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On the Maximum Queue Length of the Hyper

Scalable Load Balancing Push Strategy

Benny Van Houdt[0000−0002−5955−8493]

Department of Computer Science, University of Antwerp - imec, Belgium

Abstract. In this paper we derive explicit and structural results for

the steady state probabilities of a structured finite state Markov chain.

The study of these steady state probabilities is motivated by the anal-

ysis of the hyper scalable load balancing push strategy when using the

queue-at-the-cavity approach. More specifically, these probabilities can

be used to determine the largest possible arrival rate that can be sup-

ported by this strategy without exceeding some predefined maximum

queue length. Contrary to prior work, we study the push strategy when

the queue length information updates occur according to a phase-type

renewal process with non-exponential inter-renewal times.

Keywords: load balancing ➲ hyper scalable push strategy ➲ bounded

queue length.

1 Introduction

Hyper scalable load balancing strategies for large-scale systems have received
considerable attention recently [1,2,3]. These strategies further reduce the com-
munication overhead of traditional load balancers such as the power-of-d-choices
or join-idle-queue strategies [4,5,6,7], the overhead of which equals at least one
message per job. One of the most fundamental hyper scalable load balancing
strategies is the push strategy studied in [1,8]. It operates as follows. There
is a single dispatcher that maintains an estimate on the queue length of each
server. Jobs arrive at the dispatcher at rate λN , where N is the number of
servers. Incoming jobs are assigned in a greedy manner, that is, the dispatcher
assigns the job to a server with the smallest estimated queue length among all
servers and increases its estimate by one. However, the dispatcher is not in-
formed about job completions. Instead the queue length estimates are updated
to their actual values at random points in time (meaning the estimates are upper
bounds). Whether these queue length updates are triggered by the dispatcher
or the servers does not matter in such case. The mean number of updates that
occur per incoming job is a control parameter that can be set well below one.

An effective approach to study the performance of large-scale load balanc-
ing strategies is the so-called queue-at-the-cavity approach [9], which reflects the
system behavior as the number of servers tends to infinity assuming asymptotic
independence. For the hyper scalable push strategy described above, the corre-
sponding queue-at-the-cavity has a bounded queue length m, the value of which



can be determined by studying a structured finite state Markov chain in case of
phase-type distributed job sizes [8]. The maximum queue length m grows as a
function of the arrival rate λ and explicit results for the largest possible arrival
rate λ(m) ∈ (0, 1) that can be supported with a given maximum queue length m
were presented in [8] in case of phase-type distributed job sizes with mean one
and random server queue length updates. Random updates imply that the time
between two updates of the queue length information of a tagged server follows
an exponential distribution with some mean 1/δ. In this paper we derive explicit
results for λ(m) when the updates of the queue length of a tagged server follow
a renewal process, but the inter-renewal time is not necessarily exponential.

The paper is structured as follows. Section 2 contains the problem statement.
Results for the case with exponential job sizes are presented in Section 3, while
in Section 4 we focus on non-exponential job sizes. Conclusions are found in
Section 5.

2 Problem statement

We assume that the job size distribution Z follows an order kS phase type dis-
tribution characterized by (α, S) with mean α(−S)−1e = 1, that is, P [Z >
t] = α exp(St)e, where e is a vector of ones of the appropriate size. The time
between two updates X of a tagged server follows an order kT phase type dis-
tribution characterized by (β, T ) with mean β(−T )−1e = 1/δ > 1, meaning
P [X > t] = β exp(Tt)e. In other words, whenever the dispatcher updates its
queue length information for the tagged server, a phase-type distributed timer
is started and the dispatcher receives a new update each time this timer expires.
Let t∗ = (−T )e and s∗ = (−S)e. All timers and job sizes are assumed to be
independent.

In [8, Section 4] it was shown that using the queue-at-the-cavity approach
in case of random updates, the maximum queue length for the hyper scalable
push strategy is the smallest m value such that the steady-state probability of
being in the first state of the 1 + kSm state Markov chain with the following
rate matrix is less than 1− λ:



















−δ δα
s∗ S − δI δI

s∗α S − δI δI
. . .

. . .
...

s∗α S − δI δI
s∗α S



















. (1)

This Markov chain captures the evolution of the queue length of a tagged server
that serves phase-type distributed jobs with representation (α, S) and that jumps
up to length m each time an update occurs, where updates occur according to
a Poisson process with rate δ.

It is not hard to see that when phase-type distributed timers are used instead
to trigger updates, the maximum queue length of a server equals the smallest m



value such that the probability of being in a state part of Ω0 is less than 1− λ
in the Markov chain with state space

Ω = Ω0 ∪ (∪m
ℓ=1 Ωℓ) ,

whereΩ0 = {(0, j)|j = 1, . . . , kT } andΩℓ = {(ℓ, i, j)|i = 1, . . . , kS , j = 1, . . . , kT }
and rate matrix

Q(m) =



















T α⊗ t∗β
s∗ ⊗ I S ⊕ T I ⊗ t∗β

s∗α⊗ I S ⊕ T I ⊗ t∗β
. . .

. . .
...

s∗α⊗ I S ⊕ T I ⊗ t∗β
s∗α⊗ I S ⊕ (T + t∗β)



















. (2)

If we set T = −δ, meaning t∗ = δ, β = 1 and kT = 1, Q(m) coincides with (1).
We now formally define λ(m) ∈ (0, 1) as the largest possible arrival rate

λ such that the maximum queue length of the queue-at-the-cavity of the push
strategy is bounded by m given a mean job size equal to one.

Definition 1 Let λ(m) = 1 − π0(m), where π0(m) is the steady probability to
be in a state part of the set Ω0 for the CTMC characterized by Q(m).

We use the following notations for some special cases:

1. If (β, T ) has an Erlang-kT distribution, we denote this rate as λkT
(m).

2. If the job sizes are exponential, we denote this rate as λ(exp)(m).
3. If (β, T ) has an Erlang-kT distribution and job sizes are exponential, hyper

exponential, Coxian or Erlang, we denote this rate as λ
(exp)
kT

(m), λ
(HE)
kT

(m),

λ
(Cox)
kT

(m) or λ
(Erl)
kT

(m), respectively.

It is possible to develop an algorithm that runs in O(k3T (k
3
S + logm)) time

to numerically compute π0(m), and thus λ(m), by exploiting the structure of
Q(m). The main objective of this paper is however to derive closed from results
for λ(m) and to establish structural results. A first set of closed form results was
presented in [3, Corollary 4.5] for exponential timers, that is,

λ1(m) =
δ(1− y(1)m)

δ(1− y(1)m) + y(1)m−1(1− y(1))
, (3)

where y(1) = P [Z < X] is the probability that the job size Z with E[Z] =
1 is less than an exponential timer X with mean 1/δ > 1. Note that λ1(1)
simplifies to δ/(1 + δ) which is independent of the job size distribution Z. The
case with m = 1 is of particular interest as it corresponds to the case where the
queue length is bounded by one in the large-scale limit (assuming asymptotic
independence), which corresponds to so-called vanishing waiting times.



3 Exponential job sizes

In this section we study the arrival rate λ(exp)(m) that can be supported such
that the maximum queue length is bounded by m in case of exponential job sizes
and phase-type distributed timers. We make the following contributions:

1. We prove that λ(exp)(m) is maximized over all order kT phase-type distri-
butions by the Erlang-kT distribution (due to Theorem 2).

2. We present an explicit formula for λ
(exp)
kT

(m) and prove that λ
(exp)
kT

(m) in-
creases as a function of kT (see Theorem 3).

3. We derive the limiting expressions as kT tends to infinity (see Theorem 3).

When the job sizes are exponential the state space reduces to

Ω(exp) = ∪m
ℓ=0 Ω

(exp)
ℓ = ∪m

ℓ=0 {(ℓ, j)|j = 1, . . . , kT }.

and the rate matrix Q(m) simplifies to

Q(exp)(m) =



















T t∗β
I T − I t∗β

I T − I t∗β
. . .

. . .
...

I T − I t∗β
I (T + t∗β)− I



















. (4)

Theorem 1. Let N1(X) denote the number of arrivals of a Poisson process with

rate 1 during an (β, T ) phase type distributed time X. Denote π
(exp)
0 (m) as the

steady state probability that the state of the CTMC with rate matrix Q(exp)(m)

is in the set Ω
(exp)
0 , then

π
(exp)
0 (m) = 1− δE[min(N1(X),m)].

This implies that π
(exp)
0 (m) is decreasing in m.

Proof. For the CTMC with rate matrix Q(exp)(m) we clearly have a renewal
whenever the (β, T ) phase-type distributed timer expires. The mean length of
a renewal cycle therefore equals 1/δ and its length has an order (m + 1)kT
phase-type distribution with initial vector (β, 0, . . . , 0) and subgenerator matrix

Q(cycle)(m) =



















T − I I
T − I I

T − I I
. . .

. . .

T − I I
T



















, (5)



where we reordered the states. In order to express the mean time that the CTMC

spends in the set Ω
(exp)
ℓ during a cycle, we can focus on the first block row of

the matrix (−Q(cycle)(m))−1. As (−Q(cycle)(m))−1 equals















(I − T )−1 . . . (I − T )−m (I − T )−m(−T )−1

. . .
...

...

(I − T )−1 (I − T )−1(−T )−1

(−T )−1















,

the mean time spend in the set Ω
(exp)
ℓ , with ℓ > 0, per cycle can be expressed

as β(I − T )−(m−ℓ+1)e and therefore

π
(exp)
0 (m) =

1/δ −
∑m

ℓ=1 β(I − T )−(m−ℓ+1)e

1/δ
= 1− δ

m
∑

ℓ=1

β(I − T )−ℓe.

Furthermore β(I − T )−ℓe is also the probability that N1(X) equals ℓ or more.
Hence,

π
(exp)
0 (m) = 1− δ

m
∑

ℓ=1

P [N1(X) > ℓ− 1] = 1− δE[min(N1(X),m)].

⊓⊔

Theorem 2. Let π
(exp)
0 (m) be the steady state probability of the CTMC with rate

matrix Q(exp)(m) to be in the set Ω
(exp)
0 , then π

(exp)
0 (m) is minimized over all

order kT phase type distributions (β, T ) by the Erlang-kT distribution. Moreover

π
(exp)
0 (m) is decreasing in kT when (β, T ) is an Erlang-kT distribution.

Proof. Let X follow any order kT phase type distribution characterized by (β, T )
and let Y have an Erlang-kT distribution. By Theorem 3 in [10] we have Y ≤cx X
where ≤cx is the usual convex ordering between random variables with the same
mean (see [11]). By Theorem 3.A.40 in [11] we therefore have N1(Y ) ≤cx N1(X).
Using 3.A.5 in [11], we have

E[max(N1(Y ),m)] ≤ E[max(N1(X),m)],

for any m. Clearly,

E[N1(X)] = E[max(N1(X),m)] + E[min(N1(X),m)]−m,

and the same holds for Y , while both E[N1(X)] and E[N1(Y )] equal 1/δ. This
allows us to conclude that

E[min(N1(Y ),m)] ≥ E[min(N1(X),m)],

and by the previous theorem π
(exp)
0 (m) is minimized by the Erlang-kT distribu-

tion over all order kT phase-type distributions.
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Fig. 1: Illustration of Theorem 3: exponential job sizes and Erlang-kT timers
with kT = 1, 10 and ∞.

The fact that π
(exp)
0 (m) is decreasing in kT when (β, T ) has an Erlang-kT

distribution follows by noting that the Erlang kT distribution also has an order
kT + 1 phase-type representation and therefore ZkT+1 ≤cx ZkT

with Zk an
Erlang-k random variable. Following the same argument as above implies

E[min(N1(ZkT+1),m)] ≥ E[min(N1(ZkT
),m)],

which concludes the proof. ⊓⊔

Theorem 3. For an Erlang-kT timer and exponential job sizes we have

λ
(exp)
kT

(m) = δm− δ

(

δkT
δkT + 1

)kT m−1
∑

n=0

m− n

(δkT + 1)n

(

kT + n− 1

n

)

(6)

= 1−
1

(δkT + 1)m

kT−1
∑

j=0

(

1−
j

kT

)(

m+ j − 1

j

)(

δkT
δkT + 1

)j

(7)



Further,

lim
kT→∞

λ
(exp)
kT

(m) = δm− δe−1/δ
m−1
∑

n=0

m− n

δnn!
(8)

and limm→∞ λ
(exp)
kT

(m) = 1.

Proof. We first establish (6). Using Theorem 1 we know that λ(m) can be written
as δE[min(N1(X),m)], which is equivalent to stating that

λ(m)/δ = E[min(N1(X),m)] =

m−1
∑

j=0

P [N1(X) > j]

= m−

m−1
∑

n=0

(m− n)P [N1(X) = n]

= m−

(

δkT
δkT + 1

)kT m−1
∑

n=0

m− n

(δkT + 1)n

(

kT + n− 1

n

)

,

as P [N1(X) = n] if there are n arrivals (these occur at rate 1) and kT − 1 phase
changes of the timer (these occur at rate δkT ) in the next n + kT − 1 events,
followed by the expiration of the timer.

To obtain (7) we look at the mean time that the order (m+1)kT phase-type
distribution characterized by (β, 0, . . . , 0) and Q(cycle) given by (5) spends in the

set of states Ω
(exp)
0 . The probability that this set is reached during a cycle via

state (0, j + 1) ∈ Ω
(exp)
0 is given by

(

m+ j − 1

j

)(

1

δkT + 1

)m(
δkT

δkT + 1

)j

,

and the mean time that we spend in the set Ω
(exp)
0 given that we are in state

(0, j) equals (kT − j)/(δkT ). As π
(exp)
0 (m) equals δ times this mean time, we

have

1− λ(m) =
1

(δkT + 1)m

kT−1
∑

j=0

(

1−
j

kT

)(

m+ j − 1

j

)(

δkT
δkT + 1

)j

.

The expression for the limit in (8) is immediate from (6) as (δkT /(δkT +1))kT

converges to e−1/δ and
(

kT+n−1
n

)

/(δkT + 1)n converges to 1/(δnn!) as kT tends

to infinity. The second limit is immediate from (7) as limm→∞

(

m−j+1
j

)

/(δkT +

1)m = limm→∞ mj−1/j!(δkT + 1)m = 0. ⊓⊔

Remarks:



1. By (6) we have vanishing waits with Erlang-kT timers and exponential job
sizes if and only if

λ < λ
(exp)
kT

(1) = δ − δ

(

δkT
δkT + 1

)kT

, (9)

which increases to δ(1− e−δ) as kT tends to infinity.
2. Using (7) we can compute λ(m) in O(kT + logm) time. Indeed, (δkT + 1)m

can be computed in logm time and the sum in O(kT ) time as
(

m+j−1
j

)

=
(

m+j−2
j−1

)

(m + j − 1)/j. Similarly (6) allows us to compute λ(m) in O(m +

log kT ) time. Theorem 3 is illustrated in Figure 1.

4 Vanishing waiting times: m = 1

When both the job sizes and timers follow a general phase-type distribution, it
appears hard to find elegant closed form results. As such we limit ourselves to the
case where m = 1. Recall that this case is of particular interest as it corresponds
to vanishing waiting times in the large-scale limit for the hyper scalable push
strategy (assuming asymptotic independence). For exponential timers we know
that λ1(1) = δ/(δ+1), which does not depend on the job size distribution. This
insensitivity is however lost when timers are not exponential. Given the results
in the previous section, we focus on Erlang kT distributed timers, that is, we
focus on λkT

(1) in this section for various job size distributions.
This section contains the following contributions for hyper exponential (HE),

Coxian (Cox) and Erlang (Erl) job sizes:

1. We present an explicit formula for λ
(HE)
kT

(1) (see Theorem 4).

2. Tight lower and upper bounds for λ
(HE)
kT

(1) are presented that hold for any
HE job size distribution (see Theorem 5).

3. An explicit formula for λ
(Cox)
kT

(1) is derived (see Theorem 6).

4. An explicit formula for λ
(Erl)
kT

(1) is presented (see Theorem 7).

We first present a lemma that is based on the following observation. A renewal
occurs for the Markov chain characterized by Q(m) each time the timer expires
and the state is in Ω0. During such a cycle the timer may expire a number of
times CN before the set Ω0 is reached. Once this set is reached, the cycle ends
when the timer expires one more time. Let Yn denote the service phase of the
job when the timer expires for the n-th time during a cycle in the event that
CN ≥ n.

Lemma 1 The arrival rate λ(1) can be expressed as

λ(1) = δ

/

1 +

kS
∑

s=1

∑

n≥1

P [Yn = s, CN ≥ n] .



Proof. A renewal occurs each time that the set Ω0 is left. For m = 1 the time
spend in the set Ω1 clearly equals 1 as the state remains in Ω1 until the job
completes. The value of λ(1) can therefore be expressed as 1 divided by the
mean length of a cycle, which we denote as E[C].

A cycle ends when the timer expires and the state is in the set Ω0. As 1/δ is
the mean time for the timer to expire, the mean cycle length can be expressed
as

E[C] =
1

δ
(E[CN ] + 1),

where CN reflects the number of times that the timer expires before the job
completes. This number can be expressed as

E[CN ] =
∑

n≥1

P [CN ≥ n] =

kS
∑

s=1

∑

n≥1

P [Yn = s, CN ≥ n],

where Yn is the phase of the job when the timer expires for the n-th time in a
cycle. Note that Yn is well defined when CN ≥ n. ⊓⊔

4.1 Hyper Exponental job sizes

The next theorem allows us to compute λ
(HE)
kT

(1) in O(kS log kT ) time.

Theorem 4. For Erlang-kT timers and HE job sizes we have

λ
(HE)
kT

(1) = δ

/

kS
∑

i=1

pi

1−
(

δkT

δkT+µi

)kT
, (10)

where pi is the probability that a job has an exponential size with mean 1/µi.

Proof. We make use of Lemma 1. With probability pi the service phase equals i
and remains the same as long as the job is in service. Hence,

P [Yn = i, CN ≥ n] = pi

(

δkT
δkT + µi

)nkT

.

Summing over n and i and writing 1 =
∑kS

i=1 pi yields the result. ⊓⊔

Lemma 2 The function ξ(x) given by

ξ(x) =
1

1− (δkT )kT /(δkT + 1/x)kT
, (11)

is convex on (0,∞).



Proof. We have

ξ′′(x) =
kT (δkT + 1/x)kT (δkT )

kT

x2

η(x)

δkT + x

(

1

(δkT + 1/x)kT − (δkT )kT

)3

,

with

η(x) = (kT + 1)(δkT )
kT + (kT − 1)(δkT + 1/x)kT

− 2(δkT )x
(

(δkT + 1/x)kT − (δkT )
kT
)

.

It therefore suffices to show that η(x) ≥ 0 on (0,∞). Expanding the kT -th powers
implies that η(x) equals

(kT + 1)(δkT )
kT + (kT − 1)

kT
∑

j=0

(

kT
j

)

(δkT )
kT−j

xj
− 2

kT
∑

j=1

(

kT
j

)

(δkT )
kT−j+1

xj−1

=
kT − 1

xkT
+

kT−1
∑

j=1

(

(kT − 1)

(

kT
j

)

− 2

(

kT
j + 1

))

(δkT )
kT−j

xj
,

which is non-negative on (0,∞) as

(kT − 1)

(

kT
j

)

− 2

(

kT
j + 1

)

≥ 0,

if and only if (j − 1)(kT + 1) ≥ 0.
⊓⊔

Theorem 5. For Erlang-kT timers and HE job sizes we have for λ
(HE)
kT

(1) that

δ

1 + δ
= λ

(exp)
1 (1) = λ

(HE)
1 (1) ≤ λ

(HE)
kT

(1) ≤ λ
(exp)
kT

(1) = δ

(

1−
(δkT )

kT

(δkT + 1)kT

)

Proof. The result follows by noting that

λ
(HE)
kT

(1) = δ

/

kS
∑

i=1

piξ(1/µ1) .

Therefore by the convexity of ξ(x) on (0,∞), we have

λ
(HE)
kT

(1) = δ

/

kS
∑

i=1

piξ(1/µi) ≤ δ/ξ(

kS
∑

i=1

pi/µi) = δ/ξ(1) = λ
(exp)
kT

(1).

⊓⊔

Remarks:

1. The upper bound is clearly tight, while the lower bound for a fixed kT is
also tight by using the 2-phase HE distribution with p1 = 1 − ϵ, p2 = ϵ,

µ1 = (1−ϵ)/ϵ and µ2 = ϵ/(1−ϵ) as in such case limϵ→0 λ
(HE)
kT

(1) = δ/(δ+1).



4.2 Coxian job sizes

In this section we consider Coxian job sizes, meaning α = (1, 0, . . . , 0) and

S =















−µ1 µ1p1
−µ2 µ2p2

. . .
. . .

µkS−1 µkS−1pkS−1

µkS















,

with µi for i = 1, . . . , kS and 0 < pi < 1 for i = 1, . . . , kS − 1. We note that any
acyclic phase-type distribution, that is, any phase-type distribution where S is
upper triangular, can be represented as a Coxian distribution [12].

Lemma 3 Let x1 ̸= . . . ̸= xs ∈ R, then for n ≥ 1

∑

j1,...,js≥0
j1+...+js=n−1

s
∏

i=1

xji
i =

s
∑

i=1

xn+s−2
i

s
∏

ℓ=1
ℓ ̸=i

1

xi − xℓ
(12)

Proof. The equality in (12) is a known identity for complete homogeneous sym-
metric functions [13, Ex 7.4]. ⊓⊔

Remarks:

1. The result also holds for n = 0, that is,

s
∑

i=1

xs−2
i

s
∏

ℓ=1
ℓ ̸=i

1

xi − xℓ
= 0. (13)

This is easily checked for s = 2. For s > 2 this follows from Lagrange’s
interpolation formula as the polynomial p(x) = xs−2 interpolates the points
(xi, x

s−2
i ) for i = 1, . . . , s− 1 and therefore

p(xs) = xs−2
s =

s−1
∑

i=1

xs−2
i

s−1
∏

ℓ=1
ℓ ̸=i

xs − xℓ

xi − xℓ
= −

s−1
∑

i=1

xs−2
i

∏s−1
ℓ=1(xs − xℓ)

∏s
ℓ=1
ℓ ̸=i

(xi − xℓ)
.

Theorem 6. For Erlang-kT timers and Coxian job sizes with probabilities p1, . . . , pkS−1

and rates µ1 ̸= . . . ̸= µkS
we have

λ
(Cox)
kT

(1) = δ

/

kS
∑

i=1

p̂i

1−
(

δkT

δkT+µi

)kT
, (14)

where p̂i for i = 1, . . . , kS is given by

p̂i =

kS
∑

s=i





s−1
∏

j=1

µjpj





s
∏

ℓ=1
ℓ ̸=i

1

µℓ − µi
. (15)



Proof. We rely on Lemma 1. Clearly, as the initial service phase is one when a

cycle starts, we have P [Yn = 1, CN ≥ n] =
(

δkT

δkT+µ1

)nkT

which yields

1 +
∑

n≥1

P [Yn = 1, CN ≥ n] = 1

/

1−

(

δkT
δkT + µ1

)kT

.

For s > 1, we get the more involved expression

P [YN = s, CN ≥ n]

=
∑

j1,...,js≥0
j1+...+js=nkT−1

(

s−1
∏

i=1

(

δkT
δkT + µi

)ji µipi
δkT + µi

)

(

δkT
δkT + µs

)js+1

=
δkT

δkT + µs





s−1
∏

j=1

µjpj
δkT + µj





∑

j1,...,js≥0
j1+...+js=nkT−1

s
∏

i=1

xji
i ,

=
δkT

δkT + µs





s−1
∏

j=1

µjpj
δkT + µj





s
∑

i=1

xnkT+s−2
i

s
∏

ℓ=1
ℓ ̸=i

1

xi − xℓ
(16)

with xi = δkT /(δkT + µi) due to Lemma 3. For s > 1 we therefore have
∑

n≥1

P [YN = s, CN ≥ n]

=
δkT

δkT + µs





s−1
∏

j=1

µjpj
δkT + µj





∑

n≥0

s
∑

i=1

xnkT+s−2
i

s
∏

ℓ=1
ℓ ̸=i

1

xi − xℓ
, (17)

where the sum may start in n = 0 due to (13).
By definition of xi, we have for i ≤ s

xs−1
i

s
∏

ℓ=1
ℓ ̸=i

1

xi − xℓ
=

s
∏

ℓ=1
ℓ ̸=i

δkT + µℓ

µℓ − µi
,

which combined with (17) implies for s > 1
∑

n≥1

P [YN = s, CN ≥ n]

=
δkT

δkT + µs





s−1
∏

j=1

µjpj
δkT + µj





∑

n≥0

s
∑

i=1

xnkT−1
i

s
∏

ℓ=1
ℓ ̸=i

δkT + µℓ

µℓ − µi

=





s−1
∏

j=1

µjpj





s
∑

i=1





∑

n≥0

xnkT

i





s
∏

ℓ=1
ℓ ̸=i

1

µℓ − µi
.



Therefore,

∑

n≥1

P [YN = s, CN ≥ n] =
s
∑

i=1





s−1
∏

j=1

µjpj





s
∏

ℓ=1
ℓ ̸=i

1

µℓ − µi

/(

1−

(

δkT
δkT + µi

)kT

)

,

and

1 + E[CN ] = 1 +

kS
∑

s=1

∑

n≥1

P [YN = s, CN ≥ n] =
1

1−
(

δkT

δkT+µi

)kT

+

kS
∑

s=2

s
∑

i=1





s−1
∏

j=1

µjpj





s
∏

ℓ=1
ℓ ̸=i

1

µℓ − µi

/(

1−

(

δkT
δkT + µi

)kT

)

=

kS
∑

i=1

p̂i

/(

1−

(

δkT
δkT + µi

)kT

)

⊓⊔

Remarks:

1. The sum of the p̃i equals one as

kS
∑

i=1

p̃i =

kS
∑

s=1





s−1
∏

j=1

µjpj





s
∑

i=1

s
∏

ℓ=1
ℓ ̸=i

1

µℓ − µi
,

as the latter sum equals zero for s > 1. However p̃i is not necessarily between
0 and 1. For instance, when µ1 = 3/2, p1 = 1 and µ2 = 3, we get p̃1 = 2
and p̃2 = −1. This also indicates that Theorem 6 does not have a simple
probabilistic interpretation.

2. When p̃i ∈ [0, 1] for i = 1, . . . , kS the Coxian job size distribution corre-
sponds to an HE distribution where the job is exponential with parameter
µi with probability p̃i. In fact, any HE distribution can be represented as
a Coxian distribution [12,14] and as such Theorem 6 can be regarded as a
generalization of Theorem 4.

3. Using (14) we can compute λ
(Cox)
kT

(1) in O(k2S + kS log kT ) time, where the

computation of the p̂i values require O(k2S) time.
4. If some of the µi are identical we can still derive an explicit expression by

taking limits. For instance, for an order 2 Coxian distribution with service
rate µ in both phases this leads to the following formula:

λ
(Cox)
kT

(1) = δ

/

1

1−
(

δkT

δkT+µ

)kT
+

p1µkT
δkT + µ

(

δkT

δkT+µ

)kT

(

1−
(

δkT

δkT+µ

)kT

)2 .



4.3 Erlang kS job sizes

While results for Erlang distributed job sizes can in principle be derived from
Theorem 6 by taking limits, this leads to very involved expressions for larger
values of kS . We therefore present an alternate approach in this section.

Lemma 4 For s ≥ 1 and |x| < 1, we have

∑

n≥1

(

kn+ s− 2

s− 1

)

xkn =
1

k

k
∑

j=1

wj
kx

(1− wj
kx)

s
, (18)

with wj
k = cos 2πj/k + i sin 2πj/k ∈ C the k-th roots of unity.

Proof. The orthogonal relation for the k-th roots of unity states that

1

k

k
∑

j=1

wjn
k =

{

1 if n is a multiple of k
0 otherwise.

This implies

∑

n≥1

(

kn+ s− 2

s− 1

)

xkn =
∑

n≥1

(

n+ s− 2

s− 1

)

xn





1

k

k
∑

j=1

wjn
k





=
1

k

k
∑

j=1

∑

n≥1

(

n+ s− 2

s− 1

)

(xwj
k)

n =
1

k

k
∑

j=1

wj
kx

(1− wj
kx)

s
,

as
∑

n≥0

(

n+s−2
s−1

)

xn = x/(1− x)s. ⊓⊔

Theorem 7. For Erlang-kS job sizes and Erlang-kT timers, we have

λ
(Erl)
kT

(1) = δ

/

1 +
1

kT

kT
∑

j=1

wj
kT

kS
∑

s=1

x(1− x)s−1

(1− wj
kT

x)s
, (19)

with x = δkT /(δkT + kS) and wj
k = cos 2πj/k + i sin 2πj/k ∈ C.

Proof. The proof makes use of Lemma 1. For Erlang kS job sizes we note that
the expression for P [Yn = s, CN ≥ n] for s ≥ 1 becomes

P [Yn = s, CN ≥ n] =

(

nkT + s− 2

s− 1

)(

kS
δkT + kS

)s−1(
δkT

δkT + kS

)nkT

.

Lemma 4 now suffices to complete the proof. ⊓⊔
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Fig. 2: Illustration of Theorem 4 and 7: Erlang, Exponential and Hyper Expo-
nential job sizes (with balanced means) and Erlang-10 timers.

Remarks:

1. By means of (19) we can compute λ
(Erl)
kT

(1) in O(kT kS) time.
2. The result can easily be generalized to mixtures of Erlang distributions

(mErl). Suppose that with probability pi the job size is an order kS,i Er-
lang with rate µi, for i = 1, . . . , v, then

λ
(mErl)
kT

(1) = δ

/

1 +
1

kT

kT
∑

j=1

wj
kT

v
∑

i=1

pi

kS,i
∑

s=1

xi(1− xi)
s−1

(1− wj
kT

xi)s
,

with xi = δkT /(δkT + µi).
3. Theorem 4 and 7 are illustrated in Figure 2. Less variable job sizes imply

that higher rates can be supported while still having vanishing waiting times.

5 Conclusions

In this paper we studied the steady state probabilities to be in the set Ω0 of the
structured finite state Markov chain with rate matrix Q(m). The study of this
Markov chain was motivated by the largest possible arrival rate λ(m) that can
be supported by the hyper scalable load balancing push strategy such that the
queue length is bounded by some predefined maximum m.

More specifically, the following contributions were made. For exponential
job sizes we showed that λ(m) is maximized among all order kT phase type
distributions by the Erlang kT distribution and presented explicit formulas for
this maximum λkT

(m). For non-exponential job sizes we focussed on the setting
with vanishing waiting times, i.e., m = 1 and derived closed form expressions
for λkT

(1) for various job size distributions such as hyper exponential, Coxian
and Erlang distributions.



References

[1] M. van der Boor, S. Borst, and J. van Leeuwaarden, “Hyper-scalable JSQ
with sparse feedback,” Proceedings of the ACM on Measurement and Anal-
ysis of Computing Systems, vol. 3, no. 1, pp. 1–37, 2019.

[2] ——, “Optimal hyper-scalable load balancing with a strict queue limit,”
Performance Evaluation, p. 102217, 2021.

[3] T. Hellemans, G. Kielanski, and B. Van Houdt, “Performance of load bal-
ancers with bounded maximum queue length in case of non-exponential job
sizes,” To appear in IEEE/ACM Transactions on Networking.

[4] M. Mitzenmacher, “The power of two choices in randomized load balanc-
ing,” IEEE Trans. Parallel Distrib. Syst., vol. 12, pp. 1094–1104, October
2001.

[5] N. Vvedenskaya and B. Tsybakov, “Random multiple access of packets to
a channel with errors,” Problemy Peredachi Informatsii, vol. 19, no. 2, pp.
69–84, 1983.

[6] Y. Lu, Q. Xie, G. Kliot, A. Geller, J. R. Larus, and A. Greenberg, “Join-
idle-queue: A novel load balancing algorithm for dynamically scalable web
services,” Perform. Eval., vol. 68, pp. 1056–1071, 2011.

[7] A. Stolyar, “Pull-based load distribution in large-scale heterogeneous
service systems,” Queueing Systems, vol. 80, no. 4, pp. 341–361, 2015.
[Online]. Available: http://dx.doi.org/10.1007/s11134-015-9448-8

[8] T. Hellemans, G. Kielanski, and B. Van Houdt, “Performance of load bal-
ancers with bounded maximum queue length in case of non-exponential job
sizes,” arXiv preprint arXiv.org/abs/2201.03905, 2022.

[9] M. Bramson, Y. Lu, and B. Prabhakar, “Randomized load balancing with
general service time distributions,” in ACM SIGMETRICS 2010, 2010, pp.
275–286. [Online]. Available: http://doi.acm.org/10.1145/1811039.1811071

[10] C. O’Cinneide, “Phase-type distributions and majorizations,” Annals of
Applied Probability, vol. 1, no. 2, pp. 219–227, 1991.

[11] M. Shaked and J. G. Shanthikumar, Stochastic Orders and their Applica-
tions. Associated Press, 1994.

[12] A. Cumani, “On the canonical representation of homogeneous markov
processes modelling failure - time distributions,” Microelectronics Re-
liability, vol. 22, no. 3, pp. 583 – 602, 1982. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0026271482900336

[13] R. P. Stanley and S. Fomin, Enumerative Combinatorics, ser. Cambridge
Studies in Advanced Mathematics. Cambridge University Press, 1999,
vol. 2.

[14] B. Van Houdt, “Global attraction of ODE-based mean field models
with hyperexponential job sizes,” Proc. ACM Meas. Anal. Comput.
Syst., vol. 3, no. 2, p. Article 23, June 2019. [Online]. Available:
https://doi.org/10.1145/3326137


	On the Maximum Queue Length of the Hyper Scalable Load Balancing Push Strategy
	References

