary Alexa Fluor coupled donkey antibody (1:500, 
Thermo Fischer, Online Resource Table 4) in PBS 2% BSA 
for 1 h at RT. Next, sections were washed in PBS with 0.2% 
Triton-X-100 for 5 min followed by PBS washes. In addition, 
sections were then stained with 0.5 mg/ml 49,6-diamidino-
2-phenylindole (DAPI) and autofluorescence was quenched 
with TrueBlack (20X in 70% Ethanol, Biotium). Sections 
were subsequently washed and mounted with Prolong Gold 
anti-fade with DAPI Mounting Media (Invitrogen). Micro-
scopic analysis was performed on an Observer.Z1 micro-
scope (ZEISS) and ZEN 2.6 blue software (ZEISS). For the 
quantification of the IF images, ten randomly selected fields 
of view were counted manually, blinded for genotype for 
each brain region.

IHC of murine brain tissue

Animals were euthanized with a fivefold overdose of Keta-
min (500 mg/kg body weight) and Xylazin (80 mg/kg body 
weight) and perfused transcardially with 4% PFA in 1 × PBS. 
Brains were removed and post-fixed in 4% PFA overnight 
at 4 °C.

IHC was performed on 40 µm cryosections that were 
first washed three times with TBS buffer (100 mM TRIS, 
1.5 M NaCl, pH 8 in H2O) for 5 min. Afterward, antigen 
retrieval was performed. Sections were incubated in Dako 
TRS, Citrate pH 6 (10x; Aglilent Technologies) for 30 min 
at 80 °C followed by 30 min at RT. After washing with 
TBS, sections were incubated in blocking buffer (3% don-
key serum, 0.1% Triton-X-100 in TBS) for 30 min. Incu-
bation of the primary antibody (Online Resource Table 4) 

diluted in blocking buffer was performed at 4 °C overnight. 
On the next day, sections were first washed with TBS and 
afterward incubated in respective secondary Alexa Fluor 
coupled donkey antibody (Online Resource Table 4) for 
1 h at RT. Sections were subsequently stained with 0.5 mg/
ml DAPI and washed with TBS. Mounting was performed 
using Prolong Gold anti-fade Mounting Media (Invitro-
gen). Microscopic analysis was performed as described 
above. For quantification of the IF images, five randomly 
selected fields of view per mouse were counted manually, 
blinded for genotype.

Electron microscopy

Postmortem brain tissue fixed in 4% PFA underwent two 
different routes for further processing. For ultrastructural 
analysis, tissue was post-fixed in Itho-buffer containing 3% 
glutaraldehyde (GA). Embedding in resin and sectioning 
was performed as described before [1]. For immuno-gold 
labeling, tissue samples were rehydrated, frozen and cryo-
sectioned to 50 µm. These 50 µm sections were then incu-
bated with an anti-IBA1 antibody (Wako, Online Resource 
Table 4) and a gold-labeled secondary antibody. After 
washing the section to remove unbound secondary anti-
bodies, silver enhancement was performed to increase sig-
nal intensity in transmission electron microscopic (TEM) 
analysis. Sections were then fixed in Itho-buffer (with 3% 
GA), embedded and sectioned as described above. All 
ultrathin sections were transferred into a 1400Plus TEM 
(JEOL) operating at 120 kV.

iPSC derivation and culture

Fibroblasts from patients and controls had been repro-
grammed as previously described [72, 76]. Briefly, fibro-
blasts obtained from dermal punch biopsies were repro-
grammed with viral transduction [34, 72] of the four 
Yamanaka factors (KLF4, c-Myc, Oct4 and Sox2). All 
obtained iPSC lines were tested for pluripotency (Tra1-
60 expression by Flow cytometry) and stable karyotype 
using the G-banding chromosomal analysis and analysis 
of copy number variations > 100 kb [76]. All iPSC lines 
were described in our previous studies which focused on 
the neural lineage [34, 51, 60, 71, 72, 77]. Two established 
iPSC lines were analyzed per individual.

iPSCs were maintained in mTeSR Plus (STEMCELL 
Technologies) on Geltrex™-coated plates (500 µg for 57 
cm2, Thermo Fisher Scientific). Cells were passaged as 
clumps using Gentle Cell Dissociation reagent (STEM-
CELL Technologies).
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iMGL generation

iPSCs were differentiated into iMGL via hematopoietic 
progenitor cells (HPCs) as previously described [52]. For 
HPC generation, STEMDiff hematopoietic kit (STEMCELL 
Technologies) was used according to the manufacturer’s pro-
tocol. Briefly, iPSCs were seeded as small clumps and culti-
vated in the media provided by the STEMDiff hematopoietic 
kit. HPCs were collected on days 12, 14, and 16 of differen-
tiation and combined in RPMI1640 with 10% FCS (Gibco), 
50 U/ml Penicillin/streptomycin (Gibco), and 10 ng/ml 
GM–CSF (Peprotech). On day 16 of differentiation, HPCs 
were either frozen or further seeded in maturation media 
additionally containing 50 ng/ml IL-34 (Peprotech) on glass 
slides containing plates to generate iMGL. HPCs were dif-
ferentiated for 2 weeks into iMGL with the addition of media 
every 2–3 days and one 50% media change after 1 week. All 
analyses were performed on differentiated iMGL, i.e., after 
2 weeks on day 28, including these stimuli: IFNγ (10 ng/
ml for 24 h, Peprotech), LPS (100 ng/ml for 24 h, SIGMA), 
Oleic Acid (200 µm for 24 h; SIGMA), serum depletion for 
24 h with BafilomycinA1 (BAF) exposure (100 nM for 6 h; 
Thermo Fisher) and Ruxolitinib (5–100 µM for 24 h before 
IFNγ stimulation, in DMSO, Selleckchem). For immunocy-
tochemical analysis, either 100,000 HPCs per well were dif-
ferentiated in a 24-well plate or differentiated iMGLs were 
reseeded with TrypLE Express (Invitrogen) on a 96-well 
staining plate (Ibidi; 10,000 cells/ well).

To generate microglia-conditioned media (MCM), control 
and SPG11 iMGL (5 clones each) were re-seeded on day 25 
of differentiation on 24-well plates with 200,000 cells per 
well. On day 27, Ruxolutinib treatment (50 µM, Selleck-
chem) was performed, 24 h prior to IFNγ (10 ng/ml, Pepro-
tech). After 24h of IFNγ stimulation, MCM was collected 
and centrifuged at 1000 × g for 10 min. The supernatant was 
diluted 1:1 in neuronal media NMM and applied to neurons.

Generation of iPSC‑derived neurons

Differentiation of iPSC into cortical neurons was based on 
the published protocol by Shi et al. [86]. First, iPSCs were 
seeded at a density of 300,000 cells/cm2 on Geltrex™-coated 
plates. At 100% confluency, medium was changed to neural 
induction medium which is composed of neural maintenance 
medium (NMM; 50% Neurobasal (Life Technologies), 50% 
DMEM/F12 + GlutaMAX (Life Technologies), B27 + VitA 
(50x; Life Technologies), N2 (200x; Life Technologies), 
MEM Non-essential amino acids solution (100x, Life Tech-
nologies), 2-Mercaptoethanol (50 µM; Life Technologies), 
Penicillin/streptomycin (50 U*ml−1; Life Technologies)) 
supplemented with LDN (100 nM; Tocris) and SB431542 
(10µM; Tocris). Medium was changed every day until day 12 
when the cells were split 1:3 in aggregates using Collagenase 

IV (Life Technologies) and medium was changed to NMM 
with subsequent media changes every other day. As soon 
as neural rosettes appeared, NMM was supplemented with 
FGF2 (20 ng/ml; Peprotech) for 2 days. After withdrawal 
of FGF2, approximately 16–20 days after neural induction, 
cells were split again 1:2 using Collagenase IV. On day 27 of 
differentiation, neural progenitor cells (NPCs) were detached 
by Accutase (Life Technologies) and cryopreserved. For 
further differentiation into neurons, NPCs were seeded at a 
density of 50,000 cells/cm2 on Geltrex™-coated plates and 
cultured in NMM with half media changes twice weekly. 
For conditioned media experiments, neurons were split after 
2 weeks of differentiation on 48-well plates with 300,000 
cells per well. After 48 h of incubation with MCM, neu-
rons were fixed for 10 min in 4% PFA in PBS, followed by 
three washes with PBS. As a positive control, neurons were 
incubated with sodium arsenite (10 nM for 24 h) to induce 
cell death.

Phagocytosis assay

To confirm and quantify the phagocytic activity of iMGL, 
pHrodo™ Red S. aureus BioParticles™ (Thermo Fisher) 
were used according to the manufacturer’s protocol, as 
described previously [52]. Shortly, iMGL were dissoci-
ated on day 26 of differentiation using TrypLE Express and 
20,000 cells/ 96-well were seeded in a fluorescence reader 
compatible 96-well plate (Corning). After 24 h, iMGL were 
exposed to IFNγ (10 ng/µl for 24 h) or left untreated and on 
the next day, the phagocytosis assay was performed. iMGL 
of each line were additionally treated with CytochalasinD 
(10 µM; Life Technologies) for 30 min at 37 °C as a negative 
control, before pHrodo particles were added (200 ng/ml in 
maturation media). All iMGL were incubated with bacterial 
particles for 2 h at 37 °C before cell nuclei were counter-
stained with NucBlue (Thermo Fisher) for 20 min according 
to the manufacturer’s protocol. Fluorescence intensity was 
measured in triplicates at 2 h, 4 h, 6 h and 8 h after the addi-
tion of pHrodo particles on a CLARIOstar Plus fluorescent 
plate reading device (BMG LABTECH).

Immunocytochemistry

Differentiated iMGL and MCM-exposed neurons were fixed 
for 10 min in 4% PFA in PBS, followed by three washes 
with PBS. To permeabilize the cells and block unspecific 
antibody binding, cells were first incubated for 1h in PBS 
with 3% donkey serum and 0.1% Triton-X-100 at RT. Pri-
mary antibodies diluted in PBS with 3% donkey serum were 
applied (Online Resource Table 5) and incubated over-
night at 4 °C or 1 h at RT. Afterward, cells were washed 
three times with PBS and incubated for 1 h at RT with the 
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respective Alexa Fluor coupled secondary antibody diluted 
in PBS with 3% donkey serum (Online Resource Table 4).

To visualize lysosomal proteins in iMGL, cells were first 
incubated in 50 mM NH4Cl in PBS for 10 min to reduce the 
autofluorescence. After washing one time with PBS, cells 
were permeabilized with 0.1% saponin in PBS for 10 min 
followed by blocking of non-specific antibody binding with 
5% donkey serum and 0.05% saponin in PBS for 1 h. Pri-
mary antibodies were diluted in 3% donkey serum and 0.05% 
saponin in PBS and incubated overnight at 4 °C or 1 h at RT. 
Next, cells were washed three times with PBS followed by 
1 h incubation at RT with secondary antibodies which were 
diluted in PBS with 3% donkey serum and 0.05% saponin.

After staining with secondary antibodies, nuclei were 
counterstained with DAPI (0.5 mg/ml) for 5 min followed by 
three PBS washes. Cells stained on coverslips were mounted 
using Aqua-Poly/Mount (Polyscience). If staining was per-
formed in a 96-well plate (ibidi), cells were mounted with 
Mowiol 4–88 (Sigma-Aldrich). Before microscopic analysis, 
mounted coverslips and plates were dried overnight at RT.

For visualization of apoptotic cells, the One-step TUNEL 
In Situ Apoptosis Kit (Red, Elab Fluor® 647; Elabscience) 
was used before antibody staining according to the manu-
facturer’s instructions.

Flow cytometry (FC)

For FC analysis of PBMCs, frozen PBMCs were thawed 
and allowed to rest in a medium at a temperature of 37 °C. 
Subsequently, centrifugation was carried out at 300 g for 
10 min. The PBMCs were then suspended in FACS buffer, 
which consisted of PBS (PAA Laboratories GmbH) sup-
plemented with 2% fetal calf serum (FCS; Invitrogen). 
Blocking was performed using human Fc-block (BD Bio-
science). PBMCs were stained for 30 min at 4 °C, washed, 
and finally analyzed using a Cytek Northern Lights instru-
ment (Cytek Biosciences, Fremont, CA, USA). The follow-
ing antibodies were used for staining: LIVE/DEAD Zombie 
NIR Fixable Viability Kit (Biolegend), CD3 cFluor® V420 
(Cytek, CloneSK7), HLA-DR PerCP (BD, Clone L243), 
CD14 PerCP eFluor 710-A (Invitrogen, Clone 61D3), CD19 
cFluorBYG710-A (Cytek, Clone HIB19), CD16 cFluor 
R668-A (Cytek, Clone 3G8), CD56 cFluor R720-A (Cytek 
Clone 5.1H11). A detailed gating strategy is provided in 
Online Resource Fig. 3.

FC analysis of IBA1 expression in iMGL was performed 
as described previously [52]. Briefly, iMGL were dissociated 
and collected in FC buffer (2% FCS and 0.01% sodium azide 
in PBS) on day 28 of differentiation. After centrifugation, 
100,000 cells per staining were transferred in a V-bottom 
96-well plate. Cells were fixed by 10 min incubation in 50 µl 
BD Cytofix per well (BD Bioscience) followed by permea-
bilization for 5 min in BD Perm/Wash (BD Bioscience). 

Afterward, cells were incubated for 30 min at RT with pri-
mary antibody anti-IBA1 (Wako; Online Resource Table 4) 
diluted 1:50 in BD Perm/Wash. Cells were washed and 
secondary antibody incubation for 30 min was performed 
(Thermo Fisher; Online Resource Table 4) followed by addi-
tional washing steps. Finally, cells were resuspended in FC 
buffer for analysis on a Beckman Coulter Cytoflex S FACS 
platform. As negative controls, iMGL stained with respec-
tive rabbit isotype control (Invitrogen) and iPSC stained for 
IBA1 were included. Data were analyzed using CytExpert 
software (version 2.4.0.28).

Western blot

For protein isolation, cells were pelletized in cold PBS. 
Pellets were resuspended in 100–150 µl Radio-immuno-
precipitation buffer (RIPA; 50 mM Tris/HCl pH 7.4, 0.5% 
Deoxycholic acid sodium salt, 1% NP-40, 1% Sodium deox-
ycholate, 0.1% Sodium dodecyl Sulfate (SDS), 150 mM 
Sodium chloride, 2 mM Ethylenediaminetetraacetic acid 
(EDTA), 50 mM Sodium fluoride) freshly supplemented 
with EDTA free complete mini protease inhibitor cocktail 
(Roche) and PhosphoSTOP (Roche). Cells were incubated 
for 30 min on ice followed by sonication with Diagenode 
Bioruptor Pica (setting: 30 s ON, 30 s OFF, 5 cycles, high 
frequency). Protein concentration was measured using the 
Pierce BCA protein assay Kit (Thermo Fisher) according 
to the manufacturer’s protocol. Color change was measured 
at 564 nm using SpectraMax 190 plate reader (Molecular 
Devices) and the SpectraMax software (SoftMax Pro 7.1). 
Protein samples were prepared with 5X laemmli-buffer 
(300 mM Tris–HCl pH 6.8, 10% SDS, 50% glycerol, 5% 
β-Mercaptoethanol) and boiled at 95 °C for 10 min. Equal 
amounts of protein were used to run SDS–PAGE using the 
NuPAGE™ system (Thermo Fisher). All immunoblots were 
run on 4–12% Bis–Tris gels with NuPAGE™ MOPS SDS 
running buffer (20x). SDS–PAGE was performed accord-
ing to manufacturer’s protocol. Gels containing separated 
proteins were blotted onto methanol pre-activated PVDF 
membranes (0.2 µm) at 10 V for 14 h at 4 °C in NuPAGE™ 
transfer puffer (20x) with 10% Methanol. Afterward, mem-
branes were blocked for 1 h at RT with 5% milk in Tris-
buffered saline supplemented with Tween (TBS-T; TBS 
supplemented with 0.1% Tween). For antibodies against 
phosphorylated proteins, membranes were blocked with 5% 
BSA in TBS-T. Subsequently, the membranes were incu-
bated with primary antibodies diluted in TBS-T 5% milk/
BSA overnight: anti-HA, anti-LAMP1, anti-LC3, anti-
p62, anti-STAT1, anti-P-STAT1 and anti-β-actin (Online 
Resource Table 4). On the next day, the membranes were 
washed three times for 5 min with TBS-T, followed by incu-
bation with secondary antibody (diluted in TBS-T 5% milk/
BSA) for 1 h at RT (Online Resource Table 4). Blots were 
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developed using ECL blotting solution (Amersham), and 
chemiluminescence was detected on an automated detection 
system (ChemiDoc MP, Biorad). To visualize total protein, 
membranes were incubated in Direct Blue (DB) 71 (Sigma-
Aldrich) stain solution (0.008% DB71 in 40% ethanol, 10% 
acetic acid) for 5 min. Blot signals were quantified densi-
tometrically using ImageJ (version 1.54d). The signal was 
normalized to the corresponding signal of β-actin.

RNA isolation and quantitative real‑time PCR (qPCR)

For gene expression analysis, RNA was isolated from iMGL 
at day 28 of differentiation. Cells were lysed in 0.5–1 ml 
QIAzol Lysis Reagent (Qiagen) and incubated for 5 min at 
RT. 100–200 μl chloroform (Carl Roth) was added and the 
suspension was mixed vigorously by shaking manually for 
15 s. The suspension was incubated for 3 min at RT and 
centrifuged for 15 min at 12,000 g and 4 °C. The upper 
aqueous phase containing RNA was transferred into a new 
1.5 ml tube and an equal volume of 70% ethanol was added. 
RNA extraction was continued using the RNeasy Mini Kit 
(Qiagen) following the manufacturer’s instructions. gDNA 
digestion by DNase I treatment was performed for bulk RNA 
sequencing. The purity and final concentration of the iso-
lated RNA were measured using a Nanophotometer NP80™ 
(Implem). Isolated RNA was stored at  – 80 °C. For cDNA 
synthetization, QuantiTect Reverse Transcription Kit (Qia-
gen) was used according to manufacturer’s instructions. 
PCR reactions were set up with respective primers (Online 
Resource Table 5) using SYBR Green PCR Master Mix 
(Thermo Fisher) according to manufacturer’s instructions. 
For each PCR reaction, 2.5 ng of cDNA were used. Signal 
was analyzed on a Roche LightCycler 480 real-time PCR 
platform. Ct values were normalized to two housekeeping 
genes (GAPDH and HRPT) and expression values relative 
to untreated samples were calculated using the ddCt method 
[55].

RNA sequencing

Isolated RNA from three SPG11 and four control iMGL, 
each untreated and IFNγ treated, underwent paired-end 
RNA sequencing with Poly-A selection using an Illumina 
NovaSeq, 2 × 150 bp configuration (Genewiz Germany). 
Samples were sequenced to a depth of 40,000,000 reads. 
Fastq files were first trimmed using Trimmomatic (v0.39) 
[10] and aligned to the human genome (GRCh38) using 
STAR (v2.7.9a) [26]. The feature Counts module within the 
Subread package (version 27) was utilized to assign reads 
to genes in the gencode annotation (version 26). In every 
sample, > 80% of reads are mapped uniquely to the human 
genome. Reads Per Kilobase of transcript, per Million 
mapped reads (RPKM) were calculated from the obtained 

counts to normalize for gene expression. Only genes with a 
mean RPKM value of 1 across the data set were considered 
for further analysis. PCA analysis was performed on RPKM 
values in Python 3 (v3.9.7). DESeq2 was used to determine 
differentially expressed genes (v1.34.0) [58]. DESeq2 output 
was filtered for adjusted p < 0.05 and |log2(fold change)|> 1. 
All downstream analyses were performed in Python 3 
(v3.9.7) and graphs were generated using seaborn (v0.11.2).

Statistical analysis

Statistical analysis was performed using GraphPad Prism 
9 Software (GraphPad Software Inc.). Normal distribution 
was examined using the Shapiro–Wilk test. When data were 
normally distributed, a two-sided unpaired t test was used to 
compare two groups, and a one-way ANOVA test to com-
pare more than two groups, followed by Bonferroni’s post-
hoc test. For determining differences between data that were 
not normally distributed, Mann–Whitney U test was con-
ducted. For grouped analyses (e.g., NT vs. IFNγ in Ctrl vs. 
SPG11), two-way ANOVA was performed. P values < 0.05 
were considered significant (*P < 0.05, ** P < 0.01, *** 
P < 0.001, **** P < 0.0001).

Results

SPG11 human postmortem brain: 
neurodegeneration and accumulation of immune 
cells

A very limited number of neuropathological analyses of five 
SPG11–HSP patients have been reported [25, 38, 62]. We, 
therefore, analyzed a previously unpublished postmortem 
brain from a late-stage SPG11 patient from the Erlangen 
movement disorder clinic (UKER), whose clinical history 
was reported earlier [39]. Briefly, this Caucasian female had 
a complex HSP, with a disease onset at age 31, progressive 
spasticity of the lower extremities and distal amyotrophy, and 
death 20 years later due to dysphagia and asphyxia. Biallelic 
pathogenic variants in the SPG11 gene had been detected by 
molecular genetic testing (see methods and Online Resource 
Table 3) [39]. Cerebral MRI had shown severe frontopari-
etal and corpus callosum atrophy (Fig. 1a–c). Macroscopical 
evaluation of the postmortem brain confirmed this frontopa-
rietal atrophy (Fig. 1d). Microscopically, the postmortem 
brain was characterized by severe neuronal loss predomi-
nantly in the frontal cortex and moderate neuronal loss in the 
parietal cortex, especially in cortical layers IV and V, while 
temporal and occipital cortex were only mildly affected. This 
was accompanied by astrogliosis and neuritic loss in white 
matter areas (Fig. 1e). In the capsula interna, particularly, 
neurofilament protein expression was severely reduced in 
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addition to neuronal loss (Fig. 1f). Moreover, there was a 
marked reduction of myelin and a profound level of reactive 
gliosis (Fig. 1f). Additional observations included mild loss 
of neurons in the cerebellum and pons, but severe loss of 
neurons at all levels of the spinal cord, spanning the com-
plete cross-sectional area. We next addressed the presence of 
infiltrated or reactive immune cells and detected an accumu-
lation of CD68+ myeloid cells and CD8+ T cells. In contrast, 
there were no marked alterations in the frequency of CD4+ 
cells, and they were exclusively localized in the perivascular 
space (Fig. 1g). In summary, the presented SPG11 postmor-
tem case shows classical signs of SPG11–HSP neurodegen-
eration, and, in addition, an accumulation of immune cells.

Microgliosis and characteristics 
of disease‑associated microglia (DAM) in the SPG11 
postmortem brain

We next performed an in-depth analysis of myeloid cells in 
the SPG11 case described above. IBA1+ cells were abundant 
in the parietal cortex and all other analyzed brain regions 
(Fig. 2a, b). Based on their morphology, IBA1+ cells were 
further classified into ramified homeostatic-like and amoe-
boid reactive-like (Fig. 2c, d) and compared to an age- and 
sex-matched control deceased from pulmonary embolism 
without neurological disease. While the number of rami-
fied homeostatic-like IBA1+ cells were unchanged in SPG11 
brain (Fig. 2c), there was a marked increase of amoeboid 
reactive-like IBA1+ cells in all analyzed SPG11 brain 
regions (Fig. 2d).

To substantiate these findings, we analyzed myeloid 
cells in two additional postmortem cases of SPG11–HSP 
that had been banked in Belgium (case BG2, previously 
reported in Denora et al. 2016 [25]) and at the University 

of Washington (case UWA, precise clinical description 
will be reported elsewhere; Scherpelz et al., in review). 
Comparing CD8+ T cells to a matched control without 
neurological diseases included by the respective center, 
there was an apparent increase in infiltrating CD8+ T cells 
in the BG2 case (Online Resource Fig. 1a). Increased num-
bers of CD68+ myeloid cells and accumulation of amoe-
boid IBA1+ myeloid cells were also present in both, the 
BG2 and UWA SPG11 postmortem brain tissues (Online 
Resource Fig. 1a, b), confirming our findings in the UKER 
case, and prompting a more detailed analysis of IBA1+ 
myeloid cells in the well-preserved tissue of the UKER 
case.

P2RY12 and TMEM119 are markers of homeostatic 
microglia and are downregulated in disease-associated 
microglia (DAM) [23]. Compared to control brain tis-
sue, numbers of IBA1+P2RY12+ double positive cells 
were predominantly decreased in the frontal and parietal 
lobe white matter regions of the SPG11 postmortem tis-
sue (Fig. 2e, f; Online Resource Fig. 2a). This decrease 
was not observed in SPG11 basal ganglia and cerebel-
lum, where P2RY12 expression levels were comparable 
to control tissue (Online Resource Fig. 2a). Several brain 
regions in the SPG11 patient had decreased numbers of 
IBA1+TMEM119+ double positive cells, compared to the 
control brain, especially within the white matter of the 
frontal and parietal lobes (Fig. 2g, h; Online Resource 
Fig. 2b). Since SPG11 pathology has been related to fail-
ure of the autophagic–lysosomal machinery and of lipid 
clearance [15, 82, 99], we next analyzed the expression 
of perilipin, a surface marker protein of lipid droplets. 
Perilipin-loaden cells were frequently observed in the 
SPG11 brain, but not in the control brain. Specifically, 
we detected IBA1+Perilipin+ cells, indicating lipid accu-
mulation within SPG11 myeloid cells (Fig. 2i; Online 
Resource Fig. 2c). Matching previous reports of SPG11 
neuropathology [25, 38, 62], there were abundant amounts 
of lipofuscin. Using immunogold labeling for IBA1, we 
observed that these lipofuscin accumulations were also 
present within SPG11 myeloid cells (Fig. 2j). IBA1+ cells 
of both ramified and amoeboid morphology did not clus-
ter to the vasculature but were distributed throughout the 
parenchyma (Online Resource Fig. 2d).

Altogether, neuropathology in the SPG11 (UKER) case 
exhibited astrogliosis, infiltration of CD8+ T cells, and 
widespread severe microgliosis which was also detected in 
two additional SPG11 postmortem brains. SPG11 IBA1+ 
myeloid cells were characterized by downregulation of 
homeostatic markers and accumulation of perilipin.

Fig. 1   Neurodegeneration and immune cell activation in SPG11 post-
mortem brain tissue. a–c MRI of SPG11 (UKER) patient acquired 5 
years before death, demonstrating a severe frontoparietal and callosal 
atrophy on a coronal, b parasagittal and c morphometric analysis, 
with red indicating lower brain volume (arrowhead). d Macroscopic 
medial view of the postmortem brain of the UKER patient with 
an arrow indicating frontal and parietal atrophy and arrowhead indi-
cating thinning of the corpus callosum. *cerebellum was removed. e 
Neuropathological characterization showing profound atrophy of the 
parietal cortex on H&E predominantly involving layers III–VI along 
with reactive astrogliosis (GFAP) compared to a representative con-
trol tissue derived from an age- and sex-matched individual deceased 
without neurological disorder. Scale bar: 100 µm. f Internal capsule 
of SPG11 brain displaying increased cell numbers (H&E) and loss of 
neurofilament protein and myelin (LFB), as compared to the matched 
control. Astrogliosis (GFAP) is present within the putamen. Scale 
bar 100  µm. g Increase in CD68+ myeloid cells and CD8+ cells in 
SPG11, whereas CD4+ cells were exclusively observed in proxim-
ity to the vasculature (v) in the capsula interna of the SPG11 tissue. 
Scale bar 100 µm. WM white matter; LFB luxol fast blue
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Peripheral inflammation in SPG11 patients

Since the peripheral immune response and its crosstalk 
with neuroinflammation is of increasing relevance in other 
neurodegenerative diseases, we additionally investigated 
peripheral immunity in a larger SPG11 cohort. Specifically, 
we studied monocyte subpopulations and peripheral blood 
levels of inflammatory cytokines, as potential modulators 
of CNS immune cells, comparing SPG11–HSP patients to 
age- and sex-matched controls (Online Resource Tables 1 
and 2). FC analysis of monocyte subsets revealed increased 
levels of classical (CD14++CD16−) and intermediate 
(CD14++CD16+) monocytes in SPG11–HSP patients (n = 8) 
compared to controls (n = 38), while the percentage of non-
classical (CD14low/+CD16++) monocytes was unchanged 
(Fig.  3a, b; Online Resource Fig.  3). Measurements of 
serum from SPG11–HSP patients (n = 13) compared to 
matched controls (n = 20) showed increased levels of the 
proinflammatory cytokine IL-6, while levels of additional 
cytokines were unchanged (Fig. 3c). Interestingly, within 
the SPG11–HSP cohort, there was a positive correlation of 
IL-6 levels to disease severity as measured by the SPRS 
(Spastic Paraplegia Rating Scale; Fig. 3d). Disease severity 
of SPG11 patients also correlated with CXCL8 and IL-10 
serum concentrations (Fig. 3d).

In conclusion, the observation of an increase in classical 
and intermediate monocytes and elevated levels of proin-
flammatory cytokines correlating with disease severity in 

larger cohorts of patients strongly indicate proinflammatory 
changes in SPG11–HSP.

Generation of SPG11–HSP patient‑specific induced 
microglia‑like cells

To test for cell-intrinsic alterations of microglia upon loss 
of SPG11-encoded spatacsin function, induced microglia-
like cells (iMGL) were differentiated from six patient- and 
six control-derived iPSC lines (Fig. 4a) [52]. Details of the 
iPSC lines are listed in Online Resource Table 3. We first 
validated the expression of spatacsin within iMGL. Due to 
the limited reliability of available spatacsin antibodies, we 
used a bi-allelically endogenously tagged SPG11–human 
iPSC line (SPG11–HA) that had been previously generated 
via clustered regularly interspaced short palindromic repeats 
(CRISPR)/Cas9-mediated knock-in of an HA tag [51]. After 
differentiating SPG11–HA iPSC together with the parental 
iPSC line (Ctrl-4) into iMGL, HA-tagged spatacsin showed 
a strong signal at the expected size in SPG11–HA iMGL 
(Fig. 4b).

Both from control and SPG11 iPSC, iMGL were success-
fully generated. FC analysis for IBA1 showed differentia-
tion ratios of approximately 70–90%, without differences 
between control and SPG11 iMGL lines (Fig. 4c and Online 
Resource Fig. 4a). Both control and SPG11 iMGL expressed 
IL-1β upon LPS treatment (Online Resource Fig. 4b).

Loss of spatacsin function has been closely linked to 
accumulation of lysosomes and lipids in mouse models, pri-
mary patient fibroblasts and iPSC-derived motor neurons 
[14, 34, 82, 98, 99]. We, therefore, first compared the lyso-
somal compartment between control and SPG11 iMGL, both 
under basal conditions and when applying different stimula-
tion paradigms. To this end, we quantified lysosomal com-
partments by analyzing LAMP1+ area of iMGL under basal 
conditions, upon BafilomycinA1 treatment, upon starvation 
combined with BafilomycinA1, upon stimulation with LPS, 
and upon stimulation with IFNγ (Fig. 4d, e; Online Resource 
Fig. 4c, d). As expected, LAMP1 signal intensity increased 
upon dual serum deprivation and BafilomycinA1 treatment, 
but there were no differences between control and SPG11 
iMGL (Fig. 4d, e). Accordingly, the expression of LAMP1 
as well as p62, as evaluated by Western blot, was unchanged 
in SPG11 iMGL and controls (Online Resource Fig. 4g, h).

Based on the neuropathology finding of perilipin accu-
mulation in SPG11 (Fig. 2i), control and SPG11 iMGL 
were also stained for the lipid marker perilipin. Under 
baseline conditions, perilipin+ lipid droplets were simi-
larly distributed in SPG11 iMGL and control, and there 
were no quantitative differences in signal intensity per 
cell (Fig. 4f, g; Online Resource Fig. 4f). As a positive 
control, incubation with oleic acid led to increased per-
ilipin levels, both in SPG11 and control. Similarly, there 

Fig. 2   Activation of myeloid cells and cell-intrinsic SPG11 pathol-
ogy. a Representative immunofluorescence for IBA1 and DAPI 
of the cortex of one control without neurological disease and the 
SPG11 (UKER) patient. Scale bar 100 µm. b Representative immu-
nofluorescence for IBA1 and DAPI in different postmortem brain 
regions. Scale bar 50  µm. c + d Density of IBA1+ cells with rami-
fied c or amoeboid d morphology comparing control and SPG11 in 
different brain regions, manually quantified per mm2 from two sec-
tions per condition according to depicted example images. Each dot 
represents one randomly selected field of view, analyzed blinded for 
genotype. Data presented as mean ± SD. Scale bars 10 µm. e Repre-
sentative immunofluorescence images of the frontal lobe white matter 
(WM), stained for P2RY12 and IBA1 demonstrating fewer P2RY12+ 
cells in SPG11 compared to the control. Scale bar 10 µm. f Ratio of 
P2RY12+ over all IBA1+ myeloid cells in WM and grey matter (GM). 
Each dot represents cell counts from one field of view (0.014 mm2). 
Data presented as mean. n = 10. g Representative immunofluores-
cence images of frontal lobe WM, stained for TMEM119 and IBA1 
demonstrating fewer TMEM119+ cells in SPG11 compared to con-
trol. Scale bar 10 µm. h Ratio of TMEM119+ over all IBA1+ mye-
loid cells in GM and WM. Each dot represents cell counts from one 
field of view (0.014 mm2). Data presented as mean. n = 10. i Rep-
resentative immunofluorescence for IBA1 and perilipin in control 
and SPG11 cortex, demonstrating perilipin accumulation within an 
SPG11 IBA1+ myeloid cell (arrow). Scale bar 10  µm. j Ultrastruc-
tural evaluation of SPG11 frontal cortex showing abundant lipofuscin 
(LF) granules within a myeloid cell labeled with IBA1-immunogold 
(arrows). Scale bar 2  µm. GM grey matter; WM white matter; GCL 
granular cell layer; LF lipofuscin
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was no difference upon inhibition of lysosomal degra-
dation induced by serum depletion and BafilomycinA1 
treatment (Fig. 4f, g). Neither stimulation of iMGL with 
LPS nor with IFNγ led to alterations of perilipin expres-
sion (Fig. 4g; Online Resource Fig. 4e). In conclusion, we 
did not detect lysosomal abnormalities or increased lipid 
accumulations in SPG11 iMGL.

IFNγ triggers STAT1‑dependent hyperactivation 
of SPG11 iMGL

Given the expression of spatacsin in iPSC-derived iMGL 
(Fig. 4b) and the neuropathological observation of lipofus-
cin accumulation in SPG11 myeloid cells (Fig. 2j), we next 
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Fig. 3   Evaluation of peripheral inflammation in additional SPG11–
HSP patients. a Flow cytometric (FC) gating strategy to divide 
monocytes into classical CD14++CD16− (upper left), non-classical 
CD14low/+CD16++ (bottom right) and intermediate CD14++CD16+ 
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from SPG11 patients and controls. n(SPG11) = 8, n(control) = 38. ns 

P > 0.05, *P < 0.05, **P < 0.01, according to a non-parametric Mann–
Whitney U test. c Cytokine concentrations in the serum of controls 
(grey) and SPG11–HSP patients (red) measured by MSD multiplex 
immunoassay. ns P > 0.05, * P < 0.05, according to a non-parametric 
Mann–Whitney U test. Data presented as mean ± SD. n(SPG11) = 13, 
n(control) = 20. d Correlation of serum cytokine concentrations in 
SPG11–HSP patients with clinical SPRS values. Correlation coeffi-
cients r and P value according to a Spearman correlation. FC Flow 
cytometry, SPRS spastic paraplegia rating scale, ns not significant
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studied the inflammatory response of SPG11 iMGL. To this 
end, we applied LPS (100 ng/ml) or IFNγ (10 ng/ml) for 
24 h (Fig. 5a). Interestingly, SPG11 mRNA expression in 

control iMGL was significantly increased upon IFNγ stimu-
lation, whereas LPS stimulation did not alter SPG11 expres-
sion (Fig. 5b), indicating a role of SPG11 in IFNγ-mediated 
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Fig. 4   SPG11 iPSCs efficiently differentiate into induced microglia-
like cells (iMGL) without excessive lysosome or lipid accumula-
tion. a Schematic representation of iPSC differentiation into iMGL 
via the HPC state. HPCs were generated using STEMdiff™ Hemat-
opoietic Kit and cryopreserved. Further differentiation into iMGL 
was performed for 2 weeks in RPMI containing 10% FCS, 10  ng/
mL GM–CSF and 50 ng/ml IL-34. b Immunoblotting of a bi-allelic 
HA-tagged SPG11  iPSC line that was differentiated into iMGL 
(SPG11-HA  iMGL) using an antibody against HA. Three biologi-
cal replicates of SPG11–HA are depicted. The HA-tag was detected 
at the size of spatacsin (~ 280  kDa) and was absent in the parental 
non-tagged iMGL control line (Ctrl-4). Total protein was stained by 
DB71 as a loading control. c Percentage of IBA1+ cells determined 
by FC analysis. Each dot represents one cell line. Data are presented 
as mean ± SD. n(SPG11) = 6, n(control) = 7. ns P > 0.05, according 
to a non-parametric Mann–Whitney U test. d Representative immu-
nofluorescence of control and SPG11 iMGL for IBA1 and LAMP1. 
Left: vehicle-treated control and SPG11 iMGL. Right: iMGL were 
starved by serum depletion for 24  h in addition to BafilomycinA1 

treatment (100 nM for 6 h). Scale bar: 10 µm. e LAMP1 fluorescence 
signal intensity, normalized to DMSO control. LPS: 100  ng/µl for 
24 h. IFNγ: 10 ng/µl for 24 h. Each dot represents the mean normal-
ized signal intensity per cell line (derived from ten images per line); 
bars represent mean ± SD. n = 6. ns P > 0.05, according to a two-way 
ANOVA with Bonferroni’s multiple comparison test. f Representative 
immunofluorescence of control and SPG11 iMGL for IBA1 and per-
ilipin, both unstimulated and after exposure with Oleic acid (200 µM 
for 24 h). Scale bar: 10 µm. g Perilipin fluorescence signal intensity, 
normalized to untreated controls. Control iMGL are depicted in grey 
and SPG11 iMGL in red. Each dot represents the mean perilipin sig-
nal intensity per cell line (derived from ten images per line); bars rep-
resent mean ± SD. n = 6. ns P > 0.05, according to a two-way ANOVA 
with Bonferroni’s multiple comparison test. iPSC induced pluripotent 
stem cells; iMGL induced microglia-like cells; HPC hematopoietic 
stem cells; FCS fetal calf serum; FC Flow cytometry; ns not signifi-
cant; BAF BafilomycinA1; LPS Lipopolysaccharide; OA Oleic Acid; 
Starv Starvation; NT non-treated
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activation of iMGL. To determine whether SPG11 iMGL 
respond differently to IFNγ, we first quantified their phago-
cytic capacity, as one of the main functions of microglia. 
While untreated SPG11 iMGL and controls had compara-
ble levels of phagocytosed fluorescent bacterial particles, 
increased phagocytosis activity was present in IFNγ treated 
SPG11 iMGL compared to controls, particularly after 6 h 
and 8 h (Fig. 5c; Online Resource Fig. 5a, b). As a negative 
control, both control and SPG11 iMGL phagocytosed fewer 
bacterial particles upon Cytochalasin D treatment, which 
is known to block phagocytosis (Online Resource Fig. 5c).

In the next step, we examined gene and protein expres-
sion of proinflammatory cytokines, such as IL-6, which were 

increased in the serum of SPG11 patients (Fig. 3c). Both 
under basal conditions and upon LPS stimulation, control 
and SPG11 iMGL exhibited no difference in inflammatory 
gene expression (Online Resource Fig. 5d, e). IFNγ stimula-
tion, however, induced significant upregulation of IL6, IL1B 
and TNF in SPG11 iMGL compared to controls (Fig. 5d). 
Moreover, significantly increased levels of IL-6 and IL-1β, 
as well as CXCL8 and IL-18 were present in the supernatant 
of IFNγ treated SPG11 iMGL (Fig. 5e), while cytokine con-
centrations after LPS stimulation were unchanged (Online 
Resource Fig. 5f). To identify additional dysregulation of 
genes and pathways, we next performed RNAseq of con-
trol vs. SPG11 iMGL. Principal component analysis (PCA) 
showed a clear clustering of untreated vs. IFNγ treated 
iMGL, but no overall difference between control and SPG11 
iMGL (Online Resource Fig. 5g). The number of differen-
tially expressed genes in control vs. SPG11 was within a 
similar range in the untreated and IFNγ treated conditions 
(Online Resource Fig. 5h). When focusing on specific genes 
of interest, we validated the increased upregulation of IL6 
in IFNγ treated SPG11 iMGL as well as increased SPG11 
expression upon IFNγ (Online Resource Fig. 5i), match-
ing the qPCR results (Fig. 5b, d). SPG11 upregulation was 
also present in SPG11 patient-derived iMGL although at 
lower absolute reads, compatible with their loss of function 
variants in SPG11 (Online Resource Fig. 5i). Furthermore, 
IFNγ exposure induced higher upregulation of CXCL9, 
CXCL10 and CXCL11 in SPG11 iMGL compared to controls 
(Fig. 5f). The differential expression of these closely related 
chemokines was also confirmed by qPCR (Online Resource 
Fig.  5j). Compared to controls, significantly increased 
CXCL10 concentrations were observed in the supernatant 
of IFNγ treated SPG11 iMGL (Fig. 5g).

To further obtain insights into underlying mechanisms, 
we next addressed which step within the IFNγ signaling cas-
cade is altered in SPG11 iMGL. Activation of Signal Trans-
ducer and Activator of Transcription 1 (STAT1) is one major 
downstream effect of IFNγ. Indeed, STAT1 gene expres-
sion was significantly increased in IFNγ treated SPG11 
iMGL as compared to controls (Fig. 5h). To further assess 
STAT1 signaling activity, IFNγ dependent phosphorylation 
of STAT1 was evaluated by Western blot. In both control 
and SPG11 iMGLs, upregulation of STAT1 and phospho-
rylated STAT1 was detected after IFNγ stimulation, com-
pared to very low levels in the untreated conditions (Fig. 5i). 
Remarkably, levels of phosphorylated STAT1 were signifi-
cantly higher in SPG11 than in control iMGLs, indicating 
an increased induction of STAT1 signaling activity (Fig. 5j). 
We next aimed to analyze STAT1 in vivo. Correlating to 
the in vitro findings, STAT1+ cells were observed in the 
parietal lobe of the SPG11 UKER postmortem case while 
completely absent in the control sample (Fig. 5k, Online 
Resource Fig. 6). For an additional in vivo validation of 

Fig. 5   Increased STAT1-dependent IFNγ signaling in SPG11 micro-
glia results in excessive upregulation of proinflammatory cytokines 
and chemokines. a Schematic representation of the experimen-
tal paradigm. iMGL were treated with LPS (100  ng/ml) or IFNγ 
(10 ng/ml) for 24 h before supernatants, RNA expression or phago-
cytosis were analyzed. b In control iMGL, relative expression of 
SPG11 mRNA is upregulated upon IFNγ but not LPS stimulation. 
n = 6. Data are presented as mean ± SD. P value according to one-
way ANOVA with Bonferroni’s multiple comparison test. c Signal 
intensity of bacterial pHrodo particles in IFNγ treated control (grey) 
and SPG11 (red) iMGL, normalized to cell density measured by 
NuncBlue. Fluorescence signal was measured at 2 h, 4 h, 6 h and 8 h 
after incubation with bacterial particles. n = 5. P value according to 
a two-way ANOVA with Bonferroni’s multiple comparison test. d 
Relative gene expression of IFNγ treated control (grey) and SPG11 
(red) iMGL normalized to the expression of the untreated condi-
tion for each line. n = 6. Each data point represents the mean derived 
from two independent technical replicates. Each bar indicates the 
mean ± SD for each condition. P value according to a non-parametric 
Mann–Whitney U test. e + g Cytokine concentrations in the super-
natant of untreated vs. IFNγ treated control and SPG11 iMGL nor-
malized to total protein. n(control) = 5; n(SPG11) = 6. Data are pre-
sented as mean ± SD. P value according to a two-way ANOVA with 
Bonferroni’s multiple comparison test. f + h DESeq2 normalized 
gene expression values of untreated and IFNγ treated iMGL (control 
in grey and SPG11 in red). n(control) = 4; n(SPG11) = 3. Data pre-
sented as mean ± SD. P value according to a two-way ANOVA with 
Bonferroni’s multiple comparison test. i Immunoblotting of con-
trol and SPG11 iMGL, untreated or treated with IFNγ: 10 ng/µl for 
24 h, using antibodies against phosphorylated STAT1 (P-STAT1) and 
total STAT1. β-actin was used as a loading control. Different mem-
branes are separated by a dashed line. Samples on both membranes 
were derived from the same experiment and gels as well as blots 
were processed in parallel. j Relative P-STAT1 expression normal-
ized to total STAT1 in control (grey) and SPG11 (red) iMGL upon 
IFNγ stimulation. P-STAT1 and STAT1 signals were first normalized 
to respective β-actin signals. n = 5. Data presented as mean ± SD. P 
value according to a non-parametric Mann–Whitney U test. k Two 
representative STAT1 DAB stainings of the SPG11 UKER postmor-
tem parietal lobe. Scale bar 20 µm. l Two representative microscopic 
z-stack images of Spg11−/− frontal lobe stained for IBA1, STAT1 and 
DAPI. Scale bar: 20 µm. m Quantification of IBA1+ cells that show 
a nuclear STAT1 signal. n(Spg11+/+) = 5; n(Spg11−/−) = 5. Each dot 
represents the mean of cells within five random fields of view (0.15 
mm2). Data presented as mean ± SD. P value according to a non-para-
metric Mann–Whitney U test. ns P > 0.05; * P < 0.05; ** P < 0.01; NT 
non-treated; STAT1 Signal Transducer and Activator of Transcription 
1

◂
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increased IFNγ/ STAT1 signaling in SPG11, we analyzed 
an Spg11–/– mouse model. We harvested brain tissue from 
16-month-old Spg11+/+ and Spg11–/– mice that are char-
acterized by an HSP-like phenotype with loss of cortical 
neurons and accumulation of autofluorescent material [46, 

99]. There was a profound microgliosis in the frontal lobe 
of Spg11–/–, and we also detected accumulation of autofluo-
rescent material within IBA1+ microglia, comparable to the 
SPG11 postmortem findings (Online Resource Fig. 6b–e). 
The number of IBA1+ microglia presenting STAT1+ nuclei 
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was significantly increased in Spg11−/− by 17-fold, as only 
very few STAT1+ microglia were detected in Spg11+/+ 
(Fig. 5l, m; Online Resource Fig. 6f).

Taken together, we demonstrate an interplay between 
IFNγ and SPG11, including upregulation of SPG11 upon 
IFNγ stimulation and a hyperactivation phenotype of SPG11 
iMGL characterized by increased phagocytosis and cytokine 
expression. Moreover, STAT1 signaling was identified as a 
potential key mechanism in SPG11 iMGL, but also in the 
human SPG11 postmortem case and in a murine in vivo 
model of SPG11–HSP.

Ruxolitinib prevents hyperactivation of SPG11 iMGL 
and induced toxicity in SPG11 neurons

As a next step, we evaluated ruxolitinib, an FDA- and EMA-
approved Janus Kinase (JAK)-inhibitor, for its capacity to 
reduce IFNγ-induced hyperactivation of SPG11 iMGL. 
When testing different ruxolitinib concentrations in control 
iMGL prior to IFNγ stimulation, 50 and 100 µM showed 
the strongest capacity to block STAT1 relocalization to 
the nucleus and to prevent STAT1 and CXCL10 expres-
sion (Online Resource Fig. 7a, b). No increased cell death 
was observed upon ruxolitinib treatment (Online Resource 
Fig. 7c, d). In all used iMGL lines, control and SPG11, 
ruxolitinib pretreatment significantly reduced STAT1 and 
CXCL10 signal intensity after IFNγ stimulation (Fig. 6a, b; 
Online Resource Fig. 7e). Comparing SPG11 and controls, 
SPG11 iMGL displayed significantly higher STAT1 and 

CXCL10 signal intensity after IFNγ treatment, consistent 
with RNAseq and Western blot data (Fig. 5h–j). 

Next, we assessed whether cytokines and chemokines 
secreted by SPG11 iMGL upon IFNγ stimulation have an 
effect on homologous and heterologous neurons. As depicted 
in Fig. 6c, control and SPG11 iPSC-derived neurons were 
treated with the supernatant from control and SPG11 iMGL 
(microglia-conditioned media [MCM]) that were either 
treated with Ruxolitinib and IFNγ, IFNγ only or remained 
untreated. Interestingly, supernatant derived from IFNγ 
treated SPG11 iMGL (SPG11–IFNγ–MCM) induced sig-
nificantly increased cell death in SPG11 neurons compared 
to MCM from untreated SPG11 iMGL (NT–SPG11–MCM; 
Fig. 6d, e). The same trend was detectable in control neurons 
treated with SPG11–IFNγ–MCM, but without significance. 
Control-MCM did not lead to an increased neuronal cell 
death, neither in control nor in SPG11 neurons. Remark-
ably, this increase in cell death was prevented by ruxolitinib 
treatment prior to IFNγ stimulation (Fig. 6d, e). IFNγ alone 
did not increase cell death in control or SPG11 neurons. In 
contrast, treatment with sodium arsenite as a positive control 
significantly increased TUNEL signal intensity as a marker 
of cell death (Online Resource Fig. 8a, b).

In summary, hyperactivation of SPG11 iMGL was 
blocked by the approved JAK inhibitor ruxolitinib, which 
also effectively prevented increased cell death of neurons 
exposed to SPG11–IFNγ–MCM.

Discussion

Our findings delineate an important role of innate immunity 
in SPG11–HSP. The analysis of three SPG11 patients’ post-
mortem brains indicated an increase of IBA1+ myeloid cells 
with amoeboid reactive-like morphology. These cells also 
exhibited lipid accumulation and downregulation of homeo-
static microglia markers. Moreover, peripheral inflammation 
was detected in a larger SPG11 cohort with increased lev-
els of proinflammatory monocytes and cytokines. We show 
that IFNγ, but not LPS, induced hyperactivation in SPG11 
iMGL, characterized by increased phagocytosis and upregu-
lation of proinflammatory cytokines and chemokines. We 
additionally identified increased phosphorylation of STAT1 
in SPG11 iMGL as a potential key mechanism underly-
ing this hyperreactive phenotype. Increased STAT1 levels 
were also detectable in the SPG11 postmortem case and in 
Spg11−/– mice. In addition, the JAK-inhibitor ruxolitinib 
rescued neurotoxicity induced by SPG11 iMGL condi-
tioned media after IFNγ stimulation. Here, we describe a 
novel interplay between SPG11 and IFNγ response, provide 
insights into cell-intrinsic and cell-extrinsic mechanisms, 
and introduce CNS immune cells as a potential therapeutic 
target in SPG11–HSP patients.

Fig. 6   Ruxolitinib inhibits SPG11 iMGL hyperactivation and res-
cues toxicity induced in SPG11 neurons. a Representative immuno-
fluorescence of control and SPG11 iMGL (IFNγ: 10 ng/µl for 24 h, 
Ruxolitinib: 50 µM for 24 h before IFNγ treatment) stained for IBA1, 
STAT1 and CXCL10. Scale bar 50  µm. b Quantification of mean 
fluorescence intensity of STAT1 and CXCL10 within IBA1+ con-
trol (n = 4) and SPG11 (n = 4) iMGL. Each dot represents the mean 
of cells within five random fields of view (0.15 mm2). Bars represent 
means ± SD. P value according to two-way ANOVA with Bonfer-
roni’s multiple comparison test. c Schematic representation of the 
experimental paradigm. Control and SPG11 iMGL were either treated 
with Ruxolitinib and IFNγ, with IFNγ only or remained untreated. 
Microglia-conditioned media (MCM) was collected, diluted 1:1 with 
neuronal media and added to control and SPG11 neurons that were 
differentiated for 2 weeks from NPCs. After 48  h, cell death was 
measured by ICC. d Representative images of TUBB3 and DAPI 
staining in SPG11 neurons treated with MCM derived from non-
treated (NT), IFNγ treated, and Ruxolitinib (Rux) and IFNγ treated 
SPG11 iMGL. Apoptotic cells were visualized by TUNEL assay. 
Scale bar: 50 µm. e Quantification of apoptotic cells by TUNEL 
signal intensity within the DAPI+ nuclei of TUBB3+ control (n = 1) 
and SPG11 (n = 1) neurons treated with MCM derived from control 
(n = 5) and SPG11 (n = 5) iMGL. Each dot represents the mean of 
cells within five random fields of view (0.15 mm2). Bars represent 
means ± SD. P value according to one-way ANOVA with Bonfer-
roni’s multiple comparison test. ns P > 0.05; * P < 0.05; ** P < 0.01; 
NT non-treated; Rux Ruxolitinib; MCM microglia-conditioned media
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HSPs are a rare group of neurodegenerative disorders. 
For this reason, the availability of SPG11 postmortem brain 
tissue is very limited. So far, five postmortem cases have 
been reported [25, 38, 62]. All of these studies focused on 
neurodegenerative alterations that are in line with our obser-
vations. While general gliosis or astrogliosis was noted, no 
analysis has been presented on microglial alterations or infil-
tration of leukocytes. Here, we demonstrate for the first time 
an increase in immune cells in the brain of SPG11 patients, 
including infiltration of CD8+ T cells, accumulation of 
CD68+ cells and increased numbers of IBA1+ myeloid cells 
with amoeboid reactive-like morphology. These observa-
tions expand data from a recent report on an Spg11−/− mouse 
model [41], which exhibited an age-dependent accumulation 
of CD8+ T cells in several brain regions along with increased 
numbers of CD11b+ microglia in Spg11−/− mice at early 
symptomatic stages. The observed loss of myelinated fibers 
in the SPG11 (UKER) case in conjunction with an increase 
in CD68+ cells additionally indicates increased phagocytic 
activity of myeloid cells. Interestingly, loss of myelinated 
fibers of varying severity had been noted in all previous 
human SPG11 neuropathology reports [25, 38, 62].

Besides their amoeboid reactive-like morphology, 
IBA1+ myeloid cells in the SPG11 (UKER) postmortem 
case additionally presented a signature that has been previ-
ously referred to as DAM. This microglia subtype was first 
described in AD and is characterized by downregulation 

of homeostatic markers, such as CX3CR1, P2RY12 and 
TMEM119 [23, 45]. In general, DAM occur upon accumula-
tion of neuronal apoptotic bodies and myelin debris, such as 
in ALS, AD, aging and demyelination [45, 50, 74, 101]. The 
precise function of the DAM population on neurodegenera-
tion has not been elucidated, and both protective and toxic 
functions have been proposed [23]. In the presented SPG11 
(UKER) case, DAM markers were predominantly detected 
in cerebral white matter, which is known to exhibit degen-
erative changes on MR imaging and previous postmortem 
studies [25, 28, 31, 90, 96, 102]. We further identified severe 
accumulation of lipid droplets and lipofuscin in postmor-
tem IBA1+ myeloid cells, which is in line with the known 
dysregulation of lipid clearance and lysosomal function in 
SPG11. This lipid accumulation may result from phagocy-
tosed material, but our iMGL findings suggest that intrinsic 
microglial dysfunction may also play a role. Increased accu-
mulation of lipofuscin has been associated with age-related 
decline of neuronal and microglial function, particularly in 
AD and PD [30, 40, 59, 85, 87, 100].

Peripheral inflammation has emerged as a modula-
tor of disease progression and neuropathology in several 
neurodegenerative diseases, such as AD, PD and other 
neurodegenerative disorders, where neuroinflammatory 
alterations are well-established [7, 36, 93]. In a cohort of 
SPG11–HSP patients, we here show increased levels of clas-
sical (CD14++CD16−) and intermediate (CD14++CD16+) 

Fig. 7   Paradigm of the proposed mechanism underlying neuroin-
flammation in SPG11–HSP. The postmortem analysis indicates that 
SPG11–HSP patients not only present neurodegenerative phenotypes 
but also neuroinflammatory characteristics, including microglio-
sis and infiltration of CD8+ T cells. Our in  vitro data revealed that 
SPG11 iMGL are hyperreactive to IFNγ and produce STAT1-medi-
ated increased levels of proinflammatory cytokines and chemokines 

that induced increased cell death in SPG11 neurons. In addition, 
SPG11 iMGL secrete more CXCL10, which is known to mediate 
infiltration of T cells into the CNS. As T cells are a major source of 
IFNγ in the brain, we hypothesize an IFNγ- and CXCL10-dependent, 
reinforcing vicious circle involving microglia and T-cell activation 
that may also contribute to neurodegeneration
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monocytes. Classical monocytes have been reported to dis-
play a more proinflammatory phenotype producing the high-
est levels of various cytokines including IL-6 and being sig-
nificantly more abundant in patients with multiple sclerosis 
(MS), PD and ALS [29, 33, 44, 103, 108]. The intermediate 
subpopulation is also reported to be increased in inflam-
matory conditions as well as in neurodegenerative diseases 
such as AD and indicates activation of peripheral innate 
immunity [32, 64, 83]. These monocyte subpopulations act 
primarily in a proinflammatory manner by expression of the 
highest levels of antigen presentation-related molecules and 
by secretion of TNFα, IL-1β, IL-6 and other cytokines [6, 
53, 63, 103]. In the present study, we additionally observed 
a significant elevation of IL-6 that together with CXCL8 and 
IL-10 positively correlated with disease severity of SPG11 
patients. Increased peripheral serum levels of proinflam-
matory cytokines such as IL-6, CXCL8, and IL-10 were 
reported not only in AD but also in PD and ALS patients 
[16, 42, 47, 79]. Although increased microglial activation in 
the cortex of HD patients has been associated with increased 
plasma concentrations of IL-1β, IL-6, CXCL8, and TNFα 
[75], the exact origin of these cytokines remains unclear and 
may derive from dysfunctional peripheral monocytes. The 
observed increase in peripheral inflammation in the present 
SPG11–HSP patient cohort is comparable to other neurode-
generative diseases, where the contribution of inflammation 
is well-established, supporting our findings of neuroinflam-
matory disease signatures in the limited postmortem tissue.

To determine cell intrinsic dysfunction of myeloid cells 
lacking functional SPG11, patient-derived iPSCs were con-
verted into iMGL as previously established [52]. SPG11 
iMGL did not show abnormal accumulation of lysosomes 
or lipids. This may be due to the lower vulnerability of 
phagocytic cells to lysosomal dysfunction and due to the 
early developmental phenotype of these cells [27]. Moreo-
ver, actual brain substrates may be necessary to recapitulate 
disease-associated phenotypes in iMGL, as shown recently 
for AD [27]. We identified IFNγ as a positive regulator of 
SPG11 expression in iMGL, whereas the effects of LPS were 
not different between SPG11 and control lines. Interestingly, 
IFNγ was previously shown to induce LRRK2 expression in 
iPSC-derived neurons and microglia, proposing synergistic 
LRRK2/ IFNγ activation as a potential direct link between 
inflammation and neurodegeneration in LRRK2-related PD 
[68]. LRRK2–PD microglia as well as microglia from other 
neurodegenerative diseases additionally displayed increased 
phagocytic activity, paralleling our finding in IFNγ treated 
SPG11 iMGL [2, 67, 68]. Furthermore, increased expres-
sion of proinflammatory cytokines such as IL-6, IL-1β, and 
TNFα that we detected in IFNγ treated SPG11 iMGL, was 
also described for iPSC-derived microglia from patients with 
other neurodegenerative diseases, including PD and ALS 
[2, 4, 57, 68].

Receptor binding of IFNγ activates the canonical Janus 
kinase (JAK) and STAT1 pathways, which directly induces 
transcription of interferon-stimulated genes (ISGs) in 
macrophages [43]. Consistent with the excessive expres-
sion of cytokines and chemokines, IFNγ-induced STAT1 
signaling activity was significantly increased in SPG11 
iMGL. Moreover, in the SPG11 postmortem case as well 
as in Spg11–/– mice, the number of IBA1+ microglia with 
STAT1+ nuclei was increased, indicating excessive IFNγ/ 
STAT1 signaling in SPG11 patients. Increased microglial 
STAT1 was additionally observed in a murine in vivo model 
of SPG11–HSP that shows an HSP-like phenotype. STAT1 
is a major mediator of proinflammatory microglia activa-
tion, and inhibition of STAT1 signaling prevents microglia-
dependent neurodegeneration [11, 17, 106]. In a PD mouse 
model, STAT1-mediated IFNγ signaling induced nigrostri-
atal degeneration [92]. Importantly, preventing STAT1 phos-
phorylation by administration of ruxolitinib, blocked STAT1 
signaling and CXCL10 overexpression in SPG11 iMGL. 
Moreover, ruxolitinib was capable of rescuing increased 
neuronal cell death induced by SPG11 iMGL after IFNγ 
treatment. This implies that proinflammatory factors specifi-
cally released from SPG11 iMGL via the IFNγ/ STAT1 sign-
aling pathway are toxic to SPG11 neurons, which are known 
to exhibit an increased vulnerability and higher cell death 
rates [77]. Ruxolitinib is a JAK 1/2 inhibitor that has been 
approved for myelofibrosis and is a candidate for the treat-
ment of several inflammatory or autoimmune diseases [91, 
97, 105]. However, the precise mechanism of how SPG11 
loss of function leads to an increased STAT1 activation even 
after 24 h of IFNγ stimulation remains to be deciphered.

CXCL10 is a chemokine upregulated upon IFNγ/ STAT1 
signaling in microglia and other cell types [24, 69]. Con-
sistent with this, IFNγ stimulated SPG11 iMGL exhibited 
increased expression of CXCL10, but also of the closely 
related CXCL9 and CXCL11. The latter has been associ-
ated not only with neuroinflammation but also with neu-
rodegeneration [49, 107]. In MS, for instance, pathogenic 
CXCR3-expressing T cells invade the CNS, while activated 
macrophages and astrocytes predominantly express CXCL9 
and CXCL10 in demyelinating lesions [3, 88]. In AD post-
mortem brain tissue, CXCL10 was increased in reactive 
astrocytes, while CXCR3 was constitutively expressed in 
a subpopulation of neurons, suggesting that CXCL10 bind-
ing could lead to neuronal dysfunction and apoptosis [20, 
65, 94, 104].

As an IFNγ-induced chemokine, CXCL10 recruits pre-
dominantly CD8+ T cells into the CNS [21, 48, 95]. We 
observed infiltration of CD8+ T cells in severely affected 
brain regions of SPG11 postmortem brains, similar to 
observations in the SPG11−/− mouse model [41]. Of note, 
infiltrating T cells are a major source of IFNγ in the CNS 
[43]. Whether microglia are a relevant source of IFNγ 
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remains controversial [9, 22, 61]. In light of our findings 
and as summarized in Fig. 7, excessive invasion of T cells 
may contribute to a hyperactivated state of CNS resident 
myeloid cells via IFNγ signaling, which is further potenti-
ated by cell-intrinsic spatacsin loss of function. In addi-
tion, excessive secretion of chemokines such as CXCL10 
could further recruit reactive T cells to the CNS, initiating 
a vicious circle of neurodegeneration and microglia/ T-cell 
activation. It has been reported that IFNγ-dependent acti-
vation of microglia is more pronounced in regions of neu-
rodegeneration than in regions with intact neuron–micro-
glia interplay [66]. Both genetic ablation of T cells and 
application of T-cell-directed immunomodulators attenu-
ated neurodegeneration in the Spg11−/−-KO mouse model, 
but data regarding their effects on microglial activation 
are not available [73, 89]. Our findings thus prompt the 
additional evaluation of emerging compounds specifi-
cally targeting the myeloid cell population in SPG11–HSP. 
Microglia may indeed act upstream of T-cell activation, 
since ablation of microglia prevented T-cell invasion and 
neurodegeneration in a mouse model of tauopathy which 
was dependent on IFNγ signaling [19].

In summary, we here describe for the first time 
a microglia-associated inf lammatory phenotype in 
SPG11–HSP patients and uncover a STAT1-dependent 
interplay between SPG11 and IFNγ driving hyperactiva-
tion in SPG11-deficient myeloid cells that has the capacity 
to contribute to neuronal degeneration.
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