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A COMPARISON OF FINITENESS CONDITIONS IN

QUADRATIC FORM THEORY

KARIM JOHANNES BECHER AND SAURABH GOSAVI

Abstract. We discuss and relate finiteness conditions for certain field invari-
ants which are studied in quadratic form theory. This includes the u-invariant,
the reduced stability index and the symbol lengths for Galois cohomology
groups with coefficients in µ2 = {+1,−1}, as well as a new invariant called the
splitting height.
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1. The u-invariant

A driving incentive in the development of the theory of quadratic forms over fields
has been the study of certain field invariants taking values in N∪{∞}. The most
prominent example is the so-called u-invariant. Recent results on the u-invariant
include its exact determination for certain particular fields, namely for finitely
generated extensions of local fields in [15, Theorem 3.4] and for function fields of
surfaces over R in [6, Theorem 0.12].

The aim of this article is to relate the finiteness of the u-invariant to finiteness
conditions for other field invariants. For fields containing a primitive 4th root
of unity, it was shown in [12, Theorem 5.4] that the finiteness of the u-invariant
is equivalent to the finiteness of the symbol lengths λn for all n ∈ N. We will
discuss this sequence of invariants in Section 2. In Theorem 5.4 we will extend
this characterisation to all fields of characteristic different from 2. In particular,
this shall cover the case of (formally) real fields, where field orderings are present.

Let F be a field of characteristic different from 2. We denote by F× the
multiplicative group of F and by F×2 its subgroup of nonzero squares. The set
of sums of squares in F is denoted by ΣF 2. By the Artin-Schreier Theorem [13,
Theorem VIII.1.10], F admits a field ordering if and only if −1 /∈ ΣF 2. We call
F nonreal if −1 ∈ ΣF 2 and real otherwise.

For basic notions and facts from quadratic form theory over fields that is not
explained here we refer the reader to the first chapters of [13] and [9]. The term
form will always refer to a regular quadratic form. For a form ϕ over F we
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denote by [ϕ] its Witt equivalence class and by dim(ϕ) its dimension (rank). We
denote by WF the Witt ring of F , consisting of classes [ϕ] of forms ϕ over F , and
by IF its fundamental ideal, consisting of the classes of even-dimensional forms.
We denote by ItF the torsion ideal of WF , consisting of the elements of finite
additive order in WF . By a torsion form over F we mean a form ϕ over F for
which [ϕ] ∈ ItF . Pfister’s local-global principle states that the torsion forms over
F are precisely the forms having signature zero at all orderings of F .

A form ϕ over F is isotropic if ϕ has a nontrivial zero in F n where n = dim(ϕ),
otherwise it is anisotropic. Following Elman and Lam [8, Definition 1.1], the
u-invariant of F is defined as

u(F ) = sup{dim(ϕ) | ϕ anisotropic torsion form over F} ∈ N ∪ {∞}.
If F is nonreal, then every form over F is a torsion form, and thus u(F ) becomes
the supremum of the dimensions of all anisotropic forms over F . The results on
the u-invariant which will be cited from [12] are for nonreal fields, hence where
there is no discrepancy in the definition.

2. Pfister forms and symbol lenghts

Let n ∈ N. For a1, . . . , an ∈ F× we denote by 〈〈a1, . . . , an〉〉 the 2n-dimensional
quadratic form over F given by the tensor product 〈1,−a1〉⊗· · ·⊗〈1,−an〉. Such
quadratic forms are called n-fold Pfister forms.

We denote by Pn(F ) the set of Witt equivalence classes of n-fold Pfister forms
over F . It is easy to see that the ideal InF is additively generated by Pn(F ).

We denote by Hn(F ) the degree-n Galois cohomology group of F with coef-
ficients in µ2 = {−1,+1}. See [18] for the definition and basic properties. The
elements of Hn(F ) given by cup products (a1)∪ · · · ∪ (an), with a1, . . . , an ∈ F×,
are called symbols.

We rely on the following affirmation of the so-called Milnor Conjecture.

2.1. Theorem (Orlov-Vishik-Voevodsky). There is a natural isomorphism

en : InF/In+1F → Hn(F )

defined by sending the class of the n-fold Pfister form 〈〈a1, . . . , an〉〉 to the symbol

(a1) ∪ · · · ∪ (an), for any a1, . . . , an ∈ F×.

Proof. See [20] in combination with [17, Theorem 4.1] or [16, Theorem 1.1]. �

By Theorem 2.1, Hn(F ) is generated by symbols. For α ∈ Hn(F ), we define

λn(α) = min {k ∈ N | α = Σk
i=1 βi for certain symbols β1, . . . , βk in Hn(F )}.

Let ϕ be a quadratic form over F . If [ϕ] ∈ InF , then following [11, Def. 1.3]
we define

λn(ϕ) = min {k ∈ N | [ϕ] ≡ Σk
i=1 ρi mod In+1F for certain ρ1, . . . , ρk ∈ Pn(F )}.

If en([ϕ]) = α ∈ Hn(F ), then it follows by Theorem 2.1 that λn([ϕ]) = λn(α).
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The following question is a variant of [11, Question 1.1].

2.2. Question. If [ϕ] ∈ InF , can one bound λn(ϕ) in terms of dim(ϕ), and if so,

can this be done independently of F?

A positive answer is only known for n 6 3: see [11, Prop. 1.1 e)] for n = 2 and
[11, Cor. 2.1] for n = 3. For a given dimension m ∈ N, the problem is related
to the problem of constructing a generic object (a versal pair in the sense of [7,
Def. 5.1]) for the functor associating to the field F the set of forms ϕ of dimension
m with [ϕ] ∈ InF .

For n ∈ N, the degree-n symbol length of F is defined as

λn(F ) = sup {λn(ϕ) | ϕ ∈ InF} .
Note that λ1(F ) 6 1 = λ0(F ).

In view of Theorem 2.1, we have λn(F ) = sup {λn(α) | α ∈ Hn(F )} for any
n ∈ N. We refer to [11] for a general discussion of problems (mostly still open)
on the family of invariants (λn(F ))n∈N and their relation to the u-invariant. One
of those problems is whether λ2(F ) <∞ implies that λn(F ) <∞ for all n ∈ N.

For n ∈ N, we abbreviate In
t
F = InF ∩ ItF . Let i, n ∈ N. We denote by 2i× InF

the ideal of the classes 2i-fold multiples of elements of InF . Since 2i corresponds
in WF to the class of the i-fold Pfister form 〈1, 1〉 ⊗ · · · ⊗ 〈1, 1〉, we have that
2i × InF ⊆ In+iF .

In [3], the following improvement of [11, Prop. 3.3] was obtained.

2.3. Theorem. Set λ = λ2(F ) and assume that λ < ∞. Then I2λ+2
t

F = 0.
Furthermore, if F is nonreal, then I2λ+2F = 0, and otherwise I2λ+2F = 8×I2λ−1F .

Proof. See [3, Theorems 1 and 2]. �

2.4. Corollary. Set λ = λ2(F ) and assume that λ <∞. Then λn(F ) = λ2λ+2(F )
for any integer n > 2λ+ 2. Furthermore, if λ > 0, then λ2λ+2(F ) 6 λ2λ−1(F ).

Proof. If F is nonreal, then Theorem 2.3 yields that λn(F ) = 0 for all inte-
gers n > 2λ + 2. Assume that F is real. Then Theorem 2.3 yields that
I2λ+2
t

F = 0 and InF = 2n−2λ+1 × I2λ−1F for all integers n > 2λ + 2. Hence
multiplication by 2 in WF defines an isomorphism InF → In+1F and a bijection
Pn(F ) → Pn+1(F ) for all integers n > 2λ + 2. For any integer n > 2λ + 2,
this induces an isomorphism InF/In+1F → In+1F/In+2F which restricts to a bi-
jection between the respective sets of generators given by the classes of Pfis-
ter forms, whence λn+1(F ) = λn(F ). Furthermore, since I2λ+2F = 8 × I2λ−1F ,
multiplication by 8 in WF yields a surjective homomorphism I2λ−1F → I2λ+2F
which restricts to a surjection P2λ−1(F ) → P2λ+2(F ), and the induced surjection
I2λ−1F/I2λF → I2λ+2F/I2λ+3F yields that λ2λ+2(F ) 6 λ2λ−1(F ). This together
shows the statement. �

2.5. Lemma. Let m ∈ N. Every class in WF/Im+1F is represented by a form ϕ
with dim(ϕ) 6 1 + Σm

j=1 2jλj(F ).
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Proof. We may assume that λj(F ) <∞ for 1 6 j 6 m, as otherwise the claim is
trivially satisfied.

We prove the statement by induction on m. Clearly it holds for m = 0.
To establish the induction step, suppose now that m > 0. Set λ = λm(F ).
Consider a form ϑ over F . By the induction hypothesis for m − 1, we have
that [ϑ] = [ψ] mod ImF for a form ψ with dim(ψ) 6 1 + Σm−1

j=1 2jλj(F ). Then
[ϑ ⊥ −ψ] ∈ ImF . Since λ = λm(F ) < ∞, there exist m-fold Pfister forms
ρ1, . . . , ρλ over F such that [ϕ ⊥ −ψ] ≡ [ρ1 ⊥ . . . ⊥ ρλ] mod Im+1F . Hence,
letting ϕ = ψ ⊥ ρ1 ⊥ . . . ⊥ ρλ, we obtain that [ϑ] ≡ [ϕ] mod Im+1F . Since we
have dim(ϕ) = dim(ψ) + 2mλ 6 1 + Σm

j=1 2jλj(F ), the statement is proven. �

If F is nonreal, then one sees from Lemma 2.5 and Theorem 2.3 that u(F ) <∞
is equivalent with having λn(F ) <∞ for all n ∈ N. Our main aim is to extend this
observation to cover real fields as well. This will be achieved with Theorem 5.4.

3. The stability index

Quadratic form theory over real fields combines the aspects of the so-called re-
duced theory, where sums of squares are treated as if they were squares, with
the study of so-called torsion forms. The u-invariant captures only aspects of
the latter. Its study for real fields needs to be combined with the study of the
stability index, which takes control of the space of orderings of the field. In this
section we revisit this invariant and its role in connection to the u-invariant.

The (reduced) stability index of F , denoted st(F ), is defined as

st(F ) = inf {n ∈ N | In+1F = 2 × InF + In+1
t

F} ∈ N ∪ {∞} .
Note that st(F ) = 0 if and only if F is nonreal or uniquely ordered.

3.1. Example. The field of infinitely iterated power series K = R((t1))((t2)) . . . is
real with u(K) = 0 and st(K) = ∞.

3.2. Theorem (Elman-Lam-Krüskemper). For n ∈ N, we have In+1F (
√
−1) = 0

if and only if In+1
t

F = 0 and st(F ) 6 n.

Proof. See [5] or [9, Corollary 35.27]. �

3.3. Theorem (Schubert). Set s = st(F ). If s = 0, then u(F (
√
−1)) 6 3

2
u(F )+1.

If 0 < s <∞, then u(F (
√
−1)) 6 3

2
u(F ) + (2s+1 − 1)2s−1.

Proof. See [19, Cor. 1]. �

By [4, Corollary 2.3], there is an easy bound on the stability index in terms of
the 2-symbol length, which is also known to be optimal.

3.4. Theorem (Becher-G ladki). We have st(F ) 6 2λ2(F ) − 1.

Proof. As an alternative to the proof in [4, Corollary 2.3], the statement can also
be derived directly from Theorem 2.3, as explained at the end of [3, Sect. 1]. �
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4. The splitting height

It was observed in [12, Theorem 4.2] that the symbol lengths are controlled by
a bound on the minimal degree of finite field extensions that split certain Galois
cohomology classes. Translated to quadratic forms, this motivated to introduce
another field invariant, whose study has just started.

We say that a form is split if it is either hyperbolic or Witt equivalent to a
1-dimensional quadratic form. Let ϕ be a form over F . Given a field extension
L/F , we denote by ϕL the form over L obtained from ϕ by scalar extension to L.
Note that every form over F becomes split over an algebraic closure of F , and
hence already over a finite field extension of F . For a form ϕ over F , we denote
by γ(ϕ) the smallest degree [L : F ] of a field extension L/F such that ϕL is split,
and we call γ(ϕ) the splitting height of ϕ.

We further set

γ(F ) = sup{γ(ϕ) | ϕ quadratic form over F} ∈ N ∪ {∞}
and we call this the splitting height of F .

4.1. Proposition. For every form ϕ over F we have γ(ϕ) 6 2k for k = ⌊1
2
dim(ϕ)⌋.

In particular, if F is nonreal and u(F ) <∞, then γ(F ) 6 2k for k = ⌊1
2
u(F )⌋.

Proof. Let ϕ be a quadratic form over F . Let n = dim(ϕ) and let a1, . . . , an ∈ F×

be such that ϕ = 〈a1, . . . , an〉. Set k = ⌊n
2
⌋ and K = F (

√
b1, . . . ,

√
bk) where

bi = −a2i−1a2i for 1 6 i 6 k. Then ϕK is split and γ(ϕ) 6 [K : F ] 6 2k.
Assume now that F is nonreal and u(F ) is finite. Set k = ⌊1

2
u(F )⌋. Consider an

arbitrary form ϕ over F . Let ϕ′ be the anisotropic part of ϕ. Then γ(ϕ) = γ(ϕ′)
and dim(ϕ′) 6 u(F ), whereby γ(ϕ) = γ(ϕ′) 6 2k. This shows that γ(F ) 6 2k. �

4.2. Corollary. Assume that u(F (
√
−1)) < ∞. Let k = ⌊1

2
u(F (

√
−1))⌋. Then

γ(F ) 6 2k+1.

Proof. This is obvious by Proposition 4.1 and the definition of γ. �

4.3. Lemma. Let n ∈ N. For every α ∈ Hn(F ), there exists a separable field

extension K/F with [K : F ] 6 γ(F ) such that αK = 0.

Proof. By Theorem 2.1, there exists a form ψ with [ψ] ∈ InF and such that
en([ψ]) = α. There exists a finite field extension K/F with [K : F ] 6 γ(F ) such
that ψK is hyperbolic. Since ψK is hyperbolic, we have αK = en([ψK ]) = 0. Since
char(F ) 6= 2, taking for K0 the separable closure of F in K, the natural map
Hn(K0) → Hn(K) is injective. Hence we may assume that K0 = K and hence
that K/F is separable. �

4.4. Theorem (Krashen). Assume that, for every d ∈ N, there exists Nd ∈ N

such that γ(F ′) 6 Nm for all field extensions F ′/F with [F ′ : F ] 6 m. Then

λn(F ) <∞ for every n ∈ N.



6 KARIM JOHANNES BECHER AND SAURABH GOSAVI

Proof. Let n ∈ N. The hypothesis implies that, for any d,m ∈ N with d < n and
any field extension F ′/F with [F ′ : F ] 6 m, the effective index as defined in [12,
Sect. 2, Def. 1] of any class in Hd(F ′) is bounded by Nm.

It follows by [12, Thm. 4.2] that, for any α ∈ Hn(F ), λn(α) is bounded in
terms of Nn. Hence λn(F ) <∞ by Theorem 2.1. �

4.5. Question. Can one bound γ(F ′) for finite field extensions F ′/F in terms of

γ(F ) and [F ′ : F ]?

5. Weakly isotropic forms and the main theorem

Under the assumption that −1 ∈ F×2, it was shown by D. Krashen [12, Theorem
5.4] that the finiteness of the u-invariant of F is equivalent to the finiteness of
the degree-n symbol lengths for all n ∈ N. We will obtain in Theorem 5.4 a
generalisation which also covers the case where F is real and in particular does
not assume that −1 ∈ F×2.

Let ϕ be a form over F . For n ∈ N, we denote by n× ϕ the n-fold orthogonal
sum ϕ ⊥ . . . ⊥ ϕ. We call ϕ weakly isotropic if there exists some n ∈ N such
that n × ϕ is isotropic, and otherwise we call ϕ strongly anisotropic. Note that
any nontrivial torsion form is weakly isotropic.

5.1. Lemma. Let ρ be a torsion form over F and let ϑ be a subform of ρ with

dim(ϑ) > 1
2
dim(ρ). Then ϑ is weakly isotropic.

Proof. Since ρ is a torsion form, there exists a positive integer k such that k×ρ is
hyperbolic. Hence k× ρ contains a totally isotropic subspace of dimension equal
to 1

2
dim(k × ϕ). Since k × ϑ is a subform of k × ρ and

dim(k × ϑ) = k · dim(ϑ) > 1
2
k · dim(ϕ) = 1

2
dim(k × ϕ) ,

we conclude that k × ϑ is isotropic. �

5.2. Lemma. Let n ∈ N be such that InF = 2 × In−1F . Then In+1
t

F = 0 and

every anisotropic form ψ over F with [ψ] ∈ I2n−1F is strongly anisotropic.

Proof. Since InF = 2 × In−1F , we obtain from [13, Corollary XI.4.18 (2) and
Theorem XI.4.5] that the form 2n×〈1〉 over F represents all elements of ΣF 2. By
[2, Proposition 2.4], this yields that, for any form ρ over F , 2n×ρ is either isotropic
or strongly anisotropic. Since I2n−1F = 2n × In−1F , we conclude that every
anisotropic form over F whose class lies in I2n−1F is strongly anisotropic. �

5.3. Proposition. Assume that 0 < λ2(F ) <∞. Then

u(F ) 6 2
(

1 + Σ
2λ2(F )+1
j=1 2jλj(F ) + 22λ2(F )+2

(

22λ2(F )+1 − 1
)

λ2λ
2(F )−1(F )

)

.

Proof. Set λ = λ2(F ) and k = 1 + Σ4λ+2
j=1 2jλj(F ). By Theorem 2.3, we obtain

that I2λ+2F = 8 × I2λ−1F = 2 × I2λ+1F . It follows by Lemma 5.2 that every form
ϑ over F with [ϑ] ∈ I4λ+3F is strongly anisotropic.
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Consider an anisotropic torsion form ϕ over F . By Lemma 2.5, there exists an
anisotropic form ψ over F with dim(ψ) 6 k and such that [ϕ] ≡ [ψ] mod I4λ+3F .
Let ϑ be the anisotropic part of ϕ ⊥ −ψ. Then [ϑ] ∈ I4λ+3F . Hence ϑ is strongly
anisotropic. Furthermore, [ϑ ⊥ ψ] = [ϕ] ∈ ItF , so ϑ ⊥ ψ is a torsion form. As
ϑ is strongly anisotropic, we obtain by Lemma 5.1 that dim(ϑ) 6 1

2
dim(ϑ ⊥ ψ).

Since dim(ϑ ⊥ ψ) 6 dim(ϑ) + dim(ψ), it follows that dim(ϑ) 6 dim(ψ) 6 k. Since
ϕ is anisotropic and [ϕ] = [ϑ ⊥ ψ], we conclude that dim(ϕ) 6 dim(ϑ ⊥ ψ) 6 2k.

By Corollary 2.4, we have λn(F ) 6 λ2λ−1(F ) for every integer n > 2λ + 2.
Therefore we obtain that k 6 1 + Σ2λ+1

j=1 2jλj(F ) + (Σ4λ+2
j=2λ+2 2j)λ2λ−1(F ). Since

Σ4λ+2
j=2λ+2 2j = 22λ+2(22λ+1 − 1), the statement follows. �

We now are ready for the main result of this article, which is a generalisation
of [12, Theorem 5.4]. It extends [19, Theorem 3], the equivalence (i) ⇔ (ii) here.

5.4. Theorem. The following are equivalent:

(i) u(F ) <∞ and st(F ) <∞.

(ii) u(F (
√
−1)) <∞.

(iii) λn(F ) <∞ for all n ∈ N.

(iv) λn(F ) <∞ for 2 6 n 6 2λ2(F ) + 1.
(v) For every d > 1, there exists Nd ∈ N such that γ(F ′) 6 Nd for all field

extensions F ′/F with [F ′ : F ] 6 d.

Proof. (i⇒ ii) This is Theorem 3.3.
(ii ⇒ v) Assume that u(F (

√
−1)) < ∞. Let F ′/F be a finite field extension.

By [14, Theorem 2.10], we have that u(F ′(
√
−1)) 6 1

2
(d + 1)u(F (

√
−1)) where

d = [F ′ : F ]. We conclude by Corollary 4.2 that γ(F ′) 6 2γ(F ′(
√
−1)) 6 2k+1

where k = ⌊1
4
(d+ 1)u(F (

√
−1))⌋.

(v ⇒ iii) This is Theorem 4.4.
(iii⇒ iv) This implication is trivial.
(iv ⇒ i) This follows by Theorem 3.4 and Proposition 5.3. �
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