

This item is	the a	archived	peer-reviewed	author-	version	of:

Influence of sensory re-training on cortical reorganization in peripheral neuropathy : a systematic review

Reference:

Canlı Kübra, Van Oijen Joris, van Oosterwijck Jessica, Meeus Mira, Van Oosterwijck Sophie, De Meulemeester Kayleigh, Canli Kuebra.- Influence of sensory re-training on cortical reorganization in peripheral neuropathy: a systematic review

PM&R: the journal of injury, function, and rehabilitation / American Academy of Physical Medicine and Rehabilitation - ISSN 1934-1563 - (2023), p. 1-20 Full text (Publisher's DOI): https://doi.org/10.1002/PMRJ.13126

To cite this reference: https://hdl.handle.net/10067/2043860151162165141

Canlı Kübra (Orcid ID: 0000-0002-9929-842X)

VanOosterwijck Jessica (Orcid ID: 0000-0002-8946-4383)

Meeus Mira (Orcid ID: 0000-0002-2022-5114)

De Meulemeester Kayleigh E. (Orcid ID: 0000-0003-0877-5022)

Influence of Sensory Re-training on Cortical Reorganization in Peripheral Neuropathy: A Systematic Review

Running Title: Cortical Reorganization After Sensory Re-training

Kübra Canlı MSc¹, Joris Van Oijen MSc², Jessica Van Oosterwijck PhD^{2,3}, Mira Meeus PhD^{2,3,4}, Sophie Van Oosterwijck MSc^{2,3,5}, Kayleigh De Meulemeester PhD^{2,3}

¹Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Türkiye.

² Department of Rehabilitation Sciences, Spine, Pain and Head Research Unit Ghent, Ghent University, Belgium.

³Pain in Motion international research group, www.paininmotion.be, Belgium.

⁴Research Group MOVANT, Department of Rehabilitation Sciences and Physiotherapy (REVAKI), University of Antwerp, Antwerpen, Belgium.

⁵Research Foundation - Flanders (FWO), Brussels, Belgium.

Corresponding Author: Kübra Canlı, Department of Physiotherapy and Rehabilitation,

Hacettepe University, Ankara, Türkiye, 0498 07 23 24, kbrac91@gmail.com

Funding Source: There was no funding provided for this review from any source.

Conflict of Interest: The authors have no relevant financial or non-financial conflict of interest.

Financial Disclosure: The other authors have nothing to disclose.

PROSPERO Registration Number: CRD42022296602

Word count:

ABSTRACT

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/pmrj.13126

This study systematically reviewed the literature about sensory re-training effect in comparison other rehabilitative techniques on cortical reorganization in patients with peripheral neuropathic pain. After performing an electronic search, risk of bias was assessed using the revised Cochrane Risk of Bias Tool for randomized controlled trials and the Risk of Bias in Non-Randomized Studies-of Interventions for non-randomized studies of intervention. The strength of conclusion was determined using the evidence-based guideline development approach. Limited evidence indicates a higher increase in cortical inhibition and a higher reduction in cortical activation during a motor task of the affected hemisphere after graded motor imagery compared to wait-list. Higher reductions in map volume (total excitability of the cortical representation) of the affected hemisphere after peripheral electrical stimulation (PES) were observed when compared to transcranial direct current stimulation(tDCS) or to sham treatment with limited evidence. No other differences in cortical excitability and representation of the affected and non-affected hemisphere were observed when comparing mirror therapy with sham therapy or tDCS, PES with sham therapy or tDCS, and graded motor imagery with wait-list. Graded motor imagery and PES result in higher cortical excitability reductions of the affected hemisphere compared to wait-list, tDCS and sham treatment, respectively.

1934.1563, ja, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/pnrj.13126 by Universiteit Antwerpen, Wiley Online Library on [13/03/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/rerms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons. License

Keywords: mirror movement therapy, transcranial magnetic stimulation, placebos, neuralgia

List of abbreviations:

RoB 2: Revised Cochrane Risk of Bias Tool

ROBINS-I: Risk of Bias in Non-Randomized Studies - of Interventions

EBRO: Evidence-Based Guideline Development Approach

PES: Peripheral Electrical Stimulation

tDCS: Transcranial Direct Current Stimulation

PNP: Peripheral Neuropathic Pain

CR: Cortical Reorganization

CBO:Dutch Institute for Health Care Improvement

PROSPERO: International Prospective Register of Systematic Reviews

PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines

Accepted Article

INTRODUCTION

The somatosensory system comprises components of both the peripheral and central nervous system¹. It allows for the perception of somatosensory input including touch, pressure, temperature, nociception, vibration, and proprioception (movement and position perception of the body part). Additionally, it provides sensory feedback to the motor system for the coordination of motor function¹. A lesion or disease of the somatosensory system at the level of the peripheral nervous system can lead to peripheral neuropathic pain (PNP)², ³. Pathologies such as radiculopathies, amputation, nerve injuries and diabetes can cause PNP². The prevalence of PNP ranges from 1% to 5% in the general population^{4, 5}. Peripheral neuropathic pain has an enormous socioeconomic impact because it is often accompanied by anxiety, depression, sleep disorders, work loss, reduced quality of life and productivity⁶. The exact cost of PNP worldwide is unknown, but the total annual direct cost of the PNP seen after radiculopathy is £268 million in the UK alone, stressing the importance of the problem^{7, 8}

19341653, ja, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/pmrj.13126 by Universiteit Antwerpen, Wiley Online Library on [1/0/3/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/rerms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licensen

Patients with PNP suffer from sensory abnormalities that can be characterized by the coexistence of gain (pain) and/or loss (sensory deficits in the painful area) of somatosensory function in the area corresponding to the innervation territory of the damaged peripheral nerve, plexus, or nerve root^{9, 10}. The gain of somatosensory function can be spontaneously present and/or induced by specific stimuli such as mechanical and/or thermal stimulation^{9, 10}. For example, painful responses to non-painful stimuli (allodynia) and increased responses to the normally painful stimuli (hyperalgesia) can occur^{9, 10}. In contrast to gaining somatosensory function, sensory loss indicates a deficiency in the perception of mechanical, vibratory, noxious and thermal stimuli^{9, 10}.

19.

As a consequence of sensory gain and/or loss, the somatosensory system including the spinal cord, brainstem, thalamus, and particularly in cortical areas undergo robust changes 11. Furthermore, these alterations are mainly monitored in the somatosensory and motor cortexand can be of functional (blood oxygenation, spatial shift, activation) or structural (cortical thickness, dendritic growth, axonal sprouting) nature^{11, 12}. This phenomenon is termed cortical reorganization (CR), and immediately occurs following peripheral injuries that selectively eliminate afferent stimulation of the nervous system¹¹. Cortical reorganization comprises rapid decreases of intracortical inhibition, then expansion of the sensory area of the affected limb and reception of feed-forward inputs from non-lesioned peripheral areas with adjacent cortical representations in the early stage^{11, 13}. Over time, the sensory area of the affected limb shrinks and inhibition at the cortical area dissipates 11, 13. However, CR and the related processes can be adaptive or maladaptive in nature 14. Adaptive CR provides a basisforrecoverybyoptimizingtheuse centralresourcesforsensoryprocessing of of remnantsensoryreceptorsor motor function¹³. Contrary to that, maladaptive CR contributes to residual sensory abnormalities such as neuropathic pain and phantom sensation¹⁴. Maladaptive CR results in enhanced hypersensitivity of the pain processing neural network within the somatosensory system¹⁴. Maladaptive CR alters the shape and size of the limb representation in the somatosensory system and contributes to pain by producing a sensorimotor conflict resulting in incongruent information between the sensory system and the motor output^{15, 16}. Moreover, positive associations between CR, specifically within the primary somatosensory cortex, and sensory abnormalities have been shown in patients with PNP such as complex regional pain syndrome, phantom pain, and carpal tunnel syndrome 17-

Due to the association between maladaptive cortical reorganization and pain severity, reversal of maladaptive cortical reorganization has been assumed to be a key goal in the treatment of PNP. Based on the suggestion that sensory abnormalities result in maladaptive CR, the use of sensory re-training that intends to reduce sensory abnormalities has been proposed to reverse maladaptive CR in treatment of PNP^{20, 21}. Sensory re-training aims to optimize the sensory potential of the remnant tissue by restoring normal cortical processing, particularly in the primary somatosensory cortex which involves sensory processing and can drive motor output in coordination with or independent of the primary motor cortex²⁰⁻²². This is achieved through the application of repetitive sensory stimuli. Sensory re-training can be classified as either passive or active. Passive sensory re-training entails that the participant does not actively focus on the external applied sensory stimuli (e.g., peripheral electrical stimulation, vibration)²³. Active sensory re-training (e.g., graded motor imagery, two-point discrimination, tactile acuity) is focused on engaging the participant in the process of their CR through attention to the stimuli, anticipation of the feature (e.g., type, shape) of the sensory stimuli, and implementation of the feedback about it²⁴⁻²⁷.

19341653, ja, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/pmrj.13126 by Universiteit Antwerpen, Wiley Online Library on [1/0/3/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/rerms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licensen

Despite seemingly promising outcomes of sensory re-training on maladaptive CR, its effect is not clearly documented in patients with painful PNP in the literature until now. Clearly identifying the sensory re-training influence on maladaptive CR is needed to optimize the treatment effects and cost-effectiveness of rehabilitation programs. Therefore, this systematic review summarized the current evidence in the literature regarding the effects of sensory retraining on maladaptive CR compared to other rehabilitative techniques in patients suffering from PNP.

METHODS

Protocol Registration

The systematic review protocol was prospectively registered within the International Prospective Register of Systematic Reviews (PROSPERO, registration number XXXXX) on date January 5th 2022 and reported consistently with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines ²⁸.

Eligibility Criteria

Eligibility criteria were derived from the "PICOS" question, referring to patient (P = patients with possible/probable/definite PNP), intervention (I = sensory re-training as a standalone treatment), comparison (C = other treatment methods than sensory re-training used in rehabilitation), outcome (O = cortical reorganization) and study design (S = (non-)randomized controlled trials). The clinical diagnosis of neuropathic painwas made based on NP criteria²⁹. NP²⁹: Possible therevised diagnostic Accordingtotherevised PNP wasdeterminediffhepatient's history, paindistributionarea, andvalidatedscreeningtoolssuggesttheexistence PNP. Probable of PNPthe wasdeterminedifsensoryabnormalities in thepainfulareahavethesameneuroanatomically plausible distribution. Definite PNP determinediffheobjectivediagnostic test confirmsthelesionordisease of theperipheralsomatosensorynervoussystem (such as neurophysiologicaltests).

1934.1563, ja, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/pnrj.13126 by Universitei Antwerpen, Wiley Online Library on [13/03/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/rerms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons. License

Search Strategy

The studies were identified through a search of three medical databases including PubMed, Web of Science, and Embase using a pre-established set of search terms on the 26th of June 2023. The search strategy was derived from the PICOS elements (Patient, Intervention, and

Outcome) by combining free-text key words and Medical Subject Heading (MeSH) terms with Boolean operators (AND/OR/NOT), and modified based on indexing the systems of each database (Appendix 1). The comparison element was not included in the search strategy to avoid missing any relevant article. No filters were used. The search strategy for each database can be found in Appendix 1.

The detailed inclusion and exclusion criteria which were designed based on the PICOS elements and used in this study are shown in Table 1.

StudySelection

After searching each database, duplicates were removed with the help of Endnote X930 and the remaining references imported into Rayyan³¹. All of the studies were independently screened in a blinded way by the first two authors (KC and JVO) to identify potentially relevant articles based on title and abstract during the first screening phase. Afterwards, fulltext articles of all potentially relevant studies were evaluated for eligibility by the same two independent authors during the second screening phase. Conflicts were resolved during a consensus meeting or if necessary, a third author (KDM) was consulted of which the opinion was decisive. Articles that had no available full text were excluded. Although initially only randomize dcontrolle dtrials aimed include d were this review, veryfewarticles remained after the first study selection process, and, therefore, the study allowfortheinclusion selection process repeated to of nonwas randomized controlled trials.

19341653, ja, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/pmrj.13126 by Universiteit Antwerpen, Wiley Online Library on [1/0/3/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/rerms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licensen

Assessment of Risk of Bias

The risk of bias was independently assessed by the same two authors (KC and JVO), who were blinded to each other's evaluation, using the revised Cochrane Risk of Bias Tool (RoB 2)³² for randomized controlled trials and the risk of bias in non-randomized studies – of interventions (ROBINS-I)³³ for non-randomized intervention studies. TheRoB 2 consists of fivedomainswhichevaluatetherandomizationprocess, intendedinterventions, missingoutcome data, measurement of theoutcome, andreportedresults. Each domain can be classified as "low risk of bias", "someconcerns" or "high risk of bias". Ifalldomains of thetoolwererated as 'low risk of bias', wejudged an overall 'low risk bias'. Ifoneormoredomainswererated as 'someconcerns' but were not rated as 'high risk of bias' in any domain, wejudged an overall 'someconcernsfor risk of bias'. Ifoneormoredomainswererated 'high risk of bias', wejudged an overall 'high risk of bias', wejudged an overall 'high risk of bias'.

The ROBINS-I consists of seven domains: biasduetoconfounding, bias in theselection of participants into the study, bias in classification of interventions for alloutcomes, biasdueto deviations from intended interventions for alloutcomes, bias in measurement of outcomes, and bias in selection of the reported results.

19341653, ja, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/pmrj.13126 by Universiteit Antwerpen, Wiley Online Library on [1/0/3/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/rerms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licensen

Synthesis of results

Thelevel of evidenceandstrength of conclusionweregraded in accordancewiththeevidence-basedguidelinedevelopment (EBRO)

methoddevelopedbytheDutchInstituteforHealthCareImprovement (CBO)³⁴.

Theselectedstudieswereratedbased on thefollowingcriteria: A2, a double-blindedcontrolled trial withsoundmethodologyor B, a comparativecontrolledtrial not satisfyingtheconditions of A2. Finally, theselevels were used to determine the strength of conclusion. The detailed EBRO criteria can be found in Table 2.

Data Extraction

Data were extracted by one author (KC) and independently confirmed by the second and the last authors (JVO and KDM). The extracted data can be found in Table 3 and consisted of the following items: author and year of publication, study design, sample characteristics of the experimental/control group population (pathology, sample size, sex, age, symptom duration), pain assessment, follow-up, results.

RESULTS

The initial search yielded a total of 4432 articles. After duplicates were removed, 4025 articles remained and were screened based on title and abstract. Eliminating the irrelevant studies resulted in the inclusion of 34 articles for further full-text assessment. Of these, four met the eligibility criteria and were included in the qualitative analysis. Reasons for exclusion were as follows: wrong population (n = 4), wrong study outcome (n = 12), wrong study design (n = 9), wrong exposure (n = 15), and/or no full text available (n = 5). A flowchart of the study selection is shown in Figure 1.

934.153, ja, Downloaded from https://onlinelibrary.witey.com/do/10.1002/pmrj.13126 by Universiteit Antwerpen, Wiley Online Library on [13/03/2024]. See the Terms and Conditions (https://onlinelibrary.witey.com/rerms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licenses

Study Characteristics

Of the four included studies, two studies were registered with the same clinical trial number^{24,} ²⁵. Two studies were performed in a rehabilitation hospital^{24, 25}, the other studies did not report the study setting^{26, 27}. Three studies²⁴⁻²⁶ were randomized clinical trials, and one study was a non-randomized clinical trial ²⁷.

All of the included studies assessed cortical excitability and cortical representation as outcome measure of CR²⁴⁻²⁷. Cortical excitability was evaluated using intracortical inhibition and facilitation in three studies²⁴⁻²⁶, and cortical activation in one study²⁶. In addition to that, two studies evaluated map volume, a measure of the total excitability of the cortical representation^{24, 27}. Cortical representation was evaluated using the number of discrete map peaks in one study²⁷, center of gravity in two studies^{24, 27}, and thumb and littlefinger representation distance in one study ²⁶.

Participants Characteristics

The sample sizes ranged from 16^{27} to 98^{25} participants with a total of 247 participants. Of these, 94 (38.05%) were female and 153 (61.95%) were male. The mean age of the participants ranged between 30 ± 2.0 years²⁷ and 54.71 ± 14.13 years²⁶. All participants had chronic pain ranging between 3 months and 4.2 ± 0.7 years²⁴⁻²⁷. Although one study did not report pain duration, the time after disease onset was reported to be 58.24 ± 43.88 months (range: 4-172 months) which can be considered as chronic²⁷.

19341653, ja, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/pmrj.13126 by Universiteit Antwerpen, Wiley Online Library on [1/0/3/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/rerms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licensen

One study reported dropouts that were included for all analyses with a total of 14 participants²⁴. One study reported dropouts that had to be excluded from all analyses with 2 participants²⁷. Two studies reported missing data that had to be excluded from all analyses with a total of 6 participants^{26, 27}. One study reported missing data that had to be excluded for analyses of the intracortical inhibition (5 participants) and analysis of the intracortical facilitation (6 participants)²⁵.

Intervention characteristics

Across the studies experimental interventions included mirror therapy in two studies^{24, 25}, peripheral electrical stimulation in one study²⁷, and graded motor imagery in one study²⁶. Control interventions included anodal transcranial direct current stimulation in three studies^{24, 25, 27}, sham therapy in three studies^{24, 25, 27} and a wait-list control group who received no control intervention was included in one study²⁶. Considering sham therapy, all three studies used a combination of the two different types of sham therapy^{24, 25, 27}. This included sham tDCSover the affected hemisphere with 30-second stimulation in three studies^{24, 25, 27}, which was substituted by imagining a mirrored reflection using a covered mirror in two studies^{24, 25} or sham PES over the painful area with no stimulus intensity in one study ²⁷.

Different treatment frequencies were applied in the studies, ranging from only one session²⁷ to daily sessions for six weeks²⁶. The session duration varied from 40 minutes^{24, 25} to at least 10 minutes every waking hour²⁶. Two studies applied 10 home exercise sessions over a two-week period after treatment^{24, 25}.

19341653, ja, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/pmrj.13126 by Universiteit Antwerpen, Wiley Online Library on [1/0/3/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/rerms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licensen

Outcome characteristics

The cortical reorganization was evaluated using transcranial magnetic stimulation (TMS) in four studies²⁴⁻²⁷ and functional magneticresonance imaging (fMRI) in one study²⁶. The excitability and organization of corticospinal inputs to the studied muscles at the cortex were examined using TMS. The representation the first dorsal interosseous muscle from the affected and unaffected side at the cortex was mapped in three studies²⁴⁻²⁶ and the representation at the cortex of the paraspinal muscles contralateral to the side of the worst pain was mapped in one study²⁷. fMRI scanning was performed during a hand grip motor task and somatosensory stimulation on the distal phalanx of the first and fifth fingers on both hands in one study²⁶.

The total evaluation time of the cortical reorganization was only reported in one study (around 20 minutes)²⁶. The duration of follow-up of cortical reorganization varied among the studies including short- (immediately before and after application of the intervention)²⁷ or long-term (baseline, and 4, 6 or 12 weeks from the baseline)²⁴⁻²⁶ follow-up assessments.

Risk of Bias and Levels of Evidence

The overall risk of bias of the randomized controlled trials was low in one study²⁵, some concerns were present in one study²⁴, and risk of bias was high in one study²⁶. The latter being due to the selection of the reported results, since differences between experimental mirror therapy and sham therapy were reported but were not reported between mirror therapy and tDCS²⁴. The high risk of bias was due to results not being displayed separately for each follow-up measurement²⁶. The overall risk of bias of the non-randomized controlled trial was moderate in one study ²⁷ since awareness of the outcome assessors was not known, proportions for missing participants differ slightly across experimental groups, and the analysis is unlikely to have removed the risk of bias arising from the missing data. The risk of bias assessment of the randomized controlled trials and non-randomized controlled trials is reported in Tables 4 and 5, respectively.

9341553, ja, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/pmrj.13126 by Universiteit Antwerpen, Wiley Online Library on [13/03/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/rerms-ad-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licensen

Levels of evidence for three studies which use randomization of the study subject was assigned an A2 score²⁴⁻²⁶, and one study without randomization of the study subjects was rated a B score²⁷. The methodological quality of per outcome of all included articles are presented in Table 6.

Results of Cortical Reorganization from individual studies

Cortical Excitability

Intracortical Inhibition (Short IntervalIntracortical Inhibition) and Facilitation

Three studies reported the long-term effects of sensory re-training on *intracortical inhibition* and facilitation²⁴⁻²⁶. Therefore two studies compared mirror therapy with sham therapy (sham mirror therapy with sham tDCS), or tDCS, and one study compared graded motor imagery with wait-list yielded limited results.

In regards of <u>long-term</u>effects both Gunduz et al.²⁴ and Teixeria et al.²⁵ found no significant differences between mirror therapy and sham therapy, or tDCS on *intracortical inhibition and facilitation* at the **primary motor cortex** of the *affected hemisphere* (contralateral to the affected side) after four weeks of intervention. The last study performed by Strauss et al.²⁶ found a significantly higher increase of *intracortical inhibition* at the **primary somatosensory cortex** of the *affected hemisphere* after graded motor imagery compared to wait-list after 12 weeks of intervention, but no significant differences regarding *intracortical facilitation*.

No significant differences were found for the **primary motor cortex** of the *non-affected hemisphere* (ipsilateral to the affected side)^{24, 25}.

9341563, ja, Downloaded from https://onlinelibtary.wiley.com/doi/10.1002/pmrj.13126 by Universiteit Antwerpen, Wiley Online Library on [13/03/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/rerms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licenses

Cortical Activation

One study documented the long-term effect of sensory re-training on *cortical activation*²⁶. In regards of <u>long-term</u>effects Strauss et al.²⁶ reported a significantly higher decrease of *cortical activation* at the **primary somatosensory cortex** of the *affected hemisphere* during a motor task after graded motor imagery compared to wait-list after 12 weeks of intervention, but no significant differences were found during a somatosensory task.

Map Volume

Two studies reported the effect of sensory re-training on $map\ volume^{24,\ 27}$. One of them investigated short-term effects²⁷, while the other examined long-term effects²⁴.

In regards of <u>short-term</u>effects Schabrun et al.²⁷ found a significantly higher decrease in *map* volume at the **primary motor cortex** of the *affected hemisphere* after PES compared to sham therapy and tDCS immediately after intervention.

In regards of <u>long-term</u>effectsGunduz et al.²⁴ found no significant differences between mirror therapy and sham therapy related to changes in *map volume* at the **primary motor cortex** of the *affected and non-affected* hemisphere after four weeks of intervention.

Cortical Representation

Discrete Map Peaks

One study reported the short-term effect of sensory re-training on discrete map peaks²⁷.

In regards of short-termeffects Schabrun et al.²⁷ found no significantly higher increase of the proportion of the *individual maps containing two peaks* in the **primary motor cortex** of the *affected hemisphere* after PES compared to tDCS, and sham therapy (sham PES with sham tDCS) immediately after intervention. No significant differences between PES with tDCS and sham therapy concerning changes in the *number of the single map peaks* at the **primary motor cortex** of the *affected hemisphere* were found immediately after intervention²⁷.

19341653, ja, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/pmrj.13126 by Universiteit Antwerpen, Wiley Online Library on [1/0/3/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/rerms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licensen

Center of Gravity

Two studies reported the effect of sensory re-training on *center of gravity*^{24, 27}. One study documented short-term effects²⁷, while the other study reported long-term effects²⁴.

In regards of short-termeffects Schabrun et al.²⁷ found no significant differences between PES with tDCS and sham therapy (sham PES with sham tDCS) on the *center of gravity* at the **primary motor cortex** of the *affected hemisphere* immediately after intervention.

In regards of <u>long-term</u>effects Gunduz et al.²⁴ found no significant differences between *center* of gravity (x) and (y) at the **primary motor cortex** of the affected hemisphere after mirror therapy compared to sham therapy (sham mirror therapy with sham tDCS) after four weeks of intervention, but they did not find any significant differences in the *non-affected hemisphere*²⁴.

Cortical Map Distances

One study reported long-term effect of sensory re-training on hand representation²⁶.

In regards of <u>long-term</u>effects Strauss et al.²⁶ reported no significant differences between graded motor imagery and wait-list concerning the first-fifth finger of the *hand* representation distance at the **primary somatosensory cortex** of the affected hemisphere after 12 weeks of intervention.

19341653, ja, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/pmrj.13126 by Universiteit Antwerpen, Wiley Online Library on [1/0/3/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/rerms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licensen

Adverse events

Only one study reported adverse events (sleepiness, tingling, trouble to concentrate, headache, scalp pain, skin redness, acute mood change) and found these to be similarly distributed among the intervention and control groups, receiving mirror therapy, covered mirror therapy, and tDCS respectively ²⁴. Three studies did not report the presence/absence of adverse effects²⁵⁻²⁷.

DISCUSSION

To the best of our knowledge, this is the first systematic review aimed to investigate sensory re-training effects on CR compared to other rehabilitative techniques. This review indicates no differences between mirror therapy and sham therapy, and tDCS for the changes in

cortical excitability in the affected hemispherewithlimitedevidence. Higher decreases of cortical excitability in the affected hemisphere are revealed after PES compared to tDCS, and sham therapy in the short term, and after graded motor imagery compared to wait-list in the long termwithlimitedevidence. Regarding changes in the cortical representation in the affected hemisphere, there are no differences between PES and tDCS, PES and sham therapy, mirror therapy sham therapy, and graded motor imagery and listwithlimitedevidence. No differences exist in any parameters in the non-affected hemisphere.

Mirror therapy

This review showed limited evidence for no differences between mirror therapy and sham therapy in *intracortical inhibition and facilitation, map volume and center of gravity* of the **primary motor cortex** of the *affected hemisphere* in the long term. No differences were revealed between mirror therapy and tDCS in *intracortical inhibition and facilitation* of the **primary motor cortex** of the *affected hemisphere* in the long term.

19341653, ja, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/pmrj.13126 by Universiteit Antwerpen, Wiley Online Library on [1/0/3/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/rerms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licensen

Mirrortherapyinvolvestheexecution of movements of theunaffected limbor bothunaffected/affected limb while the patient has towatchtheunaffectedlimbreflection mirror³⁵. Bilateralmovement has beenshowntoinducemoreactivation of theprimary motor cortexthanunilateralmovementduringmirror therapy³⁶. However, bilateral movements may be impossible during mirror therapy in some PNP patients such as amputeesbut not complex regional pain syndrome. Therefore, theresults of theincludedstudies, performedbyGunduz et al.24 and Teixeria et al.25 in patients with lower limb amputees cannot be generalized to all PNP patients^{24, 25}. One of themechanismsunderlyingthemirrortherapyeffect on thecortex is themirror neuron system that modulates primary motor cortex activity²⁰. It has been well known that usage of regular lower limb prosthesis may have increased the mirror neuron system activityduringphantomankle movement³⁷. Regularusage of theprosthesisprovidesnearly physiologicalamount of a the cutaneous and proprioceptive feedback from the periphery to the contralaterals omatosens or you $limb^{38}$. rtex in thesameregion as thephantom Additionally, prosthesesmodifysomatosensoryand motor **corte** xrepresentation of theaffected limband thus helps in maintaining the cortical representation. Particularly, upper extremity amputees who frequently use myoelectric prosthesis demonstratedless CR than upper extremity amputees who used either a cosmeticornoprosthesisorwore myoelectric prostheses for minimal time³⁹. Hence, differences in the prosthesis use duration and the type of prosthesis between the groups may haveinfluenced the results. Gunduz et al.²⁴ and Teixeria et al²⁵did not reporttheprosthesisutilizationdurationortype.

tDCS comprised of non-invasive direct stimulation of the brain by delivering weak direct currents over the scalp, and can be applied as anodal or cathodal tDCS⁵¹. In contrast to cathodal tDCS, which is expected to decrease *cortical excitability*, anodal tDCS is expected to increase *cortical excitability*^{51, 52}. Teixeria et al.²⁵ used direct application of currents to the brain via anodal tDCS over the **primary motor cortex** to the *affected hemisphere*^{41, 48}. Teixeria et al.²⁵ did not compare changes between *intracortical inhibition and facilitation*, preventing us from deciding if *cortical excitability* decreases or increases. The result of the study performed by Teixeria et al.²⁵ may be influenced by age. It has been known that changes in *intracortical inhibition and facilitation* are lower when subjects are older. However, Teixeria et al.²⁵ did not provide age distribution separately for the groups.

In the literature, several studies have revealed shifted activation balance within the primary motor cortex towards the affected hemisphere, a higher activation in multiple brain regions in the affected and/or non-affected hemisphere, and stronger activation in the supplementary area after compared control treatments⁴⁰⁻⁴². However, motor mirror therapy to thesestudieswereperformed centralneuropathicpainpatientsandtheresults in be generalized to the patients with **PNP** since centralandperipheralneuropathicpainhavedifferent mechanisms. CR Substantialandperhapsirreversibleneuronalchangeshaveoccurred in centralneuropathicpain in responsetodirectiniury of thecentralnervoussystem, 44 whereasanatomicallesiontothecentralnervoussystemdoes not occur in PNP^{43} Thesedifferencesmake thisreviewwiththe also difficult to directly compare the treatments it in literature⁴³.

Graded Motor Imagery

Limited evidence points out that graded motor imagery leads to significantly higher increase in *intracortical inhibition and decrease* in *cortical activation* during motor tasks at the **primary somatosensory cortex** of the *affected hemisphere*, compared to wait-list, in the long-term. The result of the only included study, performed by Strauss et al.²⁶, in this review may have been influenced by pain medication usage²⁶. It has been known that pain medication usage may affect CR due to the correlation between CR and pain severity in patients with PNP. However, Strauss et al.²⁶ did not report anything about the pain medication utilization²⁶.

19341653, ja, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/pmrj.13126 by Universiteit Antwerpen, Wiley Online Library on [1/0/3/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/rerms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licensen

PES

This review indicates a higher decrease in *map volume* but no significant differences concerning *cortical representation* at the **primary motor cortex** of the *affected hemisphere*

The

after PES, compared to tDCS and sham treatment in the short term with limited evidence.

only included study performed by Schabrunn et al.²⁷ used TMS to assess map volume for total cortical excitability, and center of gravity for cortical representation²⁷. TMS has been shown to be unreliable for map volume, but highly reliable for center of gravity over a short time interval (0.5-7days interval)⁴⁵. Additionally, stimulus parameters and used electrode types are significant factors inducing cortical excitability with PES^{27, 46, 47}. It has been known that stimulus intensity at the level of sensory stimulation depresses corticomotor excitability of the stimulated muscle, whereas stimulus intensity above the motor threshold increases corticospinal excitability^{46, 47}. In their study Schabrunn et al.²⁷ used a strong sensory tingling stimulus intensity with surface electromyography to the most painful side of the paraspinal muscles on the low back for one session to identify cortical maps²⁷. The results of Schrabrunn et al.²⁷ were consistent with those of Elgueta-Cancino et al.⁴⁸ who reported that one session of PES to the back muscle at the level of functional muscle contraction does not modulate excitability of corticospinal inputs to the stimulated muscle. This result may stem from the treatment frequency. Besides, surface electromyography has been shown not always to completely reflect the targeted muscle during rest and may also partly reflect changes in corticospinal excitability of non-target muscles⁴⁹. Gallina et al.⁴⁹ suggested that high density surface electromyography and recording during contraction may be more reliable to measure corticospinal excitability.

19341653, ja, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/pmrj.13126 by Universiteit Antwerpen, Wiley Online Library on [1/0/3/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/rerms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licensen

Strengths, limitations, and recommendations

This review was pre-registered in the PROSPERO which is a publicly available international database. The pre-registration provides an opportunity to specify this review before data collection and refrain from unplanned duplication and publication bias. The use of the

PRISMA guidelines is helpful to ensure the quality of the reporting review through transparent, complete, and accurate summarization of published literature. Inclusion of the blinded reviewers ensures that all relevant articles are included and improves the accuracy of the review with precision of the study selection, strength of the evidence and avoidance of bias.

This systematic review also has some limitations. Only English-published studies were included, and nonpublished randomized controlled trials were not considered in this review. Only a small number of studies were conducted on this topic and provided the current evidence in this review. The patients included in the studies for this review had possible or probable neuropathic pain, and none of them had definite neuropathic pain since objective diagnostic test were not used to confirm the lesion or disease of the peripheralsomatosensory nervous system. Therefore, the results of this review cannot be generalized to all PNP patients. There was a large heterogeneity among the included studies, including follow-up time points and the parameters of tDCS (i.e. intensity and duration) and TMS (i.e. intensity, frequency, and the number of pulses). The risk of bias within the studies was also variable. Therefore, more low risk of bias studies are needed with representative samples of the participants, with an even longer follow-up period, from the data presented in this study. Diagnosis of the participants varying from amputees to complex regional pain syndrome and chronic low back pain in this review since neuropathic pain is not a single disease, but a syndrome caused by a range of different diseases etiologies. However, similar sensory symptoms/signs profiles are present in different disease etiologies and the consequences of the injury to the peripheral somatosensory system include a series of neurobiological events resulting in maladaptive CR, which is a process assumed to be involved in PNP. However, because of addressing patients based on sensory symptom/sign cluster rather than etiology

has been proposed to improve response to the treatment⁵⁰, this review gains importance by highlighting the most recent information on the management of maladaptive CR in PNP, focusing on the sensory re-training.

Futurestudiesshouldalsotakeintoaccountprosthesisusageduration, painmedicationutilization, stimulusintensityandelectrodetypeswith TMS on CR. Mirrortherapywith unilateral or bilateral movements should be separately compared with control treatments in various PNP conditions. It mayalso be worthwhiletoexamine the outcomes of the CR in more detail, including neuralnetworks/connectivitybetweenareasorstructuralchanges (e.g., volume/density of thebrainregions). Investigation of the durability of the treatment gains would be helpful in future studies since CR continues to change over time. It would also be interesting to study the effects of different types of sensory retraining (proprioception, tactile acuity training, etc.) on CR in other PNP conditions (peripheral nerve injury, diabetes, etc). This because, although patients with PNP have abundant overlapping somatosensory signs, possible different underlying pathophysiological mechanisms may exist in these conditions. Future studies should also investigate sensory re-training influence on pain intensity/severity, balance, gait, fall risk, and quality of life in PNP since there is a well-known positive association between maladaptive cortical reorganization and in these variables PNP. Reduction in painintensity/severity, improvement in balance control duringgait, andreduced fall risk are the main factors that have the potential to greatly improve quality of life across a variety of diagnoses that develop PNP, and, therefore, needto be takenintoaccount in thefuturestudies.

19341653, ja, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/pmrj.13126 by Universiteit Antwerpen, Wiley Online Library on [1/0/3/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/rerms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licensen

CONCLUSION

Thisreviewindicatesthatgraded motor imagery and PES leadsto higher decrease of cortical excitability of the affected hemisphere compared wait-list, tDCS to and sham respectively. retraining treatmentwithlimitedevidence, Sensory and other rehabilitative techniques have similar cortical re-organizational patterns in the non-affected hemisphere. Further studies are warranted to confirm these results due to the limited number of the present studies.

1934/153, ja, Downloaded from https://onlinelibrary.wiely.com/doi/10.1002/pmrj.13126 by Universiteit Antwerpen, Wiley Online Library on [13/03/2024]. See the Terms and Conditions (https://onlinelibrary.wiely.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licenseque and Conditions (https://onlinelibrary.wiely.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licenseque and Conditions (https://onlinelibrary.wiely.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licenseque and Conditions (https://onlinelibrary.wiely.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licenseque and Conditions (https://onlinelibrary.wiely.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licenseque and Conditions (https://onlinelibrary.wiely.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licenseque and Conditions (https://onlinelibrary.wiely.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licenseque and Conditions (https://onlinelibrary.wiely.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licenseque and Conditions (https://onlinelibrary.wiely.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons (https://onlinelibrary.wiely.com/terms-and-conditions) on the articles are governed by the applicable Creative Commons (https://onlinelibrary.wiely.com/terms-and-conditions) on the articles are governed by the applicable Creative Commons (https:/

REFERENCES

- 1. Arezzo JC, Schaumburg HH and Spencer PS. Structure and function of the somatosensory system: a neurotoxicological perspective. *Environ Health Perspect* 1982; 44: 23-30. 1982/04/01. DOI: 10.1289/ehp.824423.
- 2. Costigan M, Scholz J and Woolf CJ. Neuropathic pain: a maladaptive response of the nervous system to damage. *Annu Rev Neurosci* 2009; 32: 1-32. 2009/04/30. DOI: 10.1146/annurev.neuro.051508.135531.
- 3. Jensen TS, Baron R, Haanpää M, et al. A new definition of neuropathic pain. *Pain* 2011; 152: 2204-2205. 2011/07/19. DOI: 10.1016/j.pain.2011.06.017.
- 4. Bouhassira D, Lantéri-Minet M, Attal N, et al. Prevalence of chronic pain with neuropathic characteristics in the general population. *Pain* 2008; 136: 380-387. 2007/09/25. DOI: 10.1016/j.pain.2007.08.013.
- 5. Dieleman JP, Kerklaan J, Huygen F, et al. Incidence rates and treatment of neuropathic pain conditions in the general population. *Pain* 2008; 137: 681-688. 2008/04/29. DOI: 10.1016/j.pain.2008.03.002.

- 6. O'Connor AB. Neuropathic pain: quality-of-life impact, costs and cost effectiveness of therapy. *Pharmacoeconomics* 2009; 27: 95-112. 2009/03/04. DOI: 10.2165/00019053-200927020-00002.
- 7. van Tulder MW, Koes BW and Bouter LM. A cost-of-illness study of back pain in The Netherlands. *Pain* 1995; 62: 233-240. 1995/08/01. DOI: 10.1016/0304-3959(94)00272-g.
- 8. Foster NE, Konstantinou K, Lewis M, et al. The clinical and cost-effectiveness of stratified **SCOPiC** randomised controlled care for patients with sciatica: the trial protocol (ISRCTN75449581). BMCMusculoskelet Disord 2017; 18: 172. 2017/04/27. 10.1186/s12891-017-1513-5.

- 9. Kerstman E, Ahn S, Battu S, et al. Neuropathic pain. *Handb Clin Neurol* 2013; 110: 175-187. 2013/01/15. DOI: 10.1016/b978-0-444-52901-5.00015-0.
- 10. Baron R, Binder A and Wasner G. Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment. *Lancet Neurol* 2010; 9: 807-819. 2010/07/24. DOI: 10.1016/s1474-4422(10)70143-5.
- 11. Sammons RP and Keck T. Adult plasticity and cortical reorganization after peripheral lesions. *Curr Opin Neurobiol* 2015; 35: 136-141. 2015/08/28. DOI: 10.1016/j.conb.2015.08.004.
- 12. Kim W, Kim SK and Nabekura J. Functional and structural plasticity in the primary somatosensory cortex associated with chronic pain. *J Neurochem* 2017; 141: 499-506. 2017/03/10. DOI: 10.1111/jnc.14012.
- 13. Osborne NR, Anastakis DJ and Davis KD. Peripheral nerve injuries, pain, and neuroplasticity. *J Hand Ther* 2018; 31: 184-194. 2018/05/01. DOI: 10.1016/j.jht.2018.01.011.

- 14. Mohan A and Vanneste S. Adaptive and maladaptive neural compensatory consequences of sensory deprivation-From a phantom percept perspective. *Prog Neurobiol* 2017; 153: 1-17. 2017/04/15. DOI: 10.1016/j.pneurobio.2017.03.010.
- Harris AJ. Cortical origin of pathological pain. Lancet 1999; 354: 1464-1466. 1999/10/30.
 DOI: 10.1016/s0140-6736(99)05003-5.
- 16. Vartiainen N, Kirveskari E, Kallio-Laine K, et al. Cortical reorganization in primary somatosensory cortex in patients with unilateral chronic pain. *J Pain* 2009; 10: 854-859. 2009/07/30. DOI: 10.1016/j.jpain.2009.02.006.
- 17. Flor H, Elbert T, Knecht S, et al. Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. *Nature* 1995; 375: 482-484. 1995/06/08. DOI: 10.1038/375482a0.

- 18. Pleger B, Ragert P, Schwenkreis P, et al. Patterns of cortical reorganization parallel impaired tactile discrimination and pain intensity in complex regional pain syndrome. *Neuroimage* 2006; 32: 503-510. 2006/06/07. DOI: 10.1016/j.neuroimage.2006.03.045.
- 19. Tecchio F, Padua L, Aprile I, et al. Carpal tunnel syndrome modifies sensory hand cortical somatotopy: a MEG study. *Hum Brain Mapp* 2002; 17: 28-36. 2002/08/31. DOI: 10.1002/hbm.10049.
- 20. Deconinck FJ, Smorenburg AR, Benham A, et al. Reflections on mirror therapy: a systematic review of the effect of mirror visual feedback on the brain. *Neurorehabil Neural Repair* 2015; 29: 349-361. 2014/08/28. DOI: 10.1177/1545968314546134.
- 21. Flor H, Denke C, Schaefer M, et al. Effect of sensory discrimination training on cortical reorganisation and phantom limb pain. *Lancet* 2001; 357: 1763-1764. 2001/06/14. DOI: 10.1016/s0140-6736(00)04890-x.
- 22. Flor H and Birbaumer N. Phantom limb pain: cortical plasticity and novel therapeutic approaches. *Curr Opin Anaesthesiol* 2000; 13: 561-564. 2006/10/04. DOI: 10.1097/00001503-200010000-00013.

- 23. Schabrun SM and Hillier S. Evidence for the retraining of sensation after stroke: a systematic review. *Clin Rehabil* 2009; 23: 27-39. 2008/12/31. DOI: 10.1177/0269215508098897.
- 24. Gunduz ME, Pacheco-Barrios K, Bonin Pinto C, et al. Effects of Combined and Alone Transcranial Motor Cortex Stimulation and Mirror Therapy in Phantom Limb Pain: A Randomized Factorial Trial. *Neurorehabil Neural Repair* 2021; 35: 704-716. 2021/06/02. DOI: 10.1177/15459683211017509.
- 25. Teixeira PEP, Pacheco-Barrios K, Gunduz ME, et al. Understanding intracortical excitability in phantom limb pain: A multivariate analysis from a multicenter randomized clinical trial. *Neurophysiol Clin* 2021; 51: 161-173. 2021/03/03. DOI: 10.1016/j.neucli.2020.12.006.

- 26. Strauss S, Barby S, Härtner J, et al. Graded motor imagery modifies movement pain, cortical excitability and sensorimotor function in complex regional pain syndrome. *Brain Commun* 2021; 3: fcab216. 2021/10/19. DOI: 10.1093/braincomms/fcab216.
- 27. Schabrun SM, Jones E, Elgueta Cancino EL, et al. Targeting chronic recurrent low back pain from the top-down and the bottom-up: a combined transcranial direct current stimulation and peripheral electrical stimulation intervention. *Brain Stimul* 2014; 7: 451-459.
- 28. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. *PLoS Med* 2021; 18: e1003583. 2021/03/30. DOI: 10.1371/journal.pmed.1003583.
- 29. Finnerup NB, Haroutounian S, Kamerman P, et al. Neuropathic pain: an updated grading system for research and clinical practice. *Pain* 2016; 157: 1599-1606. 2016/04/27. DOI: 10.1097/j.pain.000000000000000492.

- 30. Team TE. EndNote, EndNote. X9 ed. Philadelphia, PA: Clarivate Analytics, 2013.
- 31. Ouzzani M, Hammady H, Fedorowicz Z, et al. Rayyan-a web and mobile app for systematic reviews. *Syst Rev* 2016; 5: 210. 2016/12/07. DOI: 10.1186/s13643-016-0384-4.
- 32. Collaboration C. RoB 2: A revised Cochrane risk-of-bias tool for randomized trials, (accessed December 6 2019).
- 33. Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. *Bmj* 2016; 355: i4919. 2016/10/14. DOI: 10.1136/bmj.i4919.
- 34. Meeus M GN. Health literacy: from reference to review. Leuven, Belgium: ACCO Uitgeverij, 2016.
- 35. Stevens JA and Stoykov ME. Using motor imagery in the rehabilitation of hemiparesis. *Arch Phys Med Rehabil* 2003; 84: 1090-1092. 2003/07/26. DOI: 10.1016/s0003-9993(03)00042-x.

- 36. Tai RY, Zhu JD, Cheng CH, et al. Cortical neural activity evoked by bilateral and unilateral mirror therapy after stroke. *Clin Neurophysiol* 2020; 131: 2333-2340. 2020/08/23. DOI: 10.1016/j.clinph.2020.06.030.
- 37. Seidel S, Kasprian G, Furtner J, et al. Mirror therapy in lower limb amputees--a look beyond primary motor cortex reorganization. *Rofo* 2011; 183: 1051-1057. 2011/10/01. DOI: 10.1055/s-0031-1281768.
- 38. Giummarra MJ, Gibson SJ, Georgiou-Karistianis N, et al. Mechanisms underlying embodiment, disembodiment and loss of embodiment. *Neurosci Biobehav Rev* 2008; 32: 143-160. 2007/08/21. DOI: 10.1016/j.neubiorev.2007.07.001.
- 39. Lotze M, Grodd W, Birbaumer N, et al. Does use of a myoelectric prosthesis prevent cortical reorganization and phantom limb pain? *Nat Neurosci* 1999; 2: 501-502. 1999/08/17. DOI: 10.1038/9145.

- 40. Cui W, Huang L, Tian Y, et al. Effect and mechanism of mirror therapy on lower limb rehabilitation after ischemic stroke: A fMRI study. *NeuroRehabilitation* 2022; 51: 65-77. 2022/03/22. DOI: 10.3233/nre-210307.
- 41. Michielsen ME, Selles RW, van der Geest JN, et al. Motor recovery and cortical reorganization after mirror therapy in chronic stroke patients: a phase II randomized controlled trial. *Neurorehabil Neural Repair* 2011; 25: 223-233. 2010/11/06. DOI: 10.1177/1545968310385127.
- 42. Bae SH JW KK. Effects of mirror therapy on subacute stroke patients' brain waves and upper extremity functions. *J Phys Ther Sci* 2012; 24: 1119-1122.
- 43. Watson JC and Sandroni P. Central Neuropathic Pain Syndromes. *Mayo Clin Proc* 2016; 91: 372-385. 2016/03/06. DOI: 10.1016/j.mayocp.2016.01.017.

- 44. Woolf CJ. Central sensitization: implications for the diagnosis and treatment of pain. *Pain* 2011; 152: S2-s15. 2010/10/22. DOI: 10.1016/j.pain.2010.09.030.
- 45. Hétu S, Gagné M, Reilly KT, et al. Short-term reliability of transcranial magnetic stimulation motor maps in upper limb amputees. *J Clin Neurosci* 2011; 18: 728-730. 2011/03/12. DOI: 10.1016/j.jocn.2010.09.011.
- 46. Chipchase LS, Schabrun SM and Hodges PW. Corticospinal excitability is dependent on the parameters of peripheral electric stimulation: a preliminary study. *Arch Phys Med Rehabil* 2011; 92: 1423-1430. 2011/05/31. DOI: 10.1016/j.apmr.2011.01.011.
- 47. Chipchase LS, Schabrun SM and Hodges PW. Peripheral electrical stimulation to induce cortical plasticity: a systematic review of stimulus parameters. *Clin Neurophysiol* 2011; 122: 456-463. 2010/08/27. DOI: 10.1016/j.clinph.2010.07.025.
- 48. Elgueta-Cancino E, Massé-Alarie H, Schabrun SM, et al. Electrical Stimulation of Back Muscles Does Not Prime the Corticospinal Pathway. *Neuromodulation* 2019; 22: 555-563. 2019/06/25. DOI: 10.1111/ner.12978.

- 49. Gallina A, Peters S, Neva JL, et al. Selectivity of conventional electrodes for recording motor evoked potentials: An investigation with high-density surface electromyography. *Muscle Nerve* 2017; 55: 828-834. 2016/09/21. DOI: 10.1002/mus.25412.
- 50. Freeman R, Baron R, Bouhassira D, et al. Sensory profiles of patients with neuropathic pain based on the neuropathic pain symptoms and signs. *Pain* 2014; 155: 367-376. 2014/01/30. DOI: 10.1016/j.pain.2013.10.023.

Table 1. Inclusion and exclusion criteria

Criteria	Description		
•	Inclusion	Exclusion	
Pc* ~~*	- humans	- animal studies	
<u>-</u>	- any ages between 18 and 65 years	- elderly participants older than 65 years	
	- to be conscious	- children and adolescents <18 years of age	
4	- diagnosed with a PNP	- unconscious participant	
	a. possible neuropathic pain	- healthy participant	
	■ patient's history suggests that pain	- cognitive disorders	
cepted	could be related to a neurological	- central neurological conditions (e.g. amyotrophic lateral sclerosis,	
_	lesion or disease	spinal cord disease, multiple sclerosis, stroke, Alzheimer, cortical or	
	■ the pain distribution should be	subcortical brain injury)	
0	anatomically consistent with the	- congenital amputation	
0	suspected location of the lesion or	- neoplasm	
6)	disease in the peripheral	- myelopathy	
	somatosensory nervous system	- Guillain-Barre syndrome	

	-01	
	J	
pa		
0		
7		
		7
		5
	J	
7		
		2
	1	
	4	
4		
	1	Y

(such as postamputation pain in the | - Charcot-Marie-tooth disease missing body part and/or in the residual limb)

■ the validated screening tools (such as LANSS, the neuropathic pain questionnaire, DouleurNeuropathiqueen questions, the painDETECT and ID-Pain, Groningen Questionnaire after Arm Amputation)

b. probable neuropathic pain

- abnormalities sensory the painful area same neuroanatomically plausible distribution
- c. definite neuropathic pain

theobjective d iagnostic test

- pregnancy

	confirms the lesion or disease of	
	theperipheralsomatosensorynervoussystem	
	(such as neurophysiologicaltests	
Intervention(s)	at least one of the following sensory re-	- combination of thesensorytrainingwithanyothertreatment as
	training modalities:	theeffects of sensorytrainingcannot be isolated from the effects of
	- proprioceptiontraining (vibration,	theothertreatment(s)
	jointposition sense orkinesthesia)	- massage
7	- pointtopointtraining	- brainstimulationtechniques (transcranialmagnetic stimulation, EEG)
7	- tactile/tactileacuitytraining	- strengteningexercises (theraband)
a	- tactileobjectrecognition (e.g.	
7	twopointdiscrimination) training	
	-	
	electricalstimulationdiscriminationtraining	
	- temperatured is crimination training	
cepte	- graphestesiatraining	
0	- localizationtraining	
	- motor imaginarytraining	

19341863, ja, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/pmj.13126 by Universiteit Answepen, Wiley Online Library on [13032024]. See the Terms and Conditions (https://onlinelibrary.wiley

A 3	- visualimagerytraining	
	- visuamnager yttämning	
	- auditoryimagerytraining	
rticl	- touchima gerytraining	
•	- mirrortherapy	
	- spatialorganizationtraining	
	- virtua lrea lity	
Cparison(s)	- placebo/sham treatment	
	- no-intervention/ waiting list	
70	- other treatment methods used in	
0	rehabilitation except sensory re-training:	
7	- exercise	
	- musculoskeletal manipulations	
	- acupressure	
9	- traction	
ccepte	- manual therapy	
0	- osteopathy	
	- physical therapy	

19341863, ja, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/pmj.13126 by Universiteit Answepen, Wiley Online Library on [13032024]. See the Terms and Conditions (https://onlinelibrary.wiley

)
	_	
	p	7
	ANI ANI	
0		
7		
	è	
		1
\triangleleft		
		7
		4
	$\overline{}$	2
	4	ζ.
	Q	d)
7	_	
	460	
		2_
	\overline{A}	$\overline{}$
	Q	1
	P).
	4	
	2	
	100	
4		
	-	

- physiotherapy	
- invasive therapy/techniques (drug	
injection)	
- non-invasive techniques (transcranial	
direct current stimulation, transcranial	
magnetic stimulation)	
- craniosacral therapy	
- ultrasound therapy	
- ischemic compression	
- music therapy	
- dance therapy	
- aqua therapy	
- hippotherapy	
- relaxation techniques	
- kinesiotherapy	
- psychologically based interventions	
(acceptance commitment therapy,	

-		3
	d)
7	\leftarrow	5
		5
	d	
)
	2)

0	cognitive-behavioral therapies,	
	mindfulness-based therapies)	
Outcom	cortical reorganization	no description of cortical reorganization as an outcome
Study design and report	- randomized controlled trial	- uncontrolled studies
	- non-randomized controlled trial	- non-experimental studies
	- reported only in English	- reported in other languages than English

PNP: Peripheralneuropathicpain, EEG:Electroencephalogram.

Table 2. Evidence-BasedGuideline Development (EBRO) Method

Level of evidence

Accepted Article

A1	Systematicreviewsand	meta-analysesbased	ased on		minimally	2
	independent A2 studies					
42	Randomizedcontroltrials	(RCTs):	Γs):		double-blinded;	ded;
	withsoundmethodologyandsufficientsample size	ndsufficientsam	ole size			
8	Comparativestudies,	but lackingt	lackingthequalitycriteria	iteria	Jo	A2
	(includingcohortstudiesandcase-controlstudies)	ndcase-controlst	udies)			
()	Noncomparativestudies					
Q	Expertopinion					
						I

0

Table 3: Evidence Table of Included Studies

Authorand	Study Design	Pathology; Sample Size	Intervention Duration;	Investigation	Cortical Reorganization Assessment;	Results
Year or		(n); Age (in years Mean	Frequency; Follow Up or	Technique (Modality	Investigated Hemisphere;	
Publication		\pm SD or Median \pm IQR);	Home Exercise if	and Characteristics)	Investigated Brain Region;	
and Country		Gender (F/M in %);	Available		Evaluation Time	
		Time Since Disease				
		Onset (in months); Pain				
		Intensity (Mean ± SD or				
		Median ± IQR)				
Gunduz et al	randomized,	Unilateral Traumatic	tDCS and Mirror	TMS	cortical reorganization assessment	Short Interval
(2021)	sham-	Lower Limb Amputation	Therapy Group	Single PulseTMS	- corticalexcitability	Intracortical Inhibition
USA	controlled, 2	tDCS and Mirror	Treatments	- coil model = Magstim	•shortintervalintracorticalinhibition	Percentage Changes
	×	Therapy Group	a. tDCS	- coil type = figure-of-	• intracortical facilitation	affected hemisphere
	2	Therapy Group $n = 29$	a. tDCSb. Mirror Therapy	- coil type = figure-of- eight coil	intracortical facilitationtotal excitability of the cortical	affected hemisphere no statistically significant
20				,,		1
ep	2	n = 29	b. Mirror Therapy	eight coil	- total excitability of the cortical	no statistically significant
ceb	2 factorialclinica	n = 29 48.24 + 16.28 years	b. Mirror Therapy <u>tDCS</u>	eight coil - muscle = first dorsal	- total excitability of the cortical representation	no statistically significant increase with:
ccep	2 factorialclinica	n = 29 48.24 + 16.28 years F/M = 24.14% / 75.76%	b. Mirror TherapytDCS- anodal electrode = over	eight coil - muscle = first dorsal	total excitability of the cortical representationmap volume	no statistically significant increase with: - Mirror therapy compared
ccep	2 factorialclinica	n = 29 $48.24 + 16.28 years$ $F/M = 24.14% / 75.76%$ time since disease onset	 b. Mirror Therapy tDCS - anodal electrode = over the primary motor cortex 	eight coil - muscle = first dorsal interosseous muscle	 total excitability of the cortical representation mapvolume cortical mapping 	no statistically significant increase with: - Mirror therapy compared to sham therapy

	Q	
		5
0		
4		
		3
	d	
7	-	
	1	
	2	

pain intensity (VAS) =	- cathodal electrode = over	intensity = 80% of the	investigated hemisphere	
6.18 + 1.88	the contralateral	resting motor	-affected hemisphere	non-affected hemisphere
	supraorbital area	thresholds	-non-affected hemisphere	no statistically significant
Mirror Therapy Group	- current density = 2 mA	- test stimulus intensity		changes with:
n = 28	- duration = 20 minutes	= 120% of the resting	investigated brain region	- Mirror therapy compared
46 + 12.73 years	- frequency = daily session	motor thresholds	- primary motor cortex	to sham therapy
F/M = 39.29% - 60.71%	for 10 days	- interstimulus interval		(p value not reported)
time since disease onset		= 10 recording of 2 and	evaluation time	
$(amputation) = 90.39 \pm$	<u>Mirror Therapy</u>	10 milliseconds	- baseline	Intracortical Facilitation
13.17 months	- light tactile stimulation		- 4 weeks after	Percentage Changes
pain intensity (VAS) =	- active range of motion		intervention	affected hemisphere
6.03 ± 1.75	- functional task while			no statistically significant
	watching its mirrored			increase with:
	reflection, simultaneously			- Mirror therapy compared
tDCS Group	with the tDCS			to sham therapy
n = 28	- duration = 20 minutes			(B = 1.28, p = 0.22)
$39.96 \pm 15.96 \text{ years}$	- frequency = daily session			
F/M = 35.71% - 64.29%	for 10 days			non-affected hemisphere
time since disease onset	-home exercise = 10			no statistically significant
$(amputation) = 56 \pm 9.97$	sessions at home over 2			changes with:

months		weeks period	- Mirror therapy con
pain int	ensity (VAS) =		to sham therapy
6.28 + 1	67	Mirror Therapy Group	(p value not reported
		Treatments	
		a. Mirror Therapy	Map Volume Chang
Sham	Treatment	b. Sham tDCS	affected hemisphere
Group		<u>Mirror Therapy</u>	no statistically signi
n = 27		- light tactile stimulation	decrease with:
42.96 ±	2.28 years	- active range of motion	- Mirror therapy con
F/M = 3'	.04% - 62.96	- functional task while	to shamtherapy
time sine	e disease onset	watching its mirrored	(B = -0.31, p = 0.72)
(amputat	on) = 63.88 ±	reflection, simultaneously	
9.55 mor	ths	with the tDCS-	non-affected hemisp
pain int	ensity (VAS) =	- duration = 20 minutes	no statistically signi
5.89 ± 1.	57	- frequency = daily session	changes with:
		for 10 days	- Mirror therapy con
		- home exercise = 10	to sham therapy
		sessions at home over 2	(p value not reported
		weeks period	
			Center of Gravity

	Sham tDCS	Changes (x angle)
	- anodal electrode = over	<u>affected hemisphere</u>
	the primary motor cortex	no statistically significant
	contralateral to the	increase with:
3	amputation side	- Mirror therapy compare
	- cathodal electrode = over	to sham therapy
	the contralateral	(B = 0.03, p = 0.95)
	supraorbital area	
4	- current density = 2 mA	non-affected hemisphere
	- duration = current is	no statistically significan
	applied at first 30 seconds	changes with:
	of the 20 min	- Mirror therapy compare
	- frequency = daily session	to sham therapy
	for 10 days	(p value not reported)
	tDCS Group	Center of Gravity
	Treatments	Changes (y angle)
	a. Transcranial Direct	<u>affected hemisphere</u>
	Current Stimulation	statistically significant
	b. Covered Mirror	more lateral

	Therapy	center of gravity with:
	<u>tDCS</u>	- Mirror therapycompared
Artic	- anodal electrode = over	to sham therapy
	the primary motor cortex	(B = 0.03, p = 0.92)
	contralateral to the	
	amputation side	non-affected hemisphere
	- cathodal electrode = over	no statistically significant
	the contralateral	changes with:
4	supraorbital area	- Mirror therapy compared
	- current density = 2 mA	to sham therapy
	- duration = 20 minutes	(p value not reported)
	- frequency = daily session	
	for 10 days	
pred	<u>Covered Mirror Therapy</u>	
	- functional task with the	
	covered mirror by	
	imagining movement	
	- duration = 20 minutes	
	- frequency = daily session	

for 10 days - home exercise = 10 sessions at home over 2 weeks period Sham Treatment Group Treatments a. Sham tDCS b. Covered Mirror	
sessions at home over 2 weeks period Sham Treatment Group Treatments a. Sham tDCS	
weeks period Sham Treatment Group Treatments a. Sham tDCS	
Sham Treatment Group Treatments a. Sham tDCS	
Treatments a. Sham tDCS	
Treatments a. Sham tDCS	
a. Sham tDCS	
b. Covered Mirror	
Therapy	
Sham tDCS	
- anodal electrode = over	
the primary motor cortex	
contralateral to the	
amputation side	
- cathodal electrode = over	
the contralateral	
supraorbital area	
- current density = 2 mA	
- duration = current is	
	Therapy Sham tDCS - anodal electrode = over the primary motor cortex contralateral to the amputation side - cathodal electrode = over the contralateral supraorbital area - current density = 2 mA

-11						
			applied at first 30 seconds			ļ
			of the 20 min			
0			- frequency = daily session			
			for 10 days			
<u> </u>			<u>Covered Mirror Therapy</u>			
			- functional task with the			
			covered mirror by			
1			imagining movement			
			- duration = 20 minutes			
			- frequency = daily session			
			for 10 days			
ted			- home exercise = 10			
			sessions at home over 2			, i
			weeks period			
Schaorun et al	placebocontrol	non-specific chronic low	tDCS and Peripheral	TMS	cortical reorganization assessment	Map Volume
(2014)1	ledcrossoverst	back pain without	Electrical Stimulation	Single Pulse TMS	- total excitability of the cortical	affected hemisphere
not rted	udy	neurological involvement	Group	- coil model = Magstim	representation	statistically significant
0		n = 16	Treatments	200	•map volume	decreases with:

 $^{^{1}\}mathrm{Since}$ analysis were made using ANOVA, the result section included to p value, in orderly with their above written treatments.

A	$30 \pm 2.0 \text{ years}$	a. tDCS	- coil type = figure-of-	- cortical representation	- Peripheral electrical
	F/M = 43.75% - 56.25%	b. Peripheral Electrical	eight coil	•number of discretepeaks	stimulation compared to
	time since disease onset	Stimulation	- muscle = paraspinal	•center of gravity	<u>tDCS</u>
	= not reported	<u>tDCS</u>	muscles		$(\mathbf{p} = \mathbf{0.024*}) (\mathbf{p} = 0.73)$
	pain intensity (NRS) =	- anodal electrode =		investigated hemisphere	- Peripheral electrical
	5.3 ± 0.4	motor cortical		- affected hemisphere	stimulation compared to
		representation of the back			sham treatments
4		muscles contralateral to the		investigated brain region	$(\mathbf{p} = \mathbf{0.024*}) (\mathbf{p} = 0.59)$
4		side of worst pain		- primary motor cortex	
4		- cathodal electrode =			Number of Discrete
		contralateral		evaluation time	Peaks
		supraorbital region.		- baseline	Proportion of Individua
		- current density=(0-1		- immediately after post-intervention	Maps Containing Two
		mA) and			Peaks
2		down (1-0 mA) over 10 s			affected hemisphere
		at the beginning and end of			no statistically significan
<u> </u>		the 30-min			differences with:
		stimulation period			- Peripheral electrical
		- duration = 30 minutes			stimulation compared to
		- frequency = one session			tDCS

		(p value not reported for
	<u>Peripheral</u> <u>Electrical</u>	both of the groups)
or a ped Artic	<u>Stimulation</u>	no statistically significant
	- biphasic waveform	differences with:
	- pulse duration = 0.1 ms	- Peripheral electrical
	-stimulation intensity =	stimulation compared to
	2x3 perceptual threshold	sham treatment
	- duration = 30 minutes	(p value not reported for
4	- frequency = one session	both of the groups)
		One Single Peak
	tDCS Group	affected hemisphere
	Treatments	no statistically significant
	a. tDCS	differences with:
	b. Sham Peripheral	- Peripheral electrical
	Electrical Stimulation	stimulation compared to
		t <u>DCS</u>
	<u>tDCS</u>	$(0.0 \pm 0.00) \text{ (p} = 0.42) \text{ (p}$
	- anodal electrode=	0.23)
	motor cortical	- Peripheral electrical

19341563, ja, Down

	representation of the back	stimulation compared to
	muscles contralateral to the	sham treatment
	side of worst pain	$(0.2 \pm 0.2) \ (p = 0.42) \ (p = 0.42)$
	- cathodal electrode =	0.69)
3	contralateral	
	supraorbital region	Center of Gravity (x
	- current density = (0-1	angle)
	mA) and	affected hemisphere
4	down (1-0 mA) over 10 s	no statistically significar
_	at the beginning and end of	differences with:
2	the 30-min	- Peripheral electrical
	stimulation period	stimulation compared to
	- duration = 30 minutes	t <u>DCS</u>
	- frequency = one session	(p value not reported for
		both of the groups)
)	<u>Sham Peripheral</u>	- Peripheral electrical
	<u>Electrical Stimulation</u>	stimulation compared to
	- biphasic waveform	<u>sham treatment</u>
	- pulse duration:0.1 ms	(p value not reported for
	- stimulation intensity: 0	both of the groups)

	mA perceptual threshold	
	- duration = 30 minutes	Center of Gravity (y
	- frequency = one session	angle)
		<u>affected hemisphere</u>
3	Peripheral Electrical	no statistically significan
	Stimulation Group	differences with:
	Treatments	- Peripheral electrical
	a.Peripheral Electrical	stimulation compared to
4	Stimulation	t <u>DCS</u>
_	b. Sham tDCS	(p value not reported for
		both of the groups)
	<u>Peripheral</u> <u>Electrical</u>	- Peripheral electrical
	<u>Stimulation</u>	stimulation compared to
	- biphasic waveform	sham treatment
	- pulse duration = 0.1 ms	(p value not reported for
	-stimulation intensity =	both of the groups)
	2x3 perceptual threshold	
	- duration = 30 minutes	
	- frequency = one session	

		19341563, ja, Dow
	Sham tDCS	nloaded from https://onl
	- anodal electrode = motor	linelibrary.wil
(2)	cortical representation of	ley.com/doi/10
	the back muscles	0.1002/pmrj.1
	contralateral to the side of	.3126 by Univ
	worst pain	ersiteit Antwe
	- cathodal electrode =	rpen, Wiley C
	contralateral	mline Library
	supraorbital region.	on [13/03/202
	- current density = (0-1	.4]. See the Te
	mA) and	arms and Cond
pted	down (1-0 mA) over 5	litions (https://
	second	onlinelibrary.
	stimulation period	wiley.com/ter
	- duration = 15 s of the 30	ms-and-condi
	minutes	ions) on Wile
	- frequency = one session	y Online Libra
		ary for rules of
	Sham Treatment Group	f use; OA arti
	Treatments:	cles are govern
		ned by the app
		licable Creati
		we Commons l
		icense

	a. Sham tDCS	
	b. Sham Peripheral	
	Electrical Stimulation	
	Sham tDCS	
	- anodal electrode = motor	
	cortical representation of	
	the back muscles	
4	contralateral to the side of	
	worst pain	
	- cathodal electrode =	
pted	contralateral	
	supraorbital region.	
	- current density = (0-1	
	mA) and	
	down (1-0 mA) over 5	
	second	
	stimulation period	
9	- duration = 15 s of the 30	
	minutes	

			- frequency= one session			
						Ollinoidas
(2)			Sham Peripheral			and your live
tic			Electrical Stimulation			in the second se
			- biphasic waveform			9 0
			- pulse duration=0.1 ms			
			- stimulation intensity: 0			espeni nung
			mA			Column Living
1			perceptual threshold			
			- duration = 30 minutes			and the state of t
			- frequency= one session			A CONTRACTOR OF THE CONTRACTOR
Strauss et al	crossover	Upper Limb CRPS	Graded Motor Imagery	fMRI	cortical reorganization assessment	Short Interval
$(2021)^2$	study design	n = 21	Group	- stimulus application =	- cortical excitability	Intracortical Inhibition
Northern		54.71 ± 14.13 years	Treatments	somatosensory	•shortintervalintracortical	affected hemisphere
Germany		F/M = 80.95% / 19.05%	a. Right / Left Hand	stimulation application	inhibition	statistically significant
		time since disease onset	Laterality Training	on distal phalanx of the	•intracorticalfacilitation	increase with:
		$= 58.24 \pm 43.88$ months	b. Imagined Movements	firstandfifthfinger on	•cortical activation	- Graded motor imagery
		pain intensity (VAS) =	c. Mirror Therapy	bothhands	- corticalrepresentation	compared to wait – list
					_	

²Only this study included in this review did not consider drop-outs for features of demographics of this study including sample size, age, time since onset and pain intensity.

	4.3 ± 2.6		- scanner= 3 Tesla	•thumb-little finger distance of the	(31.22%)
		Right/Left Hand	magneticresonansimagi	hand representation	(F (1,20) = 4.18; p =
		<u>Laterality Training</u>	ng		0.054) (t (20) = -3.69, p =
		- duration = at least 10	- software = SPM 12	investigated hemisphere	0.001)
		minutes for every hour	- echo time = 40.8	- affectedhemisphere	
		when awake	milliseconds	- non-affectedhemisphere	Intracortical Facilitation
		- frequency = every day	- repetition time = 1000		affected hemisphere
		for first 2 weeks	milliseconds	investigated brain region	no statistically significant
4				- primarysomatosensorycortex	differences with:
		<u>Imagined Movements</u>	- stimulus application =		- Graded motor imagery
2		- duration = at least 10	33% of maximal force	evaluation time	compared to wait – list
		minutes for every hour	of the both hands grip	- baseline	F(1,20) = 3.81, p = 0.065)
		when awake	motor task	- 6 weeks after intervention	(t (20) =1.73, p value
		- frequency= every day	- scanner= 3 Tesla	- 12 weeks after intervention	reported as a not
2		between 2 nd and 4 th	magneticresonansimagi		significant)
		week	ng		
			- software = SPM 12		Primary Somatosensory
2		<u>Mirror Therapy</u>	- echo time = 23		Cortex Activation Durin
		- duration = at least 10	milliseconds		Motor Task
		minutes for every hour	- repetition time = 2000		affected hemisphere

0	when awake	milliseconds	statistically significant
	-frequency = every day		decreases with:
()	between 4 th and 6 th	TMS	- Graded motor imagery
rticl	weeks	Single Pulse TMS	compared to wait – list
		- coil model =	(t (19) = 2.82, p = 0.011*))
•	Wait - List Group	MagVenture	(t (19) = -1.97, p value)
	- continue routine	- coil type = figure-of-	reported as a not
	pharmacologic treatment	eight coil	significant))
1	but no additional	- muscle =	
	treatments	firstdorsalinterosseous	Primary Somatosensory
pted	- duration = 6 weeks	muscle	Cortex Activation During
			Somatos ensory Task
			affected hemisphere
			no statistically significant
			differences between:
			- Graded motor imagery
			compared to wait – list
			(t (29) = 1.70, p value
0			reported as a not
			significant)
4			

	_
epted Article	Acc

.0.77, p value	as a not	nt))	of the First and	of the Hand	on in	Somatosensory	in [13/03/2024	hemisphere	tically significant	between:	motor imagery	to wait – list	not reported for	e groups)	nline Library for rules of use; OA articles are governed by the applicable Creative Commons License	
(t (18) = 0.77,	B	significant))		• .	Representatio	Primary Som	Cortex	affected hemis	no statistically	differences be	- Graded moto		(p value not re			

Teixeria t	randomized,	Traumatic Lower Limb	tDCS and Mirror	TMS	cortical reorganization assessment	Intracortical Inhibition
a1 (2021) ³	blinded, sham-	Amputation	Therapy Group	Single pulse TMS	- corticalexcitability	Percentage Changes
US	controlled, 2	n = 98	Treatments	-coil model = Bistim2	•intracorticalinhibition	affected hemisphere
	×	$43.1 \pm 14.3 \text{ years}$	a. tDCS	-coil type = figure-of-	•intracorticalfacilitation	no statistically significant
	2	F/M = 32.7% - 67.3%	b. Mirror Therapy	eight coil		differences between:
	factorialclinica	time since disease onset	<u>tDCS</u>	-muscle = first dorsal	investigated hemisphere	- Mirror therapy
	ltrial	(amputation) = 22.5 ± 75	- anodal electrode = over	interosseous muscle	- affected hemisphere	comparedto tDCS
		months	the primary motor cortex		- non-affected hemisphere	(B = -9.40, p = 0.563) (B
1		pain intensity (VAS) =	contralateral to the	Double pulse TMS		= 15.22, p = 0.342)
		6.2 ± 1.7	amputation side	- conditioning stimulus	investigated brain region	
			- cathodal electrode = over	intensity = 80% of the	- primary motor cortex	non-affected hemisphere
			the contralateral	resting motor		no statistically significant
			supraorbital area	thresholds	evaluation time	differences between:
			- current density = 2 mA	- test stimulus intensity	- baseline	- Mirror Therapy
			- duration = 20 minutes	= 120% of the resting	- 4 weeks after intervention	comparedto tDCS
3T	his study share s	ame Clinical Trial Number w	vith the study performed by G	ınduz et al (2021). Chance	es in intracortical inhibition and intracort	ical facilitation proportion were

³This study share same Clinical Trial Number with the study performed by Gunduz et al (2021). Chances in intracortical inhibition and intracortical facilitation proportion were calculated for all groups, not seperately, keeping in mind that thelongitudinal changes of intracortical excitability with-insubjects (post-predifference) were not statistically significantly different in this study. However, multivariate models for the change in intracortical inhibition and intracortical facilitation for both hemispheres were calculated and independent variables of treatment groups (mirror therapy and tDCS) were forced into the model to control for the effect of the interventions

	- frequency= daily session motor thresholds	(B = -3.89, p = 0.781) (B
	for 10 days - interstimulus inter	-28.19, p = 0.046
	= 10 recording of 2	and
	Mirror Therapy 10 milliseconds	Intracortical Facilitation
	- light tactile stimulation	Percentage Changes
	- active range of motion	affected hemisphere
5	- functional task while	no statistically significan
4	watching its mirrored	differences between:
4	reflection, simultaneously	- Mirror therapy
4	with the tDCS	comparedto tDCS
5	- duration = 20 minutes	(B = -35.12, p = 0.379)
	- frequency= daily session	= 1.54, p = 0.968
	for 10 days	
	- home exercise = 10	non-affected hemisphere
	sessions at home over 2	no statistically significan
2	weeks period	differences between:
		- Mirror therapy
	Mirror Therapy Group	comparedto tDCS
	Treatments	(B = 45.85, p = 0.33) (B =
	a. Mirror Therapy	-88.65, p = 0.238)

	b. Sham tDCS	
	<u>Mirror Therapy</u>	
	- light tactile stimulation	
	- active range of motion	
	- functional task while	
	watching its mirrored	
	reflection, simultaneously	
	with the tDCS	
4	- duration = 20 minutes	
	- frequency= daily session	
	for 10 days	
1)	- home exercise = 10	
	sessions at home over 2	
	weeks period	
15	Sham tDCS	
	- anodal electrode = over	
	the primary motor cortex	
	contralateral to the	
	amputation side	

	- cathodal electrode = over	
	the contralateral	
	supraorbital area	
	- current density = 2 mA	
	- duration = current is	
	applied at first 30 seconds	
	of the 20 minutes	
	- frequency = daily session	
4	for 10 days	
	tDCS Group	
teo	Treatments	
	a. tDCS	
	b. Covered Mirror	
	Therapy	
	<u>tDCS</u>	
	- anodal electrode = over	
	the primary motor cortex	
	contralateral to the	
	amputation side	

- cathodal electrode = over	
the contralateral	!
supraorbital area	!
- current density = 2 mA	!
- duration = 20 minutes	!
- frequency = daily session	!
for 10 days	!
	!
<u>Covered Mirror Therapy</u>	!
- functional task with the	!
covered mirror by	
imagining movement	
- duration = 20 minutes	
- frequency = daily session	
for 10 days	
- home exercise = 10	
sessions at home over 2	
weeks period	
Sham Treatment Group	
	the contralateral supraorbital area - current density = 2 mA - duration = 20 minutes - frequency = daily session for 10 days Covered Mirror Therapy - functional task with the covered mirror by imagining movement - duration = 20 minutes - frequency = daily session for 10 days - home exercise = 10 sessions at home over 2 weeks period

	Treatments:
	a. Sham tDCS
rticl	b. Covered Mirror Therapy
	Sham tDCS
	- anodal electrode = over
	the primary motor cortex
	contralateral to the
	amputation side
4	- cathodal electrode = over
	the contralateral
pted	supraorbital area
	- current density = 2 mA
	- duration = current is
	applied at first 30 seconds
	of the 20 minutes
	- frequency= daily session
	for 10 days
	<u>Covered Mirror Therapy</u>
	- functional task with the

-		
1		
	Φ.	
	100	
		4
	-	A
		1
		4
		nji.
		~
	40	
	\Box	a.
	. "	
7	_	_
	_	
	450	lb.
	(7
	-41	\
	\Box	.)
	40	
	0	1
	C	a
	p).
	\subset	a-
	700	
		ed .
-0		

			covered mirror by
			imagining movement
(- duration = 20 minutes
			- frequency = daily session
			for 10 days
			- home exercise = 10
			sessions at home over 2
			weeks period
	C 1 C F F	1 CD Ct 1 tD : t:	VAC Vand Andre Code NDC Namerical Dating Code IOD Internatily Date (DCC Transmitt Direct Code)

n: Sample Size. F: Female. SD: Standart Deviation. VAS: Visual Analog Scale. NRS: Numerical Rating Scale. IQR: Interquartile Range. tDCS: Transcranial Direct Current Stimulation. mA: Milliampere. BE: Coefficient. *p<0.05.

Table 4. Risk of bias assessment in randomized controlled trials using the Cochrane RoB 2 tool

	Author andyear	randomization	intended	missing	outcomemeasurement	reportedresult	overallresult	Level of
			intervention	data				evidence
1	Gunduz et al.	low	someconcerns	low	low	someconcerns	someconcerns	A2
	(2021)							
	Teixeira et al.	low	low	low	low	low	low	A2
	(2021)							
	Strauss et al.	low	someconcerns	low	low	high	high	A2
	(2021)							

Table 5. Risk of bias assessment in non-randomized studies of interventions using the ROBINS-I tool

Author andyear	confounding	selection of	classification	deviations from inte	missing	outcome	reportedr	overallre	Level of
		participants	of intervention	ndedintervention	data	measurement	esults	sult	evidence
Schaorun et al. (2014)	low	low	low	low	moderate	moderate	low	moderate	В

Table 6. Methodological qualities for per outcome of all included articles

Outc mes		Studies	Sensorytraining	Control	Primary motor	Primary motor	Primarys omatos ens orycor tex	Level of	Risk of
				group	cortex	cortex		evidence	Bias
							Affected		
					Affectedhemisphere	Non-	hemisphere		
						affectedhemisphere			
	Intracortical	Gunduz	Mirror therapy ^{24,}	Sham	• response rate =	• response rate =		A2	Some
	inhibition and	et al.	25	therapy ²⁴					
	facilitation	(2021)							
P)		Teixeira		tDCS ²⁵	• response rate =	• response rate =		A2	Low
		et al.							
		(2021)							
		Strauss	Graded motor	Wait-			• inhibition ↑	A2	High

		et al.	imagery ²⁶	list ²⁶			• facilitation =		
		(2021)							
Corneal	Cortical	Strauss	Graded motor	Wait-			• during motor task ↓	A2	High
excit/bility	activation	et al.	imagery ²⁶	list ²⁶			• during somatosensory task=		
		(2021)							
	Map volume	Schabrun	PES ²⁷	tDCS ²⁷	• response (short			В	Moderate
		et al.			term) ↓				
		(2014)			term) ¥				
				Sham	• response (short				
				therapy ²⁷	term) ↓				
		Gunduz	Mirror therapy ²⁴	Sham				A2	Some
7			Mirror therapy	therapy ²⁴	• response rate =	• response rate =		AΔ	Some
		et al. (2021)		therapy					
	Discrete map	Schabrun	PES ²⁷	tDCS ²⁷	1 01:	1 61:		В	Moderate
	peaks	et al.	res ·	iDCS	• number of discrete	• number of discrete		Б	Moderate
	peaks	(2014)			peaks =	peaks =			
		(2014)		Sham	• number of discrete	• number of discrete			
				therapy ²⁷	peaks =	peaks =			
					peaks –	peaks –			
	Center of	Schabrun	PES ²⁷	tDCS ²⁷	• x & y angle (short			В	Moderate
Cow sal	gravity	et al.			term) =				
epresentation		(2014)							
		Gunduz	Mirror therapy ²⁴	Sham	• x & y angle =	• x & y angle =		A2	Some
0)		et al.		therapy ²⁴					
		(2021)							
	Distances	Strauss	Graded motor	Wait-			• distance of the thumb and	A2	High
	between	et al.					little finger =		

19341563, ja, Downloaded from https://onlinelibrary.wiley.com/doi/10.11002/purij.13126 by. Universited: Antwerpen, Wiley Online Library on [13032024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

PES: Peripheral electrical stimulation, tDCS: Transcranial direct current stimulation, ≕ Insignificant differences, ↑: Significant increase, ↓: Significant decrease. imagery²⁶ (2021)representations Accepted Artic

 $list^{26}$

Accepted Article

FIGURE LEGENDS

Fig 1. The flowchart of the study selection

Appendix 1

Pubmed:

((("Pain" [Mesh] AND ("Complex Regional Pain Syndromes" [Mesh] OR "Causalgia" [Mesh] OR"Neuralgia" [Mesh] OR "Reflex Sympathetic Dystrophy" [Mesh] OR "Phantom Limb" [Mesh] OR "Amputees" [Mesh] OR "Amputation" [Mesh] OR "Amputation Traumatic" [Mesh] OR Stumps" [Mesh] "Amputation, "Peripheral Injuries" [Mesh] OR "Peripheral Nervous System Diseases" [Mesh] OR "Brachial Plexus Neuropathies" [Mesh] OR "Denervation" [Mesh] OR "Diabetes Mellitus" [Mesh] OR "Diabetes Complications" [Mesh] OR "Carpal Tunnel Syndrome" [Mesh] OR "Cubital Tunnel Syndrome" [Mesh] OR "Thoracic Outlet Syndrome" [Mesh] OR "Back Pain" [Mesh] OR "Low Back Pain" [Mesh] OR "Sciatica" [Mesh] OR "Neck Pain" [Mesh] OR "Upper Extremity" [Mesh] OR "Lower Extremity" [Mesh] OR "Extremities" [Mesh] "Foot" [Mesh] OR "Hand" [Mesh] OR "Shoulder" [Mesh] OR "Shoulder Pain" [Mesh] OR "Elbow" [Mesh] OR neuropath* OR radiculopat* OR discogenic OR diabet* OR radiat* OR forearm OR arm OR leg OR (nerve AND (reinnervation OR injury OR regeneration OR syndrome OR compression OR paralysis OR entrapment OR graft OR trans*)) OR neurolysis OR mechanical interface OR sensory loss OR deafferentation OR Complex regional pain syndrome OR reflex sympathetic dystrophy OR sudeck atrophy OR algodystrophy OR post-traumatic dystrophy OR (syndrome AND (shoulder hand OR pronator OR Kiloh-Nevin OR radial tunnel OR Struthers OR Wartenberg OR personage turner OR double crush OR thorax outlet)) OR brachial plexopathy OR brachial plexitis OR neuralgic amyotrophy OR neuritis)) NOT (congenital amputation OR "Spinal Cord Injuries" [Mesh] OR "Stroke" [Mesh] OR "Multiple Sclerosis" [Mesh])) AND ("Feedback, Sensory" [Mesh] OR "Kinesthesi*" [Mesh] OR "Stereognosis" [Mesh] OR "Touch" [Mesh] OR

19341535, ja, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/pmrj.13126 by Universiteit Antwerpen, Wiley Online Library on [13/05/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

"Touch Perception" [Mesh] OR "Vibration" [Mesh] OR "Vision, Ocular" [Mesh] OR "Electric Stimulation" [Mesh] OR "Hearing" [Mesh Terms] OR sensory OR tactile acuity OR discrimination OR two point OR tactile OR pressure OR graphesthesia OR point to point OR joint position sense OR vestibular OR propriocep* OR vibrat* OR localization OR mirror OR lateralization OR oculomotor OR visualization OR verbalization OR audio-visual OR auditory OR imag* OR electr*) AND (cortex OR cortices OR cortical) AND (reorganisation OR reorganization OR organization OR plasticity OR changes OR alteration OR adaptation OR modification OR remodeling OR remap* OR reshaping OR rearrangement OR homunculus)))

WoS:

((("Pain" AND ("Complex Regional Pain Syndromes" OR "Causalgia" OR"Neuralgia" OR "Reflex Sympathetic Dystrophy" OR "Phantom Limb" OR "Amputees" OR "Amputation" OR "Amputation Stumps" OR "Amputation, Traumatic" OR "Peripheral Nerve Injuries" OR "Peripheral Nervous System Diseases" OR "Brachial Plexus Neuropathies" OR "Denervation" OR "Diabetes Mellitus" OR "Diabetes Complications" OR "Carpal Tunnel Syndrome" OR "Cubital Tunnel Syndrome" OR "Thoracic Outlet Syndrome" OR "Back Pain" OR "Low Back Pain" OR "Sciatica" OR "Neck Pain" OR "Upper Extremity" OR "Lower Extremity" OR "Extremities" OR "Foot" OR "Hand" OR "Shoulder" OR "Shoulder Pain" OR "Elbow" OR (neuropath* OR radiculopat* OR discogenic OR diabet* OR radiat* OR forearm OR arm OR leg) OR (nerve AND (reinnervation OR injury OR regeneration OR syndrome OR compression OR paralysis OR entrapment OR graft OR trans*)) OR neurolysis OR mechanical interface OR sensory loss OR deafferentation OR Complex regional pain syndrome OR reflex sympathetic dystrophy OR sudeck atrophy OR

19341535, ja, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/pmrj.13126 by Universiteit Antwerpen, Wiley Online Library on [13/05/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

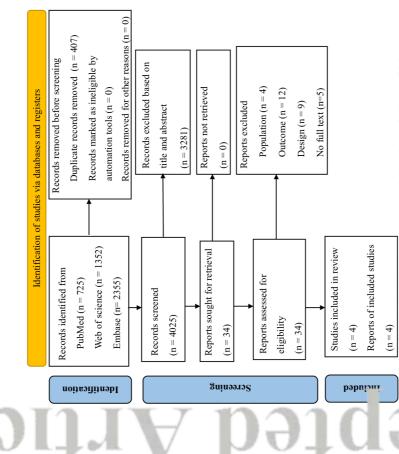
algodystrophy OR post-traumatic dystrophy OR (syndrome AND (shoulder hand OR pronator OR Kiloh-Nevin OR radial tunnel OR Struthers OR Wartenberg OR personage turner OR double crush OR thorax outlet)) OR brachial plexopathy OR brachial plexitis OR neuralgic amyotrophy OR neuritis)) NOT (congenital amputation OR "Spinal Cord Injuries" OR "Stroke" OR "Multiple Sclerosis")) AND ("Feedback, Sensory" OR "Kinesthesi*" OR "Stereognosis" OR "Touch" OR "Touch Perception" OR "Vibration" OR "Vision, Ocular" OR "Electric Stimulation" OR "Hearing" OR sensory OR tactile acuity OR discrimination OR two point OR tactile OR pressure OR graphesthesia OR point to point OR joint position sense OR vestibular OR propriocep* OR vibrat* OR localization OR mirror OR lateralization OR oculomotor OR visualization OR verbalization OR audio-visual auditory OR imag* OR electr*) AND (cortex OR cortices OR cortical) AND (reorganisation OR reorganization OR organization OR plasticity OR changes OR alteration OR adaptation OR modification OR remodeling OR remap* OR reshaping OR rearrangement OR homunculus)))

19341535, ja, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/pmrj.13126 by Universiteit Antwerpen, Wiley Online Library on [13/05/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Embase:

('pain'/exp OR 'pain') AND ('complex regional pain syndromes'/exp OR 'complex regional painsyndromes' OR 'causalgia'/exp OR 'causalgia' OR 'neuralgia'/exp OR 'neuralgia' OR 'phantomlimb'/exp OR 'phantom limb' OR 'amputees'/exp OR 'amputees' OR 'amputation'/exp OR'amputation' OR 'amputation stumps'/exp OR 'amputation stumps' OR 'amputation,traumatic'/exp OR 'amputation, traumatic' OR 'peripheral nerve injuries'/exp OR 'peripheral nerve injuries'/exp OR 'peripheral nerve injuries' OR 'peripheral nervous system diseases'/exp OR 'peripheral nervous neuropathies'/exp OR 'peripheral ne

'diabetes mellitus' OR'diabetes complications'/exp OR 'diabetes complications' OR 'carpal tunnel syndrome'/exp OR'carpal tunnel syndrome' OR 'cubital tunnel syndrome'/exp OR 'cubital tunnel syndrome' OR'thoracic outlet syndrome'/exp OR 'thoracic outlet syndrome' OR 'back pain'/exp OR 'back pain'OR 'low back pain'/exp OR 'low back pain' OR 'sciatica'/exp OR 'sciatica' OR 'neck pain'/exp OR'neck pain' OR 'upper extremity'/exp OR 'upper extremity' OR 'lower extremity'/exp OR 'lowerextremity'OR'extremities'/expOR'extremities'OR'foot'/expOR'foot'OR'hand'/expOR'h and'OR 'shoulder'/exp OR 'shoulder' OR 'shoulder pain'/exp OR 'shoulder pain' OR 'elbow'/exp OR'elbow' OR neuropath* OR radiculopat* OR discogenic OR diabet* OR radiat* OR 'forearm'/expOR forearm OR 'arm'/exp OR arm OR 'leg'/exp OR leg OR (('nerve'/exp OR nerve) AND('reinnervation'/exp OR reinnervation OR 'injury'/exp OR injury OR 'regeneration'/exp ORregeneration OR 'syndrome'/exp OR syndrome OR 'compression'/exp OR compression OR'paralysis'/exp OR paralysis OR 'entrapment'/exp OR entrapment OR 'graft'/exp OR graft ORtrans*)) OR 'neurolysis'/exp OR neurolysis OR 'mechanical interface' OR (mechanical AND('interface'/exp OR interface)) OR 'sensory oss'/exp OR 'sensory loss' OR (('sensory'/exp ORsensory) AND ('loss'/exp OR loss)) OR 'deafferentation'/exp OR deafferentation OR 'complexregional pain syndrome'/exp OR 'complex regional pain syndrome' OR (('complex'/exp ORcomplex) AND regional AND ('pain'/exp OR pain) AND ('syndrome'/exp OR syndrome)) OR'reflex sympathetic dystrophy'/exp OR 'reflex **sympathetic** dystrophy' OR (('reflex'/exp ORreflex)AND('sympathetic'/expORsympathetic)AND('dystrophy'/expORdystrophy)) OR 'sudeck atrophy'/exp OR 'sudeck atrophy' OR (sudeck AND ('atrophy'/exp OR atrophy)) OR'algodystrophy'/exp OR algodystrophy OR 'post-traumatic dystrophy'/exp OR 'posttraumaticdystrophy' OR ('post traumatic' AND ('dystrophy'/exp OR dystrophy)) OR


19341636, ja, Downloaded from https://onlinelibary.wiely.com/doi/10.1002/pmrj.13126 by Universiteit Antwerpen, Wiley Online Library on [13/03/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

(('syndrome'/exp ORsyndrome) AND ('shoulder hand' OR (('shoulder'/exp OR shoulder) AND ('hand'/exp OR hand))OR pronator OR 'kiloh nevin' OR 'radial tunnel' OR (radial AND ('tunnel'/exp OR tunnel)) ORstruthers OR wartenberg OR 'personage turner' OR (personage AND turner) OR 'double crush'OR (double AND crush) OR 'thorax outlet' OR (('thorax'/exp OR thorax) AND outlet))) OR'brachial plexopathy'/exp OR 'brachial plexopathy' OR (brachial AND ('plexopathy'/exp ORplexopathy)) OR 'brachial plexitis'/exp OR 'brachial plexitis' OR (brachial AND plexitis) OR'neuralgic amyotrophy'/exp OR 'neuralgic amyotrophy' OR (neuralgic AND ('amyotrophy'/expOR amyotrophy)) OR 'neuritis'/exp OR neuritis) NOT ('congenital amputation'/exp OR'congenital amputation' OR (('congenital'/exp OR congenital) AND ('amputation'/exp OR amputation)) OR 'spinal cord injuries'/exp OR 'spinal cord injuries' OR 'stroke'/exp OR 'stroke'OR 'multiple sclerosis'/exp OR 'multiple sclerosis' OR 'spinal cord'/exp OR 'spinal cord' OR'hereditary motor sensory neuropathy' OR 'charcot marie tooth disease' OR 'guillain barresyndrome'/exp OR 'guillain barre syndrome' OR 'rat'/exp OR rat OR rodent* OR 'mouse'/exp OR'mouse' OR 'mice'/exp OR 'mice' OR rabbit* OR animal*) AND ('feedback, sensory'/exp OR'feedback, sensory' OR kinesthesi*' OR 'stereognosis'/exp OR 'stereognosis' OR 'touch'/exp OR'touch' OR 'touch perception'/exp OR 'touch perception' OR 'vibration'/exp OR 'vibration' OR'vision, ocular'/exp OR 'vision, ocular' OR 'electric stimulation'/exp OR 'electric stimulation' OR'hearing'/expOR'hearing'OR'sensory'/expORsensoryOR'tactileacuity'/expOR'tactileacuit v'OR (tactile AND ('acuity'/exp OR acuity)) OR (('discrimination'/exp OR discrimination) AND ('twopoint' OR (two AND point) OR tactile OR electro*)) 'pressure'/exp OR pressure OR'graphesthesia'/exp OR graphesthesia OR 'point to point' OR (to AND point) OR 'joint positionsense'/exp OR 'joint position sense' OR (('joint'/exp OR joint) AND ('position'/exp OR position)AND ('sense'/exp OR sense)) OR vestibular OR propriocep* OR vibrat* OR

19341535, ja, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/pmrj.13126 by Universiteit Antwerpen, Wiley Online Library on [13/05/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

'localization'/exp ORlocalization OR 'mirror'/exp OR mirror OR 'lateralization'/exp OR lateralization OR oculomotorOR 'visualization'/exp OR visualization OR 'verbalization'/exp OR verbalization OR 'audio visual'OR auditory OR imag*) AND ('cortex'/exp OR cortex OR cortices OR cortical) AND(reorganisation OR 'reorganization'/exp OR reorganization OR 'organization'/exp ORorganization OR 'plasticity'/exp OR plasticity OR changes OR alteration OR 'adaptation'/exp ORadaptation OR 'modification'/exp OR modification OR remodeling OR remap* OR reshaping OR'rearrangement'/expOR rearrangement OR'homunculus'/expORhomunculus)

19341563, ja, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/pmrj.13126 by Universiteit Antwerpen, Wiley Online Library on [13/03/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms

searched (rather than the total number across all databa Consider, if feasible o do sa If auto , were u

Page MJ, Mc arzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372;n71. doi: 10.1136/bmj.n71

For more information, visite http://www.prisma-statement.org/.

Figure 1.tiff