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Abstract  

This thesis focusses on a special part of the supply chain that is relevant to the student 

transportation problem. Considering previous studies, it appears that addressing emergent 

issues such as increased traffic load, high student population, lack of resources, safety, and 

risks can play a substantial role in designing an efficient plan for the student transportation 

system. The significance of this issue is highlighted when we take into account the needs and 

expectations of all stakeholders, including students, the private sector, and municipalities. In 

this regard, this dissertation considers a number of realistic and innovative characteristics for 

the school bus routing problem (SBRP). In doing so, two main trajectories have been followed. 

First, the existing gap and concerns in the literature and real life are considered to extract a new 

model-based variant of SBRP characteristics.  

Second, an attempt is made to construct proper metaheuristic algorithms (solution approaches) 

to efficiently solve the problems identified in the first phase. To put it more clearly, in the first 

trajectory, we consider different problem features and propose new model and problem for 

SBRP, and in the second trajectory, we design and construct a metaheuristic approach germane 

to the defined problem. To do so, there are challenges that must be addressed concerning how 

to design an appropriate metaheuristic that corresponds to the specific type of problem and 

makes a trade-off between computing time and solution quality as well as a trade-off between 

intensification and diversification.  

Following the above phases entails two advantages. It helps the decision-maker in urban 

planning to adopt the right course of action and presents alternatives in choosing the 

appropriate solution approach. In the first and second chapters of this thesis, the existing school 

bus routing problems along with different kinds of solution approaches are discussed, while in 

chapters three to five a new model and, correspondingly, new metaheuristics are presented. In 

other words, the first two chapters we present new solution approaches for the existing current 

problem, and in the remaining chapters we explore and attempt at a new model as well as 

solution approaches.  

Briefly, regarding the solution approach, we have considered the strategic oscillation 

(searching between feasible and infeasible parts of the solution space), different large 

neighborhood search algorithms (presenting different kinds of removal and insertion 

heuristics), neighborhood selection mechanisms, and a number of diversification strategies.  

We have also developed new mathematical models for SBRP that consider mixed-load effect, 

transporting morning and afternoon students, and the existing risks of student transportation. 

Further analyses are also executed to address real life concerns.  
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Introduction  

 

Urban logistics, a key aspect of city planning, faces challenges in sustainability and 

mobility due to inadequate identification and analysis in contemporary cities. Traffic 

congestion is a widespread issue in large cities, with its volume increasing daily due 

to rising vehicle numbers. Integrating safety, environmental, and social considerations 

adds complexity to transportation planning when employing cost-benefit approaches. 

Especially in urban areas with intricate transportation systems, careful attention is 

necessary. Concerns vary based on customer intentions. Identifying stakeholder needs 

early is crucial for effective transportation planning. Public transportation emerges as 

an effective strategy, offering benefits like reduced pollution, increased safety, and 

fewer accidents compared to other modes, proving cost-efficient and environmentally 

friendly. 

Efficient student transportation scheduling is crucial in public transit, drawing 

special attention. Ensuring students' safe onboarding/offboarding is a top community 

priority. To promote student use of municipal or community-provided transportation, 

a safe and convenient system is crucial. 

Recently, a confluence of factors, including traffic management control, 

environmental considerations, technological advancements (such as tracking systems), 

and urban policies, has prompted an increasing number of schools to transition toward 

the utilization of public transportation systems. 

Inadequate bus network planning can lead to negative outcomes like increased 

pollution, noise, accidents, lower satisfaction, and higher expenses. Rising fuel costs 

and traffic push families to opt for public transportation for their children's school 

commute. 

Efficient student assignment and route planning can significantly reduce costs and 

enhance services. School bus services require consideration of parameters like bus 

capacity, school start time, and students' maximum riding time.  

The school bus routing problem is a recognized practical challenge that impacts major 

cities worldwide, such as Tehran, the capital of Iran. 

Inadequate planning in Tehran schools leads to longer travel times, higher congestion, 

increased fuel use, and greater fleet depreciation. With buses operating during rush 

hours, establishing an efficient mechanism is crucial to avoid traffic and generate profit 

within available resources for the transportation company. 

Additionally, as school buses operate during rush hour, establishing an efficient 

mechanism for student transport is crucial. This involves creating a viable bus route to 

avoid city traffic and ensure profitability within available resources. The routing 

should prioritize students' convenience and satisfaction throughout their trip. This 

thesis focuses on the distribution process in student transportation, a critical part of the 

supply chain. The increasing traffic load, resource shortages, and high student 

population highlight the need for integrated school transportation management, 

doubling the importance of addressing these challenges.  

This dissertation addresses various issues discussed in the School Bus Routing 

Problem (SBRP) literature. Theoretical aims of SBRP involve transporting students 
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safely and conveniently, while real-life applications consider additional constraints 

and factors related to transportation network serviceability.  

Furthermore, the operational attributes of the school bus system add extra intricacies 

to formulating the SBRP in contrast to the traditional VRP model. (Bowerman and 

Calamai, 1995).  

SBRP is a real-life application of the Vehicle Routing Problem (VRP), extensively 

studied in operations research (Toth and Vigo, 2002). While traditional VRP finds 

optimal routes for vehicles, SBRP adapts this to school bus transportation, involving 

buses traveling from a school to student stops and back. 

Similar to the Vehicle Routing Problem (VRP), the School Bus Routing Problem 

(SBRP) is NP-hard and lacks a polynomial time solution, making exact methods 

suitable only for smaller instances.  

Metaheuristic approaches are essential for managing medium and large instances. 

The complexity of SBRP underscores the necessity for designing and analyzing it with 

commercial software offering effective decision-making tools, as seen in VRP and its 

variants. 

Vehicle routing software aligns with academic concepts, utilizing metaheuristic 

methods, saving algorithms like Clarke and Wright, and multiple neighborhood 

approaches. Despite logistics optimization software success, there's a notable gap 

between scientific evidence and practical application, necessitating extensive research 

for alignment. 

This dissertation follows two primary trajectories. Firstly, it explores existing 

features in the literature and real-life concerns to incorporate into the current model. 

These include mixed-load mode, multi-load mode, split-load mode, location-

allocation, and routing problems, as well as considerations related to risk and hazard. 

In the second phase, the focus is on constructing suitable metaheuristic algorithms to 

efficiently solve the identified problems. The challenge is to design a metaheuristic 

that aligns with the problem's nature, balancing computing time and solution quality, 

as well as intensification and diversification. We adopt an approach aligned with the 

problem's characteristics and scope to ensure an efficient metaheuristic. 

More precisely, the primary objective is to identify various characteristics related 

to the School Bus Routing Problem (SBRP). Secondly, the goal is to advance and 

develop a metaheuristic approach tailored specifically for this defined problem. 

The first chapter delves into a study of previous work, aiming to review various 

dimensions of the school bus routing problem, including the composite nature of the 

problem and proposed solutions, and other aspects. 

The second and third chapters introduce the established mathematical formulation 

of the School Bus Routing Problem (SBRP) by Schittekat et al. (2013) along with two 

distinct metaheuristics. The second chapter presents a simple yet effective approach 

with three key features: it employs diverse neighborhood structures for thorough 

search space exploration, efficiently transitions between feasible and infeasible 

sections, and utilizes a restore operator to navigate back to the feasible solution space 

when capacity constraint violation increases. The problem consists of three sub-
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problems: selecting the minimal set of bus stops for each route, allocating students to 

stops while respecting bus capacity, and defining bus routes to minimize the total 

distance travelled by all buses.  

In the third chapter, metaheuristics based on a strategic oscillation method are 

proposed, exploring both feasible and infeasible solution spaces. To handle small, 

medium, and large instances, two configurations are devised: 

Simple Large Neighborhood Search (LNS) Configuration: This configuration 

incorporates only one removal and one insertion heuristic. 

Full Adaptive Large Neighborhood Search (ALNS) Configuration: This configuration 

includes sub-heuristics, and their selection frequency is determined based on their 

performance. 

In the fourth chapter, a novel mathematical model and metaheuristic approach are 

introduced. This chapter presents a new variant of the School Bus Routing Problem 

(SBRP) with distinct characteristics: determining the set of possible stops, allocating 

students to these stops, and creating routes that allow students from different schools 

to share a bus (mixed-load mode). An optimal mathematical formulation is proposed 

for solving the problem. Various instances of small, medium, and large sizes are 

randomly generated to assess the effectiveness of the developed model. To address 

medium and large instances, an Adaptive Large Neighborhood Search (ALNS) and 

different removal and insertion configurations are proposed. 

In the fifth chapter, we introduce an urban school bus routing problem with features 

like mixed-load planning, a homogenous fleet, and multi-shift loading. This allows 

buses to simultaneously transport students from different schools and morning and 

afternoon shifts. To efficiently solve this problem, we present an iterative local search 

algorithm, ILS-ANS, with embedded adaptive neighborhood selection. The local 

search block incorporates three general and five specialized neighborhood structures. 

Our findings are categorized into two scenarios.  

In the first, the proposed heuristic runs on generated instances using a traditional 

mechanism for local search operators.  

In the second scenario, an adaptive mechanism selects and implements operators based 

on their performance in the current iteration. 

In the sixth chapter, the proposed model is developed through two successive 

mechanisms. Initially, a pre-processing approach is employed to identify risks 

associated with student safety and health, with the more significant ones being 

integrated into the model. Subsequently, the focus shifts to mixed-loading, location-

allocation-routing problems, and risk analysis. Various metaheuristic configurations 

are implemented to rationalize the diversification mechanism and neighborhood 

structures: 

Multi-start Structure: Repeating both the constructive phase and local search heuristic 

for several iterations. 

Perturbation Structure: Running the constructive phase once but repeating both the 

local search and diversification phases for several iterations. 
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The local search exploration for both configurations involves two mechanisms: 

traditional order (e.g., VND, starting exploration from lower size neighborhoods and 

progressing to larger ones) and performance-based (operating according to the 

adaptive layer mechanism). In summary, the multi-start and perturbation 

configurations justify the diversification structure, while VND and adaptive layer-

based heuristic explain the neighborhood selection mechanism. 

The key messages of our Ph.D. trajectory are: 

1. Cost reduction: Creating efficient bus routes offers potential cost savings for 

school districts by minimizing total transportation time and distance. 

2. Problem size dependency: As the problem size increases, the algorithm can further 

decrease total travel time or distance, particularly when the distance between 

student drop-off and pick-up points is shorter. 

3. Adaptability to changing conditions: Solutions to the School Bus Routing Problem 

must adapt to changing conditions, such as fluctuating school time windows and 

maximum student riding time. 

4. Community engagement: Efficient school bus routes can positively impact the 

community by reducing traffic congestion, noise, and pollution associated with 

school transportation. 

5. Interdisciplinary collaboration: Addressing the school bus routing problem often 

involves incorporating expert opinions, particularly crucial for identifying risk 

factors. 

6. Compatibility with efficiency and effectiveness: School bus routing problems can 

be tailored to criteria like efficiency (minimizing total travel time) and 

effectiveness (the total travel time spent by students on buses). 

7. Student safety: Formulating school bus routing problems can consider health and 

safety concerns. 

8. Dependency on features: Incorporating features like mixed-loads and multi-

concepts can significantly reduce total travel time and the number of buses needed. 

9. Metaheuristic viewpoints:  

1. Problem-Specific Knowledge Utilization: Leveraging neighborhood-based 

problem-specific knowledge is a promising approach for generating better 

solutions. 

2. Metaheuristic Expertise: Acquiring knowledge about a problem is crucial 

for designing efficient heuristics. 

3. Intensification and Diversification Strategies: Recognizing intensification 

and diversification as operators, actions, or acceptance criteria strategies in 

metaheuristics is essential. 

4. Parameter Impact: Identifying parameters significantly affects computing 

time and solution quality. 

5. ALNS Comparison: ALNS (with capacity constraint violation) 

demonstrates greater reliability in providing improved solution quality and 

computation time performance compared to ALNS (with tight capacity 

constraints). 
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6. Flexibility with Oscillation Strategy: Metaheuristics with an oscillation 

strategy offer increased flexibility in the search trajectory. 

7. ALNS Implementation Caution: When using ALNS, a cautious approach 

is necessary, and a tailored course of action should be taken instead of 

blindly adopting algorithms from other studies.  

Savas (1978) discusses three measures for evaluating the performance of public 

services: efficiency, effectiveness, and equity. Efficiency is defined as the ratio of the 

level of service to the cost of the resources required to provide such a service. In terms 

of efficiency, we consider either the total travel time or the total travel distance by bus 

in our objective function. 

The effectiveness of a service is measured by how well the demand is satisfied. In 

our analysis, we incorporate effectiveness into constraints, such as the total travel time 

spent by students on buses. Equity considerations assess the fairness or impartiality of 

the provision of the service; we consider the walking distance of students to bus stops. 

In addition to equity, we emphasize equilibrium by (1) achieving a balance between 

routes to avoid excessively large variations in route loading (i.e., ensuring a desirable 

distribution of students between routes) and (2) assigning a reasonable number of 

students to each stop. 

In the following sections, we delineate the differences across chapters, placing a 

specific emphasis on the metaheuristic approach utilized and the definition of the 

problems under consideration. 

Chapter 2: In this chapter, we develop Iterated Local Search with the oscillation 

strategy. This strategy aids in exploring the infeasible part of the solution space without 

restrictions concerning capacity constraints. 

Chapter 3: The adoption of the oscillation strategy necessitates the use of a set of 

large neighborhood search techniques to facilitate smoother transitions between 

feasible and infeasible parts of the solution space. Consequently, we introduce 

different configurations of Large Neighborhood Search (LNS) and Adaptive Large 

Neighborhood Search (ALNS) metaheuristics with the oscillation strategy. 

Chapter 4: This chapter presents the ALNS metaheuristic, albeit with some 

differences from the one discussed in Chapter 3. These differences include introducing 

removal and insertion heuristics aligned with problem-specific knowledge, providing 

pairwise selection of each deletion and insertion heuristic, incorporating a time-saving 

strategy for insertion heuristics, implementing the meta-destruction operator (if no 

improvement is made for non-replication), and applying redistribution operators to 

ensure load balancing. 

Chapter 5: In this chapter, we develop two metaheuristics that differ based on the 

neighborhood selection mechanism for exploration—traditionally (based on size) 

versus systematically. 

Chapter 6: Finally, this chapter introduces different types of metaheuristics that vary 

in diversification and neighborhood selection mechanisms. The neighborhood scoring 

mechanism is calculated based on its performance and role in the intensification and 

diversification mechanism." 
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Concerning the problem definition, the Chapters 2 and 3 adhere to the problem 

model proposed by Schittekat et al. (2013). 

Chapter 4 introduces augmentations to this model by incorporating additional 

features such as mixed-load effects and time windows for stops and schools. 

Chapter 5 advances the problem by integrating mixed-load and multi-load concepts. 

Moreover, each student, rather than schools and stops, is now assigned a time window 

constraint in both shifts. This chapter also explores the split load concept upon the 

bus's arrival at the stop, and a maximum riding time constraint is introduced to enhance 

convenience for students. 

In Chapter 6, our problem definition evolves further to encompass safety 

considerations (size of bus stops), health factors (prevalence of coronavirus and 

population density), and traffic concerns (traffic volume). 
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1-1- Introduction  

In recent years, a substantial body of literature has explored SBRP from various 

perspectives. To enhance clarity, our literature reviews are divided into four sections 

as follows. 

Specifically, in section 1.2, the literature review aligns with problem characteristics, 

objectives, solution methodology, and the composite nature of the problem. In section 

1.3, recent works in the area of mixed-load planning are presented (aligned with 

Chapter 4), and in section 1.4, studies on the morning and afternoon concept for the 

school bus routing problem are reviewed (compatible with Chapter 5). Finally, in 

section 1.5, issues related to the safety and health of students are addressed (compatible 

with Chapter 6). 

1-2- Literature review concerning problem characteristics, composite nature 

and solution approach  

In this section various aspects such as, composite nature of problem, considerations 

of problem characteristics (e.g., multi-schools-multi-depots), objectives (multi-

objective function), evaluation methods (e.g., partial evaluation), and mathematical 

formulations (bilevel approach) are reviewed. For a thorough exploration of the school 

bus routing problem, Park and Kim (2010) and Ellegood et al. (2019) provide a 

comprehensive description and a broad survey. 

 Park and Kim categorize existing literature on SBRP into five key areas: data 

preparation, bus stop selection, bus route generation, school bell time, and bus 

scheduling. Data preparation involves organizing routing data, encompassing student 

residence locations, school geographical positions, and the types of fleet used. Bus 

stop selection entails determining reachable stops for students, either for pick-up or 

drop-off, requiring students to walk to urban bus stops or having stops at their 

residences in rural areas. In urban areas, students walk to bus stops from their homes, 

whereas in rural areas, due to a smaller student population, they are often picked up 

directly from their homes. 

The bus scheduling problem focuses on assigning a series of trips to the same bus, 

considering school time windows. Lastly, school bell time introduces varying start and 

end time constraints, sometimes leading to multiple trips for a bus schedule, reducing 

overall travel distance. 

Certain studies have addressed the composite nature of the School Bus Routing 

Problem (SBRP). A substantial and expanding body of literature has delved into the 

bus stop selection. This process involves choosing a set of bus stops and then assigning 

students to these designated stops. In rural areas, students are typically picked up from 

their homes, while in urban regions, specific bus stops serve as pick-up points. 

Heuristic methods for bus stop selection fall into two categories: location-allocation-
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routing (LAR) strategy and allocation-routing-location (ARL) strategy, differing in the 

sequence of solving SBRP. The LAR strategy entails selecting bus stops first and then 

assigning students accordingly. Subsequently, the Vehicle Routing Problem (VRP) is 

formulated to generate routes incorporating the chosen bus stops. 

The LAR strategy mandates that students be assigned to bus stops before route 

generation, making both bus stop selection and student allocation independent of route 

creation. This approach has drawbacks, such as neglecting bus capacity constraints 

during the location-allocation step, potentially leading to more bus routes than needed 

in the SBRP solution. This becomes critical when a large number of students can be 

theoretically assigned to multiple bus stops. Additionally, because routing is 

performed independently of location-allocation, achieving a balanced distribution of 

students per bus becomes more challenging. Further insights into this issue are 

provided in Bowerman et al. (1995), Bodin and Berman (1979), Dulac et al. (1980), 

and Desrosiers et al. (1981). 

Dulac et al. (1980) provide an example of the LAR strategy. In their approach, 

students are initially situated in street segments (likely their residences) and then 

assigned to street intersections with the minimum distance to potential bus stops. The 

stop with the highest allowable number of students, based on walking distance, is 

chosen. Subsequently, students within a maximum walking distance are assigned to 

this stop, continuing until all students are assigned. In the second stage, a Vehicle 

Routing Problem (VRP) is solved, considering the selected bus stops. The authors' 

objective function includes minimizing the number of stops and the distance between 

selected bus stops. A notable drawback is that route generation occurs only after 

students are assigned to bus stops. This approach results in generating excessive routes 

and higher routing costs. 

In the ARL strategy, students are initially grouped into clusters that adhere to bus 

capacity constraints. Following this, bus stop selection and route generation phases are 

executed for each cluster, aiming to visit the specified stops. Lastly, students within 

each cluster are assigned to bus stops to meet all constraints, including the maximum 

distance from the bus stops and the maximum number of students at each stop. 

Heuristic algorithms based on the ARL strategy are proposed by Chapleau et al. (1985) 

and Bowerman et al. (1995). 

Bowerman et al. (1995) exemplify the ARL strategy in an urban SBRP with a multi-

objective formulation. This problem aims to minimize various objectives, including 

the number of routes, total route length, variation in students assigned per route, 

variation in route lengths, and total walking distance from students' homes to bus stops. 

A key advantage of the ARL strategy lies in its effective load balance when allocating 

students to each cluster. Furthermore, it enables minimizing the number of bus routes, 

as both route-related objectives (route number minimization and load balancing) are 

independent of bus stop locations and the routes generated to serve them. The only 

drawback is in efficiently balancing route lengths due to potential student dispersion 

in clusters. 

Corresponding to Park's survey, two alternative approaches to creating bus routes 

exist: the first-route-then-cluster and first-cluster-then-route strategies, both heuristic 
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in nature. Bodin and Berman (1979) explore the "first-route–then-cluster" approach. 

Initially, a long route visiting all nodes is generated by solving a traveling salesman 

problem. This long route is then divided into smaller routes while adhering to 

predefined constraints, such as bus capacity, maximum travel time for students, and 

the maximum number of students allocated to a bus stop. For more details, refer to 

Newton and Thomas (1974) and Bodin and Berman (1979). In the "first-cluster–then-

route" strategy, student clusters are first defined, followed by determining the number 

of stops for each cluster, and finally, generating a route for each cluster while 

considering predefined constraints. 

The first-cluster–then-route strategy has been explored in several studies (e.g., 

Dulac et al., 1980; Chapleau et al., 1985; Bowerman et al., 1995). In both the cluster-

first and route-first approaches, an initial solution is constructed, followed by an 

improvement phase to enhance the solution. Studies by Newton and Thomas (1969), 

Dulac et al. (1980), Chapleau et al. (1985), and Desrosiers et al. (1986) investigate the 

2-opt method, while Bennett and Gazis (1972) and Bodin and Berman (1979) employ 

a 3-opt approach. 

Researchers commonly employ a two-step strategy, ARL and LAR, to address 

SBRP by solving its sub-problems separately. However, both methods present 

limitations in achieving strong global optimization solutions. An underexplored area 

of research involves considering bus stop selection and route generation 

simultaneously, aiming to combine the advantages of both strategies for a more robust 

solution to SBRP. This integrated approach has been investigated by Schittekat et al. 

(2006), Schittekat et al. (2013), Riera-Ledesma et al. (2013), and Kinable et al. (2014). 

Schittekat et al. (2006) tackle three decisions simultaneously: (1) determining potential 

stops, (2) allocating students to bus stops, and (3) generating routes to minimize total 

travel distance. They propose an exact algorithm using Mixed Integer Programming 

(MIP) for small benchmark instances. Riera-Ledesma et al. (2013) devise an exact 

algorithm for a heterogeneous fleet problem, minimizing total route length while 

considering walking distance and bus capacity constraints. Schittekat et al. (2013) 

introduce a compact metaheuristic, highlighting the benefits of an integrated approach 

to bus stop selection and route generation. Comparative results demonstrate the 

integrated procedure's superiority, reducing the cost function by up to 25% compared 

to a sequential approach. 

In works by Calvete et al. (2020) and Worwa et al. (2020), the sub-problems of bus 

stop selection, student allocation, and route generation are jointly considered, with the 

researchers employing efficient metaheuristics to solve the SBRP. Similarly, Sciortino 

et al. (2021) propose new capacity and time constraints for the open vehicle routing 

problem, integrating allocation-location and routing aspects. The study includes 

considerations like bus capacity, student eligibility, maximum student travel time, 

maximum walking distance, multi-stop scenarios, and bus dwell times. The objective 

is to minimize route journey time, student walking distance, and the number of 

deployed buses. The authors validate the effectiveness of their proposed heuristic 

algorithm on twenty real-sized instances from Malta, the UK, and Australia. 
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Melis and Sörensen (2022) introduce the "on-demand bus routing problem 

(ODBRP)" as an innovative optimization concept for flexible urban transportation. 

This problem encompasses buses with predetermined capacity, bus stations with time 

intervals, and passenger requests specifying groups with time constraints. The key 

decisions involve bus stop selection and routing, combining elements from three 

distinct problems: dial-a-ride problem (DARP) (Cordeau and Laporte, 2007), school 

bus routing problem (SBRP) (Schittekat et al., 2013; Kim et al., 2012), and pick-up 

and delivery problem with time windows (PDPTW) (Ropke and Pisinger, 2006). The 

objective is to minimize user ride time (URT  ( , and an LNS heuristic is developed, 

demonstrating efficacy compared to traditional public bus instances. The study 

suggests that introducing an on-demand bus system can enhance public transportation 

effectiveness, particularly for problems with a larger fleet size and lower bus capacity. 

Concerning the objective function, most SBRP studies focus on minimizing bus 

routes and required buses (Li and Fu, 2002; Pacheco and Martí, 2006). Some also 

consider load balancing and maximum route length as objectives (Angel et al., 1972; 

Newton and Thomas, 1969; Verderber, 1974; Gavish and Shlifer, 1979; Bodin and 

Berman, 1979; Dulac et al., 1980; Desrosiers et al., 1981; Swersey and Ballard, 1984; 

Park and Kim, 2010; Eguizábal et al., 2018), student riding times (Bennet et al., 1972; 

Thangiah et al., 1992; Li and Fu, 2002), and student walking distance to a bus stop 

(Bowerman et al., 1995). De Souza Lima et al. (2017) propose a heuristic for multi-

objective capacitated rural SBRP, considering total weighted student travel time, route 

balance among drivers, and routing costs.  

Similarly, Mokhtari and Ghezavati (2018) use a hybrid ant colony and heuristic 

method for a multi-objective mixed-load school bus routing model, aiming to 

minimize buses and average student riding time. 

Authors often incorporate SBRP features (e.g., number of buses, bus driver 

distance, student riding distance, walking distance, load balancing, maximum route 

length) into the objective function. Some SBRP applications include time constraints, 

such as minimum and maximum school arrival times, limiting each bus's student 

pickups and travel to school within specified periods (e.g., Swersey and Ballard, 1984; 

Braca et al., 1997). Newton and Thomas (1974) explore a multi-school model with 

varying starting times, suggesting time window division for each school.  

Another survey examines various SBRP variants, focusing on multiple schools in 

rural or urban areas. Spada et al. (2005) propose a multiple SBRP sequencing schools 

by opening time, using a greedy method for route construction. Bögl et al. (2015) 

introduce a mathematical model and heuristic for the school bus routing and 

scheduling problem with transfers, allowing pupils to change buses from home to 

school. Studies on multi-school SBRPs are often categorized into single-load and 

mixed load-based approaches. 

In the former case, students heading to different schools cannot travel on the same 

bus simultaneously, whereas the latter permits this (see, e.g., Ellegood et al., 2015). 

For further literature on the mixed-load routing problem, please see Section 1.3. 

Han et al. (2022) address a variant of the SBRP, named MDSBRP, involving 

multiple schools and buses. They employ a simulated annealing metaheuristic 
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considering school time windows and bus capacity constraints to minimize the number 

of buses and total operating mileage. The algorithm, tested on a benchmark case, 

exhibits substantial reductions in the number of required buses and operating costs, 

effectively handling the challenges posed by the MDSBRP feature. 

Sciortino et al. (2023) tackle the SBRP with a heterogeneous fleet and a single-load 

strategy, introducing realism through features like student eligibility, maximum 

walking distances, riding time limits, multiple bus stops, and diverse bus types with 

varied dwell times. Their objective function focuses on total route journey time, 

encompassing bus travel and dwell time. They develop an algorithm to address 

location, allocation, and routing in SBRP, tested on real-world instances from Malta, 

the United Kingdom, and Australia with over 1800 potential bus stops and 750 

students. The algorithm efficiently provides high-quality solutions within a reasonable 

computing time, particularly excelling in suggesting optimal subsets of bus stops. 

Recently, various solution approaches have gained attention for addressing 

components of the SBRP, including Tabu search (Pacheco et al., 2013) and 

approximation algorithms (Bock et al., 2011 & 2013). Yigit et al. (2018) apply Ant 

Colony Optimization (ACO) and Genetic Algorithm (GA) to the dynamic school bus 

routing problem (DSBRP). Gawande and Lokhande (2018) emphasize the advantages 

of employing GA and Artificial Intelligence (AI).  

Li and Fu (2002) recognize the absence of a singular approach to studying SBRP, 

introducing multiple solution methods aligned with the problem's context. 

Camila Pérez et al. (2022) introduce a partial evaluation approach for the SBRP, 

focusing on specific aspects of the solution to reduce execution time. The model retains 

and examines additional information from the previous solution, like modified routes 

or altered objective function values, in each iteration. It identifies the cost 

improvement of the new solution compared to the previous one and determines which 

algorithmic element contributes to this enhancement. The proposed model is tested on 

112 samples, ranging from simple instances with 12 bus stops and 50 students to 

complex scenarios with 800 students across 50 bus stops.  

The results indicate that for small samples, the computational time for partial 

evaluation (PE) is notably worse than that for total evaluation (TE). However, in the 

majority of cases (80%), especially those with large and complex instances, PE 

outperforms TE in terms of speed. Regarding costs, it is observed that TE costs are 

higher than PE costs in 20% of cases.  

Metaheuristic algorithms have been widely developed and proposed as effective 

solution methodologies in various studies, with their efficacy evaluated through 

multiple comparative examples (Hou et al., 2022; Xiong et al., 2022). In a recent study 

by Caldas et al. (2022), an iterated local metaheuristic is suggested to enhance the bus 

routing system for 13,664 students in rural areas of Rio de Janeiro state, Brazil. The 

problem involves a diverse fleet of buses, aiming to minimize the overall route cost 

while considering constraints like bus capacity and maximum travel distance. The 

proposed solution demonstrates a 40.5% decrease in the average cost of routes and a 

46.0% reduction in the average distance per student traveled by bus compared to 

existing model. Developing effective metaheuristics faces a crucial challenge in 
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selecting moves for fruitful exploration. Hou et al. (2022) investigate focusing on the 

impact of metaheuristic components on solution quality. They propose a unique 

approach for selecting low-level heuristics, utilizing a Q-learning technique during 

exploration to choose the most effective heuristic from a set. The selected heuristic 

acts proactively to enhance the solution. The algorithm seeks an optimal course of 

action by maximizing collective scores for superior outcomes. Findings indicate that 

the Q-learning-based selection approach outperforms random and roulette wheel 

selection strategies in terms of competitiveness. 

Bilevel mixed-integer programming is widely employed to model hierarchical 

decision-making processes. Parvasi et al. (2017, 2019) introduce an optimization 

model enabling demand resourcing, incorporating forecasting of student responses 

using the LAR strategy.  

The higher-level decision-maker selects bus stops and routes, while the lower level 

decides on outsourcing services. Notably, the model creates a fair and realistic 

transportation system, accommodating students' preferences. Each student has a 

priority order for selecting bus stops and alternative distribution services. 

Calvete et al. (2023) employ a bilevel approach with three subproblems: 1) selecting 

a subset of bus stops, 2) allocating students to chosen bus stops based on preferences, 

and 3) creating optimal bus routes while adhering to capacity constraints. The study 

aims to convert the bilevel optimization model into a single-level mixed-integer linear 

programming form. Students, following a priority order, freely decide which bus stop 

to reach when assigned. The approach involves a two-level decision process, with the 

higher level minimizing total travel cost by selecting a bus stop, and the lower level 

allowing students to choose the most convenient bus stop. A bilevel school bus 

metaheuristic is proposed and compared with existing benchmarks. The results show 

that the free selection mechanism for students leads to conflicts with bus capacity 

constraints and feasibility issues, especially when the bus has limited capacity. 

Table 1-1 summarizes key features addressed in the literature concerning the school 

bus routing problem. 

Table (1-1)  Features studied in the literature 

Reference 
Urban/ 

Rural 

Mixed 

load 

Fleet 

mix 
Cost School Constraint 

Oscillatio

n strategy 

Sub problems 

considered 
Solution methodology 

Angel et al. 

(1972) 
Urban  HO  

N 

RC 

Multiple 
C,MRT  BRG  

Traveling salesman algorithm  

Newton & 

Thomas (1969) 
Urban   HO  

Not 

specified  

Single 
C, MRT  BRG 

Constructive heuristic combined 

with improvement (2-opt) 

Newton & 

Thomas (1974) 
Urban   HO  N, RC 

Multiple 
C, MRT  

BRG  

RS 

Constructive heuristic combined by 

improvement procedure  

Verderber et 

al. (1974) 
Urban  HO  N, RC  

Multiple 

C, MRT  BRG 

Minimum distance linking 

algorithm (Dial-Moore algorithm) 

combined with special techniques 

Bodin & 

Berman (1979) 
Urban ✓ HO N  

Multiple 
C, MRT 

TW 
 

BSS 

BRG 

RS 

Shortest chain algorithm combined 

with 3-opt procedure  

Gavish & 

Shlifer (1979) 
Urban   HO  N, RC  

Single 
C, MRT  BRG  

Branch and bound procedure  

Dulac et al. 

(1980) 
Urban  HO N, RC 

Single C, MRT, 

MWT 
 

BSS 

BRG 

Constructive heuristic combined 

with improvement (2-opt) 

Swersey 

&Ballard 

(1984) 

Urban  HO  N  

Multiple 

TW  RS 

NLMIP, Two discretized MIP 

Boweman et 

al. (1995) 
Urban  HO 

N 

SWD 

LB 

Single  
C 

MWT 
 

BSS 

BRG 

Districting algorithm combined 

with set covering and traveling sale 

man problem   
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Desrosiers et 

al. (1981-

1986) 

Both  HO 
FC 

RC 

Multiple 
C, MRT, 

MWT 
 

BSS 

BRG 

RS 

Constructive heuristic combined 

with improvement (2-opt) 

Chapleau et al. 

(1985) 
Urban   HO  N, SWD  

Single C, MRT, 

MWT 
 

BSS 

BRG 

Districting algorithm combined 

with 2-opt operator 

Braca et al. 

(1997) 
Urban ✓ HO N  

Multiple  C, MRT, TW, 

EPT, MSN 
 

BRG 

BSS 

Location based heuristic  

Spada et al. 

(2005) 
Rural ✓ HT TL 

Multiple  
C, TW  

BRG 

RS 

Simulated annealing technique 

Schittekat et 

al. (2006) 
Urban   HO RC  

Single   
C   

BRG 

BSS 

 integer programming formulation 

(VRP-like model) 

Park et al. 

(2012) 
Rural ✓ HO N 

Multiple  MRT 

TW 

C 

 
BRG 

RS 

Constructive heuristic combined 

with Post improvement  

Riera-Ledesma 

& Salazar-

Gonzlez ( 

2013) 

Urban  HO RC  

Single  

C 

MWT 
 

BRG 

BSS  

Branch –cut approach  

Schittekat et 

al. (2013) 
Rural  HO RC 

Single 

C 

MWT 
 

BRG 

BSC 

Greedy randomized adaptive 

search procedure combined with a 

variable neighborhood decent 

improvement method 

Pacheco et al. 

(2013) 
Rural  HO 

TSD, 

MRL 

Single 

C  BRG  

no dominated sorting genetic 

algorithm (NSGA) –II with tabu 

search 

Kinable et al. 

(2014) 
Urban  HO RC 

Single  MWT 

C 
 

BSS 

BRG 

column generation approach 

Bögl et al. 

(2015) 
Urban ✓ HO RC 

Multiple   TW 

C 

MWT 

 
BRG 

RS 

Constructive heuristic combined 

with local search operators 

Hernan 

Caceres et al. 

(2015) 

Sub 

Urban 
✓ HO 

RC 

N  

Multiple   TW 

C 

MRT 

 BRG  

Column generation approach 

Ellegood et al. 

(2015) 

Semi-

rural 
✓ HO RC 

Multiple  C 

TW 
 

BRG 

RS 

general strategic analysis using 

continuous approximation models 

Yao et al. 

(2016) 
Urban ✓ HO RC 

Multiple  MRT 

C 
 BRG 

Aggregation-based clustering 

algorithm and improved ACO 

De Souza 

Lima et al. 

(2017) 

Rural ✓ HO 

RC 

TSD 

RB 

Multiple 

C  BRG  

Different heuristics based on an 

Iterated Local Search (ILS) 

framework 

Mokhtari et al. 

(2018) 
Rural ✓ HT 

N 

TSD 

 

Multiple C 

MRT 

TW 

 
BRG 

BSS 

A hybrid multi-objective ant 

colony,  

Miranda et al. 

(2018) 
Rural ✓ HT 

FC 

RC 

Multiple 
C, TW, MRT, 

MWT 
 

BRG 

BSS 

 

Different heuristics based on an 

(ILS) framework 

Yigit et al. 

(2018) 
Urban  HO  RC  

Single  
C  BRG  

 (ACO) and (GA) 

Parvasi et al. 

(2018) 
Urban  HO 

IPS, RC, 

SC 

 
C, MWT   

BRG 

BSS 

two hybrid approaches of GA‐EX‐

TS and SA‐EX‐TS 

Our study Urban  HO RC 

Single  

C,  MWT ✓ 
BSS 

BRG 

Constructive heuristic combined 

with adaptive large neighborhood 

search  

• Fleet mix 

. Homogeneous fleet (HO) 

. Heterogeneous fleet (HT) 

• Constraint 

. Vehicle capacity (C) 

. Maximum riding time (MRT) 

. School time window (TW) 

. Maximum walking time or distance 

to bus stop (MWT) 

. Earliest pick-up time (EPT) 

. Minimum student number to create 

a route (MSN) 

. Maximum riding distance of bus 

(MRD) 

. Depot departure time (DDT) 

. Maximum number of students in 

each stop (MNS) 

. Maximum route length (MRL) 

• Objective 

Fleet cost (FC) 

Routing cost (RC) 

Total student riding distance or time (TSD) 

Student walking distance (SWD) 

Load balancing (LB) 

Route balancing (RB) 

Maximum route length (MRL) 

Child’s time loss (TL) 

Number of bus (N) 

Income provided by service (IPS) 

students’ costs (SC) 

• Sub 

problems 

considered 

in the 

literature 

Bus stop selection 

(BSS) 

Bus route 

generation 

(BRG) 

Route scheduling 

(RS) 

School bell time 

adjustment 

(SBT) 

 

• Solution method 

Ex =Eexcat method 

ALNS =Adaptive large 

neighborhood sarch 

TS =Tabu search 

SA=Simulated annealing 

ILS = Iterated Local 

Search 

ACO=Ant colony 

optimization 

AI=Artificial intelligence 

NLMIP= Nonlinear mixed 

integer  programming  

 

 

1-3- Literature review concerning the mixed-load approach   

An interesting application area receiving significant attention involves transporting 

students using a mixed-load framework, known as a mixed-loading plan. This 

https://link.springer.com/article/10.1023/A:1021039126272
https://link.springer.com/article/10.1023/A:1021039126272
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approach entails moving students from different schools on the same bus 

simultaneously. 

Bodin and Berman (1979) introduce the mixed-load problem, emphasizing its 

common use in rural areas to improve school bus service flexibility and reduce 

operational costs. They note that the mixed-load approach can reduce transportation 

costs associated with the number of buses, total travel time, and distance. However, 

they stress the importance of carefully considering the distance between schools and 

imposing maximum route length restrictions to effectively reduce students' maximum 

riding time on the bus. 

Chen et al. (1988) argue that adopting a single load assumption results in an 

excessive number of buses needed for student transportation, particularly in low-

density areas. 

The first computational algorithm for the mixed-load problem is proposed by Braca 

et al. (1997). In this paper, they develop an insertion heuristic where each bus stop and 

its respective school are inserted in the cheapest position while satisfying time window 

and bus capacity constraints. The authors assert that the mixed-load problem enhances 

flexibility and yields significant cost savings. Braca et al. (1997) note that mixed 

loading has been allowed for most parts of New York City. 

In a related study, Spada et al. (2005) address the problem with multiple schools 

and propose a heuristic procedure for its solution. The suggested approach enhances 

the service level offered by the bus operator while accommodating mixed-load cases. 

Schools are sorted based on their starting times, and routes are created using a greedy 

method. Subsequently, local search frameworks (simulated annealing and Tabu 

search) are employed to enhance the initial solution. 

Park and Kim (2012) enhance the model proposed by Braca et al. (1997) by 

incorporating post-improvement procedures. They also conduct a quantitative study to 

assess the specific effects of utilizing the mixed-loading method. The problem 

encompasses various features, including a homogeneous fleet, different starting times, 

time windows, and capacity constraints. The outcomes demonstrate savings in the 

number of buses required. They also apply the proposed algorithm to the real-world 

operation of school buses, resulting in reduced bus numbers compared to current 

practices. 

Bogl et al. (2015) examine bus stop selection, pupil assignment, bus routing, and 

bus scheduling. They compare results using two different modeling approaches, 

namely DARP (Dial-A-Ride Problem) and OVRP (Open Vehicle Routing Problem). 

Campbell et al. (2015) utilize a strategic continuous approximation to explore the value 

of mixed loading for school bus routing problems and develop three-phase heuristics 

to assess mixed bus trips. 

The findings indicate that mixed trips are more advantageous when (1) students are 

sparsely distributed, (2) there are numerous bus stops, and (3) a significant percentage 

of stops can be shared. The results underscore that mixed routing is particularly 

beneficial with an appropriate distribution of students between schools and a large 

percentage of shared stops between schools. 
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Kang et al. (2015) investigate the assumptions of mixed-loading, homogeneous 

vehicles, and schools with different starting times. The objectives are to minimize the 

number of buses used (N), the sum of the travel distances of the buses (TBD) and the 

sum of the travel distances of the students (TSD). In case an infeasible solution arises 

after either a mutation or crossover operator, time-consuming repair operators are 

employed to return the solution to a feasible state. 

Chen and Kong et al. (2015) tackle a bi-objective school bus routing problem, 

factoring in fleet fixed costs and routing costs. They consider different school starting 

times and heterogeneous fleet assumptions. 

Maciel Silva et al. (2015) address a similar problem, incorporating mixed-load, 

heterogeneous fleet, and simultaneous school starts. Using the GRASP heuristic, they 

achieve a reduced fleet size (up to 37%) and lower traveled distance (up to 20%) while 

accounting for mixed-load effects. 

Chen et al. (2015) introduce a unique problem characteristic by considering split 

demand for each stop, allowing multiple buses to visit the same stop. 

Lima et al. (2016) develop five metaheuristic-based algorithms, considering mixed 

load and heterogeneous fleet scenarios.They also compare the results of the proposed 

algorithms in their paper. The findings show that the mixed-load approach leads to 

greater cost savings and a smaller fleet size compared to the single load approach. 

Yao et al. (2016) propose a two-stage heuristic algorithm for the SBRP with the 

mixed load approach. They devise a two-stage metaheuristic, combining an aggregated 

clustering algorithm (AC) with improved ant colony optimization, considering mixed 

load characteristics.The paper explores two modes: SBRP with a virtual stop 

(assuming each common stop is virtualized into different stops with the same position) 

and interscholastic transportation (inserted in the route framework to improve the order 

of visiting common stops). The results indicate that mixed-load can achieve a shorter 

time compared to a single load. Importantly, it shows that the virtual stop scenario 

works well only for small cases, while interscholastic transportation provides better 

performance for larger instances. Regarding computing time, the SBRP with virtual 

stop mode takes longer running time than the case considering interscholastic 

transportation mode. 

In a recent study, Lima et al. (2017) tackle multi-objective meta-heuristic 

algorithms for the multi-objective SBRP, incorporating mixed-load and a 

heterogeneous fleet. The proposed objectives encompass the total traveling time of 

students, balance of routes between drivers, and routing cost. Four multi-objective ILS 

metaheuristics are developed, demonstrating improved performance compared to 

current literature. 

In the realm of mixed-load SBRP, Miranda et al. (2018) present an interesting paper 

introducing research that considers both mixed-load (students from different schools 

sharing the same bus) and multi-load problems (simultaneous pickup and delivery of 

students, regardless of their shift or commuting direction). They develop four versions 

of heuristics within an Iterated Local Search (ILS) framework, incorporating different 
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strategies and features. The results indicate that the local search with a small-time 

window strategy produces better results than other versions. 

Additionally, Mokhtari et al. (2018) propose a bi-objective mixed-integer linear 

programming formulation for mixed-load SBRP. 

Several studies have explored bus scheduling approaches (Desrosiers et al., 1981; 

1986a; Swersey and Ballard, 1984; Graham and Nuttle, 1986; Fügenschuh, 2009; Kim 

et al., 2012). Fügenschuh (2009) addresses a school bus scheduling problem allowing 

adjustments to school starting times and transshipment of students between trips. An 

integer programming model based on VRPTW (vehicle routing with time windows) is 

introduced and solved using a branch-and-cut method with various pre-processing 

procedures and valid cuts. 

Kim et al. (2012) propose a bus scheduling problem where trips for each school are 

given separately, each containing a sequence of stops and a related school. The 

problem is formulated as a vehicle routing problem with time windows. Buses are 

assigned to predefined trips using two approaches: an exact method for small cases 

and a heuristic approach for larger cases. The insights from this literature provide a 

comprehensive understanding of various aspects of the bus routing problem, 

particularly in the context of mixed-load planning. 

Hou et al. (2020) investigate the Heterogeneous Fleet School Bus Routing Problem, 

considering limited and unlimited fleet conditions. Their objective is to minimize both 

fixed and variable costs, and they present an ILS metaheuristic using the set 

partitioning algorithm. The goal is to enable this metaheuristic to obtain a globally 

optimal route through set-partitioning. 

To better understand mixed-load effect in the current study, Table 1-2 summarizes 

the main features considered in rural and urban school bus routing. 

Table (1-2)  Features Studied in the Literature 

Reference 
Urban/ 

Rural 

Mixed 

load 

Fleet 

mix 
Cost Constraint Area 

Load 

balancing 

Starting and 

ending location 

of the bus 

Share 

flexible depot 

Sub problems 

considered 

Bodin and Berman (1979) Rural ✓ HO FC 
C, MRT 

TW 

Brentwood 

New York 
 School  

BSS 

BRG 

RS 

Hargroves et al. (1981) Urban ✓ HT 
FC 

RC 

C 

MRT 

MNS 

Albemarle, 

Virginia 
 School  

BRG 

RS 

Boweman et al. (1995) Urban  HO 

FC 

SWD 

RC 

LB 

C 

MWT 
Ontario Canada ✓ School  

BSS 

BRG 

Desrosiers et al. (1981-

1986) 
Both  HO 

FC 

RC 

C, MRT, 

MWT 

Drummondville, 

Canada 
 Depot  

BSS 

BRG 

RS 

Chen et al. (1988) Rural ✓ HO 
FC, 

RC 
C, MRT Choctaw Alabama  Depot  

BRG 

BS 

Li and Fu (2002) Urban  HT 

FC, 

TSD 

RC 

C Hong Kong ✓ Depot  BRG 

Braca et al. (1997) Urban ✓ HO FC 
C, MRT, TW, 

EPT, MSN 

Manhattan, New 

York 
 Depot  

RG 

RS 

Spada et al. (2005) Rural ✓ HT TL C, TW Switzerland  School  
BRG 

RS 

Fügenschuh et al. (2009) Rural  HO 
FC 

RC 
TW Germany  Depot  

RS 

SBT 

Park et al. (2012) Rural ✓ HO FC 

MRT 

TW 

C 

Artificial  Depot  
BRG 

RS 

Campbell et al. (2015) Rural ✓ HO 
RC 

FC 

MRT 

C 

Missouri 

USA 
 Depot  

BRG 

RS 
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TW 

Kang et al. (2015) Urban ✓ HT 

RC 

FC 

TSD 

MWT 

TW 

DDT 

C 

USA  Depot  

BSS 

BRG 

RS 

Bögl et al. (2015) Urban ✓ HO RC 

TW 

C 

MWT 

-  
Depot 

School 
 

BRG 

RS 

Hernan Caceres (2015) 
Sub 

Urban 
✓ HO 

RC 

FC 

TW 

C 

MRT 

New York 

United States 
 Depot  

BRG 

RS 

Ellegood et al. (2015) Semi-rural ✓ HO RC 
C 

TW 

Missouri 

USA 
 Depot  

BRG 

RS 

Silva et al. (2015) Rural ✓ HO RC 

C 

MWT 

MRD 

Brazilian city  School  

 

BSS 

BRG 

Chen et al. (2015) Urban  
HO, 

HT 

RC 

FC 

TW 

C 

MRT 

from literature  Depot  
BRG 

RS 

Yao et al. (2016)  ✓ HO RC 
MRD 

C 
-  School  BRG 

Lima et.al (2016) Rural ✓ HT 
FC 

RC 
C 

Minas Gerais, 

Brazil 
 Depot  BRG 

Lima et.al (2017) Rural ✓ HT 

TSD 

LB 

FC 

C 

Artificial 

and 

from the literature 

(Park et. (2010) 

 Depot  BRG 

Caceresa et .al (2015) Urban  HO 
N 

RC 

C 

MRT 

MWT 

Western New York  Depot  BRG 

Rodríguez-Parra et.al 

(2017) 
Urban ✓ HO  C Bogota  School  

BRG 

RS 

Mokhtari et.al (2018) Rural ✓ HT 

N 

TSD 

 

C 

MRT 
-  Depot  BRG 

Miranda et.al (2018) Rural ✓ HT 
FC 

RC 

C 

MWT 

MRT 

Esp´ırito Santo, 

Brazil 
 Depot  

BRG 

BSS 

 

Our study Urban ✓ HO RC 

C 

MWT 

TW 

MNS 

Tehran 

Iran 
✓ Depot ✓ 

BSS 

BRG 

• Fleet mix 

. Homogeneous fleet (HO) 

. Heterogeneous fleet (HT) 

• Constraint 

. Vehicle capacity (C) 

. Maximum riding time (MRT) 

. School time window (TW) 

. Maximum walking time or distance to bus stop 

(MWT) 

. Earliest pick-up time (EPT) 

. Minimum student number to create a route (MSN) 

. Maximum riding distance of bus (MRD) 

. Depot departure time (DDT) 

. Maximum number of students in each stop (MNS) 

. Maximum route length (MRL) 

• Objective 

Fleet cost (FC) 

Routing cost (RC) 

Total student riding distance (TSD) 

Student walking distance (SWD) 

Load balancing (LB) 

Maximum route length (MRL) 

Child’s time loss (TL) 

Number of bus (N) 

 

• Sub-problems considered in the literature 

Bus stop selection (BSS) 

Bus route generation (BRG) 

Route scheduling (RS) 

School bell time adjustment (SBT) 

 

1-4- Concerning transporting students for both morning and afternoon shifts.  

Numerous studies have focused on optimizing SBRP while accounting for 

characteristics during both morning and afternoon shifts. In the morning, buses start 

from the depot (usually the driver's location) to pick up students from assigned stops 

and transport them to their respective schools. Conversely, in the afternoon, buses pick 

up students from schools and take them to their homes or stops. Existing studies have 

approached the morning and afternoon bus routing problem from various perspectives, 

as outlined in Table 1-3. 

Savas (1978) suggests treating the afternoon trip as a replicated sequence of the 

morning version to balance student-riding time between routes. Braca (1997) contends 
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that solving the morning routing problem is more intricate than its afternoon 

counterpart due to a varying range of school time windows and traffic congestion. 

They note that the traffic congestion constraint is higher in the morning than the 

afternoon, and the school time window is less restricted in the afternoon. This rationale 

justifies why the afternoon problem has been investigated less than the morning case. 

The results of Braca et al.'s (1997) study highlight that the morning requires more 

buses than the afternoon, with the average number of buses reduced by 5% in the 

afternoon. 

Li and Fu (2002) assert that the afternoon problem could be transformed into a 

morning problem with minor modifications. Bodin and Berman (1979) suggest 

presenting the afternoon problem in a replication format, where the stops considered 

in the afternoon shift are replicated from the morning shift. In practice, the afternoon 

is treated as the reverse of the morning to minimize travel time. Importantly, this 

reverse sequence necessitates careful attention to balancing the riding time in the 

generated routes. 

Desrosiers et al. (1981 & 1986) address route scheduling for both morning and 

afternoon shifts, introducing constraints such as an upper limit on the time students 

spend between their arrival at school and the actual starting time. Similarly, Kim et al. 

(2012) tackle the morning and afternoon routing problem based on a real case.  

The proposed algorithm demonstrates the ability to reduce the number of buses by up 

to 17% in the morning and 14% in the afternoon. Moreover, the solution shortens total 

travel time by 12% and 16.1% in the morning and afternoon shifts, respectively. 

Shafahi et al. (2017) introduce a new mathematical model aimed at maximizing 

compatibility among trips while minimizing the total number of required buses.  

They adapt scheduling problems to the school bus routing problem, defining following 

objectives: a bi-objective approach maximizing trip compatibility and minimizing 

travel time; maximizing trip compatibility by excluding travel time from the proposed 

objective; minimizing travel time; and minimizing the number of buses. The authors 

emphasize the importance of considering route compatibility when aiming to minimize 

the number of buses. They include trip compatibility in the scheduling problem within 

the routing case. Additionally, the authors suggest that their model could yield better 

results with a 30-minute time interval between the earliest and latest school time 

windows. 

Compared to the traditional scheme, the proposed model reduces the number of 

required buses by 13%. In a subsequent study, the authors (2017) extend their previous 

work, incorporating both routing and scheduling problems to enhance their model's 

performance. The modified objective differs from the original one by Shafahi et al. 

(2017), assigning a lower weight to trip compatibility and a higher weight to schools 

with shorter dismissal times. Employing a new solution approach, a two-step heuristic 

algorithm, they solve a proposed problem in the literature, resulting in a 25% savings 

compared to the findings reported in Shafahi et al. (2017).  

Following Shafahi et al. (2017), Wang et al. (2017) advocate for defining the 

financial objective of the school bus routing problem to address both routing and 



 

21 

 

scheduling sub-problems. They argue that simultaneous consideration of routing and 

scheduling enhances compatibility. The problem includes known school bell times and 

defines the number of students at each stop. In their novel integrated model, all buses 

are assumed to have the same capacity and follow a single load scheme. The afternoon 

trip in this model is constructed in the reverse order of the morning trip, with pickup 

and drop-off times drawn from Braca et al. (1997). In the afternoon, the bus picks up 

students from stops and sequentially transports them to their respective schools. 

Results show that the integrated model outperforms the one proposed by Shafahi et al. 

(2017), reducing the number of required buses and total travel time by 25% and 7%, 

respectively.  

The morning and afternoon trips are consistently scheduled, with the afternoon trip 

being the reverse version of the other trip. Morfoulaki et al. (2017) present a 

framework for optimizing the school bus routing problem, considering both morning 

and afternoon characteristics. The study is conducted at a private school in 

Thessaloniki, Greece.  

The model is based on two morning trips (starting at 7:00 and 8:00 am) and three 

afternoon trips (starting at 1, 2, and 3 pm), resulting in decreased total travel time and 

emission criteria. Notably, NOX and CO2 emissions are reduced by 2.7 and 0.02 tons, 

respectively. The results highlight the advantage of an effective mixed-load scheme 

when schools and students' locations are widely dispersed. However, implementing 

the mixed-load scheme is problematic when a student of the same cluster belongs to 

the same school, emphasizing the priority of the single load scheme in such situations. 

The experimental design, when compared to the real case, has the potential to reduce 

computing time by up to 20%. 

Ellegood et al. (2015) utilize continuous approximation modeling to investigate 

how a mixed-load mechanism can reduce total travel distance during morning and 

afternoon shifts. They discover that when the distance between schools (destination 

points) is less than the critical value, the mixed-load policy leads to a greater reduction 

in total travel distance. The concept of school bell time involves adjusting the time 

window for morning arrival time at the school or the departure time window in the 

afternoon. This framework integrates routing and scheduling sub-problems, 

consequently adjusting the start and end time windows of schools on a daily basis. 

Caceres et al. (2017) introduce the school bus routing problem incorporating 

stochastic demand and duration constraints. This study represents the first attempt in 

the SBRP field to combine stochastic demands with constraints aimed at calculating 

overcrowding probability and students' lateness to school. 

 The authors account for both ridership and travel time uncertainty, with the primary 

objective being the minimization of the number of buses and the secondary objective 

being the minimization of total travel distance. The novelty lies in the mathematical 

formulation, utilizing chance-constrained programming to address the overbooking 

policy. 

Shafahi et al. (2018) introduce a special case of the balanced load-scheduling 

problem, simultaneously considering two objectives. The problem aims to assign stops 

to each route to minimize the number of routes and optimally shorten the route length. 
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The second objective focuses on minimizing deviation from the target duration, set at 

75 minutes for all instances. The case study draws from two real problems: California 

with 54 trips and the Howard County Public School System (HCPSS) with 994 trips. 

The balanced version proves capable of reducing school operational costs by 16% and 

the standard deviation of trip duration to 47%. The study's results offer a more suitable 

planning approach for drivers. 

Shafahi et al. (2018) recommend combining bus routing and scheduling using a 

two-step heuristic.  

They first generate an initial solution with an "iterative minimum cost matching-based 

insertion heuristic." Then, they enhance the solution with simulated annealing and 

Tabu search under a single load assumption. Results show a 25% reduction in required 

buses compared to Park et al. (2012) and a 10% decrease in the maximum riding time 

of 2,700 seconds. The authors propose a post-improvement that could further 

strengthen the solution by 4.9%. The suggested mixed-load framework needs 4% 

fewer buses than Campbell et al.'s (2015) solution. 

Oluwadare et al. (2018) propose a multi-objective function to minimize the number 

of routes and total travel distance for effective management of morning and afternoon 

trips. They make the following assumptions: Each route can have a maximum of two 

buses, with one at the source point and another at the destination point.  

Students in a route can take more than one bus, disembarking at a special stop and 

getting picked up at another stop before reaching their respective school. Additionally, 

all buses have the same capacity. 

Levin et al. (2016) suggest employing a decision support system for developing 

effective bus routing schemes. The solution utilizes the Clarke and Wright heuristic 

with the aim of minimizing bus operating time for both morning and afternoon shifts, 

adhering to predefined constraints.  

To account for travel time and ridership uncertainty, the authors incorporate varying 

travel times at peak traffic congestion points and set maximum ridership per stop. The 

results indicate a substantial operational saving in the public transport system. 

Bertsimas et al. (2020) develop an algorithm allocating students to stops, combining 

stops on routes, and assigning buses. Applied to two school years in Boston, 

Massachusetts, their algorithm reduces required buses by 7%, translating to an annual 

saving of $12 million. Introducing time analysis as an innovation, the authors conduct 

a survey to determine the community's preferred school start time. Using preference 

scores and the algorithm, they calculate the required buses, optimizing between 

preference score (i.e., respondent’s satisfaction) and transportation cost. Survey results 

indicate 85% are willing to change their school start time by an average of one hour. 

In summary, the authors propose a novel optimization model for the School Time 

Selection Problem (STSP). 

Expanding the Social Bus Routing Problem (SBRP), Orejuela Cabrera et al. (2021) 

address its social dimension by introducing affinity as a factor in analyzing positive 

relationships between students on the bus. They develop a solution that assigns 

students to the bus, evaluates their affinity, and defines routes accordingly. The paper's 
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key contribution lies in emphasizing the role of affinity in deciding which students 

should be assigned to a given bus. 

 
Table (1-3)  Features studied in the literature  

Reference Year 

Sub-

problem 

type 

Service 

Environment 

Split 

Load 
Mixed loads Fleet mix Obj. Con Area 

Bodin and 

Berman 
1979 

BSS, BRG, 

BRS 
Rural  YES HO N C, MRT, TW United States 

Hargroves 

et al. 
1981 BRG, BRS Urban  YES HT N, TBD C, MRT, MSN United States 

Boweman et 

al. 
1995 BSS, BRG Urban   HO 

N, SWD, TBD, 

LB 
C, MWT Canada 

Desrosiers 

et al. 

1981-

1986 

BSS, BRG, 

BRS 
Both   HO N, TBD C, MRT, MWT Canada 

Chen et al. 1988 BRG,BSS Rural   HO N, TBD C, MRT Choctaw 

Braca et al 1997 BRG, BRS Urban  YES HO N 
C, MRT, TW, 

EPT, MSN 
United States 

Li and Fu 2002 BRG Urban  NO HT N, TSD TBD C Hong Kong 

Spada et al. 2005 BRG, BRS Rural  YES HT TL C, TW Switzerland 

Kim et al 2012 BRS Urban   HT N C, TW United States 

Park et al 2012 BRG, BRS Rural  YES HO N MRT, TW, C Artificial 

Ellegood et 

al. 
2015 STP Both  YES HO TBD C,TW United States 

Campbell et 

al. 
2015 BRG, BRS Rural  YES HO N, TBD MRT, C, TW United States 

Kang et al 2015 
BSS, BRG, 

BRS 
Urban  YES HT 

TBD, N 

,TSD,NS 
C,MRT,TW Artificial 

Bögl et al. 2015 BRG, BRS Urban  YES HO TBD TW, C, MWT United States 

Caceres et 

al 
2018 BRG Urban  YES HT N, TBD TW, C, MRT United States 

Silva et al 2015 BSS,BRG Rural  YES HO TBD C, MWT, MRD Brazil 

Ruiz et al 2015 BRG, BRS Urban  YES HO N C Artificial 

Levin & 

Boyles 
2016 BRG Urban  NO  TBD C, MRT United States 

Caceres et 

al 
2017 BRG, BRS Urban  NO HO N, TBD 

C, MRT, COO, 

COL 
United States 

Bertsimas et 

al 
2020 BRG,BRS Urban  NO HT N C,TW United States 

Yao et al. 2016 BRG,BRS Urban  YES HO TBD C Artificial 

Lima et.al 2016 BRG Rural  YES HT N, TBD C Brazil 

Siqueira et 

al. 
2016 BRG Both  NO HT TBD C,TW Brazil 

Rodríguez-

Parra et.al 
2017 BRG, BRS Urban  YES HO TBD C Colombia 

Lima et.al 2017 BRG, BRS Both  YES HT TBD, LB ,TC C Brazil 

Mokhtari 

et.al 
2018 BRG Rural  YES HT TSD, LB ,TC C MRT Artificial 

Miranda 

et.al 
2018 BRG, BSS Rural  NO HT N, TBD C, MWT, MRT Brazil 

Shafahi et al 2017 BRG, BRS Rural  NO HO N, TBD,TRC C,TW Artificial 

Worwa 2017 BRG, BSS   NO HO N MWT Artificial 

Shafahi et al 2018 BRG, BRS Both  NO HO TC C, TW, MRT Artificial 
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Oluwadare 

et al 
2018 BRG Both  YES HO N, TBD C Nigeria 

Bertsimas et 

al 
2019 

BSS, BRG, 

BRS, SBA 
Urban  NO HO SWD, N, TSD C, MRT, TW United States 

Calvete 2020 BRG, BSS TBD  NO HO TBD C,MWT Artificial 

E HOU 2020 BRG Rural  YES HT N C,TW,MRT Artificial 

E HOU 2020 BRG Urban  NO HT N,TBD C,MRT,MNB China 

Sciortino 2021 BRG, BSS Urban  NO HO N,TBD,SWD C,MRT 
UK and 

Australia 

Ansari 2021 BRG Urban  NO HT TBD C Artificial, 

Li 2021 BRG, BSS Urban  YES HT TBD,SWD C,MRT United States 

Komijan 2021 BRG, BSS Urban  YES HO N,TBD C Iran 

Orejuela 2021 AC Urban  NO HO AC,TBD C Colombia 

Number of buses used (N),Total bus travel distance or time (TBD), Total student riding distance or time (TSD),Total student walking distance (SWD), Load or 

ride time balance(LB),Total cost (TC), Trip compatibility (TRC) , affinity of children  (AC),Number of stops (NS),Maximum riding time (MRT),Vehicle capacity 

(C),School time window (TW),Maximum walking time or distance(MWT),Earliest pick-up time (EPT),Minimum student number to create a route(MSN),Chance 

of overcrowding(COO),Chance of being late(COL),Child’s time loss (TL), Maximum no of buses (MNB),mixed ride(MR) 

 

 

 

1-5- Concerning the safety and health issues  

Limited research exists on student safety in transportation. Chalkia et al. (2016) 

address this gap by introducing a new method for safer and more efficient 

transportation of students to and from school. The method involves creating a safety 

map that assigns risk safety features to considered arcs and nodes, considering criteria 

like traffic flow, speed, and road lighting. To solve this problem, three algorithms are 

proposed, with the genetic algorithm proving superior to the others. 

Fernandes et al. (2023) suggest in their review that school-based interventions 

focusing on the built environment may moderately enhance students' physical activity, 

health, and active commuting.  

Ensuring student safety and well-being during school bus transportation poses 

challenges and concerns for school boards, families, and transportation companies. 

The transportation of students with disabilities adds further complexities for 

transportation companies.  

Ross et al. (2023) conducted a scoping review on transportation services for 

students with disabilities. The review involves analyzing 20 documents from various 

perspectives, including the viewpoints of students with disabilities, stakeholders' 

understanding of essential education, disability rights legislation, challenges and 

concerns in school transportation, and alternative transportation options. The findings 

suggest a need for considering alternative practices. Strategies to enhance 

transportation for students with special needs may include consolidating transportation 

with other students, providing training en route to school, utilizing inclusive 

technology, instructing practical skills with medical professionals, and collaborating 

with non-transportation stakeholders for safe travel planning. 

In a cross-sectional study, Rothman et al. (2021) explore the correlation between 

built environment factors and Active School Transportation (AST) safety in seven 
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Canadian communities. They analyze factors like child population density, multi-

dwelling housing density, pre-1960 housing density, school design elements (e.g., 

parking, proximity, crossing guards, cycling infrastructure, sidewalks, car drop-off, 

traffic calming devices), and road design features (e.g., intersection density, traffic 

signal density, local road density). Social and environmental factors, such as school 

population and new immigrants, are also considered.  

The study suggests that crossing guards, cycling infrastructure, and traffic signs 

significantly contribute to enhancing AST safety, with their importance varying based 

on school type, travel culture, and city-specific challenges (Rothman et al., 2018). 

Implementing initiatives and new programs in drop-off zones can be a feasible solution 

to improve school routing safety. Looking at it differently, parents of disabled children 

may demand a robust response to perceived travel risks, expressing worries about their 

children's use and access to school transportation services.  

These concerns stem from issues such as non-compliance with safety regulations 

and protocols (Falkmer et al., 2004), insufficient knowledge and skills of drivers, 

particularly with regard to students with disabilities, and inadequate seating 

arrangements on buses (Falkmer and Gregersen, 2002). Parents also express concern 

about the training and regulations provided to bus drivers, particularly their ability to 

assist disabled children with medical needs during transportation (Falkmer et al., 

2004). 

Falkmer et al. (2002) highlight the primary risk as the potential for severe injury or 

death resulting from traffic accidents. To ensure passenger safety, factors such as 

driver expertise, knowledge, and abilities; safe locations for student pick-up and drop-

off; efficient traffic management; and prevention of driver fatigue should be carefully 

considered. 

A Swedish organization, SAFEWAY2SCHOOL, has developed a technologically 

advanced program aimed at improving school travel safety. The program utilizes 

measures such as smart bus stops, GPS tags on buses, and onboard computers to 

monitor and control student safety comprehensively during bus trips (Falkmer et al., 

2014). 

Improvements are needed in various aspects of school travel safety, as highlighted 

by Dubée et al. (2017). They stress the significance of maintaining appropriate bus 

schedules and establishing a clear emergency protocol for unforeseen events during 

school bus trips. Attention should also be directed towards addressing built 

environment issues, encompassing pick-up and drop-off procedures, bus-to-

schoolyard arrangements, and individualized education programs (IEP) for each 

student. 

To tackle safety concerns effectively, it is crucial for school staff, boards, service 

providers, and bus drivers to enhance engagement with students and families, 

especially those who are vulnerable, and provide support to alleviate their concerns. 
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2-1- Introduction 

Transporting students to and from school poses a budgetary challenge for local 

governments aiming to optimize spending. Efficient coordination and planning of 

urban transportation networks are crucial. “Students are not simple packages, as in the 

case of pick-up and delivery of goods, and because these services are provided through 

the public sector” (Bowerman & Calamai, 1995). Moreover, as these services are 

public sector-provided, the School Bus Routing Problem has been extensively 

researched. SBRP focuses on safely, economically, and conveniently transporting 

students to and from school (Corberán et al., 2002). 

In real-world applications, the School Bus Routing Problem (SBRP) must account 

for additional constraints and factors related to the usability of the transportation 

network. Consequently, SBRP involves a more intricate formulation and generally 

requires a more complex solution strategy compared to the Vehicle Routing Problem 

(VRP). SBRP aims to determine routes that minimize/maximize specific objectives. 

These objectives focus on enhancing the overall public transportation system while 

adhering to various constraints such as bus capacity, maximum student riding time, 

and school time windows. 

This chapter focuses on a specific variant of the school bus routing problem for a 

single school without time windows. The School Bus Routing Problem (SBRP) 

involves following decisions: creating potential bus stops within a maximum 

allowable distance from student locations, defining optimized bus routes with selected 

stops to ensure students reach school within capacity limits. SBRP breaks down into 

three sub-problems: (1) selecting the minimal set of bus stops for each route, (2) 

allocating students to stops without exceeding capacity, and (3) defining bus routes 

with selected stops to minimize total bus travel distance. 

This chapter tackles the three sub-problems by integrating them into a single 

optimization procedure.  

Figure 2-1 exemplifies this issue. It features students (dots), potential stops (small 

squares), and a school (large square). In 2-1(a), dotted lines represent possible 

allocations to reachable stops based on walking distance. With a bus capacity of 6, a 

feasible solution is shown in 2-1(b). Note that assigning students to different stops in 

the same route is optional, while allocating students to different stops on different 

routes depends on satisfying bus capacity. 

As evident in Figure 2-1, student 1 can be assigned to stops A and B on separate 

routes. To adhere to bus capacity constraints, student 1 is compelled to walk to stop A. 

It highlights the need to address both interconnected sub-problems (1) and (3) 

simultaneously. The figure illustrates that student 1 must identify an allowable stop to 

visit (sub-problem 1). Allocating student 1 to stop B results in an infeasible solution, 

whereas allocating to stop A on the other route yields a feasible solution. Therefore, 

choosing an allowable bus stop (sub-problem 1) and determining the route to visit the 
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selected stops (sub-problem 3) must be addressed concurrently. Sub-problem 2 

examines the feasibility of a selected stop in a given route.  

 

1
A B

School

Stop

Student

 

a) Possible allocations 

1
A B

School

Stop

Student

 

b) Feasible solution, not optimal 

Figure (2-1)  possible allocations of students to stops (a) and a feasible solution (b) 

Until now, research has largely overlooked the context of addressing both bus stop 

selection and route generation problems concurrently. Only a handful of studies, such 

as those by Schittekat et al. (2006), Riera-Ledesma and Salazar-Gonzalez (2013), 

Schittekat et al. (2013), and Kinable et al. (2014), have explored these challenges in 

tandem (for more detail, see Section 1.2). Consequently, the primary focus of this 

chapter is to address both bus stop selection and route generation problems 

simultaneously. 

Concerning the solution approach, previous studies have focused on heuristics 

exploring only feasible solutions, but efficient problem-solving involves considering 

both feasible and infeasible solutions across a broader search area. For example, 

Brandao (2006) introduces Strategic Oscillation, a strategy efficiently navigating 

between feasible and infeasible search areas. This involves the oscillating local search 

(OLS) strategy, emphasizing the exploration of infeasible portions of the search space. 

The goal of oscillation is to move continually between feasible and infeasible spaces, 

with controlled movements to manage the transition.  
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Applying the strategic oscillations is not a novel concept in Vehicle Routing Problems 

(VRP). There are several reasons for adopting this strategy: 

1. Boundary identification: Investigating the extent to which it is possible to explore 

the infeasible space and the mechanism for returning to the feasible space. 

2. Enhanced global search: It contributes to a deeper search, increasing the 

probability of discovering an improved overall solution. 

3. Iterative refinement: Oscillating between feasible and infeasible regions provides 

opportunities for iterative refinement and solution improvement. 

4. Transition speed analysis: Examining the speed of transition between feasible and 

infeasible parts of the solution space yields valuable insights. 

This chapter introduces a novel application of strategic oscillation in the School Bus 

Routing Problem (SBRP). We present an iterated local search algorithm utilizing 

strategic oscillation for the dynamic transition between feasible and infeasible 

solutions. This method incorporates six neighborhood structures within a variable 

neighborhood descent approach. The heuristics, Insertion Iterated Local Search (I-ILS) 

and Nearest Neighborhood Iterated Local Search (N-ILS), are employed and 

abbreviated. To validate these metaheuristics, SBRP instances are used.  

Contributions of this chapter are: 

1) Solving SBRP with an iterated local search heuristic incorporating strategic 

oscillation. 

2) Introducing two metaheuristics, N-ILS (a variant of the Nearest Neighborhood with 

Iterated Local Search) and I-ILS (a variant of Insertion with Iterated Local Search), 

structured around constructive, intensification, and diversification stages. 

3) Obtaining the optimal solutions for small instances using the CPLEX solver, and 

tuning key components of each metaheuristic,  

4) Comparing the proposed methods (I-ILS and N-ILS) with the best-known solutions 

by Schittekat et al. (2013).  

5) Integrating both ARL and LAR strategies into a unified single-step optimization 

approach. 

The chapter is organized as follows: Problem description and formulation in Section 

2.2, solution approach and metaheuristic configuration in Section 2.3, computational 

experiments in Section 2.5, and conclusions with suggestions for future research in 

Section 2.6. 

 

2-2- Problem definition 

The studied problem, SBRP, is an extension of the familiar Vehicle Routing 

Problem (VRP). It involves a single school, one student type, and identical buses with 

fixed capacity, aiming to optimize total travel distance, akin to traditional VRP. Given 
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its extension from VRP, SBRP is likely NP-hard. The table below provides a summary 

of symbols used in the model. 

Table (2-1)  Symbol used in mathematical model 

Data 

C Bus capacity 

V Set of potential stops with |V|=n 

S Set of students 

B Set of buses 

𝐶𝑖𝑗 Travel cost from stop 𝑖 to stop 𝑗 

𝑆𝑖𝑙 
Binary parameter equal to 1 if student 𝑙 can reach stop 𝑖 , 0 otherwise.  

(When 𝑆𝑖𝑙 = 1, the distance of student 𝑙 from stop 𝑖 is within the maximum walking distance).  

𝑖 = 0 Index for school 

Decision variable 

𝑥𝑖𝑗𝑘 1 if bus 𝑘 traverses the arc from stop 𝑖 to 𝑗 , 0 otherwise 

𝑦𝑖𝑘 1 if the bus 𝑘 meets stop 𝑖 , 0 otherwise 

𝑧𝑖𝑙𝑘 1 if student 𝑙 is picked up by bus 𝑘 at stop 𝑖 , 0 otherwise 

 

The presented model is constructed following the formulation by Toth and Vigo (2002) 

for the SBRP. The SBRP formulation below is taken from Schittekat et al. (2013). 

𝑀𝑖𝑛 ∑ ∑ 𝐶𝑖𝑗

𝑗∈𝑉

∑ 𝑥𝑖𝑗𝑘

𝑛

𝑘=1𝑖∈𝑉

 
 (2-1) 

∑ 𝑥𝑖𝑗𝑘 = ∑ 𝑥𝑗𝑖𝑘 = 𝑦𝑖𝑘

𝑗∈𝑉𝑗∈𝑉

 ∀𝑖 ∈ 𝑉 , 𝑘 = 1, … , 𝑛 (2-2) 

∑ 𝑦𝑖𝑘 ≤

𝑛

𝑘=1

1 
∀𝑖 ∈ 𝑉 \{0} (2-3) 

∑ 𝑧𝑖𝑙𝑘 ≤

𝑛

𝑘=1

𝑆𝑖𝑙 
∀𝑙 ∈ 𝑆 , ∀𝑖 ∈ 𝑉 (2-4) 

∑ ∑ 𝑧𝑖𝑙𝑘 ≤ 𝐶

𝑙∈𝑆𝑖∈𝑉

 𝑘 = 1, … , 𝑛 (2-5) 

𝑧𝑖𝑙𝑘 ≤ 𝑦𝑖𝑘 ∀𝑖, 𝑙, 𝑘 (2-6) 

∑ ∑ 𝑧𝑖𝑙𝑘 = 1

𝑛

𝑘=1𝑖∈𝑉

 
∀𝑙 ∈ 𝑆 (2-7) 

∑ 𝑥𝑖𝑗𝑘 ≤ |𝑄| − 1

𝑖,𝑗∈𝑄

 ∀𝑄 ⊆ 𝑉\{𝑣0}, ∀𝑘 (2-8) 

𝑦𝑖𝑘 ∈ {0,1} ∀𝑖 ∈ 𝑉 , 𝑘 = 1, … , 𝑛 (2-9) 

𝑥𝑖𝑗𝑘 ∈ {0,1} ∀𝑖 , 𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗 , 𝑘 = 1, … , 𝑛 (2-10) 

𝑧𝑖𝑙𝑘 ∈ {0,1} ∀𝑖 , 𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗 , 𝑙 ∈ 𝑆, 𝑘 = 1, … , 𝑛 (2-11) 

 

The objective function (2-1) minimizes the total travel distance handled by all buses. 

Due to constraints (2-2), for each stop 𝑖 the number of arcs entering is exactly the same 

as the number of arcs going out from it. Constraints (2-3) guarantee that each stop is 

visited only once, except for stop 0 which is associated with the school. Constraints 

(2-4) enforce that each student is to be picked up at the stop where he/she walks to. 

Constraints (2-5) guarantee that the capacity of buses is not to be exceeded. 

Inequalities (2-6) impose that picking up a student in a non-visited stop by bus 𝑘 is not 
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possible. Constraints (2-7) state that each student is picked up only once. Constraints 

(2-8) force the connectivity of the route performed by bus k. This constraint shows 

sub-tour elimination constraints. Finally, constraints (2-9), (2-10), and (2-11) define 

the domain of the decision variables which are all binary. The MIP formulation 

presented in this section was solved using the CPLEX solver in GAMS software and 

tested on small instances (see Appendix 1). As the instance size increases, the 

computing time escalates. The exact method achieved optimality in less than one hour 

for 43 instances, involving up to 10 stops and 200 students. However, for larger 

instances, the CPLEX solver becomes impractical. To address this limitation, a 

metaheuristic approach is developed and discussed in the following section.  

The sub-tour elimination constraints (2-8) in the current implementation have been 

replaced with the Miller–Tucker–Zemlin constraints (Miller et al., 1960). Here 𝑢𝑖  

represents the order in which stop 𝑖 is visited in the sequence and serves as the variable 

to prevent sub-tours.  

 
   (2-12)                 ∀𝑖, 𝑗 = 2, … … . 𝑛, 𝑖 ≠ 𝑗 𝑢𝑖 − 𝑢𝑗 + 𝑛𝑥𝑖𝑗𝑘 ≤ 𝑛 − 1 

(2-13)  𝑢1 = 1 

2-3- Metaheuristic configurations 

Results indicate that the exact method solves only the easiest 43 instances in less 

than an hour, proving impractical for larger cases. Therefore, a fast and robust solution 

is essential. Emphasizing solution quality, specifically determining the minimum 

travel distance for buses, is crucial. To address this, two metaheuristics, N-ILS and I-

ILS, are introduced. Both are iterated local search (ILS) metaheuristics (Lourenco et 

al., 2010), comprising constructive, intensification, and diversification stages.  

Notably, the metaheuristics differ in the constructive stage for generating initial 

SBRP solutions (see Algorithm 2-1). The intensification and diversification stages are 

identical in both metaheuristics. In N-ILS, the constructive stage employs a nearest 

neighborhood heuristic, while I-ILS utilizes an insertion heuristic. The resulting 

solutions from these heuristics become inputs for the intensification stage, driven by 

an oscillating local search (OLS) heuristic. OLS comprises two levels: (1) 

improvement through a variable neighborhood descent (VND) heuristic, a variant of 

variable neighborhood search (VNS) (Hansen and Mladenovic, 1999), and (2) re-

optimization using remove and redistribution operators. These stages are executed 

sequentially (refer to Section 2.3.5). 

The VND heuristic in the improvement phase incorporates six local search 

operators: three intra-route and three inter-route operators. Intra-route operators focus 

on enhancing the solution by modifying one route at a time, while inter-route operators 

alter multiple routes concurrently. 
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 The VND heuristic concludes when local optima are attained. To enhance the 

search process further, the outcomes from the initial stage feed into the second step 

(the re-optimization stage), involving remove and redistribution heuristics. 

To search unexplored regions of the solution space and avoid local optima, two 

diversification strategies are employed (see Section 2.4).  

The first strategy perturbs the current solution by partially destroying and rebuilding 

a limited number of routes. The second strategy involves the double-swap move (1, 1) 

(Subramanian & Drummond, 2010), executing two swap movements randomly in 

sequence. In our metaheuristic, we relax the capacity constraints, allowing oscillation 

between feasible and infeasible solutions. The following sections detail the main 

components of the metaheuristic, discussing elements influencing algorithm 

performance. 

 The analysis of metaheuristic configuration emphasizes the application of each 

element separately. In Algorithm 2-1, the ILS metaheuristic employs the construction 

phase once and iterates the local search multiple times, starting from a perturbed 

solution. The ILS metaheuristic terminates upon reaching a maximum number of 

iterations (𝜑).  

Algorithm (2-1) Iterated local search (ILS) 

1 𝑆𝑜 ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛;  // {𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑣𝑒 𝑝ℎ𝑎𝑠𝑒} 

2 𝑆𝑏𝑒𝑠𝑡 ← 𝑂𝐿𝑆 (𝑆0) ; // 𝐼𝑚𝑝𝑟𝑜𝑣𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑢𝑠𝑖𝑛𝑔 “𝑂𝐿𝑆" ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 

3 𝑊ℎ𝑖𝑙𝑒 (𝜑 𝑖𝑠 𝑛𝑜𝑡 𝑟𝑒𝑎𝑐ℎ𝑒𝑑) 𝑑𝑜 

4         𝑆𝑝𝑒𝑟𝑡𝑢𝑟𝑏 ← 𝑃𝑒𝑟𝑡𝑢𝑟𝑏 (𝑆𝑏𝑒𝑠𝑡) ; // 𝑃𝑒𝑟𝑡𝑢𝑟𝑏 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑜𝑢𝑛𝑑 𝑠𝑜 𝑓𝑎𝑟 𝑆𝑏𝑒𝑠𝑡   

5         𝑆𝑜𝑙𝑠 ← 𝑂𝐿𝑆 (𝑆𝑝𝑒𝑟𝑡𝑢𝑟𝑏) ; // 𝐼𝑚𝑝𝑟𝑜𝑣𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑢𝑠𝑖𝑛𝑔 “𝑂𝐿𝑆" ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 

6             𝐼𝑓 𝐶𝑜𝑠𝑡(𝑠𝑜𝑙𝑠) < 𝐶𝑜𝑠𝑡(𝑠𝑏𝑒𝑠𝑡)  𝑡ℎ𝑒𝑛 

7                𝑆𝑏𝑒𝑠𝑡 ←  𝑆𝑜𝑙𝑠 ; 

8             𝐸𝑛𝑑 𝑖𝑓 

9 End while 

10  Report best solution 𝑆𝑏𝑒𝑠𝑡 found  

 Nearest neighborhood with greedy randomized selection mechanism 

(NNg) 

The first constructive heuristic developed in this chapter is a nearest neighborhood 

heuristic with a greedy randomized selection process (Talarico et al., 2015). Initially, 

a student allocation problem is solved for each stop. Following this, a variant of the 

nearest neighborhood constructive heuristic is applied, where a greedy randomized 

selection mechanism is used instead of a traditional greedy process. The next stop in 
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the current route is randomly chosen from a restricted candidate list (RCL) containing 

the 𝛼 first closest non-visited stops. After selecting non-visited stops, the capacity 

constraints are checked. If a feasible solution is found, a new stop is added to the 

current route; otherwise, the current route is closed, and a new one is constructed from 

the school to new non-visited stops. 

 Insertion heuristic with greedy randomized selection mechanism (Ig) 

The second constructive heuristic follows an insertion approach, akin to Campbell 

and Savelsbergh (2004). Similar to the modified nearest neighborhood heuristic, a 

student allocation problem is initially solved for each stop. Our version of the insertion 

heuristic is then adjusted in two stages. First, a greedy randomized selection 

mechanism replaces the traditional greedy heuristic, determining a restricted candidate 

list of 𝛼 least-cost positions for inserting each non-visited stop into current routes. 

Second, a feasibility check is performed for each non-visited stop considered for 

insertion regarding the capacity constraints. If no feasible insertion position is found 

for the remaining stops, insertion occurs at the cheapest possible position without 

considering a feasibility check. This implies that only the first stage is considered, 

potentially resulting in either a feasible or less-violated capacity solution, without 

ensuring feasibility in the order of insertions. 

 Oscillating local search (OLS) heuristic 

Strategic oscillation aims to temporarily explore the infeasible part of the solution 

space (refer to Toth & Vigo, 2003). The strategy employs a method to identify 

promising feasible search spaces. Notably, the excursion into the infeasible area is 

governed by a dynamically adjusted penalty function, which is multiplied by the cost 

of the infeasible solution. The cost function, as detailed in this chapter, is introduced 

by Brandao (2006) and comprises two terms: 

𝑐𝑜𝑠𝑡(𝑠, 𝜆) = 𝑐𝑜𝑠𝑡(𝑠) + 𝜆𝑑(𝑠) (2-14) 

The first term represents the total travel distance covered by all buses (objective 

function), while the second term, denoted by 𝑑(𝑠), is the sum of excess loads for each 

bus (violations of capacity). This is multiplied by a penalty value, 𝜆, dynamically 

updated during exploration. If all bus routes satisfy capacity, the second term is zero. 

The penalty, 𝜆, accentuates the capacity violation's impact on the total solution cost. 

The pseudo-code for the oscillating local search (OLS) strategy is in Algorithms 2-2. 

OLS takes initial parameters: 𝜆0, an initial solution (𝑆0), and a penalty increasing factor 

(𝛽). 𝑆0 is generated in the constructive or diversification phases. 
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In Algorithm 2-2's first level, the OLS heuristic initiates by employing a variable 

neighborhood descent heuristic with six well-known operators: three intra-route 

(Relocate, Swap, Two-Opt) and three inter-route (Relocate, Swap, Two-Opt). These 

operators are applied sequentially (from small to large size) until a local optimum is 

reached (line 11 in the pseudo-code). Post the first level exploration, the feasibility of 

the locally optimal solution, 𝑆𝑎𝑐𝑡, is evaluated (line 12). If 𝑆𝑎𝑐𝑡 is infeasible, 𝜆 increases 

to enhance exploration in the feasible region (lines 22 and 23). Conversely, if a feasible 

solution is found, the algorithm proceeds as follows. The solution from the first stage 

(VND heuristic) becomes input for the second stage (re-optimization level) for further 

improvement, involving two operators: remove and redistribution (described in 

Section 2.3.5).  

After exploring the second stage, a verification process checks if the solution of the 

second stage, denoted as 𝑆𝑎𝑐𝑡
∗′ , surpasses the best feasible solution identified thus far 

(refer to lines 16 and 17 of the pseudo-code). If it does, the new solution, 𝑆𝑎𝑐𝑡 
∗′ , is 

accepted, and the value of 𝜆 resets to 𝜆0 (see line 19 of the pseudo-code). This 

adjustment occurs because the exploration may have focused on the same feasible local 

optimal solution (cycling around it) or the algorithm might be searching in an 

unpromising region of the solution space containing a weak feasible solution. 

  In summary, the algorithm extensively explores the feasible solution space for a 

considerable number of iterations, with the value of 𝜆 set to 𝜆0 to restrict deeper 

exploration into infeasible areas. Conversely, if the algorithm prioritizes exploring 

infeasible segments for a larger iteration count, 𝜆 increases to guide the exploration 

back to the feasible region. 

 Therefore, 𝜆 aids in assessing the exploration effectiveness in the solution space. 

In OLS, 𝜆 increases when no feasible local optimal solution is found and resets to 𝜆0 

upon achieving the best feasible solution. The values of 𝜆 and 𝛽 significantly impact 

OLS performance, with 𝜆 representing the heuristic's ability to explore infeasible 

solution space portions, associated with the maximum violation of the bus capacity 

constraints in the OSL heuristic. 

 As depicted in Algorithm 2-2, a higher 𝜆 value guides the algorithm back into the 

feasible solution space, resulting in a reduced ability to explore the infeasible segment 

of the solution space. In line 22, 𝜆𝑢 presents the higher value of 𝜆, serving as the upper 

bound for the penalty value. Initially set at 𝜆0, and then 𝜆 is systematically multiplied 

by 𝛽. Here, 𝛽 represents the transition speed from the infeasible to the feasible space, 

impacting the ability to discover feasible regions with improved solutions. 

 A larger 𝛽 value facilitates an increase in the penalty 𝜆, compelling OLS to swiftly 

reach a feasible solution. 
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Algorithm (2-2) Oscillating Local Search (OLS) Heuristic 

1 
Input: initial solution 𝑆0, lower end point for penalty value 𝜆0 (initial penalty value), upper end point for 

penalty value 𝜆𝑢, penalty increase factor 𝛽 ,  

2   𝐼𝑓 𝑆0 𝑖𝑠 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑡ℎ𝑒𝑛 

3    𝑆𝑏𝑒𝑠𝑡−𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 = 𝑆0 

4    𝑐𝑜𝑠𝑡𝑏𝑒𝑠𝑡−𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 = 𝑐𝑜𝑠𝑡(𝑆0) 

5 𝐸𝑙𝑠𝑒 

6 𝑐𝑜𝑠𝑡𝑏𝑒𝑠𝑡−𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 = ∞ 

7 𝐸𝑛𝑑 𝑖𝑓 

8 𝜆 = 𝜆0 

9 𝑆𝑎𝑐𝑡 = 𝑆0 

10 //𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝑓𝑖𝑟𝑠𝑡 𝑙𝑒𝑣𝑒𝑙 

11 𝑆𝑎𝑐𝑡 = 𝐴𝑝𝑝𝑙𝑦𝑖𝑛𝑔 𝑉𝑁𝐷 (𝑆𝑎𝑐𝑡, 𝜆) 

12     𝑖𝑓 𝑆𝑎𝑐𝑡 𝑖𝑠 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑡ℎ𝑒𝑛
 

13 //𝑅𝑒 − 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒 𝑖𝑛 𝑠𝑒𝑐𝑜𝑛𝑑 𝑙𝑒𝑣𝑒𝑙 

14          𝑆𝑎𝑐𝑡
∗ = 𝑅𝑒𝑚𝑜𝑣𝑒 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟(𝑆𝑎𝑐𝑡) 

15          𝑆𝑎𝑐𝑡
∗′ = 𝑅𝑒𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 (𝑆𝑎𝑐𝑡

∗ ) 

16                    𝑖𝑓 𝑐𝑜𝑠𝑡(𝑆𝑎𝑐𝑡
∗′ ) ≤  𝑐𝑜𝑠𝑡𝑏𝑒𝑠𝑡−𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒  𝑡ℎ𝑒𝑛  

17                          𝑐𝑜𝑠𝑡𝑏𝑒𝑠𝑡−𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒= 𝑐𝑜𝑠𝑡(𝑆𝑎𝑐𝑡
∗′ ) 

18                          𝑆𝑏𝑒𝑠𝑡−𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 = 𝑆𝑎𝑐𝑡
∗′  

19                          𝜆 = 𝜆0 
20                  𝐸𝑛𝑑 𝑖𝑓 

21    𝐸𝑙𝑠𝑒 

22                   𝑖𝑓 (𝜆 <  𝜆𝑢) 𝑡ℎ𝑒𝑛 

23                       𝜆 = 𝜆 × 𝛽 

24                   𝐸𝑙𝑠𝑒 

25                     𝑆𝑎𝑐𝑡 = 𝑅𝑒𝑠𝑡𝑜𝑟𝑒 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟(𝑆𝑎𝑐𝑡, 𝜆) 

26                  𝐸𝑛𝑑 𝑖𝑓 

27    𝐸𝑛𝑑 𝑖𝑓 

28 𝑂𝑢𝑡𝑝𝑢𝑡: 𝑆𝑏𝑒𝑠𝑡−𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒  

 

During the algorithm, there's a possibility that the 𝜆 value increases and reaches the 

predefined value 𝜆𝑢 . This can lead to a situation where the current solution deviates 

significantly from feasibility. To address this issue, a restore operator is implemented, 

aiming to return the solution to a feasible state in two stages. In the first stage, the 

procedure attempts to allocate students to allowable stops in other routes, iterating 

through all eligible stops and routes. If, by the end of the first stage, no violated route 

remains, a feasible solution is achieved. Otherwise, the solution enters the second step, 

known as the split procedure (for more detail see Chapter 2.3.6). 

 

 Local search operators  

 Remove-insert within and between routes  

This operator removes one stop from the current location and inserts it in another 

location (either in the same route or a different route). 
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 Swap within and between routes  

This operator swaps the positions of two stops. The intra-route version concentrates 

on swapping movements within the same route, whereas the inter-route operator 

exchanges stops between different routes. 

 

 Two-Opt within and between routes  

The two-opt intra-route operator creates new routes by removing two edges from 

one route and then reconnecting the route, thus reversing the order of the route.  

Before the above moves are performed, cost check is executed. The move is executed 

if it results in cost reduction; otherwise, it is discarded. 

The overall complexity of intra and inter-route operators relies on the feasibility 

check, student allocation, and the necessary operations for move execution. Given the 

problem's nature, which permits exploration into infeasible solution spaces, the 

complexity is considered only for the move operations as outlined below: 

❑ Remove-Insert within route:  

Intra-route for loop for each route (r) nested with a for loop for each stop (n) + for 

loop to find another location to place that stop in the same route. This results in a 

complexity of O(∣r∣⋅∣n∣⋅∣n∣), simplifying to o(𝑛2). 

 

❑ Remove-Insert between routes:  

Inter-route for loop for each route nested with a for loop for each stop + for loop for 

each route and for each stop to find another location to place that stop in a different 

route. The overall complexity is O(∣r∣⋅∣n∣⋅∣r∣⋅∣n∣), also simplifying to o(𝑛2). 

 

❑ Swap within route: 

Intra-route loop for each route, nested with a for loop for each stop. Additionally, 

there is a loop for each stop to find an alternative location to swap the stops within the 

same routes. This results in a complexity of O(∣r∣⋅∣n∣⋅∣n∣), simplifying to o(𝑛2). 

 

❑ Swap between routes: 

Involving an intra-route loop for each route, nested with a for loop for each stop. 

Additionally, there are loops for each route and each stop to find an alternative location 

to swap the stops between different routes. The overall complexity is O(∣r∣⋅∣n∣⋅∣r∣⋅∣n∣), 

also simplifying to o(𝑛2). 

 

❑ 2-opt within and between routes: 

The 2-opt heuristic requires o(𝑛2) time to examine the entire neighborhood of a 

solution. 
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 Allocation heuristic sub-problem 

Student allocation is considered in two positions: firstly, in the constructive phase 

where stops are selected, routes are constructed, and the solution's feasibility with 

respect to student allocation is maintained; secondly, during the second level of the 

oscillating strategy stage when the current solution undergoes re-optimization. Before 

applying remove and redistribution operators, a feasibility check or student re-

allocation is necessary. However, during the first stage of OLS in our algorithm, 

feasibility checking is not required due to its nature. 

The heuristic for student-to-stop assignment in the constructive phase operates as 

follows: each student is assigned to a potential stop based on reachability, with a 

preliminary stage generating a list of stops within the maximum walking distance.  

The student list is then sorted by the increasing number of allowable stops. The 

heuristic allocates students sequentially from the top of the list to the first available 

stop within reach. This prioritizes critical students with few allowable stops. However, 

a drawback arises when no stop with available capacity is left for some students, 

triggering a repair procedure to allocate unassigned students. 

To address this, congested stops with no remaining capacity for unassigned students 

are identified. A list is created for students already assigned to these stops, determining 

the highest number of non-congested alternative stops where students can be 

reallocated. A student is then randomly selected from this list and moved to another 

non-congested stop, creating space in the congested stop. This process continues until 

the list of unassigned students is empty.  

To better understand student allocation heuristics in the constructive mechanism, 

consider examples in Table 2-2. It illustrates the student allocation problem during the 

constructive phase with 20 students, 4 stops, and a single school. Before generating 

routes, each stop is considered in one route. The matrix (Table 2-2(a)) allocates 

students to potential stops, with 1 indicating walking distance and 0 otherwise. In 

Table 2-2(b), students are sorted by allowable stops. Allocation begins from the top of 

the list to the first available stop, shown in Table 2-3. 

The reallocation mechanism used before remove and redistribution operators differs 

slightly from the initial allocation in the constructive phase.  

The remove operator aims to remove stops, reducing total travel distance. Before 

applying this, a student allocation sub-problem is solved, and if feasible, the removal 

is executed. 

Specifically, in the remove operator, when selecting a stop for removal, the students 

assigned to it must be reassigned to a new stop or distributed among existing routes by 

solving an allocation sub-problem. The sub-problem proceeds as follows: first, choose 

the stop to be removed and create a list of students assigned to it. Sort these students 

based on an increasing number of stops in same or different routes where they can 

walk. Determine the number of stops where they can potentially be reallocated. Then, 
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select a student from the top of the list and reallocate them to another alternative stop 

in a different route, ensuring capacity constraints are met. This process continues until 

all students in the list are investigated. If all students can be successfully assigned to 

potential stops, the remove operator is executed; otherwise, it is discarded. 

The redistribution operator aims to balance student distribution among routes, 

countering the imbalance introduced by inter-route operators. This imbalance can 

result in some routes having many students while others have only a few. To rectify 

this, the redistribution operator optimizes the current capacity distribution among 

routes, minimizing deviation in route loading values by proportionally distributing 

students. It assumes the total number of students and occupied capacity of each route 

are represented by 𝑛 𝑠 and 𝑐 𝑟, respectively, with 𝐴𝑙𝑟 denoting the average loads on all 

generated routes. The method starts by creating a list of routes ranked in decreasing 

order of occupied capacity. This list comprises routes with an occupied capacity 

greater than 𝐴𝑙𝑟. 

 The process involves selecting a route from the top of the list and transferring some 

students to another route through a student allocation sub-problem. This iteration 

continues until 𝑐 𝑟 −  𝐴𝑙𝑟  ≤ 0 becomes less than or equal to 0. If the selected routes 

cannot find positions for potential students, the next route in the list is considered. 

Importantly, this procedure influences the desirable distribution of students in the 

current solution. 

Prior to implementing the redistribution operator, it is crucial to conduct a 

preliminary analysis to assess the significance of balancing students for the given 

problem. This analysis aims to determine whether the presence of a redistribution 

operator worsens solutions. If a redistribution operator is employed, it becomes 

essential to identify its optimal placement within the algorithm—whether in the 

improvement stage or diversification stage. To investigate this, a pilot analysis is 

conducted on a subset of the sample, revealing that the presence of the redistribution 

operator in the improvement stage led to a superior solution compared to cases where 

this operator was inactive.  

The complexity of remove and redistribution heuristics comprises three stages:  

1) feasibility check, 2) student allocation (if feasibility is not satisfied), and 3) move 

operation. The following calculations are presented to determine the total complexity 

of each operator: 

❑ To execute a move, a for loop is employed for each route to remove one stop, 

resulting in a complexity of O(∣r∣⋅∣n∣), which is approximated as o(𝑛)). 

❑ For student allocation, considering each stop intending to be removed in a route, 

where student ∣s∣ can be assigned to another stop, the complexity is 

O(∣n∣⋅∣s∣⋅∣r∣⋅∣n∣), approximated as o(𝑛2). 

❑ The feasibility check ensures that a student can be allocated to an allowable stop 

in the same or another route, with a complexity of O(∣r∣⋅∣n∣), approximated as o(𝑛). 

Therefore, the total complexity encompasses move complexity o(𝑛)+ student allocation 

o(𝑛2)+ feasibility check o(𝑛). For the redistribution operator, total complexity 
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includes student allocation o(𝑛2) + feasibility check o(𝑛). 

Table (2-2)  Example of Student Allocation Problem before Constructive Phase 

a-Matrix of student–stop allocation candidate b-No of available stops for each student 

stop 

Student 
1 2 3 4 

1 0 0 0 1 

2 1 0 0 1 

3 0 1 0 0 

4 0 1 1 0 

5 1 0 0 0 

6 0 1 0 0 

7 1 1 1 0 

8 0 0 1 0 

9 0 0 1 0 

10 0 0 1 0 

11 0 0 1 1 

12 0 0 0 1 

13 0 1 0 0 

14 1 0 0 0 

15 0 1 1 0 

16 1 1 0 0 

17 0 0 1 0 

18 1 0 1 0 

19 0 0 1 1 

20 0 1 0 0 
 

No of Students 
No of allowable stops 

in increasing order  

1 1 

3 1 

5 1 

6 1 

8 1 

9 1 

10 1 

12 1 

13 1 

14 1 

17 1 

20 1 

2 2 

4 2 

11 2 

15 2 

16 2 

18 2 

19 2 

7 3 
 

Table (2-3)  Matrix of Allocating Student to Allowable Stops 

List of allocated students to the allowable stops before applying repair operator, resulting to infeasible 

solution  

No of students Allocated stops 

(2,5,14,16,18,7) 1 

(3,4,6,13,20) 2 

(8,9,10,15,17) 3 

(1,11,12,19) 4 
 

 Restore operator  

While the algorithm runs, a scenario may arise where 𝜆 becomes large, reaching the 

predefined value of 𝜆𝑢, indicating that the current solution is far from feasible.  

To address this, a restore operator is implemented in two steps, contingent on how 

infeasible solutions are detected. Initially, routes are sorted by increasing violated bus 

capacity. Subsequently, the procedure attempts to allocate students to allowable stops 

in other routes when possible.  

This repeats until all allowable stops and routes are examined. If, at the first step's 

end, no route is violated, a feasible solution is found; otherwise, the solution proceeds 
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to a second step, the split procedure, addressing remaining routes violating bus 

capacity constraints.  

This step addresses routes still violating the bus capacity constraints, emphasizing 

the crucial task of dividing these routes into two or more sub-new-routes accurately. 

For each infeasible route, a specific number of stops is removed and inserted into the 

new route. The process involves calculating the ratio 𝑟𝑖 =
𝑑𝑖

𝑟𝑔𝑖
 for each stop i within the 

route, where 𝑑𝑖 is the demand of each stop (the number of students allocated to the 

stop), and 𝑟𝑔𝑖 is the removal gain. The gain 𝑟𝑔𝑖 is defined as: 𝑑𝑖𝑠𝑡(𝑝𝑟𝑒𝑣(𝑖), 𝑖) +

𝑑𝑖𝑠𝑡(𝑖, 𝑛𝑒𝑥𝑡(𝑖)) − 𝑑𝑖𝑠𝑡(𝑛𝑒𝑥𝑡(𝑖) − 𝑝𝑟𝑒𝑣(𝑖)). 

The list of stops is then sorted in ascending order of 𝑟𝑖, with the intention of serving 

the first stop with the lowest demand and the highest removal gain. Starting from the 

first stop on the list, stops are successively removed and inserted into the new route. 

This method iterates until the considered route satisfies the bus capacity constraints. 

 The execution of the restore operator involves addressing interrelated sub-

problems 1 and 3 simultaneously at the same level. 

Specifically, to handle infeasibility, each infeasible route must first identify the set 

of allowable stops in the other route (representing sub-problem 1). Additionally, if a 

student is allocated to a stop in the candidate route, it results in an infeasible solution, 

necessitating the exploration of alternative possibilities. Consequently, the selection of 

a bus stop (sub-problem 1) and the selection of the route containing this bus stop (sub-

problem 3) need simultaneous consideration at the same level. Sub-problem 2 solely 

determines whether the selected stop on the relevant route is feasible or not. 

 

2-4- Metaheuristic structures and diversification strategies 

Following the intensification phase, a local optimum is reached, prompting the 

metaheuristic to escape from local optimum by perturbing the current solution. This 

increases the chance of reaching a global optimum through local search from the 

perturbed solution.  

Diversification mechanisms aim to provide a good starting point for the 

intensification stage. Two variants, Repair-Destroy and Double Swap, are used. In case 

one operator struggles to escape local optima, the other may yield more efficient 

outcomes. Both diversifications are applied through a random selection mechanism. 
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 Destroy and repair method 

The perturbation mechanism, known as the destroy-and-repair method, iteratively 

explores different solution space parts by removing and reinserting stops. It considers 

two input parameters: the percentage of routes to be destroyed (ε) and the total number 

of routes in the current solution (k). This mechanism utilizes a destroy-and-repair 

operator during the perturbation heuristic. 

In the destroy phase, a random route is selected; all stops are removed and added to 

the list of non-visited stops (U). This step is repeated ε ∗  k times. In the repair phase, 

a new solution (x) is generated by creating routes that include all non-visited stops 

from the U list.  

These routes are generated using the nearest neighborhood with a greedy 

randomized selection mechanism. The next stop in the route is randomly chosen from 

a restricted candidate list containing the first α closest non-visited stops until the list is 

empty. 

 

 Double swap 

The method involves repeating a swap movement twice between randomly selected 

routes. During each iteration, the swap operator exchanges the positions of two stops 

between different routes. The double swap operator, working on the basis of 

exchanging the positions of two stops between routes, may result in infeasible cases. 

Specifically, stops with a large number of students to be exchanged between routes 

might lead to infeasible solutions. This situation could arise to the extent that neither 

the constructive nor the diversification heuristics ensure a feasible solution, contrary 

to expectations from the oscillating local search heuristic. 

2-5- Computational experiments 

This section outlines the experiments conducted to evaluate the two metaheuristics, 

N-ILS and I-ILS, for the SBRP. Using two datasets, the first dataset (Dataset I) 

comprises 104 instances from benchmark instances proposed by Schittekat (2013). 

These instances are categorized into small (set S, 5 to 10 stops), medium (set M, 20 

stops), and large (set L, 40 to 80 stops) instances.  

The instances vary in features such as the number of stops, students, bus capacity, 

and maximum walking distance. The instances can be downloaded from 

http://antor.uantwerpen.be/metaheuristic-for-the-school-bus-routing-problem-with-

bus-stop-selection/.  

The second dataset (Dataset II) consists of 30 newly generated instances. Instances in 

http://antor.uantwerpen.be/metaheuristic-for-the-school-bus-routing-problem-with-bus-stop-selection/
http://antor.uantwerpen.be/metaheuristic-for-the-school-bus-routing-problem-with-bus-stop-selection/
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this dataset have a problem size with the number of stops ranging from 6 to 8, the 

number of students ranging from 30 to 80, and walking distances ranging from 5 to 40 

(The values of walking distance are determined based on the scale of  𝑥𝑚𝑎𝑥 and 𝑦max ). 

 Similar to Dataset I, only one school is considered for these instances.  

The purpose of creating a new dataset is twofold: first, to broaden the scope of our 

work; and second, to demonstrate, for a new sample, the extent to which the algorithm 

can deviate from the exact solution. 

 To generate Dataset II, five parameters per instance are defined in the first stage: 

𝑛𝑝 (number of stops), 𝑛𝑠 (number of students), 𝑥𝑑, 𝑦𝑑 (x and y coordinates of the 

school), and 𝑤𝑚𝑎𝑥 (maximum walking distance for each student to reach a bus stop). 

The school's coordinates are set at (75,75). All instances are randomly generated in the 

Euclidean square between (0,0) and (𝑥𝑚𝑎𝑥, 𝑦𝑚𝑎𝑥), where (𝑥𝑚𝑎𝑥, 𝑦𝑚𝑎𝑥) is set to (150, 

150). The procedure for creating Dataset II follows the approach proposed by 

Schittekat et al. (2013). 

The experimental analysis unfolds in three stages. In the first stage, the crucial 

components of each metaheuristic, as outlined in Section 2.5.1, are examined and fine-

tuned. The goal is to ensure that each metaheuristic, when applied to instances drawn 

from Dataset I, generates the best solutions on average. In the second stage, after 

determining the optimal parameter settings for each metaheuristic, we compare our 

solution methods (I-ILS and N-ILS) with the best-known solutions from the literature 

(i.e., those found by the metaheuristic as published in Schittekat et al., 2013).  

All instances used in the second stage are from Dataset I. In the third stage, we use 30 

instances from Dataset II for comparison.  

Since Schittekat et al. (2013) did not provide solutions for Dataset II, we aim to 

compare our methods with the exact solutions found by the GAMS software. The first 

stage is detailed in Sections 2.5.1 and 2.5.2, while the second and third stages are 

covered in Sections 2.5.3 and 2.5.4, respectively. 

It is worth mentioning that before focusing on designing a metaheuristic with 

strategic oscillation, several experiments have been conducted to understand the 

performance of the proposed algorithm and determine whether strategic oscillation is 

employed.  

In practice, an analysis is carried out to investigate the algorithm's performance while 

the bus capacity constraints are relaxed, either by means of strategic oscillation or not. 

It is observed that applying tight capacity constraints, on average, provides a worse 

solution than the strategic oscillation approach. Therefore, in this chapter, only the 

results of the metaheuristic with the strategic oscillation are presented.  
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 Parameter configuration 

Both metaheuristics, detailed in sections 2.3 and 2.4, involve crucial parameter 

settings. The goal is to pinpoint the components significantly impacting solution 

quality and computation time. To calibrate these metaheuristics, a subset of instances 

is subjected to a full factorial experiment, encompassing all parameter combinations. 

The test set comprises 14 instances (8 from set S, 4 from set M, and 2 from set L), each 

run five times. Table 2-4 provides a concise overview of tuned parameters and their 

tested values. Notably, two performance metrics are considered: average solution cost 

and average computation time. 

Notably, the maximum number of iterations is not included in the parameters 

analyzed list, as a higher number of iterations yields improved solutions at the expense 

of longer computational time. Therefore, in this stage, the number of iterations is fixed 

at 300. In the subsequent phase, tests are conducted to evaluate algorithm convergence 

(refer to Section 2.5.2).  

The multi-way ANOVA method, implemented through SAS software, analyzes 

these runs and provides the P-value of the F-test (see Table 2-5). A bold P-value 

indicates a significant effect of the associated parameter on both solution cost and 

computation time. Table 2-6 displays the optimal parameter settings for both N-ILS 

and I-ILS. 

 
Table (2-4)  Heuristic parameters and the tested levels 

Parameters Description Value No of levels 

Repetition Number of iterations 300 1 

N1=Relocate- within Relocate intra-route operator On, off 2 

N2= Relocate - 

between 
Relocate intra-route operator On, off 2 

N3=Swap - within Exchange intra-route operator On, off 2 

N4= Swap-between Exchange intra-route operator On, off 2 

N5= Two -opt- 

within 
Two -opt intra-route operator On, off 2 

N6= Two -opt -

between 
Two -opt intra-route operator On, off 2 

N7=Redistribution Student transfer operator On, off 2 

N8=Remove Remove operator On, off 2 

𝜀 

Maximum percentage number of routes 

in best solution found so far to be 

destroyed 

10%,15%,20% 

25%,30%, 40%, 

50% 

7 

𝜆0 Initial penalty 0, 1, 2, 5, 10, 100 6 

β 
The multiplicative factor employed to 

increase the penalty 
1,2,5,10 4 

α Size of the restricted candidate list 1, 2, 3, 4, 5 5 
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The P-value analysis indicates that all local search operators, the percentage of 

routes to be destroyed (𝜀), and the initial penalty value (λ0) are crucial parameters 

influencing both solution quality and computation time. Unexpectedly, neither the 

multiplicative factor (𝛽) nor the size of the restricted candidate list (𝛼) impact 

computation time.  

This suggests that metaheuristics performance is insensitive to the values of (𝛽) and  

α.  

Furthermore, the ANOVA results highlight the significant interaction between 

parameters 𝜀 and λ0  (𝜆0 ∗ 𝜀), affecting both solution quality and computation time. 

Hence, the algorithm's ability (𝜆0) to transition between feasible and infeasible 

solution spaces and the percentage of routes to be destroyed (𝜀) are key features of our 

metaheuristics. The focus is on exploring the infeasible solution space, regardless of 

accelerating the transition speed from infeasible to feasible regions. 

Table (2-5)  P-Values of F-tests 

Parameters Average solution cost CPU time 

N1=Relocate- within <0.05 <0.05 

N2= Relocate - between <0.05 <0.05 

N3=Exchange - within <0.05 <0.05 

N4= Exchange-between <0.05 <0.05 

N5= Two -opt- within <0.05 <0.05 

N6= Two -opt -between <0.05 <0.05 

N7=Redistribution <0.05 <0.05 

N8=Remove <0.05 <0.05 

𝜀 <0.05 <0.05 

𝜆0 <0.05 <0.05 

𝛽 0.3765 0.1247 

𝛼 <0.05 0.0654 

𝜆0 ∗ 𝜀  (interaction of 2 parameters) <0.05 <0.05 

Table (2-6)  Best parameter settings for both metaheuristics 

Parameters I-ILS NILS 

N1 =Remove_ Insert -within On On 

N2=Remove _Insert -between On On 

N3=Exchange -within On On 

N4= Exchange-between On On 

N5=2-opt. -within On On 

N6= 2-opt -between On On 

N7=Redistribution On On 

N8=Remove On On 

𝜀 25% 30% 

𝜆0 2 1 

β 5 2 

α 3 2 
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 Effect of the number of iterations on the performance of metaheuristics 

In this section, we examine the impact of the number of iterations on the 

performance of I-ILS and N-ILS metaheuristics. To this end, balancing computing 

time and solution quality is crucial. Both metaheuristics are executed 10 times on 

instances from Section 2.5.1, varying the number of iterations (𝜙) with values of 100, 

200, 400, 800, 1000, and 1200. 

 Other parameters use values from Table 2-6, optimized through full factorial 

analysis. For each test set (12 instances), we report: (1) the percentage gap between 

the best solutions after 10 runs and the best-known SBRP solutions, indicating 

algorithm's capacity to discover better solutions; (2) the percentage gap between the 

average cost of the solutions after 10 runs and the best-known SBRP solutions, 

reflecting robustness. 

The best-known solutions are sourced from Schittekat et al. (2013), and the 

combined results are presented in Table 2-7. In the table, the second column denotes 

the used metaheuristic, the third column shows the percentage of the best gap (% Best 

Gap), the subsequent column represents the average percentage gap (% Avg. Gap), 

and the final column indicates the total computing time for solving 12 instances. 

 Larger values of 𝜙 enhance solution quality and metaheuristic robustness. 

However, an increase in 𝜙 from 100 to 200 results in a roughly 1.9-fold increase in 

computational time. Further, as 𝜙 goes from 200 to 400, the computational time rises 

by a factor of 1.43 (for I-ILS) and 1.34 (for N-ILS). 

This behavior primarily stems from the stopping criterion embedded in the OLS 

heuristic. The heuristic terminates execution when it either cycles around the same 

feasible local optimal solution (repeated exploration) or explores an unpromising 

region of the solution space containing a weak feasible solution.  

Overall, the high quality of the initial solution ensures that the OLS heuristic requires 

fewer iterations to achieve better results.  

Consequently, shorter execution times are needed, especially when the search 

explores the most promising region of the solution space, closer to the optimal 

solution. The likelihood of this exploration increases with a significant number of 

iterations. 
Table (2-7)  Computational results 

ϕ Metaheuristic %Best Gap %Avg. Gap Time (in seconds) 

100 N-ILS 3.25 4.46 47 
 I-ILS 3.50 4.68 51.97 

200 N-ILS 2.53 3.88 90 
 I-ILS 2.59 4,11 98 

400 N-ILS 2.18 3.34 121 
 I-ILS 2.23 3.58 140 

800 N-ILS 1.98 3.11 189 
 I-ILS 2.08 3.21 230.5 

1000 N-ILS 1.96 3.08 245.78 
 I-ILS 1.99 3.16 312.45 

1200 N-ILS 1.91 3.01 387.89 
 I-ILS 1.96 3.13 507.56 
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In essence, setting the iteration value higher than 800 yields marginal improvement 

in both % Best Gap and % Avg Gap, while also increasing computing time. Thus, to 

strike a balance between computing time and solution quality, a number of iterations 

around 400 seems optimal for most instances in our problem. Table 2-7 indicates that 

N-ILS outperforms I-ILS across all metrics. Moreover, in terms of computing time, N-

ILS is, on average, 19% faster than I-ILS. 

 Comparison of the metaheuristics on the basis of dataset I 

With the optimal parameter settings established for each solution approach, a 

comparison between I-ILS and N-ILS is conducted, evaluating solution quality and 

computation time across small, medium, and large instances. Both metaheuristics are 

implemented in Java. For testing and comparison, each metaheuristic underwent 10 

runs on all instances, with results compared against the best-known solutions identified 

by Schittekat (2013).  

The experimental analysis covered 104 instances categorized into three subsets: Set 

S (48 instances with 5 to 10 stops), Set M (24 instances with 20 stops), and Set L (32 

instances with 40 to 80 stops). Additionally, walking distances of 5, 10, 20, and 40 

were considered. 

 Appendices 1 and 2 present the experimental results for each metaheuristic 

configuration, utilizing the parameter settings outlined in Section 2.5.  

Aggregated results for each instance subset are summarized in Table 2-8(a). For both 

metaheuristics, this table illustrates the percentage gap between the best solutions 

found after 10 runs and the best-known solutions averaged across instances in sets S, 

M, and L.  

Table 2-8(b) depicts the percentage gap between the average solution cost after 10 

runs and the best-known solutions, averaged over all instances for sets S, M, and L. 

This reflects the robustness of each metaheuristic configuration. To ensure a fair 

comparison, a fixed number of iterations (400) is set for both I-ILS and N-ILS in 

solving each instance, with the best-known solutions sourced from Schittekat et al. 

(2013).In Table 2-8(a) and (b), the first column denotes the utilized metaheuristic, 

while the subsequent three columns categorize the instance sets (from small to large). 

Table 2-8(a) reveals that for small and medium sets, N-ILS generally produces lower 

average percentage gaps from the best-known solutions, while I-ILS tends to yield 

smaller gaps for instances in set L. In terms of robustness, N-ILS outperforms I-ILS 

on average for small, medium, and large sets.  

On average, N-ILS excels over I-ILS concerning solution quality (best gap from the 

best-known solutions: 2.08% for N-ILS, 2.17% for I-ILS) and robustness (average gap 

from the best-known solutions: 3.29% for N-ILS, 3.48% for I-ILS).  
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Regarding computing time, Table 2-9 indicates that I-ILS is 10% slower than N-

ILS. The computational results indicate that, for finding optimal solutions with each 

metaheuristic, the N-ILS metaheuristic outperforms the ILS metaheuristic. 

Specifically, 23 instances align with the best-known solutions, and improvements are 

observed in 2 instances. Following closely, the I-ILS is ranked second, with 19 

instances matching the best-known solutions. 

 

 
Table (2-8)  Results obtained by solving the instances contained in Sets S, M, and L 

Metaheuristics Set S SET M SET L Average 

(a). Best gap from best-known solutions 

N-ILS 1.83% 2.09% 2.31% 2.08% 

I-ILS 2.04% 2.19% 2.29% 2.17% 

(b). Robustness of each metaheuristic 

N-ILS 3.06% 3.29% 3.53% 3.29% 

I-ILS 3.32% 3.51% 3.60% 3.48% 

 
Table (2-9)  Total Computing Time in SET S, M and L in Seconds    

All Set L SET M SET S Metaheuristic 

55474 53326.50 1799.57 347.33 N-ILS 

61362 59064.56 1928.52 369.22 I-ILS 

  Comparison of the metaheuristics on the basis of data Set II 

The effectiveness of the proposed heuristic for SBRP is examined using the newly 

generated instance (data set II). We applied I-ILS and N-ILS metaheuristics to solve 

all 30 instances. Each metaheuristic underwent 10 runs on all instances, and the results 

are compared with the exact solutions obtained by the GAMS/CPLEX solver.  

Table 2-10 summarizes the aggregated results for the instances. The %Best Gap 

calculation method is consistent with that presented in section 2.5.3. 

 Table 2-10 reveals that, in terms of the best gaps from the exact solution, N-ILS 

produced solutions with an average value at least 0.29% lower than that of the I-ILS 

heuristic. Additionally, N-ILS achieved optimal solutions for 33% of the instances and 

obtained relatively small optimality gaps in all other cases, while this number is 7 

(23%) for I-ILS. 

Table (2-10)  Results obtained by solving the instances contained in data set II 

Metaheuristic Best gap from best-known solutions (Percent) No. of optimal solution 

N-ILS 0.91 % 10/30 

I-ILS 1.20% 7/30 
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2-6- Conclusion 

In this chapter, we have introduced two metaheuristics for solving the school bus 

routing problem, both centered around an oscillating local search with three key 

features. First, the metaheuristics explore infeasible segments of the solution space. 

Second, a restore operator is employed to navigate back to the feasible portion when 

violation increases. Lastly, set of neighborhoods are utilized to enhance exploration in 

a vast search space.  

Experiments are conducted on two datasets: data set I, comprising 104 instances 

from the benchmark introduced by Schittekat et al. (2013), and data set II, consisting 

of newly generated instances. For data set I, the formulation presented in Section 2.2 

is accurately solved using the CPLEX solver in GAMS software. 

Two distinct metaheuristics are proposed to address small, medium, and large 

instances, as only the 43 easiest cases are solvable using an exact method.  

Statistical analysis is performed for each metaheuristic to optimize heuristic 

parameters. After determining the best parameter settings, a comprehensive 

comparison is conducted for all instances, considering solution quality, robustness, and 

computing time.  

The results of the computational experiments imply that N-ILS excels (concerning the 

quality of the solution, the number of optimal solutions, and computing time) more 

than I-ILS in comparison to the metaheuristic presented by Schittekat et al. (2013). 

Future research could focus on incorporating additional constraints and features to 

better model real-life situations. Another research avenue involves exploring more 

efficient ways to check the feasibility of student allocations before applying each 

improvement operator. This could include investigating the use of efficient data 

structures to reduce the computational complexity of local search operators. 
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Chapter 3:  
Adaptive large neighborhood search for 

school bus routing problem with bus 

stop selection 
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3-1- Introduction 

As mentioned earlier, the second and third chapters explore the current problem 

(Schittekat et al., 2013) through various solution approaches. In this chapter, we avoid 

detailed explanations on the problem definition, mathematical modeling, and literature 

review covered in the second chapter. Here, the emphasis is on presenting the proposed 

solution for addressing the current problem (Schittekat et al., 2013).  

In the preceding chapter, we have established that the exact method is proficient in 

achieving optimal solutions, yet it's limited to solving problems with a restricted 

number of stops/students (up to 43 instances). Real-world scenarios often involve 

hundreds of stops/students, surpassing the method's applicability. Hence, heuristic 

approaches become imperative to address larger instances and secure nearly optimal 

solutions within reasonable time frames.  

Recently, various heuristic variants have been employed for Vehicle Routing 

Problems (VRP), with local search heuristics demonstrating notable efficiency. 

However, in cases of stringent constraints, implementing local search becomes less 

advantageous. In this case, transitioning from one promising point to another poses 

challenges.  

One strategy is to explore an infeasible portion of the solution space as a new 

promising area. While previous studies focused on heuristics limited to the feasible 

search space, some researchers advocate considering both feasible and infeasible areas 

for effective problem-solving. 

 Brandoa (2006) introduces strategic oscillation, a local search strategy efficiently 

switching between feasible and infeasible search areas. The aim is to oscillate between 

feasible and infeasible spaces, with control over the number of movements between 

these states. The concept of strategic oscillation within the solution space is not novel 

in Vehicle Routing Problems (VRP) (e.g., Nagata and Braysy, 2009; Toth and Vigo, 

2003; Cuervo et al., 2014). 

An alternative strategy involves utilizing large standard moves instead of smaller 

ones. While larger moves may extend computing time, they often yield more favorable 

results in terms of solution quality.  

The Large Neighborhood Search (LNS) operates on the principle of a large-scale 

neighborhood mechanism, employing construction and destruction principles 

throughout the search procedure. Each iteration involves selecting a heuristic to 

destroy a portion of current solutions and another to repair it by creating a new 

solution. In solving the SBRP, a new solution is initially derived by removing a number 

of stops and then reinserting them anywhere in the current solution, aiming to optimize 

it. Remarkably, LNS, particularly in its large neighborhood search aspect, yields result 

compatible with Vehicle Routing Problems. 

The Adaptive Large Neighborhood Search (ALNS), an adaptive form of LNS, has 

demonstrated excellent solutions across various VRP scenarios (e.g., Ropke and 
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Pisinger, 2006; Azi et al., 2010; Ribeiro and Laporte, 2012). ALNS incorporates 

multiple destroy and repair heuristics, with the probability of selecting a heuristic for 

a new solution based on its past performance in earlier iterations. 

To address the mentioned issue, the we employ ALNS and LNS algorithms, 

representing a novel approach in SBRP studies. These algorithms are detailed in the 

following section. The method's efficiency was evaluated by comparing it with 

existing metaheuristics across 104 instances. While ALNS and LNS heuristics with 

strategic oscillations are not new in VRP literature, this study, to our knowledge, 

presents the first application in the context of SBRP.  

The contributions of this work include: 

1) Solving SBRP using ALNS and LNS heuristics with strategic oscillation. 

2) Assessing algorithm performance with and without strategic oscillation. 

3) Analyzing the impact of different acceptance criteria on the average solution cost 

for each metaheuristic. 

4) Comparing all solution approaches with the best-known solutions outlined in 

Schittekat et al. (2013). 

3-2- Solution approach 

Our findings indicate that an exact method effectively handles only 43 small 

instances (up to 10 stops and 200 students) within a reasonable time, making it 

impractical for larger cases (see Appendices 3 and 4). Metaheuristic algorithms offer 

a practical solution. For efficient and near-optimal SBRP solutions within a reasonable 

computation time, we introduce simple Large Neighborhood Search (LNS) and its 

adaptive variant, Adaptive LNS (ALNS), detailed in Algorithm 3-1, with LNS 

presented after ALNS. 

The ALNS metaheuristic follows a three-stage process. In the first stage, the Clarke 

and Wright algorithm with a greedy randomized selection mechanism (CR.g) heuristic 

is employed to find an initial solution (refer to Section 3.2.1). This solution serves as 

the input for the second stage, known as the improvement configuration, which 

includes a set of large neighborhood structures comprising removal and insertion 

operators.  

Four removal and four insertion operators are utilized. The removal heuristics, 

explained in Section 3.2.2.1, remove stops and requests from the current solution. The 

insertion heuristics, detailed in Section 3.2.2.2, then insert them back. Algorithm 3-1 

operates by creating an initial solution 𝑥𝑜 with the CR. g heuristic, followed by 

employing the improvement heuristic after the construction of the initial solution.  

In the improvement stage, extensive exploration of large neighborhoods occurs 

through destroy (using removal heuristics) and repair (using insertion heuristics) 

mechanisms. Selection of removal and insertion heuristics at each iteration is governed 
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by a roulette wheel mechanism, adjusting probabilities based on past successful 

operations. Each operator receives a score reflecting its past success in improving the 

solution, influencing higher probabilities for selection in subsequent stages.  

Insertion and removal heuristics are chosen and weighted independently (refer to 

Section 3.2.3 for details). 

Applying the roulette wheel mechanism involves selecting one removal and one 

insertion heuristic at each iteration. The removal operator removes 𝑞 stops from the 

current solution, followed by employing the insertion heuristic to reinsert them into 

the current solution. 

At each iteration, a specified number of 𝑞 stops is disconnected using a removal 

heuristic and placed in the stops pool, referred to as the 𝑈 bank list.  

Subsequently, stops in 𝑈 are reintegrated into the solution using the insertion heuristic. 

The parameter 𝑞, where 𝑞 ∈ {0, … . . 𝑛}, is pivotal, influencing the effectiveness and 

efficiency of our solution approach, with 𝑛 being the number of stops in the problem. 

Essentially, 𝑞 determines the neighborhood size.  

Setting 𝑞 to zero implies no search in the solution space, while 𝑞 set to 𝑛 transforms 

the algorithm into a multi-start, solving the problem a new. This parameter 

significantly impacts solution iteration, requiring low 𝑞 levels for sustained 

exploration if an acceptable solution is found over several iterations.  

Maintaining a low 𝑞 value proves effective for finding improved solutions, 

emphasizing an intensification strategy within the solution space. Conversely, if worse 

solution is obtained over several iterations, increasing 𝑞 becomes necessary for more 

efficient exploration of the solution space. This entails removing and re-inserting a 

larger number of 𝑞. Balancing diversification and intensification, we adjust 𝑞 by 

initially setting it to 𝑞𝑚𝑖𝑛 and systematically modifying it throughout the Adaptive 

Large Neighborhood Search algorithm.  

Crucially, 𝑞 's update is contingent on the acceptance of the solution generated in 

the preceding iteration, ensuring a dynamic adaptation to the evolving search 

landscape. 

The solution derived from any removal and insertion heuristic undergoes an 

acceptance criterion outlined in Subsection 3.2.4. If the solution  𝑥𝑎𝑐𝑡
∗  is accepted, the 

value of 𝑞 is reset to 𝑞𝑚𝑖𝑛.  

Furthermore, upon accepting  𝑥𝑎𝑐𝑡
∗   to update the penalty value 𝛼, the following 

scenarios are examined: 

1) If the solution 𝑥𝑎𝑐𝑡
∗   contains violations of bus capacity (indicating an infeasible 

solution), the search prioritizes reducing the violated capacity of the route, and the 

value of 𝛼 is set to 𝑚𝑖𝑛{𝛼𝑚𝑎𝑥, 𝛼𝛽}. The critical parameters 𝛼 and 𝛽 warrant 

consideration. 𝛼 reflects the heuristic's ability to explore infeasible portions of the 

solution space, while 𝛽 signifies the transition speed from the infeasible to the feasible 

space, impacting the capability to discover feasible regions with improved solutions. 
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2) If  𝑥𝑎𝑐𝑡
∗  indicates a feasible solution with no bus capacity violations, the focus shifts 

to minimizing travel distance, and 𝛼 is set to 𝑚𝑎𝑥 {
𝛼

𝛽
, 𝛼𝑚𝑖𝑛}.  

In this context, infeasibility is related to the bus capacity constraints. 𝛼 is linked to 

the maximum violation of this constraint. A higher 𝛼 compels the algorithm back into 

the feasible solution space, limiting exploration of the infeasible segment. Conversely, 

a smaller 𝛼 prompts exploration of a larger portion of the solution space. The value of 

𝛼 is set to 𝛼𝑚𝑖𝑛 initially and then systematically updated by the value of 𝛽. 

A high 𝛽 allows the penalty 𝛼 to increase, accelerating the algorithm toward a 

feasible solution. This approach directs the search into a broader space, facilitating 

infeasible moves. Optimal values for 𝛼𝑚𝑖𝑛 and 𝛼𝑚𝑎𝑥 are discussed in Section 3.3.1.1. 

If 𝑥𝑎𝑐𝑡
∗  is rejected and 𝑞 < 𝑞𝑚𝑎𝑥, then 𝑞 = 𝑞 + 1 to efficiently explore the solution 

space. If 𝑥𝑎𝑐𝑡
∗   is rejected and 𝑞 = 𝑞𝑚𝑎𝑥, 𝑞 is set to 𝑞 = [

𝑞𝑚𝑎𝑥

𝜂
]. This choice is driven 

by the understanding that when 𝑞 is close to 𝑞𝑚𝑎𝑥, this large value is insufficient for 

improving the current solution. Thus, a smaller 𝑞 can facilitate improvements, as 

outlined by Ropke and Pisinger (2006).  

For the discussed problem with instances ranging from 5 to 80 stops, 𝑞𝑚𝑖𝑛 and 𝑞𝑚𝑎𝑥 

align with the percentage of instances used in the problem. Specifically, 𝑞𝑚𝑖𝑛 is set to 

𝑞𝑚𝑖𝑛 = [𝑛𝜉𝑚𝑖𝑛], and 𝑞𝑚𝑎𝑥 = [𝑛𝜉𝑚𝑎𝑥], where 𝑛 is the number of stops, and 𝜁𝑚𝑖𝑛and 

𝜁𝑚𝑎𝑥 control the minimum and maximum percentage of stops to be removed from the 

solution. Detailed values of 𝜁𝑚𝑖𝑛and 𝜁𝑚𝑎𝑥 are discussed in Section 3.3.1.1. 

After updating the value of 𝑞, a verification is conducted to determine whether the 

solution 𝑥𝑎𝑐𝑡
∗  obtained from ALNS is superior to the best feasible solution found thus 

far. If affirmative, the new solution 𝑥𝑎𝑐𝑡
∗  is accepted, replacing 𝑥𝑏𝑒𝑠𝑡_𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒. Simple 

LNS configuration follows a similar methodology as ALNS, albeit with certain 

elements omitted from Algorithm 3-1. Specifically, in simple LNS, only one removal 

and insertion are performed instead of a set. Consequently, for the LNS metaheuristic, 

lines 16, 33, 35, and 36 of the pseudo-code are not applicable. 
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Algorithm (3-1) Adaptive Large Neighbourhood Search Metaheuristic (ALNS) 

1 Input: 𝑉: Set of all potential stops, 𝑆: Set of all students, 𝛼𝑚𝑖𝑛 (initial penalty value),𝑅 (set of Removal 

heuristics),  𝐼 (set of Insertion heuristics), 𝑞𝑚𝑎𝑥  (maximum number of stops to be removed), 𝑞𝑚𝑖𝑛 

(minimum number of stops to be removed), 𝜌 (total number of iterations that contains number of 

segments),  

𝜂 (parameter to set 𝑞𝑙𝑜𝑤,roulette wheel parameter),  𝜋(initial score of heuristic (𝐼⋃𝑅)), 𝑤 (initial weight 

of removal and insertion heuristic (𝐼⋃𝑅)),nsegs (number of iterations in each segment ). 

2 //
 
Constructive

 
Stage 

3 𝑉𝑠𝑡𝑜𝑝=allocate all students to the bus stops     // Allocating using student allocation heuristic 

𝑥𝑜=Route generation (𝑉𝑠𝑡𝑜𝑝, 𝑆)                     // Generating route using (CR.g)heuristic 

4   If 𝑥𝑜is feasible then 

5 
  

   𝑥𝑏𝑒𝑠𝑡_𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 = 𝑥𝑜 

6 
 
    𝑓𝑏𝑒𝑠𝑡−𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 = 𝑓(𝑥𝑜) 

7  Else
 

8     𝑓𝑏𝑒𝑠𝑡_𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 = ∞   

9  End if  

10  𝛼 = 𝛼𝑚𝑖𝑛 

11  𝑥𝑎𝑐𝑡 = 𝑥0 
12 // Improvement Stage 

13 𝑞 = 𝑞𝑚𝑖𝑛 Initialize the roulette wheel; initialize the adaptive parameters (𝜋, 𝑤)
 

14 While Stopping criterion 𝜌 is not met do
 

15       For seg=1 to nsegs do 

16       Roulette wheel mechanism: Select Removal heuristic ℎ𝑟𝑒𝑚 ∈ 𝑅 and Insertion heuristic ℎ𝑖𝑛𝑠 ∈ 𝐼  

based on scores {𝜋} and weights 𝑤 
 

17       Remove 𝑞 
 
requests from solution 𝑥𝑎𝑐𝑡 using ℎ𝑟𝑒𝑚, creating a partial solution  

18      Insert customers into the partial solution using ℎ𝑖𝑛𝑠 , creating a solution 𝑥𝑎𝑐𝑡
∗  

19         If accept (𝑥𝑎𝑐𝑡
∗ , 𝑥𝑎𝑐𝑡)then  

20 
          

𝑥𝑎𝑐𝑡 = 𝑥𝑎𝑐𝑡
∗  

21 
          

𝑞 = 𝑞𝑚𝑖𝑛 
 

22           Update the value of the penalty 𝛼  

23        Else  

24              If 𝑞 < 𝑞𝑚𝑎𝑥 then
 

25 
               

𝑞 = 𝑞 + 1%
 

26              Else 

27 
                

𝑞 = (
𝑞𝑚𝑎𝑥

𝜂
)
 

28             End if
 

29        End if 
 

30              If 𝒇(𝒙𝒂𝒄𝒕) < 𝒇𝒃𝒆𝒔𝒕_𝒇𝒆𝒂𝒔𝒊𝒃𝒍𝒆 then 
 

31 
                

𝑥𝑏𝑒𝑠𝑡𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒
= 𝑥𝑎𝑐𝑡

∗  

32             End if 

33       Update the collected scores of ℎ𝑟𝑒𝑚 and ℎ𝑖𝑛𝑠 

34     End for  

35        Update (weights 𝑤 of ℎ𝑟𝑒𝑚 and ℎ𝑖𝑛𝑠 ) 

36         Set scores  𝜋 = 0 of ℎ𝑟𝑒𝑚 and ℎ𝑖𝑛𝑠 

37  End while  

38  Output:   Report best solution 𝑥𝑏𝑒𝑠𝑡   found  

 

The cost function is similar first chapter and addressed as follows:   
𝑐𝑜𝑠𝑡(𝑥, 𝛼) = 𝑐𝑜𝑠𝑡(𝑥) + 𝛼𝑑(𝑟)  (3-1) 

The objective function comprises two terms: the first represents the total distance 

covered by all buses, while the second term, 𝑑(𝑟), accounts for the cumulative excess 

loads carried by each bus (bus capacity violations). This excess load is multiplied by 
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a penalty term, 𝛼. This demonstrates that our search isn't confined to feasible solutions 

but operates with an oscillation strategy. In this approach, the bus capacity constraints 

are relaxed and incorporated into the objective function as a penalty term. The 

parameter 𝛼 acts as a weight for the penalty function, dynamically adjusted within the 

interval [𝛼𝑚𝑖𝑛, 𝛼𝑚𝑎𝑥]. 

In simpler terms, the penalty parameter 𝛼 underscores the impact of bus capacity 

violations on the total solution cost. The parameter 𝛼 is bounded by 𝛼𝑚𝑖𝑛 as the lower 

limit and 𝛼𝑚𝑎𝑥 as the upper limit, preventing the weight from reaching infinity. If all 

bus routes adhere to the capacity constraints, the second term, 𝑑(𝑟), is set to zero. 

There's a scenario in which, during the algorithm, the value of 𝛼 might become large, 

approaching 𝛼𝑚𝑎𝑥. To address this situation, the restore operator comes into play (refer 

to Section 2.3.6 for more details). 

 Constructive stage 

The Clarke and Wright algorithm is a well-known method used to address the 

Vehicle Routing Problem (VRP) and its variants (Clarke and Wright, 1964). The 

standard Clarke and Wright algorithm begins with an initial solution where each stop 

is visited in a separate route, meaning each stop is assigned to only one bus. 

Subsequently, the algorithm iteratively merges two routes, providing savings in travel 

costs.  

To accomplish this, a saving matrix (𝑠𝑖𝑗 = 𝑐𝑖𝑜+𝑐𝑜𝑗 − 𝑐𝑖𝑗) is created at the start of 

the algorithm for each pair of stops. This matrix illustrates the cost reduction achieved 

by connecting two stops, leading to the consolidation of two routes into one. The 

savings are then organized in decreasing order. 

The two routes containing stops 𝑖 and 𝑗, associated with the saving 𝑠𝑖𝑗 are merged only 

if (1) both stops 𝑖 and 𝑗 are connected to the depot, and (2) the total capacity linked 

with the new merged route does not exceed the vehicle capacity. 

For SBRP, the original Clarke and Wright algorithm is modified as follows: (i) 

After the initial setup, where each stop is visited separately, students are allocated to 

the stops based on a student allocation sub-problem (refer to Section 2.3.5); next (ii) a 

greedy randomized adaptive search procedure (Feo and Resende, 1995) is employed 

to establish a proper balance between greediness and randomness. 

 Initially, the saving matrix is calculated for each pair of stops. Subsequently, a 

Restricted Candidate List (RCL) is built, containing the α first stop pairs sorted in 

decreasing order of savings.  

In each step, a randomly selected pair from the Restricted Candidate List (RCL) 

undergoes a merge operation, implementing the associated saving. Post-merge, the 

RCL adapts based on the new solution configuration. This selection and update process 
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repeats until the list is empty, culminating in a complete solution. The RCL's size, 

denoted by α, influences the solution construction.  

At α = 1, meaning that the largest possible saving is considered while building the 

current solution. Conversely, an increasing α, possibly matching the available saving 

elements in list, results in a more random construction. α serves as a parameter, 

providing variability in generating different initial solutions for the SBRP at each run 

of heuristic.  

To save time, a feasibility check precedes the connection of stop pairs. If connecting 

a pair leads to an infeasible solution, the move is omitted and removed from the 

Restricted Candidate List (RCL). After the process concludes, the initial solutions 

undergo an improvement stage. This cycle continues until no non-visited stop pairs 

 Improvement stage 

In this section, we introduce the Adaptive Large Neighborhood Search heuristic 

(ALNS) along with its components from Ropke and Pisinger (2006). For a given 

solution 𝑥𝑜, each iteration involves the removal of stops using one of the removal 

operators, followed by their reinsertion using one of the insertion operators. To 

enhance the solution, a removal operator is employed to eliminate stops, and an 

insertion operator is used to reintroduce them. Subsequent paragraphs detail the 

insertion and removal heuristics, along with other components of ALNS. 

3-2-2-1- Removal heuristics  

In this section, we outline four removal heuristics inspired by Ropke and Pisinger 

(2006) and adapted to the school Bus Routing Problem (SBRP). These heuristics, 

namely Shaw removal based on distance, Shaw removal based on demand, Worst 

removal, and Random removal, are described. 

All heuristics in this section receive a solution and an integer 𝑞 as input. The output 

of each heuristic is a solution from which q requests have been removed. Notably, 

Shaw removal and Worst removal include an additional parameter, 𝑝, which dictates 

the degree of randomization within the heuristic. 

 Shaw removal based on the distance heuristic 

The Shaw removal heuristic, grounded in the concept of similarity, aims to 

eliminate stops that are close to each other based on their distance in a given solution. 

This strategy facilitates the restructuring of similar stops, leading to the generation of 

an improved solution.  
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The process involves randomly selecting one stop from the U-bank, and if the U-

bank is empty, a stop from the current solution is chosen and inserted into 𝑈. 

Subsequently, the degree of similarity between the selected stop in 𝑈 and all other 

stops not yet removed in the current solution is measured using the relatedness 

measure, denoted as 𝑅. The relatedness between stops 𝑖 and 𝑗 is computed based on 

their distance from each other, following the method employed by Ropke and Pisinger 

(2006). The relatedness measure (represented by the Euclidean distance formula) is 

calculated as follows:  

𝑅(𝑖, 𝑗) = √(𝑥𝑗 − 𝑥𝑖)2 + (𝑦𝑗 − 𝑦𝑖)2, where each node 𝑖 ∈ 𝑉, is defined by coordinates 

(𝑥𝑖, 𝑦𝑖). 

The index for a stop in the list L, encompassing all requests from the solution absent 

in list U, is determined by Index i {𝑦𝑝|𝐿|}, where 𝑦 is a random parameter within the 

range [0, 1],  , and 𝑝 defines the random selection of a stop to be removed (with 𝑝 

representing the degree of randomness). A lower 𝑝 value signifies greater similarity 

between stops, while a higher value indicates that selected stops exhibit lower 

similarity. This process continues until q stops are selected from the current solution 

and added to the list 𝑈. (Refer to Ropke and Pisinger (2006) for further details). 

 

 Shaw removal based on demand heuristic  

This heuristic follows the Shaw removal based on distance procedure, differing only 

in the calculation of the degree of similarity between two stops. In this case, the 

relatedness between stops 𝑖 and 𝑗 is measured in terms of the amount of demand to be 

picked up by bus 𝑘, given by:| 𝐷𝑖 − 𝐷𝑖|. Here, 𝐷𝑖  represents the number of students 

allocated to stop 𝑖. The objective is to rearrange stops based on the similarity in the 

allocated number of students, seeking to enhance the solution through this reshuffling 

process.  

 Worst removal heuristic                                                                                                                                     

This heuristic selects the 𝑞 stops with the highest removal gain, defined as 

𝑔𝑎𝑖𝑛(𝑖, 𝑥) = 𝑐𝑜𝑠𝑡(𝑖, 𝑥) = 𝑓(𝑥) − 𝑓−𝑖(𝑥), where 𝑓(𝑥) is the cost of the solution with 

stop 𝑖, and 𝑓−𝑖(𝑥) is the cost of the solution without stop 𝑖. The rationale is to prioritize 

the removal of requests with high gain and relocate them within the solution, 

anticipating that the insertion heuristic can effectively reduce solution costs. 

Consequently, this removal heuristic focuses on eliminating requests with the highest 

𝑔𝑎𝑖𝑛(𝑖, 𝑥). 

 Random removal heuristic 

The random removal algorithm randomly selects 𝑞 stops, removes them from the 

current solution, and adds them to the list 𝑞. It's worth noting that the random removal 
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can be viewed as a special case of the Shaw removal heuristic with 𝑝 set to 1. 

Consequently, it can be executed more efficiently than the full Shaw removal heuristic. 

3-2-2-2- Insertion heuristics 

Following the introduction of the destruction heuristic, the subsequent section 

details the insertion heuristics employed in the algorithm, drawing inspiration from 

Ropke and Pisinger (2006) and adapted for the school Bus Routing Problem (SBRP). 

The core concept of the insertion heuristic is to rearrange stops that are not currently 

included in the solution or have already been disconnected.  

 

 Basic greedy heuristic  

Among the four presented insertion heuristics, two follow a greedy construction 

approach. The basic greedy heuristic identifies the cheapest insertion position for all 

requests in the list 𝑈. Denoting ∆𝑓𝑖𝑘 as the change in the objective function value 

resulting from inserting request 𝑖 into route 𝑘 at the position that minimally increases 

the cost of the current solution x, the cheapest insertion cost is given by 𝑓+(𝑖, 𝑥) =

𝑚𝑖𝑛𝑘∈𝑅(∆𝑓𝑖𝑘). This process continues until all stops in the list 𝑈 have been inserted. 

 Second best heuristic 

This heuristic slightly deviates from the basic greedy approach by aiming to insert 

requests in the second-best position, thereby diversifying the search space. The 

selection procedure for requests from the list 𝑈 remains similar to the basic greedy 

heuristic. 

 Deep greedy heuristic  

The deep greedy heuristic inserts unserved requests into the route in a manner that 

increases the solution's cost at least. Importantly, the basic and deep greedy heuristic 

algorithms vary in their approach to selecting a request from the U-bank. 

The basic greedy heuristic follows a straightforward process: it selects the first stop 

from list 𝑈 and inserts it into the cheapest position. This stop is then removed from the 

list, and the procedure repeats for the remaining stops in list 𝑈. 

In contrast, the deep greedy heuristic calculates the lowest-cost solution for all stops 

in list 𝑈 beforehand. 

 Subsequently, the stop with the lowest insertion cost is chosen for insertion. This 

process continues until no stops remain in list 𝑈 or it becomes impossible to insert any 

stops. For a set of stops in list 𝑈, the cheapest insertion is formulated as 

𝑚𝑖𝑛𝑖∈𝑈𝑓+(𝑖, 𝑥). This heuristic diverges from the basic greedy heuristic by calculating 



 

59 

 

the best insertion cost among all requests in list 𝑈, instead of just the first one, which 

leads to increased computational time.  

 Regret-K heuristic  

Differing from the greedy heuristic, the regret heuristic extends beyond the best 

insertion position. To address potential myopic behavior in the greedy insertion 

heuristic, it explores an alternative insertion possibility. The aim is to insert the stop in 

an earlier position, recognizing that the better position may be unavailable or inserting 

the stop later could result in higher costs. 

 A reinserting order for stops is determined using a regret measure, computed based 

on the difference between the cost of inserting a request in the best position and the 

second-best to 𝑘𝑡 best position. In essence, the regret heuristic prioritizes stops from 

the 𝑈 list with the maximum cost difference. 

To implement the regret heuristic, the initial step involves calculating the least 

insertion cost for all stops in the 𝑈 list across all routes, similar to the deep greedy 

heuristic. These values are then sorted in ascending order. Subsequently, the 

summation of differences between the best and the second to 𝑘𝑡ℎ best insertion 

positions is computed, termed the "regret measure." 

The stop with the maximum regret measure is selected and inserted into the current 

solution. This process iterates until no stops remain in the 𝑈 list. 

In each iteration, the regret value seeks stop 𝑖 that maximizes 𝑚𝑎𝑥𝑖∈𝑈 ∑ (∆𝑓𝑖
𝑘 −𝑘

𝑗=1

∆𝑓𝑖
1), where ∆𝑓𝑖

𝑘 represents the insertion cost for request 𝑖 in the 𝑘𝑡ℎ cheapest position. 

The regret-𝑘-heuristic used in this chapter assumes 𝑘 to be equal to 2, meaning it 

calculates the difference between the second-best and the best insertion positions. 

 Selection of removal and insertion heuristic   

In each iteration, the selection of one removal and one insertion heuristic is crucial 

for the ongoing search process. The choice of these heuristics is influenced by their 

performance in the preceding iteration. The underlying idea involves assigning a 

weight to each heuristic, indicating its effectiveness in the previous stage. 

 To implement this, the entire search is divided into fixed segments, with each 

segment comprising a set number of consecutive iterations—here, set to 20 iterations 

per segment. This represents a fraction of the total iterations. In the initial segment, all 

heuristic scores are set to zero, and each heuristic (both removal and insertion) is 

assigned an equal weight of 𝑤𝑖 = 1. At the conclusion of each segment, the weight for 

each pair of removal and insertion heuristics is updated based on the scores 

accumulated during that segment. 
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The score reflects the efficacy of heuristics in the preceding segment, and its 

utilization is updated based on conditions 𝜎1, 𝜎2 𝑜𝑟 𝜎3. These conditions are as 

follows: 

1) When a pair of removal and insertion heuristics achieves the global best solution, 

its score is increased by 𝜎1. 

2) If it discovers a solution superior to the previous one, its score is set to 𝜎2. 

3) When the pair obtains a solution worse than the previous one but is accepted, the 

value is increased by 𝜎3. 

Otherwise, the score is set to zero. At the end of each segment, weights are computed 

based on the obtained scores, and these scores are reset to zero for the next segment. 

The weights for selecting the heuristic are calculated as follows: 

w𝑖,𝑗+1 = {

w𝑖,𝑗                    𝑖𝑓 O𝑖,𝑗 = 0

(1 − γ)w𝑖,𝑗 + γ
π𝑖,𝑗

O𝑖,𝑗

      𝑖𝑓O𝑖,𝑗 ≠ 0 } 

 

 

(3-2) 

 

 

The optimal values for 𝜎1, 𝜎2 or 𝜎3 will be discussed in Section 3.3.1.1. In this 

context, 𝑤𝑖𝑗 indicates the performance of heuristic 𝑖 in segment 𝑗, and 𝑂𝑖𝑗  represents 

how often heuristic 𝑖 is chosen in segment 𝑗. Let π𝑖,𝑗 denote the previously discussed 

score for each heuristic during segment 𝑗. 

The reaction factor, 𝛾 ∈ [0,1], signifies how rapidly the weight modification 

responds to changes in heuristic performance. Specifically, with 𝛾 = 0, we rely solely 

on the initial weight without considering scores. Conversely, when 𝛾 = 1, we consider 

scores obtained in the last segment. Our perspective suggests that the situation between 

these extremes, where 0 ≤ 𝛾 ≤ 1, should be considered. Determining the optimal 

value for the reaction factor is explored in Section 3.3.1.1. 

After determining the weight for each pair of heuristics, the next step involves 

selecting one removal and one insertion heuristic for use throughout the search. It's 

important to note that removal and insertion are chosen independently. 

The selection of removal and insertion heuristics is inspired by a roulette wheel 

mechanism. This mechanism picks the candidate heuristic from the set of removal or 

insertion heuristics based on the following probabilities: 

P (Removal heuristic 𝑖 to be chosen in the segment 𝑗) =
𝑤𝑖𝑗

∑ 𝑤𝑖𝑗𝑖∈𝐼
  

P (Insertion heuristic 𝑖 to be chosen in the segment 𝑗) =
𝑤𝑖𝑗

∑ 𝑤𝑖𝑗𝑖∈𝑅
 

Where 𝑅 represents set of Removal heuristics and 𝐼 denotes set of Insertion heuristics. 

 Acceptance criteria 

The acceptance criteria of the ALNS algorithm play a crucial role in determining 

whether a newly generated solution should be accepted or rejected. Various methods 
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can be employed to implement these criteria. One approach involves adopting the 

better acceptance method, where only a superior solution is accepted. This criterion 

emphasizes intensification, aiming for improved solutions. On the other end of the 

spectrum, the random walk acceptance criterion seeks to accept any solution, 

irrespective of its objective value. This approach promotes diversification, exploring a 

broader solution space. 

Several intermediate methods exist, such as simulated annealing, as introduced by 

Kirkpatrick et al. (1983). Simulated annealing aims to strike a balance between 

diversification and intensification contexts, providing a nuanced approach to solution 

acceptance. The acceptance criterion for the new solution 𝑥∗ follows a specific 

procedure. If 𝑓(𝑥∗) < 𝑓(𝑥), indicating an improvement, the new solution 𝑥∗ is 

accepted, replacing the current solution. However, if 𝑓(𝑥∗) > 𝑓(𝑥), the solution 𝑥∗ is 

accepted with a probability 𝑃(𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒) = 𝑒 − 
𝑓(𝑥∗)−𝑓(𝑥)

𝑇 , where 𝑇 is a parameter 

initially set to 𝑇𝐼𝑛𝑖𝑡𝑖𝑎𝑙 and gradually decreases throughout the search via a cooling rate 

 𝑐ϵ(0,1): 𝑇 ← 𝑇. 𝐶. As 𝑇 decreases, the probability of accepting a worse solution 

diminishes, aiding the algorithm in escaping local optima and introducing more 

diversity into the solution space. 

This chapter focuses on three acceptance criteria. In Section 3.4, the discussion 

centers on the simulated annealing method. In Section 3.5, three types of acceptance 

criteria are examined: simulated annealing, better acceptance, and random walk. 

 Allocation heuristic sub-problem 

This chapter specifically addresses the student allocation sub-problem, examining 

it in two stages:  

1. Constructive phase: This stage involves the selection of stops. 

2. Restore operator: Student re-allocation occurs during this phase, aiming to make 

a feasible solution. 

The concept of addressing allocation in both the constructive stage and the restore 

operator aligns with the framework presented in Chapter 2 (Section 2.3.6).  

3-3- Metaheuristic configuration 

This section illustrates the functioning of different removal and insertion heuristics 

within an ALNS metaheuristic. The metaheuristic is implemented in Java, and an 

experimental analysis is conducted in two consecutive steps. 

In the first stage, the focus is on examining and fine-tuning the key components of 

the ALNS metaheuristic to generate optimal average solutions. Given the similarity in 
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configuration between ALNS and LNS components, this stage exclusively delves into 

the analysis of ALNS components. 

In the second stage, following the determination of optimal parameter values, a 

comprehensive comparison is conducted among the proposed metaheuristics. This 

comparison is performed across instances categorized as small, medium, and large 

containers. The instances used in this analysis mirror the sample data outlined in 

Chapter 2, comprising 104 samples drawn from benchmark instances proposed by 

Schittekat et al. (2013) and grouped into sets based on three sizes. 

 Setup of the experiments and tuning 

The analysis unfolds in two sequential stages as follows: 

1. Preliminary stage: This stage involves the fine-tuning of ALNS parameters that 

significantly impact its performance, aiming to identify the most effective values. 

2. Second stage: Once the parameters are tuned, the interaction of candidate removal 

and insertion heuristics is assessed to determine the optimal combination of 

operators. To enhance the evaluation process, two distinct representative instances 

are considered for this preliminary stage. 

3-3-1-1- Parameter configuration 

The ALNS heuristic relies on numerous components, and optimizing their values is 

crucial for enhancing algorithm performance. The primary goal is to fine-tune the 

metaheuristic, achieving the best parameter setting for improved solution quality while 

maintaining efficient computing time. This involves testing a subset of instances in a 

full factorial experiment, examining all parameter combinations in Table 3-1. The 

parameter setting is tested on 10 instances, with 4 from set S, 4 from set M, and 2 from 

set L.  

Each instance undergoes five runs, and we consider the average values for both the 

objective and computation time. We highlight the parameters influencing the 

algorithm's behavior: 𝑝 controls Shaw removal and worst removal; weighted 

adjustment involves 𝜎1, 𝜎2, 𝜎3 and 𝛾; strategic oscillation is influenced by 𝛼 and 𝛽; and 

controlling the removed stops uses 𝜉𝑚𝑖𝑛, 𝜉𝑚𝑎𝑥, and 𝜂. Table 3-1 displays the optimal 

settings for the heuristic parameters. 
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Table (3-1)  Heuristic Parameters and best Parameter Setting 

Parameters Description Value # 
Best 

value 

𝝆 Defines the number of iterations 350,450,550 3 450 

𝝃𝒎𝒊𝒏 
Introduces minimum percentage of requests, 

stops, to be removed at each ALNS iteration 
2%,5%,10% 3 5% 

𝝃𝒎𝒂𝒙 

Introduces maximum percentage of 
requests, stops, to be removed at each 

ALNS iteration 

15%,20%,25% ,30%,35%,40 

%,45,%,50% 
7 35% 

𝜼 Defines Parameter to set  𝑞 2,4 2 2 

𝒑 

 

Is responsible for randomness in the 
removal process 

4,6 2 6 

𝝈𝟏 
Is the weight adjustment of algorithm in 

roulette wheel mechanism 
40,50,60 3 50 

𝝈𝟐 
Is the weight adjustment of algorithm in 

roulette wheel mechanism 
20,30,40 3 30 

𝝈𝟑 
Is the weight adjustment of algorithm in 

roulette wheel mechanism 
1,5,10 3 5 

𝜸 
Is the reaction factor of the weights in 

roulette wheel mechanism 
0.25,0.5, 0.75 3 0.75 

𝜶𝒎𝒊𝒏(𝜶𝟎) Is initial penalty 1,2,5,10 4 1 

𝜷 
Is the multiplicative factor employed to 

increase the penalty 
2,5,10 3 5 

∅ Size of the restricted candidate list 1,2,3,4 4 2 

 

 

Table (3-2)  p-Values of the F-tests to Determine the Significance of each Term 

Parameters Computing time Average solution cost 

𝝆  p<0.05 p<0.05 

𝝃𝒎𝒊𝒏 p<0.05 p<0.05 

𝝃𝒎𝒂𝒙 p<0.05 p<0.05 

𝜼  0.162 0.084 

𝒑  0.082 0.079 

𝝈𝟏 0.093 p<0.05 

𝝈𝟐 0.054 0.809 

𝝈𝟑 0.115 0.320 

𝜸  p<0.05 p<0.05 
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𝜶𝒎𝒊𝒏  p<0.05 p<0.05 

𝜷  p<0.05 0.402 

𝝓  0.193 p<0.05 

𝜶𝒎𝒊𝒏 × 𝝃𝒎𝒊𝒏 × 𝝃𝒎𝒂𝒙 p<0.05 p<0.05 

 

To analyze the results, a multi-way ANOVA is conducted using the R software, 

presenting p-values. These values indicate the significance of each parameter on 

solution quality (measured by the objective function) and computation time. In 

literature, Multi-way ANOVA, known for detecting significant parameters and their 

interactions, is deemed suitable (Cuervo et al., 2014).  

 Multi-way ANOVA is employed to analyze main and interactional effects, 

detecting correlations between variables and providing additional information in the 

analysis when variables are correlated. Significant parameters (P-value < 0.05) are 

highlighted in boldface type in Table 3-2.   

The value of 𝛼𝑚𝑎𝑥is determined as 125 × 𝛼𝑚𝑖𝑛. The Table 3-2 highlights key 

factors influencing solution quality and computation time: number of iterations, 

minimum and maximum requests for removal, reaction factor for roulette wheel 

weight, and initial penalty.  

Parameter 𝛽 exclusively affects computation time, while the interaction of initial 

penalty values 𝛼𝑚𝑖𝑛, 𝝃𝑚𝑖𝑛, and 𝝃𝑚𝑎𝑥 significantly influences both solution quality and 

computation time. This underscores the importance of the ALNS heuristic's ability to 

explore the infeasible solution space and the percentage of nodes to be removed. 

Specifically, emphasis should be on enhancing the exploration power of the infeasible 

region rather than speeding up the transition between feasible and infeasible 

boundaries.  

Figures 3-1(a-c) depict the interaction of 𝜉𝑚𝑖𝑛, 𝜉𝑚𝑎𝑥, and , 𝛼𝑚𝑖𝑛 on solution quality. 

 It is observed that, for a fixed value of  𝜉𝑚𝑖𝑛and 𝛼𝑚𝑖𝑛, an increase in the value of 

𝜉𝑚𝑎𝑥contributes to improving solution quality. Consequently, better solutions are 

achieved. However, this positive trend reverses when 𝜉𝑚𝑎𝑥 becomes more than 35%, 

leading to behavior resembling random restarts, diminishing the impact of large 

neighborhood search. Notably, increasing 𝛼𝑚𝑖𝑛, regardless of 𝜉𝑚𝑖𝑛and 𝜉𝑚𝑎𝑥 values, 

results in lower solution quality, indicating reduced time for exploration.  

Conversely, lower 𝛼𝑚𝑖𝑛 values necessitate more exploration of the infeasible 

region. Ultimately, the metaheuristic performs better with 𝜉𝑚𝑖𝑛 at 5% and 

𝜉𝑚𝑎𝑥 ranging from 30% to 35%.  

Figure 3-2 illustrates the impact of 𝜉𝑚𝑎𝑥 and 𝛼𝑚𝑖𝑛  at a fixed 𝜉𝑚𝑖𝑛at 5% on average 

computing time. Clearly, as 𝜉𝑚𝑎𝑥 increases, the algorithm demands more computing 

time to explore the solution space and escape local optima. Conversely, higher values 

of 𝛼𝑚𝑖𝑛 result in lower computing time, as the algorithm allocates less time to search 

in infeasible segments. Consequently, lower values of 𝛼𝑚𝑖𝑛, as depicted in Figure 3-
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2, exhibit better performances, enhancing the capability to explore the infeasible area 

more effectively. 

 

   

Figure (3-1)  Influence of the Parameters 𝝃𝒎𝒊𝒏, 𝝃𝒎𝒂𝒙and the Initial Penalty 𝜶𝒎𝒊𝒏(𝜶𝟎) on the 

Average cost of the Best Solutions Found. 

 

 

Figure (3-2)  Influence of the Parameters 𝝃𝒎𝒂𝒙 and the Initial Penalty 𝜶𝒎𝒊𝒏(𝜶𝟎) on the Average 

Computing Time, (𝝃𝒎𝒊𝒏 = 𝟓%) 
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3-3-1-2- Analysis of the LNS operators 

In the ALNS metaheuristic, the critical question is identifying the optimal 

combination of removal and insertion heuristics. While some heuristics may exhibit 

weaker performance, disregarding them can degrade the overall solution. Although 

certain neighborhoods may not directly enhance the solution, they can play a crucial 

role in escaping local optima for other operators in future iterations. 

 This emphasizes the effectiveness of simultaneously using multiple neighborhoods 

to empower the solution through diversification or intensification. Achieving a suitable 

combination of operators, balancing intensification and diversification, yields 

promising outcomes. However, the drawback lies in the increased complexity and 

computing time when incorporating a large number of insertion and removal 

heuristics. Moreover, the selection or design of heuristics should align with the 

problem structure, emphasizing the need for problem-specific knowledge. These 

advantages and disadvantages underscore the importance of a meticulous pilot study 

in the preliminary stages. 

To identify the optimal combination of ALNS operators, as discussed in Section 

3.3.1.1, a full factorial experiment is deemed necessary. Treatments include scenarios 

where all neighborhoods (both removal and insertion operators) are deactivated, 

relying solely on the initial solution. It's crucial to note that all other metaheuristic 

parameters are set based on the values in Table 3-1. Ten runs are conducted over 10 

representative instances from small, medium, and large sets, and the average results 

for each level are incorporated into the experiment. Figure 3-3 presents key findings 

that facilitated the definition of our removal and insertion operators. The vertical axis 

depicts the average percentage gap of results from the best-known solutions, while the 

x-axis indicates the activation or deactivation of each operator. 

This analysis highlights that Shaw removal (based on distance), Worst removal, 

Random removal, Basic insertion, Deep greedy insertion, and Regret-2 insertion 

significantly impact solution quality. Removal operators, specifically Shaw and Worst, 

contribute to intensification, while Random removal adds a diversification mechanism. 

Similarly, in the insertion mechanism, Basic and Deep greedy operate on an 

intensification basis, while Regret-2 explores using a diversification mechanism. 

Notably, Shaw removal (based on demand) and second-best insertion have a lesser 

effect on solution quality compared to other operators, although they provide a modest 

improvement when activated. Consequently, excluding these two operators doesn't 

significantly impact the solution, and their contribution to enhancing solutions appears 

limited. 

Remarkably, among all combinations in our experiment, Shaw (based on distance), 

Worst and Random removals, and Basic, Deep greedy, and Regret-2 insertions exhibit 

minimal deviation from the best-known solutions. Consequently, this combination is 

selected for further analyses. While all considered destroy and repair algorithms 
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contribute positively to solution quality to some extent, our objective is to strike a 

balance between solution quality and computing time. Therefore, deactivating 

operators with a lower or weaker impact on solution quality is highly desirable. 
Main effects plot for average percentage gap 

 

 

Figure (3-3)  Plot of Average Gap from the Best- known Solution Values for Given Heuristic 

Setting (a: Removal Heuristics, b: Insertion Heuristics) 

3-4- Results  

Having determined the optimal parameter settings for each solution approach, two 

stages of experiments are conducted to assess the performance of each heuristic. In 

both stages, five simple LNS heuristic configurations, each consisting of one removal 

and one insertion heuristic ("Shaw removal (based on distance) with Regret-2," "Shaw 

removal (based on distance) with Deep greedy," "Worst removal with Regret-2," 

"Shaw removal (based on distance) with Basic greedy," "Rand removal with Regret-

2"), and the full adaptive LNS with dynamic weight-adjusted (ALNS) are investigated.  

 Comparison with the best-known solutions   

The experiments aim to comprehend algorithm behavior and determine whether the 

oscillation strategy is is utilized or not. This analysis specifically explores algorithm 

performance under two scenarios related to bus capacity constraints. The first scenario 

relaxes bus capacity constraints through the oscillation strategy, while the second 

b 

a 
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maintains tight capacity constraints. The objective is to identify which scenario yields 

better performance. For precision in tracking the analysis, each scenario is separately 

investigated in this section. 

3-4-1-1- Considering oscillation strategy  

In the first stage, each heuristic configuration is evaluated based on the best gap and 

average gap compared to the results of the best-known solutions presented by 

Schittekat et al. (2013). This assessment involves tests conducted on a set of SBRP 

benchmark problems, utilizing 104 instances from the benchmark instances proposed 

by Schittekat et al. (2013). 

Specifically, the %Best Gap represents the percentage gap between the best 

solutions calculated after 10 runs and the best-known solutions (both proposed 

heuristic and MIP in Schittekat et al. (2013)) from SBRP instances. This metric relates 

to the algorithm's ability to find superior solutions. The %Avg Gap calculates the 

percentage gap between the average cost of solutions after 10 runs and the best-known 

solutions (both proposed heuristic and MIP in Schittekat et al. (2013)) from SBRP 

instances, providing insights into the robustness of the algorithm. Detailed experiment 

information is reported in Appendix 3. 

The best-known solutions results are divided into two categories. The first is the 

best-known solutions from the proposed heuristic (referred to as 𝐵𝐾𝑆𝑀𝐻), and the 

second is the best-known solutions obtained from solving the MIP model (referred to 

as  𝐵𝐾𝑆𝑒𝑥𝑎𝑐𝑡). The results are compared against either of these two benchmarks. 

Tables 3-3 show the percentage gap from 𝐵𝐾𝑆𝑀𝐻, while Tables 3-4 present the 

percentage gap from 𝐵𝐾𝑆𝑒𝑥𝑎𝑐𝑡. 

The aggregated findings, representing the average across small, medium, and large 

instances, are presented in Table 3-3. For each metaheuristic, this table illustrates the 

gap percentage between the best solutions found after 10 runs and the best-known 

solutions (𝐵𝐾𝑆𝑀𝐻) from Schittekat et al. (2013). 

In Table 3-3, columns two to four represent the removal heuristics, while columns five 

to seven indicate the insertion heuristic used. Rows differentiate between 

configurations classified as LNS or ALNS. 

Comparing the first configuration among simple LNS configurations, it is evident 

that, on average, the Shaw removal (based on distance) with Regret-2 insertion 

heuristic achieves a smaller best gap from the best-known solutions, with a percentage 

gap of 1.96% for the entire set considered. The Shaw removal (based on distance) with 

Deep greedy insertions is ranked second. 

From the perspective of the average gap, Shaw removal (based on distance) with 

Deep greedy insertion exhibits superior performance among other LNS frameworks. 

However, the combination of Rand insertion with Regret-2 performs poorly. In terms 
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of both best gap and average gap, Shaw removal (based on distance) outperforms other 

removal heuristics.  

Comparing the first and second configurations for both the best and average gaps, 

the results indicate that the ALNS heuristic is capable of finding better solutions than 

all simpler LNS heuristics. This enhanced performance is attributed to the fact that, on 

average, ALNS yields satisfactory results for all instances, while individual LNS 

heuristics may produce suboptimal solutions in some instances. Additionally, 

recognizing the problem structure appropriately emerges as a critical element, an 

aspect that has received less attention in the literature. 

Indeed, problem-specific knowledge plays a crucial role in designing the structure 

of metaheuristics efficiently, leading to the development of more effective algorithms. 

For further insights, readers can refer to Arnold and Sörensen (2017), where the author 

provides an example of how incorporating problem-specific knowledge contributes to 

the design of more efficient heuristics. The author emphasizes a strong relationship 

between the problem's structure and the quality of the heuristics employed. 
Table (3-3)  The Results Obtained from Solving the Instances Placed in S, M, and L Sets (First 

Scenario) 

(a). Best gap from best-known solutions (𝑩𝑲𝑺𝑴𝑯) 

Configuration 

Removal heuristics Insertion heuristics 

Average over all 

instances 

(Percent) 

Shaw 

(Based 

on 

distance) 

Rand Worst 
Basic 

greedy 

Deep 

greedy 
Regret -2 

LNS-1  •    • 3.14% 

LNS-2   •   • 2.25% 

LNS-3 •     • 1.96% 

LNS-4 •    •  2.05% 

LNS-5 •   •   2.65% 

ALNS • • • • • • 1.64% 

(b). Average gap from best-known solutions (𝑩𝑲𝑺𝑴𝑯) 

Configuration 

Removal heuristics Insertion heuristics 

Average over all 

instances 

(Percent) 

Shaw 

(Based 

on 

distance) 

Rand Worst 
Basic 

greedy 

Deep 

greedy 
Regret -2 

LNS-1  •    • 5.11% 

LNS-2   •   • 3.75% 

LNS-3 •     • 3.13% 

LNS-4 •    •  3.06% 

LNS-5 •   •   3.91% 

ALNS • • • • • • 2.77% 

Similar comparisons are conducted concerning  𝐵𝐾𝑆𝑒𝑥𝑎𝑐𝑡 (refer to Table 3-4). In 

the case of the best gap, superior performance is observed for ALNS, with LNS-3 

heuristic ranking second. Regarding the average gap, ALNS consistently outperforms 

other configurations. 
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Table (3-4)  The Results Obtained from Solving the Instances Placed in S by Instance 43 (First Scenario) 

(a). Best gap from best-known solutions (𝑩𝑲𝑺𝒆𝒙𝒂𝒄𝒕) 

Configuration 

Removal heuristics Insertion heuristics 

Average over 

instances(percentage) 

Shaw 

(Based 

on 

distance) 

Rand Worst 
Basic 

greedy 

Deep 

greedy 

Regret -

2 

LNS-1  •    • 2.70% 

LNS-2   •   • 2.00% 

LNS-3 •     • 1.51% 

LNS-4 •    •  1.68% 

LNS-5 •   •   2.19% 

ALNS • • • • • • 1.42% 

(b). Average gap from best-known solutions (𝑩𝑲𝑺𝒆𝒙𝒂𝒄𝒕) 

Configuration 

Removal heuristics Insertion heuristics 

Average over 

instances 

(Percent) 

Shaw 

(Based 

on 

distance) 

Rand Worst 
Basic 

greedy 

Deep 

greedy 

Regret -

2 

LNS-1  •    • 4.61% 

LNS-2   •   • 3.66% 

LNS-3 •     • 2.71% 

LNS-4 •    •  2.67% 

LNS-5 •   •   3.63% 

ALNS • • • • • • 2.43% 

The average computing time for all metaheuristics across all 104 instances is 

provided in Table 3-5. Notably, among LNS configurations, Shaw removal (based on 

distance) with any heuristic insertion exhibits significantly longer computing times 

than others, while Rand removal with Regret-2 demonstrates faster performance. 

Overall, the ALNS metaheuristic secures the second rank in terms of computing time. 

This behavior can be attributed to the compound nature of ALNS, incorporating 

various combinations of removal and insertion heuristics, ultimately requiring a 

shorter computing time. 
Table (3-5)  Total Average Computing Time in SET S, M and L in Seconds (First Scenario) 

Configuration 

Removal heuristics Insertion heuristics 

Total 

Computing time 

over sets. 

Shaw 

(Based 

on 

distance) 

Rand Worst 
Basic 

greedy 

Deep 

greedy 
Regret -2 

LNS-1  •    • 54,239 

LNS-2   •   • 58,497 

LNS-3 •     • 61824 

LNS-4 •    •  63095 

LNS-5 •   •   59,479 

ALNS • • • • • • 56,670 

 

The number of instances matching the best-known solutions (both proposed 

heuristic and MIP in Schittekat et al. (2013)), along with better solutions found for 

each metaheuristic, is summarized in Table 3-6. Each instance is executed 10 times. 
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For the ALNS heuristic, 35 out of 104 instances match with the best-known solutions 

(𝐵𝐾𝑆𝑀𝐻), and 4 better solutions are also observed. Additionally, Shaw removal with 

Regret-2 ranks second in performance. 
Table (3-6)  Number of Matched Solutions with Best-known Solutions (Both Proposed Heuristic and 

MIP in Schittekat et al. (2013)) and Number of Better Solutions 

Metaheuristic configurations 

Number of matched 

solutions (with exact 

method) 

Number of matched 

solutions (with 

heuristic method) 

Number of better 

solutions 

Rand removal with regret-2 (LNS-1) 8 8 1 

Worst removal with regret-2 (LNS-2) 10 14 2 

Shaw removal (based on distance) 

with regret-2 (LNS-3) 

14 23 
2 

Shaw removal (based on distance) 

with deep greedy (LNS-4) 

11 20 
2 

Shaw removal (based on distance) 

with basic greedy (LNS-5) 

8 12 
1 

ALNS 19 35 4 

3-4-1-2- Consideing tight capacity constriants  

Similar to the first scenario, six proposed heuristics (LNS-1, LNS-2, LNS-3, LNS-

4, LNS-5, LNS-6, and ALNS) are executed for 104 instances taken from benchmark 

instances, considering tight bus capacity constraints. The results are then compared to 

the best-known solutions (both proposed heuristic and MIP in Schittekat et al. (2013)). 

Each heuristic is run 10 times, and the average solution, best solution, and average 

computing time of the 10 runs are calculated. The average solution gap, the best 

solution gap to the best-known solutions, and computing time are reported. Detailed 

experiment information is available in Appendix 4. The aggregated findings are 

presented in Tables 3-7, 8, and 9, respectively.  

Table 3-7 indicates the gap from 𝐵𝐾𝑆𝑀𝐻, while Table 3-8 represents the percentage 

gap from 𝐵𝐾𝑆𝑒𝑥𝑎𝑐𝑡. 
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Table (3-7)  The Results Obtained from Solving the Instances Placed in S, M, And L Sets (Second 

Scenario) 

(a). Best gap from best-known solutions (𝑩𝑲𝑺𝑴𝑯) 

Configuration 

Removal heuristics Insertion heuristics 

Average over all 

instances 

(Percent) 

Shaw 

(Based 

on 

distance) 

Rand Worst  
Basic 

greedy 

Deep 

greedy 
Regret -2 

LNS-1  •    • 3.20% 

LNS-2   •   • 2.26% 

LNS-3 •     • 2.22% 

LNS-4 •    •  2.50% 

LNS-5 •   •   2.68% 

ALNS • • • • • • 1.95% 

(b). Average gap from best-known solutions (𝑩𝑲𝑺𝑴𝑯) 

Configuration 

Removal heuristics Insertion heuristics 

Average over all 

instances 

(Percent) 

Shaw 

(Based 

on 

distance) 

Rand Worst 
Basic 

greedy 

Deep 

greedy 
Regret -2 

LNS-1  •    • 5.28% 

LNS-2   •   • 3.73% 

LNS-3 •     • 3.80% 

LNS-4 •    •  4.11% 

LNS-5 •   •   4.31% 

ALNS • • • • • • 
3.18% 

 

 

Table 3-8 presents the results of the comparison with 𝐵𝐾𝑆𝑒𝑥𝑐𝑡. In terms of the best 

gap criterion, LNS-3 achieves a smaller gap, with ALNS ranked as the second. 

Regarding the average gap criterion, ALNS achieves the smallest gap. 
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Table (3-8)  The Results Obtained from Solving the Instances Placed in S Set (Second Scenario) 

(a). Best gap from best-known solutions (𝑩𝑲𝑺𝒆𝒙𝒄𝒕) 

Configuration 

Removal heuristics Insertion heuristics 
Average over all 

instances 

(Percent) 

Shaw 

(Based on 

distance) 

Rand Worst 
Basic 

greedy 

Deep 

greedy 
Regret -2 

LNS-1  •    • 2.85% 

LNS-2   •   • 1.97% 

LNS-3 •     • 1.58% 

LNS-4 •    •  2.19% 

LNS-5 •   •   2.53% 

ALNS • • • • • • 1.70% 

(b). Average gap from best-known solutions ( 𝑩𝑲𝑺𝒆𝒙𝒄𝒕) 

Configuration 

Removal heuristics Insertion heuristics 
Average over all 

instances 

(Percent) 

Shaw 

(Based on 

distance) 

Rand Worst 
Basic 

greedy 

Deep 

greedy 
Regret -2 

LNS-1  •    • 4.91% 

LNS-2   •   • 3.38% 

LNS-3 •     • 3.24% 

LNS-4 •    •  3.96% 

LNS-5 •   •   4.36% 

ALNS • • • • • • 3.04% 

 

Table (3-9)  Total Average Computing Time in SET S, M And L in Seconds (Second Scenario) 

Configuration 

Removal heuristics Insertion heuristics 
Total 

computing time 

over sets. 

Shaw 

(based on 

distance) 

Rand Worst 
Basic 

greedy 

Deep 

greedy 
Regret -2 

LNS-1  •    • 55,107 

LNS-2   •   • 60,158 

LNS-3 •     • 63,298 

LNS-4 •    •  65,155 

LNS-5 •   •   61,204 

ALNS • • • • • • 57,796 

        
 

 

When comparing two scenarios based on the best gap with best-known solutions 

(𝐵𝐾𝑆𝑀𝐻), LNS-1 and LNS-2 yield similar results. Conversely, concerning the best 

gap with best-known solutions (𝐵𝐾𝑆𝑒𝑥𝑎𝑐𝑡), LNS-2 and LNS-3 show comparable 

outcomes. On average, the proposed heuristics produce lower best gap values for the 

first scenario. Examining total computing time, the first scenario, utilizing a strategic 

oscillation, demonstrates shorter computing times. In conclusion, the first scenario 

emerges as the recommended algorithm for the problem. 
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Another analysis has been conducted to assess the percentage difference between 

ALNS and LNS metaheuristics, both with and without strategic oscillation. The results 

indicate that, with the adoption of strategic oscillation, the deviation of ALNS from 

the worst and best LNS metaheuristic configurations is 1.5% and 0.34%, respectively. 

In an alternative scenario where, tight capacity constraints are applied, the deviation 

of ALNS from the best and worst metaheuristic configurations is 1.25% and 0.29%, 

respectively. While the observed deviation may not be very pronounced, it underscores 

that the presence of the strategic oscillation has led to increased differentiation between 

ALNS and each of the LNS approaches.  

3-5- Further analysis   

In this stage, additional analysis is performed on a set of 24 instances, comprising 

10 from the small set, 8 from the medium set, and 6 from the large set. For simplicity, 

the methods "Shaw removal (based on distance) with Deep greedy," "Shaw removal 

(based on distance) with Regret-2," "Shaw removal (based on distance) with basic 

greedy," "Worst removal with Regret-2," "Rand removal with Regret-2," and Adaptive 

Large Neighborhood Search are referred to as LNS-1, LNS-2, LNS-3, LNS-4, LNS-5, 

and ALNS, respectively. 

In the first experiment, we analyze how different acceptance criteria impact the 

average solution cost for considered algorithms. We focus on three types: Random 

Walk (RW), Better Acceptance (BA), and Simulated Annealing (SA). The goal is to 

assess how well acceptance criteria align with the specific problem at hand. Results 

are illustrated in Figure 3-4, depicting the influence of acceptance criteria on average 

solution costs. 

For all heuristics, results show that, on average (across 24 instances), Better 

Acceptance (BA) outperforms Random Walk (RW) for small and medium sets. 

However, for large instances, RW proves more efficient than BA. In summary, 

focusing solely on extreme diversification (RW) or strong intensification (BA) is not 

universally effective. Simulated Annealing serves as a middle-ground option, although 

not necessarily the best. On average, for small, medium, and large instances, Simulated 

Annealing (SA) with a 2.55% Best Gap outperforms BA (2.74% Best Gap) and RW 

(2.70% Best Gap) across all heuristics. Additionally, LNS-5 shows dissatisfactory 

performance for all sets. 
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Figure (3-4)  Influence of Acceptance Criteria Method on The Average Solution Gap 

 

The second experiment exclusively focuses on the ALNS configuration. It 

examines the impact of each heuristic embedded in the ALNS construction to enhance 

solution quality. The weights assigned to heuristics are dynamically calculated based 

on their recorded performance, with higher weights given to better-performing 

heuristics. This dynamic weighting system influences the probability of selecting a 

heuristic during the search, thereby impacting solution results. 

Results, based on the average weight of each heuristic across 24 data cases, are 

depicted in Figure 3-5. Notably, regret-2 heuristic attains the highest weight among 

insertion heuristics, while Shaw removal (distance-based) receives the highest weight 

among removal heuristics. This suggests that the contribution of Shaw removal 

heuristic (distance-based) surpasses that of other heuristics throughout the search 

process. 

  

Figure (3-5)  Weights of the Heuristics 
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3-6- Conclusion  

In this chapter, various LNS and ALNS heuristics based on an oscillation strategy 

are introduced to address the SBRP, a problem presented by Schittekat et al. (2013) as 

a challenging variant of the VRP. The chapter concentrates on the SBRP, integrating 

bus stop selection and route generation into a unified optimization approach. 

Specifically, students are assigned to potential bus stops based on walking distance 

from their homes. Simultaneously, these stops are incorporated into the bus route to 

efficiently transport students to school while minimizing travel distances. 

Simple LNS and ALNS metaheuristics are proposed to address small, medium, and 

large instances within a reasonable time frame. Each metaheuristic undergoes 

statistical analysis to determine the optimal heuristic parameter settings. 

After determining the optimal parameter settings for each solution, a comparison 

between both metaheuristics in different configurations and the best-known solutions 

is conducted. This evaluation considers solution quality, robustness, and computing 

time across all instances. To provide a more nuanced understanding of the proposed 

algorithm, two scenarios are formulated, facilitating a clearer comprehension of 

algorithm behavior with and without the oscillation strategy. 

In terms of the percentage of the best gap to the best-known solutions (𝐵𝐾𝑆𝑀𝐻), 

LNS-1 and LNS-2 exhibit nearly comparable results in both scenarios. However, other 

heuristics perform poorly in the second scenario. Regarding computing time, heuristics 

in the first scenario achieve results in less time. In summary, the first scenario is 

deemed more reliable for delivering superior performance in solution quality and 

computing time. 

In the first scenario, computational experiments indicate that the ALNS proves 

highly competitive compared to the best metaheuristic (𝐵𝐾𝑆𝑀𝐻).introduced by 

Schittekat et al. (2013). This competitiveness stems from the ALNS algorithm's 

structured exploration of large portions of the solution space, making it robust and 

adaptable to various cases while avoiding frequent entrapment in local optima. Across 

10 runs, the ALNS metaheuristic analysis yields results ranging from a 1.64% Best 

Gap to a 2.77% Average Gap concerning the existing best-known solutions (𝐵𝐾𝑆𝑀𝐻). 

The computational results reveal that in terms of finding optimal solutions, the ALNS 

outperforms other configurations. It matches the best-known solutions (𝐵𝐾𝑆𝑀𝐻),  in 

35 instances, and surpasses them in 4 cases. The Shaw removal with Regret-2 ranks 

second, matching the (𝐵𝐾𝑆𝑀𝐻), in 23 instances. Comparing with (𝐵𝐾𝑆𝑒𝑥𝑎𝑐𝑡) in the 

first scenario, the ALNS demonstrates superior performance, matching the best-known 

solutions in 19 instances. This comparison highlights that the ALNS provides a lower 

percentage gap in the first scenario, with LNS-3 securing the second position. 

The primary contribution of this research is the recognition of ALNS as the best 

metaheuristic among all proposed solution algorithms. On average, the first scenario 

exhibits a lower percentage gap concerning both (𝐵𝐾𝑆𝑀𝐻), and (𝐵𝐾𝑆𝑒𝑥𝑎𝑐𝑡). In terms 
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of computing time, ALNS and Rand removal with Regret-2 outperform other 

algorithms. 

In proposing future research, two suggested topics are presented. Regarding the 

features, the current study reveals insufficient emphasis on realistic characteristics. To 

enhance proximity to reality in our upcoming work, we aim to integrate features such 

as the effects of mixed-loads (picking up students from different schools on the same 

bus), constraints on the maximum route length, consideration of multiple schools, and 

determination of the maximum number of allowed students for each bus stop. 

The second topic involves enhancing specific aspects of the metaheuristic to 

improve its performance and reduce computing time. This can be approached through 

multiple branches. One extension to boost the oscillation strategy method's 

performance involves constructing a memory list to retain infeasible solutions that lead 

to global best solutions. These solutions can then be considered to return to a feasible 

state. Another interesting idea is to introduce variable values for 𝛼𝑚𝑖𝑛  and 𝛼𝑚𝑎𝑥  

during the search space, allowing these boundaries to adapt based on solution 

performance. Moreover, a promising avenue for research is to incorporate simple yet 

effective problem-specific heuristics in the improvement phase of the algorithm. 
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Chapter 4:  
An Adaptive large neighborhood search 

metaheuristic for the school bus routing 

problem with mixed-load consideration 
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4-1- Introduction  

Tehran, the capital of Iran, ranked among the world's top 40 cities in 2018, boasting 

a population of approximately 8.9 million1. More than 1 million students in Tehran, 

constituting 10.8% of the total students in Iran, rely on daily public transport system.   

Tehran's substantial student population poses a significant challenge for educational 

authorities in managing school transportation services. Yet, specific factors in Tehran's 

student transportation—such as safety concerns, security restrictions, multiple routes 

per bus, and inconsistent loading and unloading times—create complex school bus 

routing issues. Addressing these challenges demands extra efforts to plan and organize 

cost-effective transport services. 

Authorities strive to establish an efficient transport system, mindful of limited 

resources to save costs. Simultaneously, ensuring student convenience is crucial in 

transportation plan design. In situations where dedicating a single bus to one school is 

impractical due to resource constraints, a "mixed-load approach" becomes beneficial 

(see e.g., Park and Kim, (2010)).  

This approach, different from the "single-load approach," enables the transportation 

of students from different schools on the same bus, fostering resource-sharing among 

schools and enhancing school-bus system efficiency. However, this strategy 

introduces complexities, leading to overcrowded buses and extended routes. Designing 

bus routes based on a mixed-load plan could prove effective, requiring careful 

consideration of objectives, assumptions, and constraints. 

This study is pioneering in simultaneously addressing bus stop selection and route 

generation while accounting for both mixed-loading and load balancing effects. 

Specifically, the chapter builds upon the groundwork laid by Schittekat et al. (2013) 

and endeavors to adapt their findings to real-world features, incorporating factors like 

mixed-load effects and school time windows. 

Each student is required to walk to the bus stop from their home, considering the 

maximum walking distance. The bus then initiates its route from the garage, picking 

up students at designated bus stops while adhering to specified constraints, such as bus 

capacity. The plan prioritizes student convenience, factoring in considerations like the 

student's maximum walking distance to the bus stop and the permissible number of 

students at each stop. 

Our study makes several key contributions: 

1) Formulating a novel mathematical representation of the School Bus Routing 

Problem (SBRP) that incorporates the defined objective and assumptions. 

                                                 
 

 
1 https://worldpopulationreview.com/world-cities/tehran-population 
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2) Proposing an Adaptive Large Neighborhood Search (ALNS) metaheuristic distinct 

from the one presented in Chapter 3, and subsequently comparing its performance 

with existing benchmarks. 

3) Conducting a pair comparison of each removal and insertion operator, instead of 

an independent comparison. 

4) Assessing the impact of both mixed-load and single-load approaches on reducing 

the number of buses, total traveled distance, average weighted riding distance of 

students, and bus occupancy. 

4-2- Problem description and mathematical model  

In this research, we focus on multiple schools, one type of students, potential bus 

stops, a set of garages, and identical buses, each with the same capacity. The study 

arises from the necessity to formulate a daily transportation plan for transporting 

students from their homes to their respective schools. 

 The process involves assigning each student to an approved bus stop, considering 

a defined walking distance. Subsequently, each bus commences its route from the 

garage (starting location), collects students from designated bus stops, transports them 

to school, and ultimately returns to the garage (ending location). Each student has to 

be delivered to his/her respective school. 

As the problem selects bus stops and generates routes with consideration for the 

mixed-load effect, students from different schools can be assigned to the same bus. 

The starting and ending locations of a bus are not required to be the same, potentially 

avoiding long return trips to the same garage. However, to prevent bus crowding at a 

same garage, the model incorporates an allowable number of parking spaces for each 

garage. To align with real-world scenarios, our model introduces two-time constraints: 

each bus must reach its associated school before a defined latest arrival time, and each 

stop cannot be visited by the bus before a specified earliest time. 

Let  𝐺, 𝑃+ and 𝑃− respectively define starting and ending locations of a bus, potential 

bus stops, and potential schools. 𝑃 is the union of potential schools and bus 

stops (𝑃 = 𝑃− ∪ 𝑃+), and 𝑁 is the set of all nodes (𝑁 = 𝑃 ∪ 𝐺).  

The travel time from node i to node j is computed as the distance between the two 

nodes divided by the speed of the bus. For simplicity, all buses are assumed to move 

at the same speed. 

The objective function aims to minimize the total travel time of all buses. In this 

problem, school data includes the location of each school and only the latest possible 

times for bus arrival. Specifically, the study seeks to pick up primary and secondary 

school students, allowing each school to have a different time window. 

The most important constraints in our problem include: 
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1) Every student must walk from their home to one of the potential bus stops within 

a specified maximum walking distance. 

2) Each bus starts from a garage and concludes its route at the garage closest to the 

last school it visited. 

3) The maximum allowable number of students for each bus stop should not exceed 

the limit, denoted as 𝑚𝑠. 

4) The number of buses returning to a garage must not surpass the available parking 

spaces, denoted as  𝑃𝑔. 

5) Each bus should arrive at its designated school (denoted as 𝑖 ∈ 𝑃−) before the latest 

time 𝑏𝑖, establishing an upper bound on the time for delivering students to their 

respective schools. 

6) The service time of each stop must occur after the earliest time 𝑎𝑖, and if the bus 

arrives at the 𝑖𝑡ℎ stop before 𝑎𝑖, it must wait. 

7) The load of each bus along its path should not exceed its given capacity. 

Constraints (1) and (3) prioritize student convenience in our model. Table 4-1 

details the symbols used in the model, and Figure 4-1(a) provides an illustrative 

example of the problem. Students are represented by circles, potential bus stops by 

small squares, garages by large black squares, and schools by triangles. The color-

coding matches students with their respective schools. Dotted lines indicate the 

reachable stops for each student. 

Figure 4-1(b) illustrates a feasible (though not necessarily optimal) solution with 

two routes denoted by red lines. Each route starts from a garage, picks up students 

from various stops, transports them to the associated school, and then returns to the 

garage. The problem incorporates the following assumptions: (1) buses may carry 

students from different schools simultaneously; (2) each student must be picked up 

before being delivered to their respective school; (3) each school can be visited by 

more than one bus, but each bus must visit each school once. 
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(a) Instance with possible allocation of students to the 

potential bus stops 

 (b) Possible feasible solution 

Figure (4-1)  Example School Bus Routing Problem with Mixed Load Effect 
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Table (4-1)  Indices, Sets, Parameters, And Decision Variables Used in Mathematical Model 

Indices 

𝑘 Bus index 

𝑖, 𝑗 Node indices 

𝑙 Student index 

Sets 

𝐺 Set of starting and ending depot locations (garage locations) 

𝐾 Set of buses 

𝑠 Set of students 

𝑃+ Set of potential pickup locations (bus stop locations) 

𝑃− Set of delivery locations (school locations) 

𝑃 = 𝑃− ∪ 𝑃+ Set of stops and schools 

𝑁 = 𝑃 ∪ 𝐺 Set of nodes 

Parameters 

𝑐 Bus capacity 

𝑏𝑖𝑔 𝑀 Large constant 

𝑎𝑖 Earliest arrival times to stop i P
+

  

𝑏𝑖 Latest arrival times to school i P
−

  

𝑎𝑝 Average pickup time at pickup points for each student 

𝑎𝑑 Average delivery time at delivery points for each student 

ijC  Travel distance from node i to node j ( , )i j N  

𝑡𝑖𝑗 Travel time from node i to j ( , )i j N  

ils  A parameter equal to 1 if student l  can reach stop i P
+

 , and 0 otherwise 

ilq  A parameter equal to 1 if student l  is related to the school i P
−

 , and 0 

otherwise 

gP  The number of parking spaces at the garage 𝑔 

𝑚𝑠 The maximum number of allowable students for each stop 

𝑂𝑖 = {𝑆|𝑠𝑖𝑙 = 1} The set of students that can be assigned to stop 𝑖 

𝑊𝑖 = {𝑆|𝑞𝑖𝑙 = 1} The set of students that should be delivered to school 𝑖 

Decision variables 

X
ijk  1 if bus 𝑘 traverses the arc from node 𝑖to 𝑗 ( , )i j N  , and 0 otherwise 

iky  1 if the bus 𝑘 visits stop 𝑖, 0 otherwise  

k
ilZ  1 if student 𝑙 is picked up by bus 𝑘 from stop 𝑖, and 0 otherwise 

𝑇𝑖𝑘 Arrival time of bus 𝑘 to node ( )i i N   

ikL  The load of bus 𝑘after leaving node 𝑖 ( )i P   

ikh
 1 If bus 𝑘visits school i P

−
 , and 0 otherwise  

k
jl

D  1 if student 𝑙 is delivered by bus 𝑘to school 𝑗, and 0 otherwise 

The mathematical programming formulation of the school bus routing problem is as follows:   
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,i P k K+    (4-21) 

(1 )ik i ikT b h bigM + −  ,i P k K−    (4-22) 

X Pgijk

k Ki P−





  j G   (4-23) 

{0,1}iky    ,i P k K+      (4-24) 

{0,1}ijkX    , , ,i j N i j k K      (4-25) 

{0,1}k
ilZ   , ,i P l S k K+   

 
 (4-26) 

{0,1}k
jl

D   , ,j P l S k K−     (4-27) 

{0,1}ikh 
 ,i P k K−    (4-28) 

{0,1}lkr   ,l S k K    (4-29) 

 

The objective function (4-1) aims to minimize the total travel time of all buses. 

Constraints (4-2) ensure that a bus entering a stop node must also leave it, and the 

equivalent constraints for school nodes are expressed in Equation (4-3). Constraints 

(4-4) state that a bus cannot start from its home location (garage) more than once. 

Similarly, constraints (4-5) ensure that a bus cannot reach its final location (garage) 

more than once, allowing for the possibility that some buses may remain unused. 

Constraints (4-6) prohibit direct transfers from one garage to another garage. Lastly, 

constraints (4-7) dictate that each stop should be visited no more than once. 

Constraints (4-8) mandate that each student must be picked up from the stop they 

walk to. Constraints (4-9) specify that picking up a student from a non-visited stop by 

bus 𝑘 is not allowed. Constraints (4-10) ensure that stops are not visited unnecessarily. 

Constraints (4-11) guarantee that each student is delivered to their respective school, 

and constraints (4-12) ensure that whenever a student is assigned to a bus, the bus also 

visits the school associated with that student. Constraints (4-13) prohibit unnecessary 

visits to schools. 

Constraints (4-14) state that the number of pickup and delivery students in each 

route must be equal. Constraints (4-15) ensure that each student is picked up exactly 

once. Constraints (4-16) impose that the number of allocated students to each 

allowable stop must not exceed 𝑚𝑠. 

The next four sets of constraints, (4-17-a), (4-17-b), (4-17-c), and (4-17-d), pertain to 

load constraints. Specifically, (4-17-b) states that when a node 𝑖 is followed by a 

pickup node 𝑗 ∈ 𝑃+, the total number of students after visiting node 𝑗 should be greater 

than or equal to the sum of the number of students after servicing node 𝑖 and the 

number of students picked up at node 𝑗. 
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Similar to constraint (4-17-b), inequality (4-17-c) asserts that when node 𝑖 is followed 

by a delivery node, 𝑗 ∈ 𝑃−, the total number of students after visiting node 𝑗 should be 

greater than or equal to the number of students after visiting node 𝑖 minus the number 

of students delivered to node 𝑗. In practical terms, (4-17-b) and (4-17-c) govern the 

load on a bus immediately after leaving each node on its route. Additionally, (4-17-d) 

ensures the capacity of buses. 

Constraints (4-18) to (4-22) focus on time-related considerations. (4-18) calculates 

the arrival time of each bus at a node in 𝑝. Similar to (4-18), (4-19) pertains to routes 

from the garage to the stop. (4-20) ensures that student pickups occur before deliveries. 

Time windows for stops and schools are determined by (4-21) and (4-22) respectively. 

(4-23) restricts parking places in each garage. Finally, variable and their types are 

presented in (4-24) to (4-29).  

4-3- Solution strategy  

SBRP is a generalization of the Vehicle Routing Problem (VRP), a known NP-hard 

problem. While exact methods from the literature can provide optimal solutions, they 

are practical only for scenarios with a relatively small number of stops or students. 

This limitation falls short of real-world cases involving hundreds of stops or students.  

To address this, heuristic approaches become essential to handle large instances and 

obtain near-optimal solutions within a reasonable timeframe. Various heuristic 

variants, grounded in local search contexts, have been applied to the VRP.  

Local search operators create regular moves that slightly alter the current solution. 

These moves could change the requests within one or two different routes 

simultaneously.  

This type of operator enables rapid exploration of a large parts of the solution space, 

causing minor changes with each iteration. While this approach offers rapid 

exploration, it comes with limitations. For instance, imposing tight constraints on the 

problem and employing local search operators may not yield significant benefits 

(Ropke and Pisinger, 2006). Consequently, smoothly transitioning from one promising 

area to another becomes challenging.  

To address this issue, alternative strategies can be employed, such as opting for 

larger standard moves instead of incorporating smaller ones. Using this approach is 

time-consuming but yields better results than the standard move strategy. Instead of 

making small changes, it's more effective to implement large moves for increased 

exploration in the solution space. Thus, there's a case for favoring extensive 

exploration through large neighborhood search (LNS) (refer to Chapter 3 for details). 

Algorithm 4-1 depicts the ALNS algorithm's mechanism. This metaheuristic has 

two stages: the construction stage and the improvement stage. In the first stage, a 

student allocation problem is solved for each stop. Following the implementation of 
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the student allocation heuristic, a modified version of the nearest neighborhood 

constructive heuristic generates a feasible initial solution. This initial solution serves 

as input for the second stage, i.e., the improvement stage (refer to Line 7 in the pseudo-

code). 

The improvement stage has two levels executed sequentially over multiple 

iterations. Specifically, the algorithm enhances the solution using adaptive large 

neighborhood heuristics at the primary level (refer to Line 8 in the pseudo-code). In 

each iteration, the removal heuristic disconnects a set of 𝑞 stops, placing them in the 

stop pool named the 𝑈 bank list. Then, using the insertion heuristic, it inserts the stops 

from 𝑈 bank into the solution. It's important to note that during removal and insertion 

operations, students from different schools might be inserted in the same route. In such 

cases, while maintaining feasibility, the school associated with the student also needs 

to be inserted at the most cost-effective position within the current route. 

The value of 𝑞 is a critical parameter defining the scope of our solution approach, 

essentially indicating the neighborhood size. If 𝑞 is zero, no search occurs in the 

solution space. Conversely, when 𝑞 equals the cardinality of 𝑃+, the algorithm 

functions like a multi-start, solving the problem from scratch. Additionally, this value 

can depend on the solution's behavior at each iteration. To strike a balance between 

diversification and intensification mechanisms, the following procedure updates the 

value of 𝑞. 

Initially, 𝑞 is set to 𝑞𝑚𝑖𝑛 and systematically adjusted during the adaptive large 

neighborhood search algorithm. Specifically, 𝑞 's value changes based on the solution 

from the previous iteration. For instance, if an acceptable solution is consistently 

obtained over several iterations, 𝑞 should stay at the low level, 𝑞𝑚𝑖𝑛, to emphasize 

intensification. Conversely, if a worse solution appears for several iterations, 𝑞 must 

be increased to explore the solution space more effectively. Consequently, a large 

number of 𝑞 are removed and then re-inserted, aiding in achieving an appropriate 

diversification strategy during the search. 

To select removal and insertion heuristics, a roulette wheel mechanism is employed, 

considering their past successful behavior. Additionally, the Meta-destroy operator is 

implemented when no improvement occurs in the best solution for 𝛿 consecutive 

iterations. This operator executes two destroy operators sequentially, enhancing 

diversification. Importantly, this procedure operates independently of performing 

removal and insertion steps in each segment. Specifically, in each segment, the count 

of successive non-improving solutions is tracked from the beginning of the 

improvement stage. If this count exceeds 𝛿 (where 𝛿 is less than the number of 

iterations in each segment), the Meta-destroy operator is activated. 

After applying the removal and insertion operators, the Redistribution operator is 

invoked at the second level whenever a new best solution is found (refer to Line 15 in 

the pseudo-code). This is because the combined application of removal and insertion 

heuristics reconstructs a substantial part of the solution, leading to a dispersed 
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distribution of students between routes. To address this, the redistribution operator 

optimizes the current load distribution by transferring students between routes while 

maintaining feasibility. In practice, this operator minimizes the deviation of the 

loading values of the routes by achieving a desirable distribution of students among 

them. 

The ALNS algorithm demonstrates excellent performance for large-scale 

optimization problems, particularly demonstrating success in vehicle routing 

problems. The positive outcomes in VRP applications have motivated this study to 

apply ALNS to the school bus routing problem with a mixed-load plan. 

The ALNS algorithm outlined in this chapter differs from the one discussed in 

Chapter 3 in several key aspects, including: 

• Introducing problem-specific removal and insertion heuristics; 

• Employing a pairwise selection of removal and insertion mechanisms to ensure 

comprehensive metaheuristic performance; 

• Implementing a time-saving strategy, namely local and global insertions, in the 

improvement phase; 

• Introducing a meta-destroy operator if no improvement occurs in the best solution 

after a delta consecutive iterations; 

• Executing distribution operators, post-application of removal and insertion 

operators, to balance the current occupied capacity among the routes; 

• Constructing the initial solution based on the nearest neighborhood with a greedy 

randomized selection mechanism; 

• Operating the algorithm under tight capacity constraints; 
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Algorithm (4-1) Adaptive Large Neighborhood Search Metaheuristic 

1 Input: U: set of all potential stops, G: set of all garages,𝑃− :set of all schools, S: set of all students 

 

  𝑅 (set of Removal heuristics), I (set of Insertion heuristics), q (number of stops/ requests to be removed  1,...nq 

), 𝑞𝑚𝑎𝑥 (maximum number of stops to be removed),  𝑃+(List of stops to which students are allocated), 𝜋(initial 

score of heuristic (𝐼⋃𝑅)), 𝑤 (initial weight of removal and insertion heuristic (𝐼⋃𝑅)), 

 𝜌 (The number of iterations), 𝜂 (parameter to set  𝑞𝑚𝑖𝑛), 𝛿 (no of consecutive iterations without improvement) 

2 // Stage 1: Construction phase 

3
 

𝑃+=all student allocated to the bus stop                                               // Allocating using student allocation heuristic  

4 
ox =Route generation ( , , , )P s G P+ −

                                                 // Generating route using NNg heuristic  

5 𝑥𝑏𝑒𝑠𝑡 = 𝑥𝑜 

6
 

𝑓𝑏𝑒𝑠𝑡 = 𝑓(𝑥0) 

7 𝑥𝑎𝑐𝑡 = 𝑥𝑜 

8
 

// Stage 2: Improvement phase 

9
 

/// 2.1 Set of removal and insertion heuristics in the first level
 

10 𝑞 = 𝑞𝑚𝑖𝑛, initialize the roulette wheel; initialize the adaptive parameters (𝜋, 𝑤)
 

11 While Stopping criterion 𝜌  is not met do
 

12 
Roulette wheel mechanism: Select one Removal heuristic ℎ𝑟𝑒𝑚 ∈ 𝑅 and one Insertion heuristic ℎ𝑖𝑛𝑠 ∈ 𝐼or two 

Destroy operators (if 𝑥𝑏𝑒𝑠𝑡  has not been improved in last consecutive 𝛿 iterations) 
 

13
 
Remove 𝑞

 
requests from solution 𝑥𝑎𝑐𝑡 using ℎ𝑟𝑒𝑚, creating a partial solution 

14 Insert 𝑞 customers into the partial solution using ℎ𝑖𝑛𝑠, creating a solution *
actx  

15
 
   If accept 

*( , )act actx x  then 

16 /// 2.2 Redistribution operator in the second level                                                                

17       
** *( )act actx Redistribution x=

                                                    
// Applying Redistribution heuristic to 

*
actx  

18        
**

act actx x=  

19         minq q=  

20     Else   

21            If   𝑞 < 𝑞𝑚𝑎𝑥 then   

22                 𝑞 = 𝑞 + 1%  

23
 
           Else  

24
 
               max( )

q
q


=  

25           End if
 

26    End if  

27          If
 

**( )act bestf x f then 
 

28               
**

best actx x=  

29          End if
 

30 Update the roulette wheel (𝜋, 𝑤)
 

31 End while 

32 Output: 𝑥𝑏𝑒𝑠𝑡  

 



 

89 

 

 Constructing an initial solution  

The construction stage's main concept is to create a feasible initial solution for the 

SBRP. This involves three steps: assigning each student to an allowable stop, grouping 

allowable stops based on the closest garage, and generating routes for allowable stops 

of each garage. The process unfolds in three sequential stages. 

 First, the student allocation heuristic assigns each student to an allowable stop. 

After allocating all existing students to the possible bus stops, the potential stops with 

their respective students are identified (for more detail see Chapter 1). In the second 

step, each identified stop is assigned to the closest garage, determining the distribution 

of each stop to a given garage in advance. 

Next, the modified nearest neighborhood with the greedy randomized adaptive 

procedure (NNgr) is utilized to generate a route, introducing a balanced approach 

between greediness and randomness. Unlike a simple greedy nearest neighborhood 

heuristic, our version incorporates modifications in constructing routes in two ways. 

Firstly, for each route (i.e., bus) originating from a given garage, the next node (i.e., 

stop) is randomly selected from the restricted candidate list (RCL). This RCL includes 

𝛼 first closest non-visited stops assigned to that garage. The size of the RCL, denoted 

as the value of 𝛼, is a parameter controlling the balance between greediness and 

randomness. A small 𝛼 leads to an extremely greedy construction, while a large 𝛼 

(equivalent to the number of non-visited stops in the solution) results in a completely 

random construction. 

Secondly, a feasibility check is conducted considering both the allowable bus 

capacity and school time window constraints. If a feasible solution is generated 

without violating these constraints, the candidate stop is added to the route. 

Conversely, if constraints are breached, the generated route returns to the associated 

school to deliver students and, ultimately, returns to the closest garage. This return to 

the closest garage prevents long trips that might occur if the bus returned to the garage 

it started from. If the capacity of the nearest garage is already filled, the next closest 

garage is selected. Here, the question arises: Why does the bus move to the closest and 

next closest garage at the end of its operation? Consider these reasons: 1) Reducing 

total travel time for the bus in student journeys. 2) Making the bus available for other 

services, enhancing efficiency. 3) Contributing to CO2 emission reduction1, crucial in 

Tehran's critical air pollution scenario. These pieces of evidence show that, in practice, 

this action provides several advantages.  

                                                 
 

 
1 crisis-pollution-air-critical-https://ifpnews.com/tehran 



 

90 

 

The two approaches are iteratively applied until all non-visited stops are considered 

for each garage. As each bus can pick up students from different schools, all associated 

schools must be inserted at the end of the considered route in the cheapest way 

possible. To achieve efficient time savings, a data structure is employed and updated 

throughout the operation of the NNgr heuristic. This data structure includes 

information related to the load and travel time of a bus traversing along route k. 

The example in Figure 4-2 illustrates the functionality of the data structure. 

Throughout the operation of NNgr for each stop, the following information is updated: 

visited stop (S), number of students allocated to the stop (AS), load of bus after visiting 

the current stop (LS), load of bus after visiting the next stop (LN), remaining capacity 

after visiting the current stop (R), remaining capacity after visiting the next stop (RC), 

arrival time at the current stop (AT), and allowable remaining time to reach the 

respective school (RT). 

This straightforward data structure procedure enables efficient checking of both 

capacity and school time window constraints before selecting any stop. In this 

example, assuming the bus capacity is 6, the solid line represents the generated route. 

Suppose stop B is a candidate for insertion in the route. As indicated in Table 4-2, the 

values of LA and LB are 5 and 7, respectively. This suggests that inserting stop B in 

the route would lead to an infeasible solution. Consequently, instead of visiting stop 

B, the bus must return to the respective schools. 

A

B

TW:(Before-7.20) am

TW:(Before-8.00) am

6.40 am

10 min

25 min

10 min

 

Figure (4-2)  Example for Constructing an Initial Solution 

 
Table (4-2)  Data Structure   

Stop(S) AS LS LN R RC AT 
(RT) Travel time to 

school 1 

(RT) Travel time to 

school 2 

A 1 5 7 1 -1 6.40 10 min 25 min 

 Adaptive large neigborhood search (ALNS)  

In essence, the ALNS heuristic is an iterative process comprising destruction and 

insertion operators. During each iteration, a removal heuristic is used to eliminate a set 

number of stops (i.e., requests) from the current solution. Subsequently, an insertion 

heuristic is applied to reinsert these stops into the current solution, constructing a new 
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solution (for detailed information, refer to Ropke and Pisinger, 2006). Removal 

heuristics are detailed in Section 4.3.2.1, and insertion heuristics are addressed in 

Section 4.3.2.2. 

4-3-2-1- Removal operators  

The removal operator serves as the algorithm's foundation, removing 𝑞 stops at each 

iteration and adding them to the list U. These operators must be chosen to efficiently 

explore the entire search space or, at the very least, its interesting segments. It is crucial 

to consider both diversification and intensification operators in a structured manner, 

rather than solely focusing on specific types of destroy operators. This study 

incorporates various removal heuristics, enabling both diversification and 

intensification strategies. Three removal heuristics draw inspiration from Ropke, while 

others are novel and adapted based on the considerations of the problem (SBRP). 

 

 Shaw removal 

The basic concept of Shaw removal is presented here similarly to Chapter 3, with 

the only difference being related to the mechanism for selecting one request from the 

list U. 

When one request is randomly chosen from the list U (if it is not empty), the following 

procedure is applied to the selected candidate stop. Instead of choosing a stop 

randomly, as proposed by Shaw et al. (2006), we opt for the stop that offers a higher 

likelihood of cost savings. To achieve this, one route is randomly selected in advance. 

Subsequently, for each stop, 𝑖, included in the considered route, the saving value is 

calculated as follows: 

𝑠(𝑖) = 𝑑𝑖𝑠𝑡(𝑝𝑟𝑒𝑣(𝑖), 𝑖) + 𝑑𝑖𝑠𝑡(𝑖, 𝑛𝑒𝑥𝑡(𝑖)) − 𝑑𝑖𝑠𝑡(𝑛𝑒𝑥𝑡(𝑖) − 𝑝𝑟𝑒𝑣(𝑖)), where 𝑝𝑟𝑒𝑣(𝑖) and 𝑛𝑒𝑥𝑡(𝑖) are 

respectively the predecessor and successor of a node 𝑖 in the considered route.  

Nodes candidates are sorted in decreasing order. This prioritizes requests with 

greater saving potential to enhance the solution quickly if inserted in another position. 

Subsequently, the stop with the maximum saving is chosen and transferred to list U. 

In the second step, the degree of similarity between the selected stop in list U and the 

other 𝑞 − 1 stops not removed from the current solution is calculated. The Shaw 

removal process, detailed in Algorithm 4-2, introduces a random parameter y between 

[0, 1 ], with 𝑝 defining the degree of randomness to the selected request. Lower 𝑝 

values compel the heuristic to choose more similar stops, while higher values allow 

selecting less similar requests. 
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Algorithm (4-2) Shaw Removal (Inspired by Ropke) 

Function Shaw removal { , ,q }actx solution p R P+ +     

Request: r = selected request from actx   using the saving method; 

Set of Request: {r}U = ; 

 While  𝑈 ≤ 𝑞 do  

    r = selected request from U; 

    Array: L = an array containing all request from  actx  not in U; 

     Sort L such that  𝑖 ≤ 𝑗 → 𝑅(𝑟, 𝐿[𝑖])  <  𝑅(𝑟, 𝐿[ 𝑗]); 

     Choose a random number y from the interval [0,1); 

      { ([y )};pU U L L=   

 End while  

Remove the requests in U from actx ; 

 Shaw removal based on similarity of school of the student 

This operator incorporates concepts from the Shaw removal heuristic, differing in 

its consideration of similarity based on schools rather than a relatedness measurement 

𝑅(𝑖, 𝑗) between two stops determined by distance. Formally, the heuristic aims to 

remove a set of stops that are similar in terms of the variety of schools with respect to 

their assigned students. This approach is expected to facilitate a rational reshuffling of 

these stops, thereby avoiding the unnecessary inclusion of a school. 

In practice, the degree of similarity indicates how much two stops are alike based 

on the schools of their students. Similar to Shaw removal, the procedure initially 

selects a random stop to remove. In subsequent iterations, it selects stops that are 

similar to the already removed requests based on the schools of their students. The 

degree of similarity between the two stops is given by: 

𝑑(𝑆1, 𝑆2) = ∑|𝑦𝑠1
𝑘 − 𝑦𝑠2

𝑘 |

𝑘

   (4-30) 

Let 𝑦𝑠1
𝑘   determines whether stop 𝑠1 has any student of the school 𝑘. Therefore 

𝑦𝑠1
𝑘  takes value of 1 if stop 𝑠1 has a student of school k, and 0 otherwise. Using  𝑦𝑠

𝑘, 

we can easily obtain the degree of similarity between two requests. The lower 𝑑(𝑆1, 𝑆2) 

indicate that two stops (𝑠1 𝑎𝑛𝑑 𝑠2) are more related. This procedure proceeds until 𝑞 

stops are selected and transferred to the U bank. 

 Worst removal  

The Worst removal heuristic presented here is similar to Chapter 3 (refer to Chapter 

3.4.2 for more details). 
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Algorithm (4-3) Worst Removal (Inspired by Ropke) 

Function Worst Removal { , ,q }actx solutionS p R P+ +   ; 

While  𝑞 > 0 do 

   Array: L = All planned requests i, sorted by descending  𝑐𝑜𝑠𝑡(𝑖, 𝑥𝑎𝑐𝑡) = ∆𝑓𝑖; 

   Choose a random number y from the interval [0,1); 

    Request: ([y )pr L L=  

    remove r from solution S; 

    1q q= −  ; 

End while 

 Random removal 
The Random removal heuristic presented here is similar to Chapter 3 (refer to 

Chapter 3.2.2.1 for more details).  

The Random removal operator fosters diversification by randomly selecting and 

inserting stops into the list U. This introduces a degree of randomization in the solution 

space, aiding in overcoming local optima.  

 Least load bus removal (LUB) 

The Least load bus removal operator focuses on removing the bus or route with the 

smallest load, where the load is defined as the number of picked-up students in the 

route. Essentially, it selects the route with the least occupied capacity and removes all 

stops contained in that route, aiming to completely destroy the route.  

 

 Single load route removal (SLR)   

The Single-load route removal heuristic randomly picks a route that exclusively 

contains students from a single school (i.e., a single-load route) and endeavors to 

remove the 𝑞 stops included in the route. This heuristic follows a strategy similar to 

the least used bus removal. In both the Single-load route and the Least used bus 

removal heuristics, if the number of requests 𝑖 in the candidate route 𝑘 is less than 𝑞, 

another route is selected. It's important to note that this operator aims to decrease the 

number of single-load routes. 

4-3-2-2- Insertion operators   

These heuristics aim to construct a partially destroyed solution by inserting requests 

from the list U into the existing route when possible. Two critical considerations must 

guide the insertion procedure. Firstly, the request should be inserted at any feasible 

position, ensuring adherence to capacity constraints and school time windows during 

the insertion process. Secondly, during the insertion for the stop in the candidate route, 
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the heuristic must check whether the related school is already part of the new route or 

not. 

If the related school is not already in the route, it needs to be inserted in the 

considered route at the cheapest possible position. Importantly, during the insertion 

operation, when the candidate stop to be inserted has students from other schools, the 

cost of insertion is the summation of the cost created by inserting that stop and the 

respective school(s). 

Although these procedures increase the time complexity of the algorithm, they 

promote diversification. To achieve this, our insertion heuristic follows two strategies: 

local and global insertions. In the local strategy, a stop from the list U is only allowed 

to be inserted into routes where its related school is located. Conversely, in the global 

insertion strategy, regardless of the existence or absence of a related school, unplanned 

stops can be inserted at any optimal position in the existing route. 

In this study, basic greedy, regret 2, and regret 3 operators are employed based on 

the global insertion method. Basic greedy based on the largest demand and the second-

best insertion are executed using the local insertion strategy.  

The basic greedy, second-best insertion and regret-k heuristics employed here are 

similar to the one explained in the previous chapter, so we omit its explanation. 

 Basic greedy based on the largest demand insertion  

This heuristic only deviates from the basic greedy in the selection of a request from 

the U-bank. While the basic greedy heuristic simply picks the first stop from the list U 

and inserts it in the cheapest position, the basic greedy based on the largest demand 

aims to select unplanned stops from the list U based on the number of demands. 

Consequently, the request with the largest demand in the list U is the first to be 

inserted. 

 Redistribution operator  

After employing a set of large neighborhood search heuristics in the previous stage, 

the distribution of students between routes may lose its balance. This implies that some 

routes contain a large number of students, while others include smaller numbers. To 

address this situation, a redistribution operator is employed to balance the current 

capacity in the current solution. Initially, a list of routes is created in decreasing order 

based on the occupied capacity. 

Subsequently, for the first β routes in the list, an attempt is made to move students 

to another allowable stop in another route, if possible. In this study, this value is set to 

25%, determined through a pilot study. The only exception is when the number of 

routes generated in the incumbent solution is less than 4. In this case, the redistribution 

operator is deactivated because a lower number of routes reduces the efficiency of the 
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redistribution operator in transferring students. Transferring students to any new route 

is possible when two conditions are met: first, ensuring that an allowable stop exists 

for the candidate student; second, making sure that a respective school is considered 

as well. The latter means that once there is the possibility to transfer a student, a related 

school must also be present at the end of the route. If this is not fulfilled, an associated 

school needs to be inserted.  

 Adaptive search engine 

Adaptive weight adjustment assesses the importance of each removal and insertion 

based on their performance in generating a profitable solution. In each iteration of the 

ALNS heuristic, one removal and one insertion operator need to be selected. Choosing 

different removal and insertion operators at each iteration offers several advantages. 

Firstly, it encourages efficient diversification in the search. Secondly, it guides the 

algorithm to discover better results. 

The combination of one insertion with one removal may perform well in some 

instances, while in other cases, different removal and insertion operators might yield 

better results. This alternation between various removal and insertion heuristics results 

in an experimentally robust heuristic. Additionally, it aids in achieving a good balance 

between computing time and solution quality, as implementing a number of insertion 

or removal operators individually can be time-consuming. The question is how the 

algorithm selects removal and insertion operators.  

The selection of removal and insertion is governed by a roulette-wheel mechanism, 

where each operator is assigned a weight. The probability of selecting each heuristic 

depends on its past performance in previous iterations. Specifically, each operator is 

assigned a score, and the operator that yields a better solution has a higher probability 

of being selected again. This means that even an operator with poor performance still 

has a small chance of being chosen. In our study, the selection of removal and insertion 

heuristics at each iteration is carried out through a pairwise selection mechanism. 

 Adaptive weight adjustment 

In this section, we detail the methods for choosing removal and insertion heuristics 

using the pairwise selection approach. Most literature tends to independently select 

removal and insertion operators, potentially overlooking the chance to assess their joint 

performance on the metaheuristic's performance (see Ropke and Pisinger, 2006). 
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To address this, the algorithm considers the joint performance of a pair of operators 

and assigns weight 𝜌𝑑𝑟  to the operators based on their performance. At the beginning 

of a segment, all pairs have the same weight 𝜌𝑑𝑟 = 1, and all scores are set to 0.  

During each segment, every time a pair of removal and insertion is applied, its score 

is increased by the parameters 𝜎1
∗, 𝜎2

∗, 𝜎3
∗  depending on its performance. If the pair 

finds the best solution, the score of the pair is increased by 𝜎1
∗ ; if the solution is 

improved but not better than the best solution, the score of the pair is increased by 𝜎2
∗; 

and finally, if the solution worsens, the score of the pair is increased by 𝜎3
∗. After each 

segment is completed, the weight is updated as follows: 

(1 )
max(1,O )

dr
dr dr

ij

   



= + −          (4-31) 

Similar to the method proposed by Ropke and Pisinger (2006), the value of 𝛾 

represents the reaction factor, 𝑂𝑖𝑗
∗  specifies the number of times the pair of removal 

and insertion 𝑖 is applied to segment 𝑗, and Ψ𝑑𝑟 represents the score of each pair of 

removal and insertion. Better results achieved by each pair are assigned greater 

weights, increasing the likelihood of the pair being selected. Let 𝑛𝑑  and 𝑛𝑟 be the 

number of destroy and repair operators, respectively. At each iteration, the roulette 

wheel mechanism is employed to choose one pair of removal and insertion operators 

with a probability. 

1 1

dr
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= =

 =



                                                     (4-32)     

 Acceptance and stopping criteria 

Another crucial aspect of an ALNS metaheuristic involves the solution acceptance 

rule. After generating a new solution through destroying and rebuilding operators, the 

acceptance criterion rule is employed to determine whether the new solution is 

accepted. Various acceptance methods exist. The better acceptance method only 

accepts a solution if it is superior to the previous one. While this straightforward 

acceptance rule encourages intensification, it tends to get stuck in local optima. 

To achieve this, it seems reasonable to avoid restricting the algorithm to accepting 

only improving solutions, allowing for the exploration of alternatives to escape local 

optima. Striking a balance between intensification and diversification involves 

considering worse solutions occasionally. In this context, the decision to accept a new 

solution follows the simulated annealing method (Kirkpatrick, Gelatt, and Vecchi 

1983). 

If a new solution 𝑓/(𝑠)  is better than the previous one 𝑓(𝑠), search continues with 

a solution 𝑓/(𝑠). Otherwise, the worse solution 𝑓/(𝑠) is accepted with 
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probability: 𝑃 = 𝑒𝑥𝑝  (
𝑓(𝑠)−𝑓(𝑠′)

𝑇
), where 𝑓/(𝑠) and 𝑓(𝑠)  respectively denote the 

objective function of the new and incumbent solutions, and 𝑇 > 0 signifies the 

temperature parameter. The process starts from the initial temperature 𝑇𝑠𝑡𝑎𝑟𝑡 and the 

temperature is gradually decreased by replacing 𝑇 = 𝑇 × 𝐶  at each iteration, where 

0 < 𝑐 < 1 and is used to represent a cooling factor parameter.  

The decrease during the algorithm's operation indicates that a non-improving 

solution is less likely to be chosen in subsequent iterations. It's important to note that 

the appropriate value for 𝑇𝑠𝑡𝑎𝑟𝑡 is directly dependent on the specific problem. Rather 

than treating 𝑇𝑠𝑡𝑎𝑟𝑡 as a fixed parameter, its initial value is calculated using the results 

obtained in the initial solution, following the idea suggested by Dayarian et al. (2013). 

In practice, the initial temperature is set to 
−𝑤𝑓(𝑥0)

ln( 0.5)
, allowing 𝑤% worse solutions (here 

set to 5%) to be accepted with a probability of 50%. The specific value for parameter 

w needs to be determined. 

4-4- Experimental analysis 

Our experimental computations consist of two main parts. In the initial stage 

(Sections 4.4.2 & 4.4.3), calibration is conducted to determine the optimal parameters 

and suitable operators that significantly impact the metaheuristic's performance. For 

both Sections 4.4.2 and 4.4.3, the testing set comprises 10 instances (4 instances from 

set S, 4 instances from set M, and 2 instances from set L). After identifying the best 

parameter settings, an analysis is performed to explore the impact of single-load and 

mixed-load structures on solution quality (minimizing total traveling time). Finally, a 

comparison is made with current literature in this area to discern the main effects of 

the mixed-load strategy. 

 Instance generation  

Since the presented problem has not been considered earlier, no test instances are 

available in the literature. To address this, new data sets comprising 100 instances are 

generated for experiments. The problem size in this data set varies based on the number 

of garages (ranging from 1 to 4), the number of schools (ranging from 1 to 10), the 

number of stops (ranging from 10 to 100), and the walking distance (ranging from 5 

to 25). Our data set includes three sets: small, medium, and large instances. Small 

instances have 10 to 20 stops, while medium and large instances have between 30 to 

60 and 70 to 100 stops, respectively. To simplify instance generation, the number of 
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students is calculated based on the number of stops, with the number of students related 

to each stop generated as random variables between 3 to 5. 

To generate the data set, 6 parameters per instance should be defined in the primary 

stage: 𝑛𝑔 (the number of garages), 𝑛ℎ (the number of schools), 𝑛𝑝 (the number of 

stops), 𝑛𝑠 (the number of students), and 𝑤𝑚𝑎𝑥 (maximum walking distance for each 

student to reach a bus stop). All instances are generated and scattered in the Euclidean 

square between (0,0) and (𝑥𝑚𝑎𝑥, 𝑦𝑚𝑎𝑥). In order to make data set similar to the real 

world, the values of (𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥) are set to (80 *80 km). Each school's coordinates 

are generated in the area of (60 km ×60 km) with respect to the center of Euclidian 

square. Correspondingly, the coordinates of each stop are generated in the interval of 

(𝑤, 𝑥𝑚𝑎𝑥 − 𝑤), (𝑤, 𝑦𝑚𝑎𝑥 − 𝑤). For each generated stop, the coordinates of each 

student is obtained based on the angle  𝛼𝑗 ∈ [0,2𝜋] and walking distance 𝑤 from the 

stop. Thus, the coordinates of each student are obtained by 𝑥 = 𝑥𝑠 + 𝑤 cos 𝛼𝑗  and 𝑦 =

𝑦𝑠 + 𝑤𝑠𝑖𝑛𝛼𝑗.  

In the final step of our calculations, the allocation of students to a school is 

addressed. To tackle this, the average number of students for each school is computed. 

Subsequently, an attempt is made to assign students to the closest school until the 

number of assigned students to each school reaches the average value. If this condition 

is met, the remaining students are assigned to the second closest school, and the 

process continues until all students are allocated properly. The departure time from the 

garage is set to 6:15 for all buses. The minimum and maximum arrival times at each 

stop and school are randomly generated within the time frames of (6:30 to 7:00) and 

(8:00 to 8:30) a.m., respectively. 

 Calibration of the metaheuristic parameters  

The proposed metaheuristic involves crucial parameters that need to be set and fine-

tuned. This stage encompasses statistical analyses to determine the optimal parameter 

configuration. A full factorial experimental design is employed for parameter analysis 

on a subset of instances. The parameters under consideration are summarized in Table 

4-3 and include number of iterations (𝜌), number of iterations without improvements 

(𝛿), minimum and maximum percentage of requests to be removed (𝜉𝑚𝑖𝑛, 𝜉𝑚𝑎𝑥), 

parameter to control value of 𝑞𝑚𝑎𝑥 (𝜂), weight adjustment in roulette wheel 

mechanism (𝜎1, 𝜎2, 𝜎3, γ), size of restricted candidate list α, and randomness parameter 

in the removal procedure (𝑝). 

The analysis results are presented in Table 4-4. The Multi ANOVA output indicates 

that the number of iterations, the number of iterations without improvements, the 

minimum and maximum number of requests to be removed, and the reaction factor for 

the roulette wheel weight are all significant factors influencing both solution quality 

and computing time (P_value less than 0.05). Notably, α and 𝜎1 are identified as 
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parameters significantly affecting solution quality. The optimal parameter setting for 

further analysis is provided in the last column of Table 4-3. 
Table (4-3)  Heuristic Parameters  

Parameter Description Values 
Selected 

value 

𝝆 Defines the number of iterations 350,450,550 450 

𝜹 Define number of iterations without improvements 10,20 10 

𝝃𝒎𝒊𝒏 
Introduces minimum percentage of request, stops, to be removed at 

each ALNS iteration 
2%,5%,10% 5% 

𝝃𝒎𝒂𝒙 
Introduces maximum percentage of requests, stops, to be removed 

at each ALNS iteration 

15%,20%,25%,30%, 

35%,40%,45% 
25% 

𝜼 Introduces the parameter to control the value of 𝑞𝑚𝑎𝑥 2,3 2 

p Is responsible for randomness in the removal process 2,4,6 4 

𝝈𝟏 Is the weight adjustment of algorithm in roulette wheel mechanism 40,50,60 50 

𝝈𝟐 Is the weight adjustment of algorithm in roulette wheel mechanism 20,30,40 20 

𝝈𝟑 Is the weight adjustment of algorithm in roulette wheel mechanism 1,5,10 5 

𝜸 Is the reaction factor of the weights in roulette wheel mechanism 0.25,0.5, 0.75 0.5 

𝛂 Size of the restricted candidate list 1,2,3,4 2 

 

 
Table (4-4)  Best Parameter Setting 

Parameters Computing time Average solution cost 

𝝆 p<0.05 p<0.05 

𝜹 p<0.05 p<0.05 

𝝃𝒎𝒊𝒏 p<0.05 p<0.05 

𝝃𝒎𝒂𝒙 p<0.05 p<0.05 

𝜼 0.125 p<0.05 

𝒑 0.072 0.0794 

𝝈𝟏 0.0846 p<0.05 

𝝈𝟐 0.061 0.937 

𝝈𝟑 0.110 0.407 

𝜸 p<0.05 p<0.05 

𝛂 0.137 p<0.05 

 Heuristic calibration  

As previously mentioned, a set of removal and insertion heuristics is considered for 

our problem. During the operation of the metaheuristic, there may be cases where 

certain removal and insertion operators do not directly improve the solution. However, 

they create opportunities to escape local optima for other operators in subsequent 

iterations, ultimately leading to better-quality solutions towards the end of the search.  

In other words, even if an operator exhibits weaker performance, its inclusion can 

stimulate other operators to effectively navigate away from local optima. However, 

selecting a large number of removal and insertion operators increases computing time, 

extends the exploration of the solution space, and results in higher computational 

complexity. 
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These findings indicate that the selection of appropriate removal and insertion 

operators is not straightforward and requires in-depth analysis. Striking a balance 

between computing time and solution quality is crucial. To address this, similar to 

Section 4.4.2, a full factorial experimental design is conducted with the levels 

presented in Table 4-3. It is important to note that other heuristic parameters are held 

constant at this stage, as determined in Section 4.4.2. Graphical representations of the 

results are displayed in Figures 4-3 and 4-4. 

The analysis of variance (ANOVA) indicates that among the removal and insertion 

operators, Shaw removal, Worst removal, and Random removal heuristics with both 

basic greedy and Regret k-heuristics have a significant impact on the quality of the 

solution. Moreover, the SLR and Least used bus removal, Basic greedy based on 

largest demand, and Second-best insertion operators slightly improve the solution and 

display poorer performance than other considered operators. As a result, the 

combination of Shaw removal, Worst removal, and Random removal heuristics with 

both Basic greedy and Regret k-heuristic as insertion heuristics is recommended for 

further analysis (Section 4.4.4). 

 

Table (4-5)  Removal and Insertion Heuristics Setting 

Heuristic Value No. of levels 

Shaw removal (based on distance) On –off 2 

Shaw removal (based on demand) On –off 2 

Worst removal On –off 2 

Random removal On –off 2 

Least bus removal On –off 2 

SLR removal On –off 2 

Basic greedy On –off 2 

Basic greedy based largest demand On –off 2 

Second best insertion On –off 2 

Regret-k heuristic On –off 2 

 

 
 

Figure (4-3)  Removal Operators 

 



 

101 

 

 

Figure (4-4)  Insertion Operators 

 

 Computational experiments  

The experiments are conducted in two categories: 1) analysis of metaheuristic 

configuration and 2) analysis of main characteristics. 

4-4-4-1- Experiments on the configuration of metaheuristic 

In this section, experiments are conducted to assess the impact of each pair of 

removal and insertion operators integrated into the ALNS metaheuristic on the 

solution's quality. At the end of each segment, the weight of each pair of removal and 

insertion is computed based on its achieved score. This weight correlates with the 

solution's quality. In practice, a pair of heuristics with a higher weight will be selected 

with a higher probability and has the potential to yield better solutions throughout the 

search. 

Regarding this mechanism, the results suggest that Shaw removal with any insertion 

heuristic produces the highest weight. This interestingly demonstrates that what is 

more important is the similarity idea, whether based on demand or distance. The 

random removal is ranked second. Therefore, it can be said that the Shaw removal 

heuristic orients the intensification stage, and the random removal justifies the 

diversification. These findings further support the idea of using the ALNS 

metaheuristic. In practice, the ALNS enjoys a set of intensification and diversification 

heuristics that, in case some heuristics produce weak performance, while others can 

help to escape local optima properly. 
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Table (4-6)  Weight Values for The Pairs of Removal and Insertion Heuristics 

Pair of removal and 

insertion heuristics 
Weight 

Pair of removal and insertion 

heuristics 
Weight 

Shaw removal (distance) 

and basic greedy 
46.37 

Random removal and basic 

greedy 
42.27 

Shaw removal (distance) 

with regret-2 
53.19 Random removal and regret-2 41.10 

Shaw removal (distance) 

with regret-3 
41.18 Random removal and regret-3 36.19 

Shaw removal (demand) 

and basic greedy 
41.13 

Worst removal and basic 

greedy 
19.45 

Shaw removal (demand) 

with regret-2 
44.28 Worst removal and regret-2 23.65 

Shaw removal (demand) 

with regret-3 
37.17 Worst removal and regret-3 26.17 

4-4-4-2- Experiments on main characteristics  

In this section, we aim to compare the performance of the proposed metaheuristic 

against the solution given by the CPLEX solver. The characteristics of the test problem 

sizes and the results of the metaheuristic and exact solutions are summarized in 

Appendix 5. The exact solution is reported as long as the optimal solution is found 

within 45 minutes. Since the combination of removal and insertion heuristics can 

suggest better performance (as shown in the results of Section 4.4.3), we only consider 

it in this section. For the proposed approach (ALNS metaheuristic), each instance is 

run 10 times, and finally, the amount of gap is presented. 

Two percentage gaps are reported: the average gap, representing the percentage gap 

between the average costs of solutions calculated after 10 runs and the exact solution, 

and the best gap, indicating the percentage gap between the best solutions calculated 

after 10 runs and the exact solution. As expected, as the problem size increases, 

typically after instance 20, the exact method struggles to find a feasible solution within 

the allotted time. Consequently, the exact method can optimally solve instances up to 

20 within a reasonable computing time. 

Compared to the exact method, ALNS yields solutions with an average percentage 

gap lower than 1.5% and achieves optimal solutions in 6 instances.  

Figures 4-5 present a comparison of key characteristics (total travel time and total 

number of buses) between using a single and mixed-load strategy. It's noteworthy that 

while our defined objective function focuses on minimizing total travel time, the 

mixed-load strategy effectively reduces the number of buses. Hence, we analyze the 

behavior of the total number of buses in our study. Our experiments clearly 

demonstrate that the mixed-load effect significantly reduces both the number of buses 

and total travel time.  
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This reduction is particularly pronounced in larger instances, especially in the case 

of total travel time. This is because, as the problem size increases, there is a greater 

tendency to utilize a smaller number of routes, resulting in more significant savings in 

travel time. Conversely, small instances exhibit the lowest deviation, attributed to the 

limited number of schools, making the metaheuristic's consideration of the mixed-load 

effect less impactful. 

In terms of the number of routes, a noticeable deviation is observed for small 

instances. Overall, there is a 10.77% reduction in the number of routes and a 13.90% 

reduction in total travel time achieved through the utilization of the mixed-load effect. 

Figure (4-6) further illustrates that the average weighted riding time and route 

length are considerably smaller than those of the mixed-load method, with reductions 

of 7.8% and 8.43%, respectively. 

 

 

Figure (4-5)   (a) Reduction Percentage in The Number of Routes (Right Side) and (b) Reduction 

Percentage in Total Travel Time (Left Side) while Considering Mixed Load Effect  

  

Figure (4-6)   (a) Increase Percentage in Average Riding Time (Left Side) and (b) Total Route 

Length (Right Side) while Considering Mixed Load Effect  

In our analysis of bus occupancy rates (Figure 4-7), we consider the mixed-load 

effect. The results show that the rate of bus occupancy experiences the least deviation 

from the single-load for small instances. Conversely, an improvement in bus 

occupancy is observed as the problem size increases. 
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Figure (4-7)  Bus Occupation Percentage while Considering Mixed Load Effect 

 

In conclusion, the impact of the mixed-load effect on total travel time savings 

depends on several factors. The distance between schools is a crucial determinant; 

when schools are close, significant savings can occur as a bus efficiently picks up 

students from multiple schools and delivers them in a single route. The proximity of 

stops also plays a role, but the distribution of students at each stop is more critical. If 

stops with students from the same school are close, the benefit of mixed-load 

diminishes. However, when stops are farther apart, with students from different 

schools at each stop, the mixed-load offers better opportunities for reducing total travel 

time. 

4-4-4-3- Comparison with best-known solutions and previous studies  

To assess the efficiency and effectiveness of the proposed metaheuristics, we have 

conducted a comparison with a prior study in this field. Various configurations of the 

proposed metaheuristic, such as the simple Large Neighborhood Search (LNS) with a 

single removal and insertion operator, as well as the full adaptive configuration 

(ALNS), are evaluated against the best-known solutions in the literature. The five 

configurations of the simple LNS heuristic include Shaw removal (based on demand) 

with Basic greedy, Shaw removal (based on distance) with Regret-2, Random removal 

with Regret-2, Worst removal with basic greedy, and Worst removal with Regret-3. 

For simplicity, we abbreviate the aforementioned LNS configurations as LNS-1 to 

LNS-5. Given the introduction of a new version of the school bus routing problem in 

this chapter, some adaptations are necessary in our assumptions. 

To ensure a fair comparison with Lima et al.'s study (2016), we consider the 

students' locations at stops, designating the student's home as a potential bus stop. The 

routing cost values ($) are determined by multiplying unitary travel distance costs 

($1.00) with the travel distance. 
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The routing cost values ($) generated by different metaheuristics (LNS and ALNS) are 

compared with the best-known solutions from Souza Lima's study. Table 4-7 presents 

the routing costs of the proposed metaheuristics alongside the algorithm proposed by 

Souza Lima (best-known solutions). 

ALNS consistently yields the best values among the proposed configurations, with 

minimal deviation from Lima et al.'s study (2016). For four instances, superior results 

are achieved, and in other cases, the deviation is negligible (average deviation 

percentage around 2%).  
Table (4-7)  Comparison of Different Kinds of Metaheuristic (LNS and ALNS) with Best Known 

Solutions 

Instance P(student) H(school) ILS (best- known solution) LNS-1 LNS-2 LNS-3 LNS-4 LNS-5 ALNS 

1 250 6 7,024.4 7,383.0 7,353.4 7,382.7 7,179.2 7,160.5 7,189.9 

2 250 12 10,575.0 11,233.8 10,867.1 10,968.0 10,886.1 10,921.0 10,575.0 

3 500 12 19,368.2 20,583.1 19,588.8 20,846.3 20,193.8 20,236.5 19,329.5 

4 500 25 27,066.3 29,311.5 27,974.0 29,400.6 28,909.3 28,134.4 26,714.4 

5 1,000 25 52,622.6 52,807.7 56,502.1 56,894.0 55,989.8 55,533.1 54,396.8 

6 1,000 50 65,139.5 67,564.8 65,682.4 68,770.3 71,426.0 68,734.2 68,982.8 

7 2,000 100 89,398.6 95,099.6 95,302.9 102,410.2 93,275.2 98,253.4 92,536.5 

8 2,000 100 105,215.4 117,571.1 107,700.3 109,132.8 115,472.7 108,935.1 108,161.5 

9 250 6 7,930.6 8,521.5 8,031.8 8,547.5 8,695.2 8,275.9 8,097.2 

10 250 12 12,224.9 13,051.4 13,032.0 12,259.7 12,889.2 12,427.4 12,399.4 

11 500 12 17,681.6 19,128.6 18,689.2 19,888.9 18,452.4 18,092.8 18,450.7 

12 500 25 23,037.7 24,780.5 23,231.7 24,855.9 24,046.5 24,211.4 23,751.9 

13 1,000 25 50,627.1 52,713.0 50,913.0 51,867.3 53,202.9 53,092.0 51,690.2 

14 100 50 66,585.9 68,397.8 68,397.8 68,605.9 68,149.6 70,491.1 66,590.4 

15 2,000 50 94,661.1 101,640.7 101,276.8 103,986.3 99,529.6 96,433.1 97,747.0 

16 2,000 100 88,846.8 96,216.6 93,008.0 96,509.3 91,253.7 93,507.2 89,898.2 

17 250 6 10,812.2 11,820.6 11,318.5 11,856.6 11,071.6 11,285.7 11,162.5 

18 250 12 14,645.7 16,190.4 14,645.3 16,239.7 15,162.9 15,254.0 15,004.5 

19 500 12 21,840.4 23,912.0 22,538.0 23,984.8 22,321.6 22,587.1 21,842.7 

20 500 25 24,723.6 25,073.7 24,881.5 28,159.1 25,801.4 24,984.4 24,691.4 

 

 

Another noteworthy result is that, on average, all the examined LNS heuristics 

exhibit poorer performance compared to the Iterated Local Search (ILS) algorithm in 

the literature. This underscores that, for this particular problem with the specified 

characteristics, relying solely on a removal-insertion pair is not reliable, and an 

effective outcome requires a suitable combination of operators. 

In plain terms, the Random removal heuristic employs a diversification strategy. 

Conversely, both Shaw and Worst removal operators focus on a limited portion of the 

solution space, yielding better results in early iterations compared to other removal 

heuristics. However, as the solution approaches a high-quality level, the likelihood of 

getting stuck in local optima increases. In cases where the aforementioned heuristics 

cannot operate, there's a significant risk of being trapped in a local optimum. 
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This illustrates that relying solely on one set of the above removal operators doesn't 

mitigate the risk of getting stuck in local optima. Crucially, certain operators may 

enhance the solution in the initial stage, while others prove beneficial towards the end 

of the process. Therefore, a strategic combination of diversification and intensification 

operators can be advantageous in the search process, where one operator compensates 

for the shortcomings of another. The ALNS takes advantage of this situation and as a 

result finds better results.   

4-5- Conclusion  

This study aims to introduce a new mathematical formulation and solution 

methodologies for the urban school bus routing problem, taking into account the 

mixed-load effect. The obtained results affirm the effectiveness of the proposed 

framework, as it yields cost savings compared to the single-load framework. Key 

characteristics of the School Bus Routing Problem (SBRP) in this study include 

homogeneous buses, maximum allowable students at each stop, school arrival time 

considerations, and the presence of multiple garages. 

In the initial stage, the formulated instances are solved using the CPLEX solver in 

GAMS. Given the CPLEX solver's capability to handle 20 instances within a 

reasonable computing time, the ALNS with a different configuration is then proposed 

to solve all generated instances efficiently. 

To efficiently investigate the algorithm, four lines of experiments are proposed. 

Firstly, a comparison between single-load and mixed-load is conducted, examining 

various outputs such as total travel time and the number of buses. Secondly, an analysis 

of different configurations of metaheuristics is performed, including each pair of 

removal and insertion operators embedded in the ALNS metaheuristic, to assess their 

impact on solution quality. In the third line of experiments, the performance of the 

proposed algorithm is compared with the solution provided by GAMS/CPLEX. 

Finally, a fair comparison with a different study is conducted.  

In the earlier case, it is demonstrated that considering the mixed-load effect leads 

to better solutions. 

In the second analysis, among different combinations, the Shaw removal with 

Regret-2 gains more weight.  

In the third line of experiments, the solution of the proposed metaheuristic is 

compared against the solution of GAMS/CPLEX. The results show that the average 

percentage gap from GAMS/CPLEX is lower than 1.5%, and optimal solutions are 

found in 7 instances.  

In the final comparison with the best study, a promising result is observed when 

considering the ALNS metaheuristic. However, the results of other LNS 

configurations are not very encouraging. 
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 The current study suggests several promising directions for further research. 

In the first direction, researchers may consider incorporating additional constraints and 

features into the proposed model to make it closer to reality. Specifically, accounting 

for simultaneous morning and afternoon delivery and pickup of students could be 

explored.  

A second research line involves employing specialized neighborhoods to address the 

characteristics of the problem and thereby reduce the complexity of problem-solving
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5-1- Introduction  

Municipalities aim to develop efficient operational strategies for managing school 

bus systems. These strategies should align with annual student transportation budgets, 

encompassing operational costs, driver employment expenses, vehicle costs, bus stop 

equipment, and cost-effective solutions.  

In Tehran, despite the growing number of transported students, the budget has either 

remained unchanged or experienced marginal growth compared to previous years.  

This highlights the municipality's necessity to adopt a cost-effective approach for the 

efficient management of the approved budget. The policymaker must establish an 

effective mechanism to control, and to some extent, optimize the overall transport cost, 

encompassing both fixed and variable costs.  

In this context, introducing the integrated method applicable for both morning and 

afternoon shifts can serve as a valuable tool for cost optimization or, at the very least, 

cost control. Although any optimization or cost reduction solutions come with initial 

expenses, they can ultimately lead to more significant reductions in operating costs 

throughout the year.  

In Tehran, a significant and growing challenge is the lack of integrity in picking up 

and dropping off students during morning and afternoon shifts. The congestion and the 

higher number of students during morning hours, attributed to some schools operating 

exclusively in the morning shift, further complicate the issue. This complexity makes 

it difficult for municipalities to establish a robust framework for integrating the two 

shifts.  

Moreover, the substantial gap between the start time of the afternoon shift and the 

end time of the morning shift poses a major obstacle to successful integration.  

These issues have led to independent scheduling and separate service distribution for 

morning and afternoon shifts, sometimes outsourcing these tasks to the private sector. 

Another challenge arises when students from the same bus stop follow different 

school time windows. In practice, at each stop, there may be primary and elementary 

school students with different time windows. If a bus accommodates students from 

different schools simultaneously, there's a higher likelihood of missing the chance to 

pick up eligible students at subsequent stops, resulting in increased computation time 

and costs. 

Unlike the classical version of routing problems, where each customer is visited 

only once, allowing split loading permits multiple visits to serve students from the 

same stop. This approach has the potential to yield significant savings in travel costs 

and fleet numbers. The Split Delivery Vehicle Routing Problem (SDVRP) can be 

addressed within the framework of the general Vehicle Routing Problem (VRP), as 

discussed by Archetti and Speranza (2012) and Irnich et al. (2014). By employing split 

pick-up and drop-off methods, each stop can be serviced through multiple visits, 



 

110 

 

proving particularly beneficial in scenarios where a candidate stop hosts students from 

different schools (more than 2 schools) or encounters tight capacity constraints 

To optimize student transportation, careful attention should be given to the diverse 

time windows, various trip types (morning and afternoon), students' riding time, and 

the split mechanism for picking up students. To create an efficient model and attain 

desired outcomes, it is crucial to integrate morning and afternoon shifts, incorporating 

split pickups at each stop.  

The comprehensive schedule for student transportation spans from 6:45 AM to 6:15 

PM, encompassing three distinct phases throughout the day. 

The initial phase (morning) involves transporting students from their homes to 

school, spanning from 6:45 AM to 8 AM. The second phase encompasses gathering 

morning-shift students from schools and transporting afternoon-shift students from 

their locations to their respective schools, taking place from 11 AM to 1:45 PM. The 

final phase focuses on transporting afternoon-shift students from schools to their 

homes, occurring between 5 PM and 6:15 PM. These three phases can be coordinated 

with forward, simultaneously forward-backward, and backward schemes for the 

school bus routing problem, respectively. 

While many studies recommend addressing morning and afternoon issues 

separately due to their complexity, the crucial aspect for the public manager is to 

contemplate both shifts simultaneously. This approach aids in creating a cost-effective 

model for school transportation, aligning with the objectives of the current study. 

This chapter makes a following contribution. From a mathematical perspective, we 

address morning and afternoon students through a mixed-load scheme (between 11:15 

AM and 2:00 PM) in the following manner. 

 Each bus departs from its parking space, sequentially serves the set of bus stops, 

picks up afternoon students, and transports them to their respective schools—this 

represents the forward path. Conversely, in the backward case, the bus picks up 

morning students from their schools and drops them off at their respective bus stops. 

In the forward path, bus stops are the pick-up points, and schools are the drop-off 

points, while the reverse is true for the backward path.  

Our primary focus lies in developing an efficient and innovative framework for 

assigning a time window constraint for each demand (i.e., student) rather than each 

node (i.e., bus stop and school). This implies that students from the same stop may 

have different time windows. As a result, our model can utilize the split-load scheme 

to pick up students with tighter (i.e., earlier) time window restrictions. This aligns with 

the concept of incorporating the split load effect. 

 Regarding the solution methodology, we aim to implement constructive heuristic 

strategies, including the selection of local search operators based on their performance 

within the search space. This approach establishes an efficient mechanism that reduces 

computing time, enables the use of appropriate local search operators, and enhances 

diversification. 
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To the best of our knowledge, the mixed-load School Bus Routing Problem (SBRP) 

has garnered significant attention in the past seven years and is likely to remain a focus 

of research in the near future. Integrating the concept of morning and afternoon trips 

brings the SBRP closer to real-world conditions. Although split loading has gained 

increased attention, it remains largely overlooked in the SBRP field. Notably, no major 

study to date has examined the impact of mixed-load and split-load school bus routing 

during both morning and afternoon trips. This research delves into these three 

characteristics.  

This study makes the following contributions: 

1) Introducing an innovative School Bus Routing Problem (SBRP) scheme that 

incorporates morning and afternoon features, considering the mixed-load effect 

(transporting students from different schools on the same bus), multi-shift load effect 

(accommodating students from both morning and afternoon shifts simultaneously), 

and split load. 

2) Creating specific neighborhoods tailored to the SBRP. 

3) Designing an iterated local search metaheuristic with an adaptive mechanism. 

4) Implementing multi-shift loading to effectively reduce operational costs. 

5-2- Problem definition  

Overall, the problem definition is categorized as follows 

1) The bus departs from the garage to pick up students for the first trip from their 

respective stops. After picking them up, the bus transports them to their respective 

schools, resembling the forward mechanism. 

2) Upon dropping off students from the first trip at their schools, the bus proceeds to 

pick up morning-shift students from their schools, transporting them to their 

designated stops. This process is part of the backward trip. 

3) Finally, the bus returns to the nearest garage. 

Innovatively, we introduce a multi-shift loading approach with a mixed-load 

concept, which is addressed using an Iterated Local Search (ILS)-based heuristic. The 

scenario involves multiple schools, a single student type, numerous bus stops, and a 

set of garages. 

The problem assumes the advance knowledge of the locations of garages, schools, 

stops, and the assigned time windows for students. It encompasses both morning and 

afternoon students. The process involves each bus commencing its journey from the 

garage, picking up a subset of students from their designated bus stops (i.e., the origin 

point), and transporting them to their respective schools. Subsequently, the bus picks 

up students who have completed their school day and transports them to their 

designated stops. 
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Our model introduces two key innovations. Firstly, instead of imposing time 

constraints on nodes (i.e., stops and schools), the constraints are applied on the demand 

side, focusing on students. Each student is assigned lower and upper time-window 

bounds. In the first shift, the lower bound determines the time a student is available at 

the stop to be collected, while the upper bound specifies the maximum time for the 

student to be dropped off at the associated school. Conversely, in the second shift, the 

lower bound indicates the time a student is available at the school to be picked up, and 

the upper bound represents the maximum time for the student to be dropped off at the 

bus stop (home). 

The model incorporates constraints to closely mirror real-world scenarios: 

1)Time window constraints are applied to each student in both shifts, as opposed to 

schools and stops; 

2) The bus capacity constraints must not be violated, and this capacity is the same for 

all busses;  

3) A maximum riding time constraint is enforced to enhance student convenience; 

4) The model allows for the simultaneous handling of morning and afternoon students 

(multi-shift loading) and the transportation of students from different schools (mixed-

loading); 

5) Split-loading is permitted at each stop, providing flexibility in the loading process; 

  Table 5-1 provides a summary of the parameters and variables incorporated in the 

model, while Figure 5-1 illustrates an example of the problem. In the figure, a student 

is represented by a circle, a bus stop by a small square, a garage by a large black square, 

and a school by a triangle. Students share the same color as their respective schools. 

Bold lines indicate forward trips, and dashed lines represent backward trips. The 

number of students ready for the return trip is visualized under each school.  

Figure 5-1 presents a feasible (though not optimal) solution, where each bus must 

initiate from a garage, pick up students from various stops, and transport them to their 

respective schools.  

The problem is based on the following assumptions: 

1)Buses have the flexibility to transport students from different schools 

simultaneously; 

2) In both forward and backward trips, students are picked up before being dropped 

off; 

3) Each school and stop may be visited by more than one bus; 

4) Each student is assigned to either the morning or the afternoon shift; 
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Figure (5-1)  An Example of School Bus Routing Problem 

 

Table 5-1 presents the sets, parameters, and decision-variables used in the model. 

 
Table (5-1)  Indices, Sets, Parameters, and Decision Variables Used in the Mathematical Model 

Sets 

𝑄 Set of students (q) 

𝐾 Set of school buses (k) 

𝐼

= {𝐺} ∪ 𝑆 ∪ 𝐶 ∪ 𝑆′ 

Set of nodes (i, j), where G is the set of the garages, S is the set of bus stops, C is the set 

of schools, and S' is the set of duplicated bus stops 

Parameters  

𝑀1 − 𝑀5 Five large numbers 

𝐶𝑘 Capacity of bus k 

𝑠𝑞 Time for student q to get on/off a bus 

𝐺𝑞 Origin of student q 

𝑁𝑞 Destination of student q 

𝐺𝑖
′ Students who have node i as their origin 

𝑁𝑖
′ Students who have node i as their destination 

𝑙𝑏𝑞 Lower bound of time window for student q 

𝑢𝑏𝑞 Upper bound of time window for student q 

𝑅𝑇𝑞 Maximum riding time of student q 

𝑡𝑖,𝑗,𝑘 Transportation time from node i to node j by bus k 

Decision variables 

𝑋𝑖,𝑗,𝑘 A binary variable that is 1 if the bus k moves from node i to node j, and 0 otherwise 

𝑌𝑖,𝑘 A binary variable that is 1 if node i is visited by the bus k, and 0 otherwise 

𝑃𝑞,𝑘 A binary variable that is 1 if student q is picked up by bus k, and 0 otherwise 

𝐷𝑞,𝑘 A binary variable that is 1 if student q is delivered by bus k, and 0 otherwise 

𝐿𝑖,𝑘 A nonnegative variable showing the number of students in bus k when it leaves node i  

𝑇𝑖,𝑘 A nonnegative variable showing the time the bus k visits node i  

 

The mixed integer linear programming (MILP) formulation for the SBRP defined 

above is as follows: 

 

𝑀𝑖𝑛 ∑ ∑ ∑ 𝑡𝑖,𝑗,𝑘 ∗ 𝑋𝑖,𝑗,𝑘

 

𝑘∈𝐾

 

𝑗∈𝐼

 

𝑖∈𝐼

 (5-1) 

𝑠. 𝑡.                                                 
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∑ 𝑋1,𝑗,𝑘

 

𝑗∈𝐼

≤ 1 ∀ 𝑘 ∈ 𝐾 (5-2) 

∑ 𝑋𝑖,1,𝑘

 

𝑖∈𝐼

≤ 1 ∀ 𝑘 ∈ 𝐾 (5-3) 

∑ 𝑋𝑖,𝑗,𝑘

 

𝑖∈𝐼

= ∑ 𝑋𝑗,𝑖,𝑘

 

𝑖∈𝐼

 ∀𝑗 ∈ 𝐼, 𝑘 ∈ 𝐾 (5-4) 

∑ 𝑋𝑖,𝑗,𝑘

 

𝑗∈𝐼

= 𝑌𝑖,𝑘 ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 (5-5) 

∑ 𝑌𝑖,𝑘

 

𝑘∈𝐾

≥ 1 ∀𝑖 ∈ 𝐼 (5-6) 

∑ 𝑋𝑖,𝑖,𝑘

 

𝑘∈𝐾

= 0 ∀𝑖 ∈ 𝐼 (5-7) 

∑ ∑ 𝑋𝑖,𝑗,𝑘

 

𝑖∈𝐶𝑖∈𝑆

≤ 1 ∀𝑘 ∈ 𝐾 (5-8) 

∑ ∑ 𝑋𝑖,𝑗,𝑘

𝑖∈𝑆′𝑖∈𝐶

≤ 1 ∀𝑘 ∈ 𝐾 (5-9) 

𝑃𝑞,𝑘 ≤ 𝑌𝑖,𝑘 ∀ 𝑖 ∈ 𝐼 − {G}, 𝑘 ∈ 𝐾, 𝑞 ∈ 𝐺𝑖
′ (5-10) 

∑ 𝑃𝑞,𝑘

 

𝑘∈𝐾

= 1 ∀𝑞 ∈ 𝑄 (5-11) 

𝐷𝑞,𝑘 ≤ 𝑌𝑖,𝑘 ∀ 𝑖 ∈ 𝐼 − {G}, 𝑘 ∈ 𝐾, 𝑞 ∈ 𝑁𝑖
′ (5-12) 

𝑃𝑞,𝑘 = 𝐷𝑞,𝑘 ∀𝑘 ∈ 𝐾, 𝑞 ∈ 𝑄 (5-13) 

∑ 𝑃𝑞,𝑘

 

 𝑞∈𝐺𝑖
′

+ ∑ 𝐷𝑞,𝑘 ≥ 𝑌𝑖,𝑘

 

𝑞∈𝑁𝑖
′

 ∀𝑖 ∈ 𝐼 − {G}, 𝑘 ∈ 𝐾 (5-14) 

𝐿𝑖,𝑘 + ∑ 𝑃𝑞,𝑘

 

 𝑞∈𝐺𝑗
′

− ∑ 𝐷𝑞,𝑘

 

𝑞∈𝑁𝑗
′

≤ 𝐿𝑗,𝑘 + (1 − 𝑋𝑖,𝑗,𝑘) 𝑀1 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐼 − {G}, 𝑖 ≠ 𝑗,

𝑘 ∈ 𝐾 
(5-15) 

𝐿𝑖,𝑘 ≤ 𝐶𝑘 ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 (5-16) 

𝑇𝑖,𝑘 + 𝑠𝑞( ∑ 𝑃𝑞,𝑘

 

 𝑞∈𝐺𝑖
′

+ ∑ 𝐷𝑞,𝑘

 

𝑞∈𝑁𝑖
′

) + 𝑡𝑖,𝑗,𝑘 ≤ 𝑇𝑗,𝑘 + (1 − 𝑋𝑖,𝑗,𝑘)𝑀2 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐼 − {G}, 𝑖 ≠ 𝑗,

𝑘 ∈ 𝐾 
(5-17) 

𝑇𝑗,𝑘 − 𝑇𝑖,𝑘 ≤ 𝑅𝑇𝑞 + (1 − 𝑃𝑞,𝑘)𝑀3 ∀𝑘 ∈ 𝐾, 𝑞 ∈ 𝑄, 𝑖 = 𝐺𝑞 , 𝑗 = 𝑁𝑞 (5-18) 

𝑇𝑗,𝑘 ≥ 𝑇𝑖,𝑘 − (1 − 𝑃𝑞,𝑘)𝑀4 ∀𝑘 ∈ 𝐾, 𝑞 ∈ 𝑄, 𝑖 = 𝐺𝑞 , 𝑗 = 𝑁𝑞 (5-19) 

𝑇𝑖,𝑘 ≥ 𝑙𝑏𝑞𝑃𝑞,𝑘 ∀𝑞 ∈ 𝑄, 𝑖 = 𝐺𝑞 , 𝑘 ∈ 𝐾 (5-20) 

𝑇𝑖,𝑘 ≤ 𝑢𝑏𝑞 + (1 − 𝐷𝑞,𝑘)𝑀5 ∀𝑞 ∈ 𝑄, 𝑖 = 𝑁𝑞 , 𝑘 ∈ 𝐾 (5-21) 

𝑋𝑖,𝑗,𝑘  , 𝑌𝑖,𝑘 , 𝑃𝑞,𝑘  , 𝐷𝑞,𝑘 ∈ {0,1}; 𝐿𝑖,𝑘   , 𝑇𝑖,𝑘 ≥ 0   (5-22) 

 

The objective function (5-1) serves to minimize the total travel time of buses. 

Constraints (5-2) and (5-3) are degree constraints. Constraint set (5-4) is flow 

conservation, and constraints (5-5) determine whether each node is visited by a bus or 

not. Constraints (5-6) ensure that each node is visited at least once. Constraints (5-7) 

prevent loops in nodes. Constraints (5-8) ensure that a bus travels from a given set of 

stops to a set of schools at most once, while constraints (5-9) guarantee that a bus 

travels from the set of schools to the set of stops at most once. Constraints (5-10) state 

that if a node is visited by a bus, the students on that node can be picked up. Constraints 
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(5-11) ensure that all students must be picked up by the bus. Constraints (5-12) state a 

condition similar to (5-10) for the delivery of students. Constraints (5-13) ensure that 

if a bus picks up a student, it also take him/her to the related destination. Constraints 

(5-14) prevent unnecessary node visits to buses.  

Constraints (5-15) calculate the number of students in a bus after leaving the nodes, 

while constraints (5-16) limit the bus load.  

Constraints (5-17) are time-related constrains. Constraints (5-18) ensure that the 

maximum riding time is not exceeded. Constraints (5-19) guarantee that a student is 

first picked up and only then dropped off. Constraints (5-20) and (5-21) specify the 

time window of each student. Finally, variables and their types are expressed in 

constrains (5-22).   

5-3- Solution methodology  

The School Bus Routing Problem (SBRP) is recognized as an NP-hard problem, 

making it impractical to solve in polynomial time. For large-scale instances, heuristic 

approaches prove more effective. The challenge lies in designing a heuristic that aligns 

with the problem's characteristics, finding a balance between computing time and 

solution quality, and managing the trade-off between intensification and 

diversification. Neglecting these considerations hampers the efficiency of the 

heuristic.  

Researchers adopt varied approaches based on the problem's peculiarities and 

scope. In this context, we propose an Iterated Local Search (ILS) heuristic for the 

SBRP, incorporating an adaptive mechanism. The structure and details of the iterated 

local search have been extensively presented by Lourenço, Martin, and Stützle (2003). 

The Iterated Local Search (ILS) is a straightforward, easily implementable, and 

robust metaheuristic, with its effectiveness hinging on the iterative implementation of 

embedded local search, perturbation, and acceptance criteria. The ILS consists of three 

key phases: constructive, improvement, and perturbation. Widely acknowledged in the 

literature, the ILS metaheuristic is a well-established methodology for the Vehicle 

Routing Problem (VRP) and its variants. 

The initial solution is generated using a constructive heuristic based on predefined 

criteria like maximum riding time, demands time window, and capacity constraints. 

Subsequently, the solution undergoes local search for further enhancement until a local 

optimum is reached. To avoid local optima and establish a favorable starting point for 

the improvement phase, a diversification mechanism is applied to the solution, 

employing the destroy and repair method. 

The ILS heuristic incorporates a notable adaptation by introducing an adaptive 

mechanism in the local search block. Instead of adhering to the traditional fixed 

method of ordering neighborhoods, each neighborhood is selected based on its 
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outcome in the preceding operation. This entails assigning a higher weight to 

neighborhoods with superior performance, thereby increasing their probability of 

selection. Simultaneously, neighborhoods with lower levels of effectiveness also have 

a chance, albeit a lower one, of being chosen. The general scheme is illustrated in 

Algorithm 5-1. 

Algorithm (5-1) The Proposed Algorithm (ILS with an Embedded Adaptive Mechanism) 

1 Input: U (set of all potential stops), G (set of all garages), 𝑃− (set of all schools), S (set of all students), 

 

  𝐼 (Set of operators), q (percentage of route to be destroyed), 𝑃+(List of stops to which students are allocated), 

𝜇 (initial score of operator (𝐻)), 𝑤 (initial weight of operator (𝐻)), 𝑛𝑖𝑡 (number of iterations without 

improvement), 𝐼𝑡 (total number of iterations that contains no of segments), and n (number of iterations in each 

segment), 𝑛𝑖𝑡𝑚𝑎𝑥 (maximum number of iterations without improvement); 

2 Stage 1: Construction phase 

3
 

𝑃+=all students allocated to the respective stop                                  // Student allocation  

4 
𝑥𝑜 = 𝑟𝑜𝑢𝑡𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛( 𝑝+ ,  𝑝− ,S,G, )                                          // Generating route using constructive 

heuristic  

5 𝑥𝑏𝑒𝑠𝑡 = 𝑥𝑜 

6
 

𝑓𝑏𝑒𝑠𝑡 = 𝑓(𝑥𝑜) 

7 𝑥𝑎𝑐𝑡 = 𝑥𝑜 

8
 

Stage 2: Improvement phase 

9
 

 Set of heuristics 
 

10 Initialize the roulette wheel; initialize the adaptive parameters (𝜇, 𝑤)
 

11 While Stopping criterion 𝐼𝑡  is not met,  

12     For seg←1 to n  

13        Roulette wheel mechanism: Select one operator 𝑯 ∈ 𝑰  through the adaptive mechanism
 

14
 
        𝑥𝑎𝑐𝑡

∗ = H ( 𝑥𝑎𝑐𝑡)                                    // improve the solution by applying the selected improvement 

15
 
        If accept (𝑥𝑎𝑐𝑡

∗ , 𝑥𝑎𝑐𝑡),  

16              𝑥𝑎𝑐𝑡 = 𝑥𝑎𝑐𝑡
∗  

17         End if  

18              If
 
𝑓(𝑥𝑎𝑐𝑡) < 𝑓(𝑥𝑏𝑒𝑠𝑡)

 
19                   𝑥𝑏𝑒𝑠𝑡 = 𝑥𝑎𝑐𝑡 

20              End if
 

21               Update the number of iterations without improvement (𝑛𝑖𝑡), update the collected score of operator 

22                   If max number of iterations without improvement reached  

23 Stage 3: Perturbation phase  

24                       Update the parameter 𝑞 

25                        𝑥𝑎𝑐𝑡= Perturb (𝑥𝑎𝑐𝑡 , 𝑞) by applying the perturbation neighborhood 

26                           𝑛𝐼𝑡 = 0 

27                   End if  

28     End for  

29                  Update the roulette wheel parameter (𝜇, 𝑤) 

30   End while  

31 Output:  𝑥𝑏𝑒𝑠𝑡  

 Construction phase 

The constructive heuristic introduced here is combined with a Greedy Randomized 

mechanism known as GRASP. The GRASP configuration has garnered particular 
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attention in the realm of the Vehicle Routing Problem (VRP) and its variants. The goal 

is to sequentially develop an initial solution for two types of trips: forward and 

backward. 

During the forward trip, the objective is to generate routes where the bus initiates 

from the current garage, serves a set of stops, picks up afternoon students, and 

ultimately drops them off at their respective schools. It's important to note that, in the 

first trip, stops are assigned to the closest garage, as detailed in Chapter 4. 

In contrast, during the backward trip, the bus picks up morning students from their 

schools, leaves the school premises, transports them to their designated stops, and 

finally returns to the garage. Given the assumption of a multi-load scheme in the 

problem, it's possible for students from both the first and second trips to be on the same 

bus simultaneously. 

The construction process of our problem is divided into four phases: phases 1 and 

2 occur during the forward trip, while phases 3 and 4 accompany the backward trip. 

Here's a breakdown of the forward trip: 

In phase1, the heuristic selects a set of bus stops to generate a route. 

Phase 2 prioritizes visiting those candidate schools whose students have already   been 

picked up by the bus. 

In contrast, during the backward trip: 

phase 3 identifies which schools can be chosen (i.e., schools that the bus can visit) to 

pick up students. 

Phase 4 involves transporting the students from the visited schools to their residence 

locations. 

To construct phase 1, two tasks need to be undertaken, namely tasks 1 and 2. Task 

1 determines the mechanism for selecting the next stop to be visited, and task 2 

determines which students in the selected stop can be collected by the bus. Since this 

study assumes a split load situation, not all demands (i.e., students) of a candidate stop 

might be collected in the first visit. In this structure, considering the first task, total 

𝑡𝑠𝑐𝑜𝑟𝑒1 =
𝑠1+𝑆2

𝑠3
 is calculated for all non-visited stops and added to the list U.  

In this relation, 𝑠1 represents the number of students in the candidate stop that have 

a common school with students who have already been picked up by the bus, 𝑠2 

indicates the number of allowable students at the candidate stop with respect to time 

constraints (both maximum riding time of students and time window of the school); 

and 𝑠3 shows the distance between the last stop visited by the bus and next candidate 

stop.  

This formula prioritizes stops with shorter distances and students from more 

commonly associated schools. After calculating scores for all stops in list U, they're 

sorted in decreasing order of total score. A restricted candidate list (RCL) is formed 

with the first 𝛼 non-visited stops. A random stop from RCL becomes the current node. 

Upon selecting a candidate stop to add to the current route, it's crucial to identify its 

allowable students. Notably, while split demands are allowed, determining the priority 



 

118 

 

is essential. The criteria include giving precedence to students whose schools have 

already been chosen by the bus. 

If the candidate stop includes students whose schools have not been considered yet, 

those students are randomly selected based on predefined constraints. Once all students 

from a candidate stop are taken by bus, the stop is removed from list U, which is then 

updated. If some students at the stop remain unassigned, the candidate stop stays 

available for further processing.  

When adding a stop to the current route, the respective school for each selected 

student needs to be located in the cheapest feasible position. This process continues, 

and a non-visited stop is added to the current route as long as one of the following 

situations arises: 1. The list U becomes empty (no eligible nodes to add); 2. Candidate 

stops cannot meet both maximum riding time and time window constraints 

simultaneously; 3. The bus capacity constraints are no longer satisfied. 

If any of these situations arises, we cease operations on the current route in the first 

shift. Consequently, the current route is returned to the respective school(s), and the 

heuristic endeavors to continue in the second shift. Specifically, in the initial step, the 

heuristic aims to create a new route for the available stops, maintaining the current 

route as long as a feasible solution is identified. If none of these situations occur, the 

bus must decide to return to its respective school to drop off the assigned students. In 

this second phase, it is crucial to consider the priority of schools to be served based on 

their distance, while adhering to the constraints under consideration.  

In phase 1, before the heuristic considers additional candidate stops, we need to 

check and update the status of routed stops, those already visited by the bus, based on 

predefined constraints. To save time, an efficient data structure is employed to manage 

the allowable riding time of students to reach their respective schools and their school 

time windows in advance during phases 1and 2.  

The return trip commences from the school, serving its students within their 

designated time windows and transporting them to their residences. In our problem, 

with a multi-shift loading scenario, dropping off first-shift students at their respective 

schools and picking up second-shift students can occur simultaneously. This allows 

the bus to pick up second-shift students from their school while still transporting first-

shift students. 

Developing backward trips mirrors forward trips with minor differences. After 

dropping off first-shift students, the bus heads to a school to pick up second-shift 

students, which could be the same location or a different one. Phase 3 addresses this 

issue. Initially, the first available schools within the time window are filtered for the 

current bus. Subsequently, the total score for each school is calculated as the sum of 

two partial scores, combined using the formula: 𝑡𝑠𝑐𝑜𝑟𝑒2 = 𝛿𝑠1 + 𝛽𝑠2.. Here, s1 reflects 

the similarity between candidate schools' stops and those visited by the bus in the 

morning trip. When the school is selected, the locations of stops where students are to 

be dropped off are examined, calculating the number of stops visited by the bus in both 

morning and afternoon shifts. Additionally, 𝑠2 calculates the distance of the bus from 
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each candidate school. The coefficients 𝛿 and 𝛽 can be assigned values between 0 and 

1, based on the constraint 𝛿 + 𝛽 = 1. 

The optimal values for both coefficients are provided in Table 5-3. Subsequently, 

eligible schools are arranged in ascending order of total score. The heuristic initiates 

school selection from the top of the list, exploring sequentially until the bus capacity 

constraints are reached. Ultimately, in phase 4, a decision is made to plan the return 

trip. Similar to phase 2, this is executed based on minimum distance. The sole 

difference in constructing routes between two shifts is the exclusion of the split load 

framework from the return trip. To enhance the heuristic's efficiency, an effective data 

structure is defined and updated when new candidate stops are considered. 

Table 5-2 illustrates the sample data structure. The parameters in the data structure 

encompass the next visited stop (NVS), the number of available students at each stop 

(AS), the cumulative load of the bus upon arrival at the candidate stop (CL), the load 

of the bus after visiting the candidate stop (CLA), the remaining capacity before 

visiting the candidate stop (R), the remaining capacity after visiting the candidate stop 

(RC), the arrival time at the candidate stop (AT), and the time to reach the respective 

school (RT). A similar structure is designed for the backward trip. This straightforward 

yet effective data structure enables the solution to manage both capacity and time 

constraints before taking any action, resulting in more efficiency. 

As depicted in Figure 5-2, when the candidate bus reaches stop 3, there are three 

available students to be picked up. Taking all students at this stop leads to a capacity 

violation. Consequently, it must be determined which students to serve to satisfy all 

constraints. Opting for student b would result in a time window violation. This 

situation prompts the use of the split load framework, allowing the bus to take students 

a and c, while student b remains unserved. This approach not only avoids time window 

violations but also reduces travel time. All relevant values are checked and updated 

when a new school or stop is introduced into the problem. 

a

School

Stop

Student

11.51 am

Garage

b

c

12.00 am

7min
12.10 am

12.20 am

9min

10min

13min

15min

10min

1

2

3

 
Figure (5-2)  Example for Constructing an Initial Solution 

 
Table (5-2)  Data Structure 

NVS AS CL CLA R RC AT 
(RT) Travel time to 

school 1 

(RT) Travel time to 

school 2 

3 3 4 7 2 -1 11.51 13 min 15 min 
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 Improvement phase  

As previously mentioned, the local search operator aims to iteratively modify the 

current solution, proven effective in solving VRPs. Before entering the improvement 

block, two crucial questions must be addressed: 1) What kind of neighborhood is 

specific to SBRP; and 2) Which set of neighborhoods strikes a proper balance between 

computational effort and cost. Thus, it is imperative to develop operators adaptable to 

the problem at hand. Larger-sized neighborhoods can provide higher-quality solutions, 

but they sacrifice computational time efficiency. Conversely, small local search 

operators have quick execution times but may not yield substantial improvement. 

Therefore, it's crucial to identify neighborhoods that explore more efficiently within 

a desirable computing time. To achieve this, the following strategies are considered. 

The first strategy involves assessing whether the neighborhood can be divided into two 

or more smaller neighborhoods. The rationale is that when a candidate neighborhood 

operates with a smaller size, it incurs lower time complexity. The second strategy is 

built on heuristic pruning, effectively implementing the neighborhood based on its 

performance. Another noteworthy strategy is to introduce SBRP-specific operators. 

Designing a neighborhood compatible with problem-specific knowledge proves 

helpful, especially as the problem size expands.  

This approach focuses on creating a suitable mechanism for exploration. 

Specifically, in some cases, simultaneous exploration within one route or between two 

routes may not lead to further improvement due to tightly applied constraints. Hence, 

it becomes essential to explore three or more routes. 

These considerations underscore the importance of incorporating the 

aforementioned strategies in the improvement phase. We introduce two types of 

neighborhoods, each tailored to SBRP's specific requirements. The common 

neighborhood aligns with the well-established VRP framework, while the other 

leverages insights derived from problem characteristics like single-load, mixed-load, 

and split load scenarios. For heuristic pruning, we implement a neighborhood selection 

mechanism, which will be elaborated on in Section 5-3.3. 

5-3-2-1- Common neighborhood  

In literature, various neighborhoods have been used, but it's crucial to select ones 

that balance computing time and solution quality. In this study, we employ cross-

exchange and ejection chains as these operators can create one or more small 

neighborhoods. Cross-exchange operates on a smaller neighborhood size (e.g., swap 

or remove-insert), requiring less computing time, while the larger version can yield 

high-quality solutions. 
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 Cross-exchange operator  

This operator exchanges pairs of consecutive stops between two routes 

simultaneously. An example is provided in Figure 5-3. If one sequence is empty 

(contains no stops), but another sequence has only one stop, the operator functions as 

a remove-insert mechanism. Therefore, when both sequences contain only one stop, 

the operator proceeds with its swapping task. This flexibility allows the cross-

exchange operator to act as a cross-exchange, remove-insert, or swap operator. This 

justification demonstrates that while the cross-exchange behaves like a remove-insert 

operation, the solution benefits from shorter computing time within the search space. 

 

C2

C3

 

Figure (5-3)  Cross-exchange Mechanism Between Sequences of Two Stops 

 Ejection Chain 

The ejection chain concept, introduced by Rego (2001), tackles simultaneous 

exploration in multiple routes. It involves relocating a stop from route A to route B, 

followed by the relocation of a different stop from route B to route C. This chain 

relocation between routes enhances diversification in the solution space to a certain 

extent. The following figure illustrates the ejection mechanism. 

C1

C2

C2
+

 

Figure (5-4)  Ejection Mechanism with Two Relocations 

 

Due to the high computational complexity of both aforementioned neighborhoods, 

particularly for large instances, we restrict their exploration to specific parts of the 
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solution space. Consequently, these neighborhoods are designed to facilitate 

exchanges within a defined area of the solution, aiming to reduce computational effort. 

Specifically, when a stop is a candidate for the operation, the solution focuses on 

finding the closest stop. 

5-3-2-2- Special neighborhood   

The special neighborhood is implemented based on the nature of the problem.  

 Inter-route swap of stops with students of the same school(s)  

This operator swaps the positions of two stops between two routes when they have 

students from the same school(s). This maneuver aids in preventing the insertion of 

additional schools into the route. 

 

 Convert single to mixed-load effect 

To minimize the number of single-load routes, this operator aims to remove a stop 

from a single-load route and insert it into a mixed-load route. 

  

 Convert mixed-load to single-load effect 

This operator seeks to eliminate a stop from a mixed-load route and insert it into 

another route, thereby removing the stop whose student has a far distance relative to 

other existing school(s). 

 

 Split load  

Two operators related to split load are run in order to examine the characteristics of 

the problem more precisely. 

 

 Swap (1, 1) 

The idea of split swap is proposed by Boudia et al. (2007). This operator provides 

some modification based on the amount of demand of each stop. Suppose that two 

stops, nodes i and j, are candidate for exchange. Node  i belongs to route 1 and node j 

belongs to route 2. Depending the amount of demand, at point 𝑑𝑖 > 𝑑𝑗 node 𝑗 is added 

to route 1, either before or after node 𝑖 , in the best (i.e., cheapest) position, with 

demand j and node i is set with new demand 𝑑𝑖1 = 𝑑𝑖 − 𝑑𝑗. Also, a copy of node 𝑖  is 

replaced in route 2 with a demand equal to  𝑑𝑖2 = 𝑑𝑗.  If  𝑑𝑖 < 𝑑𝑗, the inverse behavior 

is observed.  In case 𝑑𝑖 = 𝑑𝑗 , this operator is not taken into account and the move is 

discarded.  
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Figure (5-5)  Swap (1,1) 

 

 Swap (2, 1)  

It follows the idea of Swap (1, 1) yet with the following adaption. We consider two 

nodes i and 𝑗 for route 1 and node k for route 2 . To this end, we follow two scenarios: 

in the first one, when 𝑑𝑖 + 𝑑𝑗 ≥ 𝑑𝑘 and 𝑑𝑘 > 𝑑𝑖 , node 𝑖 and the copy of  𝑗 are replaced 

in route 2  with 𝑑𝑖  and  𝑑𝑗1 = 𝑑𝑘 − 𝑑𝑖 . Additionally, node 𝑘  is inserted in route 1 

before and after node j in the cheapest position with 𝑑𝑘. Remaining demand 𝑑𝑗2 is 

replaced in route 1 with 𝑑𝑗2 = 𝑑𝑗 − (𝑑𝑖 + 𝑑𝑘). In the second case, if 𝑑𝑖 + 𝑑𝑗 < 𝑑𝑘 , 

the insertion position for 𝑖  and 𝑗  can be either before or after 𝑘 with demands 

𝑑𝑖, 𝑑𝑗  and 𝑑𝑘1 = 𝑑𝑘 − (𝑑𝑖 + 𝑑𝑗) in route 𝑟2. Additionally, the copy of node 𝑘 is 

replaced in route 𝑟1 with a demand equal to 𝑑𝑘 = (𝑑𝑖 + 𝑑𝑗). 
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Figure (5-6)  Swap (2,1) 

To decrease complexity in the solution space, it's essential to check both 

aforementioned constraints and costs before implementing any move. The move is 

executed only if it achieves a desirable outcome for both issues (positive saving and a 

feasible solution); otherwise, it's discarded. 

In summary, special neighborhoods are introduced and applied that incorporate the 

split load concept in SBRP. Furthermore, for an effective trade-off between 

complexity and solution quality, the cross-exchange and ejection chain operators are 

recommended and implemented. 
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Algorithm (5-2) Local Search Algorithm with an Embedded Adaptive Mechanism 

Input:  

 Generate a feasible initial solution (𝑥0) , μ (initial score of operator), 𝑤 (initial weight of operator), n (number 

of iterations in each segment), I (set of operators {𝐻1, 𝐻2, … , 𝐻𝐼}, 𝑛𝑖𝑡 (number of iterations without 

improvement), 𝑛𝑖𝑡𝑚𝑎𝑥 (maximum number of iterations without improvement); 

 (𝑥𝑎𝑐𝑡)  = (𝑥𝑜) 

𝒇𝒃𝒆𝒔𝒕 = 𝑓(𝑥𝑜) 

// Improvement Stage 

Initialize the roulette wheel; initialize the adaptive parameters (𝜋, 𝑤)
 

      For seg←1 to n  

         Roulette wheel mechanism: Select operator 𝐻 ∈ 𝐼 based on the obtained scores {𝜇} and weights {𝑤} 
 

         Apply operator 𝐻 to solution 𝑥𝑎𝑐𝑡 , and create solution 𝑥𝑎𝑐𝑡
∗  

         If accept (𝑥𝑎𝑐𝑡 , 𝑥𝑎𝑐𝑡
∗ ) 

            
𝑥𝑎𝑐𝑡 = 𝑥𝑎𝑐𝑡

∗  

         End if
 

             If 𝒇(𝑥𝑎𝑐𝑡) < 𝒇𝒃𝒆𝒔𝒕 

                 
𝑥𝑏𝑒𝑠𝑡 = 𝑥𝑎𝑐𝑡 

              
End if

  

               Update the number of non-improved iterations
 
 (𝑛𝑖𝑡)  

               Update the collected scores of operators 𝐻 

     End For  

               Update weights 𝑤 of  operator 𝐻  

               Set scores 𝜇 = 0 of operator 𝐻 

 Output:   Report the best solution 𝑥𝑎𝑐𝑡 found  

 

 Neighborhood selection mechanism  

To evaluate the heuristic's performance more accurately, we consider two scenarios. 

In the first scenario, the neighborhood is chosen through the traditional VND 

mechanism, and the operation commences with a small case. Once small 

neighborhoods prove insufficient for improvement, the algorithm transitions to a larger 

neighborhood size to better explore the heuristic's performance in the solution space. 

In the second scenario, we employ an adaptive mechanism to understand the heuristic's 

performance and select neighborhoods based on their previous effectiveness. 

An adaptive mechanism is employed to increase the likelihood of selecting a 

neighborhood with better performance during the search process. Conversely, a 

neighborhood with poor performance has a reduced chance of being selected. This 

structure integrates the local search operator into the adaptive mechanism. The search 

space is further divided into several segments. Initially, within each segment, all 

neighborhoods carry the same weight, set to one, and the score is initialized to zero. 

This score is updated iteratively in the following manner. 

The scores indicate how well the neighborhood has performed in the current 

segment. In each iteration, if the considered neighborhood yields a new best solution 

so far, the score is increased by 𝜎1. Conversely, if a solution better than the incumbent 

solution is discovered, the score is increased by 𝜎2. If a solution worse than the 
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incumbent solution is reached, the score is increased by 𝜎3. At the end of each segment, 

the weight is updated based on the following formula: 

 

𝑤𝑖,𝑗+1 = (1 − 𝛾)𝑤𝑖,𝑗 + 𝛾
𝜇𝑖𝑗

𝜑𝑖𝑗
 

 (5-23) 

 

where 𝑤𝑖,𝑗 represents the weight of neighborhood 𝑖 in segment j, 𝜇𝑖𝑗 shows the score 

of neighborhood 𝑖 in the last segment, and 𝜑𝑖𝑗 refers to the number of times 

neighborhood 𝑖 is repeated in the last segment.  

More importantly, the value of 0 < 𝛾<1 is the parameter for controlling the 

behaviors of the adaptive mechanism in the proposed algorithm. This value reflects 

the extent to which weights influence the effectiveness of the neighborhood. When a 

segment terminates, the new weights are calculated based on the acquired score and 

all scores are set to zero for the next segment. The probability of selecting the next 

neighborhood for the operation is determined using the roulette-wheel mechanism as 

follows: 
𝑤𝑖𝑗

∑ 𝑤𝑖𝑗𝑖∈𝐼
.  

In our algorithm, the segment length is set to 20 iterations, and the optimal values 

for the mentioned parameters are outlined in Table 5-3. 

Compared to the traditional VND, our adaptive model is innovative in four ways: 

1) Assigning weights to each neighborhood based on its performance, ensuring that 

considered operators do not have equal weight; 2) more compatibility with the size of 

the problem; 3) Introducing diversity to the search space, making it unpredictable 

which operator will be selected for the next operation; 4) Providing a chance for even 

bad moves to be selected. 

 Diversification mechanism  

Diversification strategies are employed to escape from local optima by exploring 

various areas of the search space. They assist in creating a new promising starting point 

for the improvement phase. The perturbation mechanism is crucial for the 

metaheuristic's performance. In a basic scenario, the diversification strategy perturbs 

the current solution by randomly selecting a route, removing stops from it, and 

reinserting them into a newly generated route, consequently increasing the total travel 

distance. The diversification mechanism operates through destroy and repair operators. 
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5-3-4-1- Destroy operator 

This operator aims to randomly destroy a portion of the solution space. Specifically, 

a random percentage of routes is selected, and all stops belonging to these routes are 

removed and inserted into the list M. The percentage is calculated as 𝜌 × 𝑞, where 𝜌 

is the number of routes generated in local search, and 𝑞 is the perturbation size. The 

perturbation size is a critical factor in the algorithm. If the size is small, there's minimal 

change in the incumbent solution. Conversely, with a large perturbation size, the 

solution behaves like a random restart, potentially leading to the loss of advantages 

gained from local optima. 

Dynamically setting the perturbation size offers several advantages. Firstly, it can 

be adjusted dynamically based on the current solution's status within the defined 

problem size. Secondly, it allows for reduced computing time when a smaller 

perturbation size is sufficient. Therefore, in this study, significant attention is given to 

updating the value of 𝑞 in line with the solutions' performance. The perturbation size 

follows algorithm 5-3. Initially, the value of 𝑞 is set to 𝑞𝑚𝑖𝑛 and gradually updated 

based on the successful performance of the destroy-repair operation. If the 

improvement phase reaches the global best solution so far, 𝑞 is adjusted to 𝑞𝑚𝑖𝑛, 

emphasizing the intensification strategy. Conversely, if the improvement phase fails 

to achieve a global best solution, exploration must continue, and 𝑞 should be increased. 

If 𝑞 reaches 𝑞𝑚𝑎𝑥, it is reset to 𝑞𝑚𝑖𝑛,  to avoid reaching an infinite value. 

 

 

5-3-4-2- Repair operator 

In the repair phase, new routes are generated from all stops in the list M until it is 

emptied. This is done using the constructive heuristic described in Section 5.3.1. After 

applying the destroy-and-repair operator, the new solution is retained and delivered to 

the improvement phase for further enhancement. It's important to note that the 

perturbation mechanism aims to generate a new initial solution by diversifying the 

solution space. 
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Algorithm (5-3) Perturbation Mechanism 

Input: 

𝑛𝑖𝑡(Number of iterations without improvement), 𝑞𝑚𝑖𝑛(minimum percentage of routes to be removed), 

𝑞𝑚𝑎𝑥(maximum percentage of routes to be removed), 𝑓(𝒙𝒂𝒄𝒕
∗ ): cost found in the improvement phase,  𝑓𝑏𝑒𝑠𝑡: best 

cost found so far, 

 𝜌 : number of routes generated in the last improvement phase, 𝑀: list of non-visited stops= {}; ℎ𝑑𝑒𝑠𝑡𝑟𝑜𝑦: 

heuristic is used to destroy part of the solution,  ℎ𝑟𝑒𝑝𝑎𝑖𝑟: heuristic is used to repair part of the solution; 

        If 𝒇(𝒙𝒂𝒄𝒕
∗ ) = 𝒇𝒃𝒆𝒔𝒕  

              
𝑞 = 𝑞𝑚𝑖𝑛 

         Else  

              
If 

  
𝑞 < 𝑞𝑚𝑎𝑥

   

                 
𝑞 = 𝑞 + 10% 

              
Else 

 

                
𝑞 = 𝑞𝑚𝑖𝑛 

              End if 

         End if
  

             Destroy  [𝜌 ∗  𝑞] 
 
routes  from solution (𝑥𝑎𝑐𝑡) using ℎ𝑑𝑒𝑠𝑡𝑟𝑜𝑦 and insert nodes in list 𝑀  

               While 𝑀 = 0  

                     Insert nodes from the list 𝑀 into the partial solution using ℎ𝑟𝑒𝑝𝑎𝑖𝑟  and create solution 𝑥𝑎𝑐𝑡 

               End While 

                  
𝑛𝑖𝑡 = 0

 
 Output:   Report solution 𝑥𝑎𝑐𝑡  found 

 

5-4- Problem generation  

As the problem under consideration has not been previously explored, there are no 

existing instances in the literature. The dataset consists of 77 instances, encompassing 

garages, schools, stops, and students. The problem involves two trips (shifts). In the 

first trip, the bus departs from the garage, picks up students, and transports them to 

their respective schools. In the second trip, students are initially picked up from their 

schools and then transported to their respective stops (their home locations). The two 

trips vary in terms of the location where students are picked up. 

In the first shift, students are picked up from stops, while in the second shift, the 

pick-up location is their respective schools. The dataset in this study includes varying 

numbers of garages (ranging from 1 to 4), stops (from 10 to 110), and schools (from 1 

to 11). To facilitate a comprehensive analysis of metaheuristic behavior, three classes 

of instances S, M, and L are employed. Specifically, set S comprises 21 instances (with 

stops ranging from 10 to 30), set M contains 28 instances (with stops ranging from 40 

to 70), and set L consists of 28 instances (with stops ranging from 80 to 110). All 

instances are generated and distributed in the Euclidean square between (0,0) and 

(xmax, ymax), with both xmax and ymax set to 100. The school is dispersed in a 

rectangle area of (50, 50) pertain to the center of square. Stop discrete have area of 

(90, 90). 

The number of students at each stop is generated and distributed as random 

variables, ranging from 3 to 5. Given that the problem involves a combination of two 
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shifts simultaneously, some characteristics (e.g., the number of stops and schools) are 

the same for both shifts, while others are treated differently. These varying 

characteristics include allowable arrival time at each school in the first shift, allowable 

picking-up time of students at their schools in the second shift, allowable arrival time 

at each stop in both shifts, and the number of students. 

To allocate students to their respective schools, a simple procedure is followed. 

Initially, the average number of students per school is calculated. Then, students are 

assigned to their closest school until the number of allocated students reaches the 

average level. Once this threshold is reached, students are assigned to the next closest 

school. This procedure continues until all students are allocated to an accessible 

school. For each student, time window constraints are considered at both the origin 

and the destination. To align the data with real-world situations, all students belonging 

to each school must share the same upper bound for the first shift and the same lower 

bound for the second shift (all time parameters are in minutes). 

For students in the first shift, the lower bound time window is randomly generated 

within the range of 11:00 a.m. to 11:20 a.m., representing the available time for 

students at a stop to be picked up. Similarly, the upper bound for the first shift is 

developed between 12:30 p.m. and 1:00 p.m., indicating the maximum time by which 

students are expected to be dropped off at their associated schools. 

In the second shift, the lower bound time window is randomly generated between 

12:40 p.m. and 1:30 p.m., while the upper bound time window is randomly considered 

between 1:50 p.m. and 2:40 p.m. The former represents the allowable period when 

students can be picked up from their schools, and the latter indicates the maximum 

period when students must be dropped off at their respective stops. 

It is important to note that students belonging to the first shift must be picked up 

from their stops after the earliest time, whereas students of the second shift must be 

dropped off before the latest time. The traveling time between two nodes (stops or 

schools) is assumed to be the Euclidean distance divided by the speed of the bus (which 

travels at a constant speed of 20 km/hour). Section 5.6.1 is executed on all instances, 

while Sections 5.6.2 and 5.6.3 deal with only 30 instances. 

5-5- Calibration setting  

Before conducting the experimental analysis, it is crucial to comprehend the effect 

of each parameter on the algorithm's performance. The objective is to test and fine-

tune parameters that impact both solution quality and computing time. To efficiently 

examine this effect, 10 sample instances (discussed in the previous section) are 

selected and classified into three groups S, M, and L (5 instances from set S, 3 instances 

from set M, and 2 instances from set L). Tuning is carried out on the instances through 

a full factorial experiment. 
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The proposed solution approach relies primarily on three types of parameters, which 

are as follows. The adaptive layer parameters include 𝜎1, 𝜎2,𝜎3, and 𝛾. To control and 

fine-tune the size of perturbation, two parameters, 𝑞𝑚𝑖𝑛 and 𝑞𝑚𝑎𝑥, are introduced. In 

the construction stage, the parameters are denoted as 𝛼, 𝛿, and 𝛽. 

Each sample is run 10 times, and the average of the results is considered for 

analysis. The degree of significance (P-value) of each parameter on the solution's 

performance is measured. Specifically, p-values lower than 0.05 indicate that the given 

parameter is significant. 

The combination of proposed parameters and their respective ranges is presented in 

Table 5-3. Table 5-4 illustrates the significance of each parameter. It can be observed 

that both the minimum and maximum percentages of routes supposed to be destroyed, 

the reaction factor, the scoring parameter (𝜎1), and the number of non-improved 

solutions significantly affect both the quality of the solution and computing time. On 

the other hand, the parameters 𝜎2  and 𝜷 only affect the quality of the solution. 

 

Table (5-3)  Heuristic Parameters and Best Parameter Setting 

Parameter Description Value # 
Best 

value 

𝑛𝑖𝑡 Number of non-improved solution 10,20,30 3 20 

𝑞𝑚𝑖𝑛 

Defines minimum percentage of 

routes to be removed at perturbation 

phase 

1%,5%,15% 3 5% 

𝑞𝑚𝑎𝑥 

Defines maximum percentage of 

routes to be removed at perturbation 

phase 

20%,25%,30% ,35%,40%,45 

50% 
7 30% 

𝜎1 
Is scoring parameter in adaptive 

mechanism 
45,55,65 3 55 

𝜎2 
Is scoring parameter in adaptive 

mechanism 
25,35,45 3 35 

𝜎3 
Is scoring parameter in adaptive 

mechanism 
1,5,15 3 5 

𝛾 Is the reaction in adaptive mechanism 0.30,0.4, 0.5,0.60 4 0.5 

𝛼 Size of the restricted candidate list 1,2,3,4 4 3 

𝛽 
Is coefficients used to weigh the 

partial scores in constructive phase 
0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1 11 0.70 

 

Table (5-4)  P-Values of the F-Tests Used to Determine the Significance of each Parameter 

Parameter Computing time Average solution cost 

𝑛𝑖𝑡 p<0.05 p<0.05 

𝑞𝑚𝑖𝑛 p<0.05 p<0.05 

𝑞𝑚𝑎𝑥 p<0.05 p<0.05 

𝜎1 p<0.05 p<0.05 

𝜎2 p>0.05 p<0.05 

𝜎3 p>0.05 p>0.05 

𝛾 p<0.05 p<0.05 

𝛼 p>0.05 p<0.05 

𝛽 p>0.05 P<0.05 



 

130 

 

 Effect of the number of iterations on the performance of algorithm  

In this stage, we independently investigate the influence of the number of iterations 

on solution quality and computing time. It is observed that increasing the number of 

iterations results in a better quality of solution, yet it demands higher computing time. 

To address this issue, we conduct an analysis to make a trade-off between solution 

quality and computing time. As in the above section, 10 instances are used for analysis, 

and the solution is tested with different numbers (100, 200, 300, 500, 700, 900, 1200, 

and 1500) of iterations. Other parameters are fixed at their best value and are taken 

from Table 5-3. 

Each instance is run 10 times with different numbers of iterations, and the average 

gap between the best solution found after 10 runs and the best-known solutions is 

measured. Since no similar study has been carried out on this problem so far, we cannot 

refer to the best solution from the literature, and therefore, we have relied on our 

experiments. Thus, the value of the objective function at the maximum number of 

iterations is set as the best-known solutions, called BKSR. 

The obtained results are given in Table 5-5. The first column presents the number 

of iterations employed, and the best gap percentage is provided in the second column. 

Ultimately, the total computing time required to solve 10 instances is recorded in the 

third column. It is seen that while the number of iterations increased from 100 to 200, 

the value of computing time is augmented by 1.65 times. 

This trend keeps continuing for a larger number of iterations, such that by changing 

iterations from 200 to 300 and 300 to 500, the required computation time rises by 1.33 

and 1.51 times, respectively. In spite of the quality of the solution, it is seen that when 

the number of iterations rises to 500, the best gap percentage changes significantly. At 

iterations greater than 500, little improvement appears in the best gap percentage, 

besides the fact that computing time keeps rising. This strongly shows that the 

capability of the heuristic to find a better solution decreases at higher iterations. It can 

be inferred that 500 iterations suffice for making a tradeoff between execution time 

and the quality of the solution. 

 
Table (5-5)  Computational Results 

Number of iterations Best gap (%) Time (millisecond) 

100 4.65 858,063 

200 3.39 1,415,116 

300 2.20 1,881,676 

500 1.05 2,840,961 

700 0.95 4,552,414 

900 0.87 7,008,514 

1200 0.79 9,687,359 
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5-6- Experimental testing  

Having obtained the parameters' setting in their best value, we perform an 

experiment to investigate the performance of the proposed metaheuristic. Our 

experimental analysis serves three purposes: 

1)To investigate the performance of the algorithm on instances as a whole (small, 

medium, and large); determining the value of the objective function and the computing 

time. 

2) To understand the behavior of different parts of the heuristic. 

3)To recognize factors influencing multi-shift loading and mixed-load schemes. 

It should be mentioned that 77 instances are considered (ranging from 10 to 110 

stops) for the first part; however, for the second and third parts, we study a set of 30 

instances (12, 10, and 8 instances from small, medium, and large sets, respectively). 

 Metaheuristic performance  

To assess the proposed mathematical formulation for the SBRP, we carry out 

computational experiments, including both the exact (integer programming) and 

metaheuristic approaches. Since the proposed problem is new, we cannot make a 

comparison with other methods at this stage. SBRP is an NP-Hard problem; thus, by 

augmenting its size, computing time will increase exponentially. Indeed, we can solve 

only 16 instances through the exact method, which supports the validity of the 

proposed metaheuristic in small instances. 

Furthermore, we consider two scenarios to explore the behavior of the metaheuristic 

more accurately. The two scenarios differ only in the structure and order of their 

employed neighborhoods. Practically, we enable a comparison between the traditional 

(first scenario) and adaptive methods (second scenario) in the local search block, 

thereby shedding light on the behavior of the local search algorithm in finding a better 

solution. Each test instance is run 10 times to avoid the effect of randomness in the 

results, and the best solution out of these runs is recorded 

To make an appropriate comparison between the two scenarios, we set a fixed 

number of iterations (i.e., 500) for solving each instance. As a result, two percentage 

gaps are observed, including the percentage gap between the best solution calculated 

after 10 runs and the exact solution (called the best gap) and the percentage gap 

between the two kinds of scenarios (addressed as the gap between scenarios). The 

findings are reported in Appendix 6. The aggregated results for each subset of 

instances are presented in Tables 5-6 and 5-7. Table 5-6 depicts the best gap for both 
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proposed scenarios. The results indicate that, on average, the second scenario provides 

a lower percentage gap from the exact solution. 

 

 

 

To emphasize scenario performance, we compare results across large, medium, and 

small instances (Table 5-7). In small cases, both scenarios exhibit nearly similar 

behavior (difference of 2.05%). However, in medium and large cases, the second 

scenario consistently outperforms the first. On average, the second scenario excels in 

solution quality, albeit with a slightly longer computing time, possibly attributed to the 

roulette wheel mechanism (Table 5-8). 

 Heuristic analysis 

In the second stage, an additional investigation is conducted on a set of 30 instances 

(12 from the small set, 10 from the medium set, and 8 from the large set). This aims to 

evaluate the impact of the heuristic embedded into the local search on enhancing 

solution outcomes. At the conclusion of each segment, weights for each local search 

operator are calculated. For instance, an operator that contributes to a superior solution 

receives the highest weight, and the heuristic with a greater weight is more likely to be 

chosen. 

Results are presented according to the average weight of each heuristic across all 

30 instances. Figure 5-7 illustrates that the "convert m-s" heuristic bears the highest 

weight, substantially contributing to enhancing the solution space. This may be 

attributed to the effectiveness of leveraging neighborhood-based problem-specific 

knowledge as a promising strategy for generating better solutions. The cross-exchange 

heuristic is ranked third in terms of weight. In conclusion, it is crucial to choose a 

Table (5-6)  Results Obtained by Solving Instances in Set S 

Metaheuristic Set S  Set M Set L  

First scenario  2.88% ---- ---- 

Second scenario  1.79% ---- ---- 

 
 

Table (5-7)  Results Obtained by Solving Instances in Sets S, M, And L 

Metaheuristic Set S Set M Set L 

Percentage gap between two 

scenarios 

2.05% 3.12% 4.35% 

Table (5-8)   Total Computing Time of Each Metaheuristic (in Millisecond) 

Metaheuristic Set S Set M Set L 

First scenario 20,668.8 964,041.5 94,898,574.9 

Second scenario 20,946.1 984,456.1 97,693,848.2 
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heuristic aligned with problem-specific knowledge and capable of converting into two 

or more small operator sizes.  

 

 

Figure (5-7)  Weights of the Heuristics 

 Practical analysis 

This study section explores the impact of parameter variations on the proposed 

model, focusing on practical implications. This analysis is specifically applicable to 

stakeholders within the school transportation sector. The goal is to offer a solution and 

strategy that can yield positive outcomes in terms of both cost reduction and urban 

traffic management. Challenges like increasing student population density, traffic 

congestion, and varying school time windows in certain districts have compelled 

municipalities to take essential steps to address these issues. 

In this context, our objective function aims to minimize the total travel time for 

buses. Within the realm of mixed and multi-shift loadings, a significant concern 

revolves around minimizing the number of required buses. Thus, we incorporate a 

parameter for bus reduction percentage in our analysis. To align our model with real-

life scenarios, we consider two scenarios: multi-shift loading and no multi-load 

shifting. This distinction ensures that, in multi-shift loading cases, the commute to and 

from school can occur simultaneously. 

Our analysis is divided into several stages. Initially, the experiment illustrates the 

impact of time window fluctuations on average riding time constraints. Six scenarios, 

involving extended time windows, are considered for both with and without the multi-

shift loading assumption. Figure 5-8 presents the results, with the vertical axis 

depicting the percentage of average riding time, and the horizontal axis featuring an 

extended range of time windows. Notably, as only the time window extends while 

other parameters remain constant, the average riding time increases.  

The expanded time windows allow the bus more time for student loading while 

adhering to predefined constraints, resulting in an increase in average riding time. 

Beyond a certain point (after scenario 4), due to student-riding-time constraints, no 
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further reduction occurs in riding time. Consequently, this riding time can increase by 

a maximum of 12.65% compared to its initial value. 

Practically, this discovery assists the municipality in managing three parameters in 

specific situations: the allowable school time window, the riding time of students, and 

the total travel time of buses. In both cases, the effect of time window fluctuation on 

small instances is significantly less pronounced. 

  

Figure (5-8)  Impact of Time Window Fluctuation on Average Riding Time  

(With and without Multi-Shift Loading) 

In the second part of this section, our goal is to examine the impact of the maximum 

riding point (in 5 scenarios) on both total travel time and the number of available buses. 

We systematically vary the maximum allowable time when students can be on the bus. 

 Figure 5-9 illustrates that as the maximum riding time increases, the number of 

required buses decreases, indicating that the bus has a greater opportunity to load more 

students. However, as the riding time increases, the total travel time also continues to 

rise. This conflict between these two parameters requires careful consideration by 

policymakers, who need to specify the extent to which they want to reduce the number 

of buses while taking into account the potential increase in total travel time. 

 

 

 

  

 

Figure (5-9)  Impact of Maximum Riding Point on Total Travel Time by Bus and the Number 

of Available Buses )in Small, Medium, and Large Instances)  
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Another experiment (Figure 5-10) depicts the bus occupancy situation across 

different sample sizes. This finding aids municipalities in optimizing the capacity of 

their bus fleet (i.e., the number of students in a bus). A municipality seeks to 

comprehend how buses are occupied as the size of the problem increases, enabling it 

to raise the number of buses as far as possible.  

In comparison, it can be noted that in small instances, there is no significant 

difference between buses operating with or without multi-shift loading. However, as 

the sample size increases, multi-shift loading shows improved bus capacity utilization. 

 

 

Figure (5-10)  Bus Occupation Percentage under Multi-Shift Loading Conditions 

 

 

 

 

Figure (5-11)  Percentage of Saving in the Number of Buses and Total Travel Time while 

Considering Multi Shift Loading 
 

 

Our final analysis focuses on the impact of multi-shift loading on both the number 

of required buses and total travel time, as depicted in Figure 5-11. It is evident that 

employing a multi-shift loading mechanism leads to a significant reduction in total 

travel time, particularly in large instances. This indicates that our proposed algorithm 
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enhances efficiency, specifically concerning total travel time, as the size of the 

problem increases. The key factor is that as the problem size grows, the algorithm can 

further decrease total travel time, especially when the distance between the dropping 

and picking points of afternoon students becomes closer. Conversely, the more 

substantial reduction in the number of buses is associated with small instances. 

Ultimately, based on the results, the maximum reduction in total travel time and the 

number of buses is 4.93% and 6.82%, respectively. 

5-7- Real case  

Tehran, Iran's largest city with 22 districts (refer to Figure 5-12), holds the 24th 

position in terms of area but claims the top spot in national population. As of 2019, the 

city boasted 96 municipalities, 8,686 schools, and accommodated 1,662,700 students 

utilizing either public or private services.  

To address these points, we conduct experiments utilizing real data, concentrating 

specifically on downtown Tehran, encompassing districts 12 and 13, covering an area 

of 96.91 km² with 481 schools.  

To enhance our comprehension of the issue, we perform a distinct analysis for each 

district, as detailed in Table 5-9. This examination encompasses all schools within both 

districts. Owing to limitations in data accessibility, our analysis is centered on 35 

schools in district 12 and 35 schools in district 13, respectively. 

The problem's time window spans from 11:00 a.m. to 2:00 p.m. To tackle the 

complexity of the issue, we employ a random assignment of bus stops within each of 

the two districts. 

Within this section, our analysis encompasses the identification of which 

metaheuristic configuration yields superior results. Within this context, we explore 

two scenarios outlined in Chapter 5.3.3: the traditional and systematic selection of 

neighborhoods. It is evident that, for both districts (12 and 13), scenario 2 consistently 

yields, on average, a 3.41% lower solution cost. Additional detailed data is provided 

in Appendix 7 (districts 12 & 13). 

 
Figure (5-12)  Map of Tehran City 
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Table (5-9)  Characteristics of Districts 12 and 13, Tehran 

District  Area No. of school No. of students (elementary school)  

Morning shift Afternoon shift 

12 16.91 km2 288 13,493 8,270 

13 80 km2  193 10,525 7,621 

5-8- Conclusions and future research directions  

The study makes significant contributions through its incorporation of forward, 

backward, and split pick-up operations, consideration of multiple garages and schools 

with varying time windows. Additionally, multi-shift loading is integrated into the 

model. The problem is not only focused on cost optimization but also considers 

average riding time and the fluctuation of time windows in the two shifts. 

A total of 77 instances are generated for the problem, categorized into three subsets: 

small, medium, and large. As anticipated, when the problem size increases, the exact 

method struggles to find an optimal solution within a reasonable time frame after 

instance 16. To address this, we devised a metaheuristic approach.  

The results are organized into three sections as follows: 

In the first section, computational experiments are conducted along two lines. 

Initially, the proposed solution is compared with the exact method in 16 small 

instances, achieving a best gap below 2.12% (for the second scenario). Following this, 

two scenarios are developed to elucidate the configuration of the proposed 

metaheuristic. The concept revolves around comparing neighborhood selection 

traditionally (based on their size) versus systematically. It is observed that both 

scenarios exhibit similar behavior in small instances, with their differences becoming 

apparent as the size of the problem increases. 

In the second section, additional analysis is undertaken to explore the impact of the 

metaheuristic elements on achieving an improved solution. The findings reveal that 

problem-specific knowledge heuristics play a crucial role in enhancing the solution. 

This suggests that focusing on neighborhoods that better reflect the problem 

characteristics proves to be more beneficial. 

In the third section, a series of experiments are conducted to address practical 

concerns, offering valuable managerial insights. Notably, our analysis delves into the 

impact of imposing maximum riding time constraints on both total travel time and the 

number of required buses. The findings highlight that while maximum riding time 

constraints can reduce the number of buses, this reduction comes at the expense of 

longer total travel time. Therefore, policymakers should consider adopting a trade-off 

mechanism to effectively minimize both the number of buses and total travel time. 

Several issues warrant further investigation in future research. The analysis of 

heuristics in the context of time characteristics deserves more attention. A potential 

avenue is the development of an adaptive mechanism to weigh and select each 



 

138 

 

neighborhood in local search, taking into account both computing time and solution 

quality. 

Another line of future research could prioritize realistic concerns, particularly in 

addressing students' safety in the context of the School Bus Routing Problem (SBRP). 

This could involve the development of models or strategies that enhance safety 

considerations in the routing process. 
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Chapter 6:  
Taking a fresh look at safety and health issues 

in transportation the students to school 
 

 

 



 

 

6-1- Introduction  

Transporting over a million students in Tehran, a city with a population of 9.2591 

million, to and from schools necessitates daily scheduling. The municipality is 

committed to developing an efficient bus routing plan that considers the diverse 

locations of students across the city. Safety and health criteria are crucial, addressing 

key issues in the transportation system at every stage of any proposed plan. 

In Tehran, the majority of students rely on public transportation for their school 

commutes. It is imperative to enhance awareness among students regarding the 

associated risks of each mode of public transportation. An interview conducted by 

researchers with urban planning experts reveals that, due to its stringent policies, bus 

transportation is safer than private cars. These policies should extend to school bus 

routing, encompassing factors such as the timing of bus stops for picking up or 

dropping off students, evacuation procedures in case of accidents, and the duration 

students spend on the bus. 

These policies lay the groundwork for establishing rules to safely transport students 

to their schools. Technically, this falls under road traffic safety. School buses boast 

special safety features such as flashing red lights, cross-view mirrors, and stop-sign 

arms. They also adhere to high crush standards and have protective seating. The system 

proposed by the French National Council of Transport (CNT) considers multiple 

criteria for ensuring bus stop safety, including the route to the stop, pedestrian 

crossings, driver visibility, stop size and position, quality of the waiting area, and 

imposed maneuvers. 

Another noteworthy approach in this field is the model introduced by the Swedish 

Transport Agency. This model assesses the risk of accidents and the level of insecurity 

for students waiting at bus stops or en route to them. It categorizes bus stops into four 

types based on design and waiting area. 

Safety considerations are closely linked to factors such as the vehicle type (e.g., bus 

type), waiting/walking area, and local conditions (such as snow restrictions) (Chalkia 

et al., 2016).  

In the school bus routing problem, a crucial aspect is the selection of capable and 

physically healthy drivers. These individuals should possess not only impeccable 

driving skills but also the ability to communicate safety tips to students effectively. 

Additional complexities in the school bus routing problem arise from factors such 

as depreciation and technical defects in the bus fleet, demanding careful consideration. 

Parents express heightened worry over school bus accidents, particularly when 

                                                 
 

 
1 https://worldpopulationreview.com/world-cities/tehran-population 
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technical issues are the cause. Parents will be promptly informed of any inconvenience 

through immediate notifications and written communication mechanisms.  

A significant portion of Tehran's minibusses is worn out and fails to meet essential 

safety standards for student transportation. In the 2017-2018 period, the Deputy of 

Transportation and Traffic of Tehran Municipality mandated valid technical 

inspections for all school vehicles. Fleets failing this test are prohibited from providing 

services.  

Currently, the enforcement of the rule mandates accreditation for all student 

transport fleets through technical inspection centers. An interview with an expert 

reveals that the majority of minibuses in Tehran are worn out and require specific 

technical inspections, highlighting their unsuitability for student transportation. To 

address this issue, the public-school transport system is collaborating with the private 

sector, such as the taxi organization, to introduce new types of vehicles. These aspects, 

emphasized in previous studies, contribute to alleviating parental concerns.  

Crucially, to enhance efficiency in meeting students' safety and health requirements, 

it is essential for families and the school committee to give special attention to these 

issues. This collaboration results in a decrease in the number of accidents. 

Families should instruct their children to wait in a safe place, like a sidewalk, and 

open the bus door only after ensuring the vehicle has stopped. It's important to remind 

children to listen to the driver's advice, stay seated while the vehicle is in motion, and 

avoid speaking loudly to prevent distractions. Adhering to these simple yet effective 

rules can reduce the risks in student transportation. Besides family efforts, if the 

municipality and relevant communities rigorously follow their established rules, 

including providing necessary resources, the occurrence of accidents can markedly 

decrease. 

The transportation network in Tehran comprises three types of traffic zones: 

Central restricted zone: Only public transport (bus, taxi, ambulance, etc.) is 

permitted in this zone. 

The odd-even traffic scheme zone, which has been recently converted into a low 

emission zone (LEZ)1. This plan limits private vehicle access based on the last digit of 

their license plate, allowing them to move on alternate days. The maximum allowed 

entry for private vehicles is 20 working days per season, as per the newly approved 

bylaw aimed at reducing air pollution. 

Free zone: Outside the central restricted and even-and-odd traffic plan areas, this 

zone allows the use of all kinds of vehicles. Implementing these restrictions helps 

control vehicle passage in crowded areas. 

 

                                                 
 

 
1  https://bimeh.com/mag/air-pollution-control-plan/ 
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The widespread presence of the coronavirus demands heightened focus on students' 

health and safety. An alarming report from Iran showed a case fatality rate of 5% from 

the start of the pandemic until April 2021, the highest compared to other countries 

globally. This underscores the necessity of taking appropriate measures to guarantee 

students' safety as they return to school post-pandemic. It emphasizes the urgency of 

establishing an effective school transport system that prioritizes predefined safety and 

health considerations.  

To achieve these objectives, it is crucial to create a safety map for school bus routing 

and develop appropriate guidelines.  

To establish appropriate guidelines, it is crucial to thoroughly investigate items that 

could have a negative impact on safety and health. Taking action to control and 

mitigate these factors is consistent with the principles of risk assessment.  

Properly identifying risks is essential, followed by implementing necessary actions 

to assess and mitigate them. In a meticulous risk analysis of student transportation, 

various factors, including traffic, population density, and health, are considered.  

Risk assessment is a valuable method for evaluating safety levels in a complex and 

modern system. In practical terms, risk refers to the likelihood that something 

unfavorable will occur and the consequences of such an event1. 

Current studies predominantly focus on applying risk assessment in urban 

transportation, making it widely accepted in the industry. Despite this knowledge, risk 

analysis for student transportation is in its early stages and hasn't been fully integrated 

with the mixed-load and location-allocation concept in School Bus Routing Problem 

(SBRP). This chapter introduces a developed and implemented risk assessment model, 

considering various features. These features are derived from a combination of field 

observation and expert interviews.  

The process involves identifying potential risks, followed by prioritization to 

determine their significance. The results are used as a basis for the proposed model. 

In summary, this chapter makes four key contributions:  

1)Introducing a risk assessment method to identify and score risks impacting students' 

health and safety negatively. 

2) Prioritizing the more significant risks and incorporating them into the model. 

3) Proposing a metaheuristic that explores diversification in the solution space. 

4) Analyzing the overall transportation cost while relaxing risk constraints in the 

model. 

                                                 
 

 
1 https://www.riskassess.com.au/docs/SISch2_5.00.pdf 
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6-2- Research method 

This research method follows four sequential steps. First, it identifies and classifies 

main risks and sub-risks. In the second step, the score for each identified risk is 

calculated based on probability and impact level, followed by risk prioritization 

through pairwise comparisons. The third stage involves feeding the risks with higher 

weights into the model, prioritizing the more significant risks. Finally, the proposed 

model is solved using an exact method for small instances and metaheuristic 

configurations for all instances. 

 

 

 

 

 

 

 

 

Figure (6-1)  Research Methodology 

 

In the initial stage, a method is developed to identify and classify risks. The focus is 

on recognizing hazardous conditions resulting from defects, interaction, and 

interference of factors deviating from desired objectives. Proper risk identification is 

vital in the risk assessment process, as its neglect can hinder performance in 

subsequent stages. 

 Risk identification can be accomplished systematically, experimentally, or 

innovatively. In this study, a combination of field observation and expert interviews is 

employed. Data for the survey is collected from 12 urban management experts (as key 

informed people) strategically distributed across different regions of the city. Tehran 

is segmented into three districts (north, south, and center), with four experts 

interviewed in each district, ensuring a comprehensive coverage of relevant expertise. 

We are considering the implementation of these new district types (north, south, 

and center) to ensure adequate coverage of geographical divisions and proper 

distribution of students. 

  The researcher visited various city sections, such as bus stations, observed critical 

issues, and compiled the initial list of hazards. The final list is created by amalgamating 

experts' insights with the researcher's observations. A total of 12 risks are identified 

and further categorized into three groups for clarity: safety, health, and traffic. 

To select the most significant risks, a risk assessment is necessary, involving 

scoring and trade-offs between identified risks to determine their respective weights 

(risk prioritization). Risks with higher weights are then chosen for further analysis. 

Risk prioritization is conducted using the Analytic Hierarchy Process (AHP) 
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technique. AHP serves as a foundation for effective solutions in complex decision 

situations, streamlining and expediting the decision-making process. 

AHP is a method designed to break down complex unstructured situations into 

simpler components, creating a hierarchical system problem. Developed by Saaty in 

1987, the method has undergone extensive consideration and refinement. The AHP 

process involves three stages: 1) Structuring the matrix of judgment between each pair 

of criteria, 2) Making pairwise comparisons between the criteria and assigning 

priorities to each, and 3) Normalizing the paired comparison matrix to ensure uniform 

units across all criteria. Obtaining priorities for criteria involves performing pairwise 

comparisons for each criterion, determining the percentage importance of items 

(priority vector) for the Analytic Hierarchy Process (AHP). 

To achieve this, 4 urban management experts are employed to score and weigh the 

risk factors, and the average weight is then inputted into the AHP for analysis.  

More precisely, we employed 12 urban management experts to identify the initial 

risk, and subsequently narrowed it down to four experts from the initial group to 

prioritize the most critical risks. 

Considering that the perspectives of a subset of experts, referred to as key informed 

people, can serve as a representation of the entire expert community, four experts are 

involved in this context.  

 Each analyst is tasked with answering two questions: 1) What is the score of each 

risk based on its impact and probability level? 2) Which criterion is more important 

and stronger in pairwise comparison?  

For each identified risk, the score is calculated by multiplying the probability by the 

severity of the risk in each district. Finally, the average score is computed. The severity 

value for every identified hazard remains consistent across all districts, as it is based 

on the consensus of expert opinions. 

The consolidated results of the risk assessment matrix and AHP are presented in the 

following. Appendix 8 displays the independent score and average score (across three 

districts) for each risk, while Table 6-1 illustrates the weight of each risk derived from 

pairwise comparison. 

In the realm of safety, the findings highlight that the size of the bus stop holds the 

utmost importance. Concerning health, the results point to the highest weight being 

attributed to population density and the prevalence of coronavirus. Lastly, in terms of 

traffic, the highest weight is associated with traffic volume. 

It is noteworthy, as observed in Appendix 8, that population density is higher in 

central and south district; traffic volume is greater in the center and south due to the 

concentration of businesses and government departments; and the location of bus stops 

is a common issue across most parts of Tehran. 

The household income can influence the safety risk of student transport in several 

ways. Lower-income families may face challenges affording residences in 

neighborhoods with quality schools, resulting in longer commutes for their children. 

This extended travel duration raises the likelihood of transportation-related accidents 
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or incidents. Moreover, lower-income households tend to reside in areas characterized 

by higher traffic volumes and less secure road infrastructure, with fewer sidewalks and 

crosswalks. This heightened exposure to traffic increases the risk of accidents and 

injuries for students walking or biking to school. 

 
Table (6-1)  Results of AHP 

Row sub-criteria Weight 

1 The route leading to bus stop 6.86% 

2 Pedestrian crossing 8.59% 

3 The location of bus stop 7.28% 

4 Size of waiting area 15.70% 

5 Quality of place in waiting area 8.38% 

6 Density of population 9.37% 

7 prevalence to corona virus 17.28% 

8 Household Income 6.35% 

9 Complex intersection 3.47% 

10 High traffic volume 10.97% 

11 Traffic speed 2.28% 

12 Highway area 3.45% 

 

6-3- Problem description and mathematical model 

The SBRP explored in this chapter simplifies the well-known Vehicle Routing 

Problem (VRP). It involves a set of schools, one type of students, and a collection of 

garages and identical buses—each with a fixed capacity. Students are assigned to bus 

stops based on their maximum allowable distance. Subsequently, the bus departs from 

the garage, picking up the assigned students, and proceeds to the designated schools. 

Given the mixed-load effect, the model facilitates transporting students from 

different schools in the same bus for practicality. To further enhance efficiency, the 

problem is confined to three regions (north, center, and south), and risk analysis is then 

carried out. Following this analysis, the model is customized to address the districts 

with a high-risk score. 

The objective is to optimize the total travel time, and key assumptions for our 

problem include: 

1)Each bus starts from the garage to pick up students from the stop and drops them off 

at their respective schools. 

2) Students are allocated to their respective stops while ensuring the maximum walking 

distance is met. 



 

146 
 

3) Safety (size of bus stop), health factors (prevalence of coronavirus and population 

density), and traffic concerns (traffic volume) are integrated into the model. 

Specifically, the problem involves considerations for traffic volume and population 

density on the arcs and health and safety issues (prevalence of coronavirus and size of 

bus stop) at the nodes, corresponding to each zone. 

4)An upper time window is established for each school, ensuring that a bus arrives at 

the school and drops off the student before the latest time window. 

5) A lower time window is defined for each stop, ensuring that a bus begins its service 

to pick up the student after the stop's earliest time. 

6) The model enforces a maximum limit on the number of students allocated to each 

stop. This limit must not be exceeded. 
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Table (6-2)  Indices, Sets, Parameters, and Decision Variables used in the Mathematical Model 

Indices 

𝑘 Bus index  

𝑖, 𝑗 Node indices 

𝑙 Student index  

Sets 

𝐺 Set of starting and ending depot locations (garage locations)  

𝐾 Set of buses 

𝑆 Set of students  

𝑃+ Set of potential pickup locations (bus stop locations) 

𝑃− Set of delivery locations (school locations) 

𝑃 = 𝑃− ∪ 𝑃+ Set of stops and schools 

𝑁 = 𝑃 ∪ 𝐺 Set of nodes 

Parameters 

𝑐 Bus capacity  

𝑏𝑖𝑔 𝑀 Large constant 

𝑎𝑖 Earliest arrival time at stop 𝑖 ∈ 𝑃+ 

𝑏𝑖 Latest arrival time at school 𝑖 ∈ 𝑃− 

𝑎𝑝 Average pickup time at pickup points for each student 

𝑎𝑑 Average delivery time at delivery points for each student 

             𝐶𝑖𝑗  Travel distance from node i to node j (𝑖, 𝑗 ∈ 𝑁) 

𝑡𝑖𝑗 

Travel time from node i to j (𝑖, 𝑗 ∈ 𝑁) 

The travel time from node i to node j is determined by dividing the travel distance 

between the two nodes by the speed of the bus. 

𝑠𝑖𝑙 A parameter equal to 1 if student 𝑙 can reach stop 𝑖 ∈ 𝑃+, and 0 otherwise 

𝑞𝑖𝑙 A parameter equal to 1 if student 𝑙 is related to school 𝑖 ∈ 𝑃−, and 0 otherwise 

𝑃𝑔 Number of parking spaces at garage 𝑔 

𝑚𝑠 Maximum number of allowable students for each stop  

𝑂𝑖 = {𝑆|𝑠𝑖𝑙 = 1} Set of students who can be assigned to stop 𝑖 (𝑖 ∈ 𝑃+) 

𝑊𝑖 = {𝑆|𝑞𝑖𝑙 = 1} Set of students who should be delivered to school 𝑖 (𝑖 ∈ 𝑃−) 

𝑇𝑟 Risk threshold coefficient  

𝐻𝑟𝑖 Health risk parameter in node 𝑖 

𝑃𝑑𝑟𝑖𝑗 Density-of-population  risk parameter from node 𝑖  to node 𝑗 

𝑇𝑣𝑖𝑗 Traffic volume risk parameter from node 𝑖  to node 𝑗 

𝐴𝑟𝑖𝑗 Total risk parameter from node 𝑖  to node 𝑗: sumation of 𝑃𝑑𝑟𝑖𝑗 and 𝑇𝑣𝑖𝑗 

Decision variables 

𝑋𝑖𝑗𝑘 1 if bus 𝑘 traverses the arc from node 𝑖 to 𝑗(∀𝑖, 𝑗 ∈ 𝑁), and 0 otherwise 

𝑦𝑖𝑘 1 if bus 𝑘 visits stop 𝑖, 0 otherwise  

𝑍𝑖𝑙
𝑘 1 if student 𝑙 is picked up by bus 𝑘 from stop 𝑖, and 0 otherwise 

𝑇𝑖𝑘 Arrival time of bus 𝑘 to node 𝑖(∀𝑖 ∈ 𝑁) 

𝐿𝑖𝑘 Load of bus 𝑘 after leaving node 𝑖 (∀𝑖 ∈ 𝑃) 

𝑅𝑖𝑘 Value of the risk index for bus 𝑘 when it arrives at node 𝑖 (∀𝑖 ∈ 𝑁) 

ℎ𝑖𝑘 1 if bus 𝑘 visits school 𝑖 ∈ 𝑃−, and 0 otherwise  

𝐷𝑗𝑙
𝑘 1 if student 𝑙 is delivered by bus 𝑘to school 𝑗, and 0 otherwise 

The mathematical programming formulation of the school bus routing problem is as 

follows: 
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𝑀𝑖𝑛 ∑ ∑ ∑ 𝑡𝑖𝑗𝑋𝑖𝑗𝑘

𝑘∈𝐾𝑗∈𝑁𝑖∈𝑁

  (6-1) 

S.t.   

∑ 𝑋𝑗𝑖𝑘

𝑗∈𝑁

= ∑ 𝑋𝑖𝑗𝑘

𝑗∈(𝑃+∪𝑃−)

= 𝑦𝑖𝑘 ∀𝑖 ∈ 𝑃+, 𝑘 ∈ 𝐾 (6-2) 

∑ 𝑋𝑗𝑖𝑘

𝑗∈(𝑃+∪𝑃−)

= ∑ 𝑋𝑖𝑗𝑘

𝑗∈𝑁

= ℎ𝑖𝑘 ∀𝑖 ∈ 𝑃−, 𝑘 ∈ 𝐾 (6-3) 

∑ ∑ 𝑋𝑖𝑗𝑘

𝑗∈𝑃+𝑖∈𝐺

≤ 1 ∀𝑘 ∈ 𝐾 (6-4) 

∑ ∑ 𝑋𝑗𝑖𝑘

𝑖∈𝐺𝑗∈𝑃−

≤ 1 ∀𝑘 ∈ 𝐾 (6-5) 

∑ ∑ 𝑋𝑖𝑗𝑘

𝑗∈𝐺𝑖∈𝐺

= 0 ∀𝑘 ∈ 𝐾 (6-6) 

∑ 𝑦𝑖𝑘

𝑘∈𝐾

≤ 1 ∀𝑖 ∈ 𝑃+ (6-7) 

∑ 𝑍𝑖𝑙
𝑘

𝑘∈𝐾

≤ 𝑠𝑖𝑙 ∀𝑙 ∈ 𝑆, 𝑗 ∈ 𝑃+ (6-8) 

𝑍𝑖𝑙
𝑘 ≤ 𝑦𝑖𝑘 ∀𝑙 ∈ 𝑂𝑖 , 𝑖 ∈ 𝑃+, 𝑘 ∈ 𝐾 (6-9) 

𝑦𝑖𝑘 ≤ ∑ 𝑍𝑖𝑙
𝑘

𝑙∈𝑆

 ∀𝑖 ∈ 𝑃+, 𝑘 ∈ 𝐾 (6-10) 

∑ 𝐷𝑗𝑙
𝑘

𝑘

≤ 𝑞𝑗𝑙  ∀𝑙 ∈ 𝑆, 𝑗 ∈ 𝑃− (6-11) 

𝐷𝑗𝑙
𝑘 ≤ ℎ𝑗

𝑘 ∀𝑙 ∈ 𝑊𝑗 , 𝑗 ∈ 𝑃−, 𝑘 ∈ 𝐾 (6-12) 

ℎ𝑗𝑘 ≤ ∑ 𝐷𝑗𝑙
𝑘

𝑙∈𝑆

 ∀𝑗 ∈ 𝑃−, 𝑘 ∈ 𝐾 (6-13) 

∑ 𝑍𝑖𝑙
𝑘

𝑖∈𝑃+

= ∑ 𝐷𝑗𝑙
𝑘

𝑗∈𝑃−

 ∀𝑙 ∈ 𝑆, 𝑘 ∈ 𝐾 (6-14) 

∑ ∑ 𝑍𝑖𝑙
𝑘

𝑘∈𝐾𝑖∈𝑃+

= 1 ∀𝑙 ∈ 𝑆

 

(6-15) 

∑ 𝑍𝑖𝑙
𝑘

𝑙∈𝑆

≤ 𝑚𝑠 ∀𝑖 ∈ 𝑃+, 𝑘 ∈ 𝐾 (6-16) 

𝐿𝑖𝑘 = 0 ∀𝑖 ∈ 𝐺, 𝑘 ∈ 𝑘 (6-17) 

𝐿𝑖𝑘 + ∑ 𝑍𝑗𝑙
𝑘𝐻𝑟𝑖

𝑙∈𝑆

≤ 𝐿𝑗𝑘 + 𝑏𝑖𝑔𝑀(1 − 𝑋𝑖𝑗𝑘) ∀𝑖 ∈ 𝑃, 𝑗 ∈ 𝑃+, 𝑘 ∈ 𝑘 (6-18) 

𝐿𝑖𝑘 − ∑ 𝐷𝑗𝑙
𝑘

𝑙∈𝑆

≤ 𝐿𝑗𝑘 + 𝑏𝑖𝑔𝑀(1 − 𝑋𝑖𝑗𝑘) ∀𝑖 ∈ 𝑃, 𝑗 ∈ 𝑃−, 𝑘 ∈ 𝑘 (6-19) 

∑ 𝑍𝑖𝑙
𝑘𝐻𝑟𝑖 ≤

𝑙∈𝑆

𝐿𝑖𝑘 ≤ 𝐶 ∀𝑖 ∈ 𝑃+, 𝑘 ∈ 𝑘 (6-20) 

𝑇𝑖𝑘 + 𝑎𝑝. ∑ 𝑍𝑖𝑙
𝑘

𝑙∈𝑆

+ 𝑎𝑑. ∑ 𝐷𝑖𝑙
𝑘

𝑙∈𝑆

+ 𝑡𝑖𝑗

≤ 𝑇𝑗𝑘 + 𝑏𝑖𝑔𝑀(1 − 𝑋𝑖𝑗𝑘)

 

∀𝑖 ∈ 𝑃, 𝑗 ∈ 𝑃, 𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 (6-21) 

𝑇𝑖𝑘 + 𝑡𝑖𝑗 ≤ 𝑇𝑗𝑘 + 𝑏𝑖𝑔𝑀(1 − 𝑋𝑖𝑗𝑘)

 

∀𝑖 ∈ 𝐺, 𝑗 ∈ 𝑃+, 𝑘 ∈ 𝐾 (6-22) 

𝑇𝑖𝑘 ≤ 𝑇𝑗𝑘 + 𝑏𝑖𝑔𝑀(1 − 𝑍𝑖𝑙
𝑘) ∀𝑖 ∈ 𝑃+, 𝑗 ∈ 𝑃−, 𝑙 ∈ 𝑆, 𝑘 ∈ 𝐾 (6-23) 

𝑇𝑖𝑘 ≥ 𝑎𝑖 − (1 − 𝑦𝑖𝑘)𝑏𝑖𝑔𝑀

 

∀𝑖 ∈ 𝑃+, 𝑘 ∈ 𝐾 (6-24) 

𝑇𝑖𝑘 ≤ 𝑏𝑖 + (1 − ℎ𝑖𝑘)𝑏𝑖𝑔𝑀 ∀𝑖 ∈ 𝑃−, 𝑘 ∈ 𝐾 (6-25) 

∑ ∑ 𝑋𝑖𝑗𝑘

𝑘∈𝐾𝑖∈𝑃−

≤ 𝑃𝑔 ∀𝑗 ∈ 𝐺 (6-26) 

𝑅𝑖𝑘 = 0 ∀𝑖 ∈ 𝐺, 𝑘 ∈ 𝑘 (6-27) 

𝑅𝑖𝑘 + 𝐴𝑟𝑖𝑗𝐶𝑖𝑗𝑋𝑖𝑗𝑘 ≤ 𝑅𝑗𝑘 + 𝑏𝑖𝑔𝑀(1 − 𝑋𝑖𝑗𝑘) ∀𝑖 ∈ 𝐺, 𝑗 ∈ 𝑃+, 𝑘 ∈ 𝑘, 𝑖 ≠ 𝑗 (6-28) 



 

149 
 

𝑅𝑖𝑘 + 𝐴𝑟𝑖𝑗𝐶𝑖𝑗𝑋𝑖𝑗𝑘 ≤ 𝑅𝑗𝑘 + 𝑏𝑖𝑔𝑀(1 − 𝑋𝑖𝑗𝑘) ∀𝑖 ∈ 𝑃, 𝑗 ∈ 𝑃, 𝑘 ∈ 𝑘, 𝑖 ≠ 𝑗 (6-29) 

𝑅𝑖𝑘 ≤ 𝑇𝑟 ∀𝑖 ∈ 𝑃, 𝑘 ∈ 𝑘 (6-30) 

𝑦𝑖𝑘 ∈ {0,1} ∀𝑖 ∈ 𝑃+, 𝑘 ∈ 𝐾 (6-31) 

𝑋𝑖𝑗𝑘 ∈ {0,1} ∀𝑖, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗, 𝑘 ∈ 𝐾 (6-32) 

𝑍𝑖𝑙
𝑘 ∈ {0,1} ∀𝑖 ∈ 𝑃+, 𝑙 ∈ 𝑆, 𝑘 ∈ 𝐾 (6-33) 

𝐷𝑗𝑙
𝑘 ∈ {0,1} ∀𝑗 ∈ 𝑃−, 𝑙 ∈ 𝑆, 𝑘 ∈ 𝐾 (6-34) 

ℎ𝑖𝑘 ∈ {0,1}
 

∀𝑖 ∈ 𝑃−, 𝑘 ∈ 𝐾 (6-35) 

𝑟𝑙𝑘 ∈ {0,1} ∀𝑙 ∈ 𝑆, 𝑘 ∈ 𝐾 (6-36) 

 

The objective function (6-1) minimizes the total travel time spent by all buses. 

Constraints (6-2) require that a bus entering the stop node should leave it as well. In 

constraints (6-3), the same constraints for school node are exposed. Constraints (6-4) 

ensure that a bus cannot start more than once from its home location (here, garage). 

Similarly, constraints (6-5) specify that it is not allowed for a bus to arrive at its final 

location (garage) more than once, which implies that some buses could remain unused. 

Constraints (6-6) specify that direct transfer from garage to garage is not possible. 

Constraints (6-7) enforce that each stop is visited no more than once. Constraints (6-

8) enforce that each student is taken from the stop to which he/she walks. Constraints 

(6-9) represent that picking up a student from a non-visited stop by bus 𝑘 is not 

possible. Constraints (6-10) guarantee that stops are not visited unnecessarily. 

Constraints (6-11) ensure that each student is delivered to his/her respective school. 

Constraints (6-12) guarantee that whenever a student is assigned to a bus, the school 

associated with this student is also visited by the same bus. Constraints (6-13) 

guarantee that schools are not visited unnecessarily. Constraints (6-14) impose that the 

number of pickup and delivery students in each route is equal. Constraints (6-15) state 

that each student should be picked up exactly once. Constraints (6-16) ensure that 

number of students allocated to each allowable stop must not be more than its range. 

The next four sets of constraints (6-17), (6-18), (6-19) and (6-20) are load constraints. 

Thus, constraints (6-18) state that when a node 𝑖 is followed by a pickup node 𝑗 ∈ 𝑃+, 

the number of students after visiting node 𝑗 is greater than or equal to the summation 

of the number of students after servicing node 𝑖  and the number of students picked up 

in node 𝑗. Similar to constraints (6-18), inequality (6-19) proves that when node 𝑖 is 

followed by delivery node 𝑗 ∈ 𝑃−, the number of students after visiting node 𝑗 is 

greater than or equal to the number of students after visiting node 𝑖 minus the number 

of students delivered to node 𝑗. In practice, constraints (6-18) and (6-19) determine the 

load on a bus only after it leaves each node on its route. Constraints (6-20) specify the 

capacity of buses. Constraints (6-21) -(6-25) are time-related constraints. The arrival 

time of each bus to a node in 𝑝 is calculated according to constraints (6-21). Constraints 

(6-22) are similar to constraints (6-21), but they are designed for the routes from garage 

to stop. Constraints (6-23) ensure that students are picked up by a bus before they are 

delivered. Constraints (6-24) and (6-25) indicate the time window for stops and 

schools, respectively. Constraints (6-26) restrict the number of available parking 
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places in each garage. Constraints (6-27) – (6-30) ensure that the global risk is at most 

equal to the risk threshold 𝑇𝑟. Finally, variables and their types are presented in 

constraints (6-31) -(6-36).  

The health risk constraints are applicable to (6-18), (6-19), and (6-20). 𝐴𝑟 risk 

constraints, which involve the combination of traffic volume risk and density of 

population risk constraints, are incorporated for constraints (6-27) and (6-30).  

6-4- Solution methodology 

Given that the School Bus Routing Problem (SBRP) is established as an NP-hard 

problem, a metaheuristic approach is necessary for handling large instances. It's crucial 

to elucidate the design of a metaheuristic capable of incorporating both diversification 

and intensification strategies and how to examine this behavior throughout the solution 

space. 

In practice, achieving an efficient algorithm requires an appropriate trade-off 

between intensification and diversification mechanisms. Addressing concerns related 

to neighborhood structure and exploration mechanisms is crucial in this context. 

Undoubtedly, selecting the correct order of operators contributes positively to 

minimizing computing time on the path to reaching the optimal solution. 

Hence, selecting the correct order of neighborhoods in the search space is crucial. 

More importantly, there is a need to strike a reasonable compromise between the 

solution's quality and the algorithm's computing time. Emphasizing neighbors that 

ensure high quality might be desirable but comes at the cost of increased computing 

time. Conversely, concentrating on smaller neighbors can impede the perturbation 

effect in the solution space, thereby diminishing the impact of exploration. 

Currently, the adaptive mechanism of neighborhood selection stands out as a well-

known approach in various routing problems. However, recent work by Turkeš et al. 

(2021) sheds light the extent to which the Adaptive Large Neighborhood Search 

(ALNS) can enhance heuristic performance. Interestingly, they demonstrate that the 

advantage of using the adaptive selection mechanism is not significant. Their 

recommendation is that researchers, when opting for ALNS, should follow a specific 

set of actions instead of blindly copying the algorithm from other studies. This 

underscores the importance of identifying elements that enhance the algorithm's 

performance during its design. 

To achieve good performance, it is essential to carefully consider the following 

issues and implement them if feasible. 

1) Rewarding the metaheuristic based on both its performance and execution time. 

2) Paying careful attention to the difference made in the objective function during the 

execution of each operator. 
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3) Allowing the selection of operators with poor performance, even with a low 

probability. 

4) Weighing the neighborhood-based degree of intensification and diversification in 

the solution space. 

5) Considering the time interval between the execution of each operator in the solution 

space. 

In numerous studies, operators are often weighted according to their past iteration 

performance. As per Turkeš's findings, relying solely on the adaptive mechanism may 

not ensure the discovery of good solutions, emphasizing the need for additional 

considerations. Therefore, the crucial task is to establish a well-defined structure for 

selecting both the order of local search operators and various approaches to 

exploration. 

It is crucial to conduct a metaheuristic analysis of the diversification mechanism in 

the solution space, the type of neighborhoods (whether well-known or more specified), 

and the role of each neighborhood in the algorithm's performance (whether in time or 

cost).  

To address this, regarding the diversification we propose different metaheuristic 

configurations: 

• Multi-start structure (m)  

• Perturb and improve structure (p) 

Regarding the selection of operators in the improvement phase, two kinds of 

neighborhood structures are considered: 

• Traditional order which follows a fixed order of neighborhoods. 

• Systematic order (selection based on adaptive mechanism) which adheres to 

systematic order of neighborhoods. 

In total, we suggest four kinds of metaheuristics: 

1) Multi-start structure with a fixed order of neighborhoods (m-VND),  

2) Multi-start structure with a systematic order of neighborhoods (m-HA), 

3) Perturbation structure with a fixed order of neighborhoods (p-VND), and finally  

4) Perturbation structure with a systematic order of neighborhoods (p-HA). 

In both p-VND and p-HA metaheuristics, the initial solution is constructed during 

the first phase. Subsequently, the constructed solution undergoes the improvement 

phase (second phase) until a local optimum is reached. 

 Finally, the diversification heuristic is applied to escape the current solution (the 

stuck solution) from the local optimum. The diversification stage comes into play 

when the solution becomes trapped in a local optimum.  

Simply put, this structure involves using the construction phase once and repeating 

the improvement phase from the perturbed solution for a specified number of 

iterations. On the contrary, in both m-VND and m-HA metaheuristics, the initial 

solution is constructed in the first phase and is carried over to the second phase for 
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further improvement. If local optima are encountered, the algorithm restarts again from 

the initial solution to achieve more diversification. The algorithm iterates through both 

the construction phase and the improvement phase until reaching the maximum 

specified number of iterations.  

The primary distinction between this VND and HA configuration lies in the way 

each selects neighborhoods: the HA metaheuristics organize neighborhoods based on 

their performance, whereas the VND metaheuristics adhere to a fixed order, 

progressing from small to large neighborhoods. 

In VND metaheuristics, all operators are assessed using the first-improvement 

strategy, accepting all feasible movements that enhance the current solution. The 

neighborhoods are explored in order from small to larger (more complex) ones. If 

improvement occurs, the solution initiates intensification from the first operator. This 

process concludes when local search can no longer be enhanced by any of the 

operators. 

Contrastingly, in HA metaheuristics (adaptive mechanism), operators are chosen 

based on their performance. Consequently, after executing a move, regardless of 

whether the solution improves or worsens, the next operator is selected using the 

roulette wheel mechanism. 

For a more thorough exploration analysis, we introduce two diversification 

configurations termed multi-restart and perturbation mechanisms. The structures of 

multi- and perturbation heuristics, coupled with the adaptive layer, are outlined in 

Algorithm 6-1 and 6-2, respectively. The allocation of students to bus stops is executed 

in the construction phase, and the improvement phase, involving the student allocation 

sub-problem, is carried out to verify the feasibility of the solution (refer to Chapters 2 

and 3 for further details). 
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Algorithm (6-1) The Proposed Algorithm (P_HA) 

1 

Input: U  (set of all potential stops), G (set of all garages), 𝑃− (set of all schools), s (set of all students), 

  𝐼 (set of operators), q (percentage of routes to be destroyed), 𝑃+(List of stops to which students are 

allocated), 𝜇 (initial score of operator (𝐻)), 𝑤 (initial weight of operator (𝐻)), 𝑛𝑖𝑡 (number of iterations 

without improvement), 𝐼𝑡 (total number of iterations), n (number of iterations in each segment), and 𝑛𝑖𝑡𝑚𝑎𝑥 

(maximum number of iterations without improvement);𝜀 (percentage of stops to be removed) 

2 Stage 1: Construction phase 

3 𝑃+= List of stops to which students are allocated                // Student allocation  

4 𝑥𝑜 = 𝑟𝑜𝑢𝑡𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛( 𝑝+ ,  𝑝− ,s, G)                             // Generating routes via the constructive heuristic  

5 𝑥𝑏𝑒𝑠𝑡 = 𝑥𝑜 

6 𝑓𝑏𝑒𝑠𝑡 = 𝑓(𝑥𝑜) 

7 𝑥𝑎𝑐𝑡 = 𝑥𝑜 

8 Stage 2: Improvement phase 

9 Initialize the roulette wheel; initialize the adaptive parameters (𝜇, 𝑤)
 

10   While Stopping criterion 𝐼𝑡  is not met 

11     For seg←1 to n  

12       Roulette wheel mechanism: Select one operator 𝑯 ∈ 𝑰  through the adaptive mechanism
 

13         𝑥𝑎𝑐𝑡
∗ = H ( 𝑥𝑎𝑐𝑡)                           // improve the solution by applying the selected improvement 

14         If accept (𝑥𝑎𝑐𝑡
∗ , 𝑥𝑎𝑐𝑡) 

15             𝑥𝑎𝑐𝑡 = 𝑥𝑎𝑐𝑡
∗  

16         End if 

17              If
 
𝑓(𝑥𝑎𝑐𝑡) < 𝑓(𝑥𝑏𝑒𝑠𝑡)

 
18                 𝑥𝑏𝑒𝑠𝑡 = 𝑥𝑎𝑐𝑡 

19              End if
 

20                   Update the collected scores ( 𝜇) on operator 𝑯 

21                   Update the number of iterations without improvement (𝑛𝑖𝑡) 

22                   If max number of iterations without improvement reached  

23 Stage 3: Perturbation phase  

24                      Update the parameter (𝑞, 𝜀) 

25                       𝑥𝑎𝑐𝑡= Perturb (𝑥𝑎𝑐𝑡 , 𝑞, 𝜀) by applying the perturbation neighborhood 

26                          𝑛𝑖𝑡 = 0 

27                  End if  

28     End for  

29                Update the weight ( 𝑤) of operators 

30                 Set 𝜇 = 0 for all operators 

31   End while  

32 Return  𝑥𝑏𝑒𝑠𝑡; 
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Algorithm (6-2). The Proposed Algorithm (m_HA) 

1 

Input:  𝑃+  (set of all potential stops), G (set of all garages), 𝑃− (set of all schools), s (set of all students), 

 𝐼 (set of operators), q (percentage of routes to be destroyed), 𝑃+(List of stops to which students are 

allocated), 𝜇 (initial score of operator (𝐻)), 𝑤 (initial weight of operator (𝐻)), 𝑛𝑖𝑡 (number of iterations 

without improvement), 𝐼𝑡 (total number of iterations), n (number of iterations in each segment), and 𝑛𝑖𝑡𝑚𝑎𝑥 

(maximum number of iterations without improvement);  

2 While the stopping criterion 𝐼𝑡  is not met 

3    Stage 1: Construction phase 

4
 

      𝑃+= List of stops                                                                   // Student allocation  

5       𝑥𝑜 = 𝑟𝑜𝑢𝑡𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛( 𝑝+ ,  𝑝− , s,G )                          // Generating route via the constructive heuristic  

6      𝑥𝑏𝑒𝑠𝑡 = 𝑥𝑜       

7
 

     𝑓𝑏𝑒𝑠𝑡 = 𝑓(𝑥𝑜) 

8       𝑥𝑎𝑐𝑡 = 𝑥𝑜 

9
 

      Stage 2: Improvement phase 

10
 

         While stopping criterion  𝑛𝑖𝑡𝑚𝑎𝑥 𝑖𝑠 𝑛𝑜𝑡 reached  

11           Initialize the roulette wheel; initialize the adaptive parameters (𝜇, 𝑤)
 

12               For seg←1 to n  

13                 Roulette wheel mechanism: Select one operator 𝑯 ∈ 𝑰  through the adaptive mechanism
 

14
 

                  𝑥𝑎𝑐𝑡
∗ = H ( 𝑥𝑎𝑐𝑡)                  // improve the solution by applying the selected improvement 

15
 

                If accept (𝑥𝑎𝑐𝑡
∗ , 𝑥𝑎𝑐𝑡) 

16                    𝑥𝑎𝑐𝑡 = 𝑥𝑎𝑐𝑡
∗  

17                 End if 

18                     If
 
𝑓(𝑥𝑎𝑐𝑡) < 𝑓(𝑥𝑏𝑒𝑠𝑡)

 
19                         𝑥𝑏𝑒𝑠𝑡 = 𝑥𝑎𝑐𝑡 

20                     End if
 

21                   Update the collected scores ( 𝜇) on operator 𝑯 

22                   Update the number of consecutive iterations without improvement (𝑛𝑖𝑡) 

23             End for  

24                Update the weight ( 𝑤) of operators 

25                 Set 𝜇 = 0 for all operators 

26           End while  

27   End while  

28 Return 𝒙𝒃𝒆𝒔𝒕; 

 Construction phase  

The construction phase unfolds sequentially in three main steps: 

1) Student allocation step: Allocating students to potential bus stops. 

2) Stop allocation step: Assigning the allowable bus stop to available garages, 

preferably the closest garage. 

3) Route determination step: Establishing the route between potential bus stops. 

In the first stage, each student is assigned to the nearest bus stop, ensuring the 

observance of maximum walking distance and safety. 
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The safety consideration mandates that the number of allocated students to each 

allowable bus stop should not surpass a predefined value. The mechanism for 

assigning students to allowable bus stops is comprehensively detailed in the study by 

Fallah et al. (2017). 

In the second step, stops are assigned to the closest garages until the total number 

of allocated stops reaches the threshold. For each instance, the threshold value is 

determined by dividing the total number of available stops by the number of available 

garages. If the number of assigned stops exceeds this threshold for a particular garage, 

the stop is subsequently assigned to the next closest garage. This process continues 

until all eligible stops (those to which students are already assigned) find their 

respective garages. 

In the third step, routing is conducted using a Greedy Randomized Adaptive Search 

Procedure (GRASP). GRASP is employed to overcome the myopic behavior of the 

greedy heuristic, striking a balance between intensification and diversification. 

In the routing procedure, there is a focus on two key aspects when inserting non-

visiting nodes: the generation of new routes from garages and, correspondingly, the 

addition of non-visited stops to the existing route. For each new route originating from 

the garage, all non-visited stops are arranged in ascending order based on their criterion 

function (further explained) and are added to the list U. Subsequently, a restricted 

candidate list (referred to as RCL), comprising the first α nodes from the U list, is 

created. Following this, a node is randomly selected from the RCL and inserted as the 

initial node for the current route. The chosen node is then removed from the U list and 

retained as the current node. 

The selection and addition of new non-visited stops in the list U to the current route 

follow the outlined procedure: 

Creation of eligible list (Le): An eligible list is formed to sort all non-visited stops 

in increasing order of the criterion function value. It's important to note that the eligible 

list (Le) is applicable to nodes adhering to predefined constraints. 

Construction of restricted candidate list for eligible nodes (RCL-e): In this step, the 

list RCL-e is constructed, comprising the α first nodes. If the considered RCL-e is 

empty, new routes are generated. Otherwise, one stop is selected from the RCL-e, 

inserted into the current route, saved as the current node, and removed from the list U. 

If a new route needs to be generated, the bus (i.e., route) returns to its respective 

school(s) for dropping off students and then goes back to the closest garage. This 

implies that it is not mandatory for the bus to return to the garage from which its 

operation started. 

This study incorporates two distinct criterion functions. The first one relies on the 

mechanism of selecting the next non-visited stop based on the closest distance. The 

second criterion function is introduced as cf = (n + m)/d, where: 

n: Represents the number of eligible students (s). 

m: Denotes the number of students in the candidate stop who share a common 

school with students already picked up by the bus. 
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d: Indicates the distance between the last visited node (garage or stop) and the 

candidate stop. 

Each criterion function is computed for every non-visited node in the list U. 

The procedure is finalized and updated upon receiving a new request. The 

construction phase has two primary objectives: 1) Focusing on the selection of the next 

non-visited node based on the characteristics of the problem; and 2) Creating two 

distinct types of initial solutions. It's crucial to note that during the visitation of each 

node, the health risk requires more thorough investigation. 

To align the problem with reality, the health risk is identified and formulated using 

recent statistical data on the prevalence of the coronavirus in each district. If the visited 

node is located in an area with a high prevalence rate, it falls into the highly risky or 

high-danger district. If the incidence rate is slightly lower, the area is considered part 

of the orange or danger district. An area with a relatively normal and safe situation is 

categorized within the yellow district. Region classification is determined based on the 

results of risk analysis. As a result, the north of Tehran is designated as the yellow 

district, the center corresponds to the orange district, and the south is associated with 

the red district. 

When the bus visits nodes, the penalty demand is applied proportionately based on 

the location of the stop. Specifically: 

In the yellow district, each student is considered as 1 demand. 

In the orange district, each student is considered as 1.1 demands. 

In the red district, each student is considered as 1.2 demands. 

This simple strategy ensures that the bus is required to pick up a smaller number of 

students in areas with a high prevalence rate, emphasizing social distancing. 

Social distancing directly influences the health of students by preventing the spread 

of illness through the minimization of respiratory droplets. The implementation of 

social distancing measures on buses, including spacing out seating or limiting the 

number of students, can significantly decrease the likelihood of disease transmission. 

The following constraints are checked during each stage of the construction phase:  

During the allocation phase, when assigning a student to a bus stop, simultaneous 

checks must be conducted for both the maximum walking distance (from student 

location to bus stop) and the maximum allowable number of students for each stop 

(risk constraints). 

In the routing stage, new, unvisited nodes are selected and incorporated into the route. 

This continues as long as the risk threshold (a combination of traffic volume risk and 

density of population risk), bus capacity, and school time window constraints are not 

exceeded, all without violating these constraints. The values of traffic volume and 

density of population are mentioned in Section 6.6.1. 

 The crucial parameter is the size of α: if it is small, the construction heuristic 

focuses on the greedy mechanism, whereas if it is large (equal to N), the solution 

adopts a more random behavior. 
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 Improvement phase   

After the construction of an initial solution, it proceeds to the next stage for further 

enhancement. As previously mentioned, two improvement strategies are proposed: 1) 

selecting neighborhoods using a fixed traditional order; 2) selecting neighborhoods 

based on their performance. The performance of each neighborhood is contingent on 

the execution time of the operators and their impact on altering the objective function. 

In essence, the first strategy substantiates the VND heuristic as a simple yet effective 

algorithm, while the second strategy facilitates an appropriate trade-off between 

intensification and diversification mechanisms. 

6-4-2-1- Variable neighborhood descent (VND) 

The improvement phase is anchored in the Variable Neighborhood Descent (VND), 

a variant of the Variable Neighborhood Search (VNS) metaheuristic method 

(Mladenović, 1995; Hansen and Mladenović, 1997, 1999). The VND heuristic requires 

a hierarchical order of neighborhoods, typically arranged with simpler, less complex, 

and less perturbative neighborhoods at the beginning of the list. To break free from 

local optima, larger neighborhoods are chosen when no further improvement can be 

attained from the smaller heuristics. 

Small neighborhoods intensify fewer solutions and can be explored in less time 

compared to large neighborhoods. Larger neighborhoods are only invoked when all 

smaller neighborhoods prove ineffective, signifying that the current solution has 

reached a local optimum with respect to all smaller neighborhoods. Once any local 

search improves the current solution, the move is executed, and VND recommences 

the search from the first neighborhood in the list. The operation of VND ceases when 

the solution attains a local optimum for all considered neighborhoods. 

To determine the right order of neighborhoods, various combinations are tested, and 

the most promising order is integrated into the VND algorithm (refer to Section 6-6-1 

for further details). 

Before applying any intra or inter-local search operator, it is crucial to assess both 

the cost of the solution and its compliance with the predefined constraints. If the local 

search operator discovers superior solutions and the considered constraints are 

satisfied, the corresponding move is executed; otherwise, it is discarded. The local 

search concludes when the solution becomes trapped in a local optimum and cannot 

be further improved by executing any of the local search operators. As mentioned 

earlier, both m-VND and p-VND metaheuristics utilize VND in the improvement 

phase. 
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 Modified adaptive neighborhood selection 

In the second improvement strategy, following the well-known method of ALNS 

(adaptive large neighborhood search, proposed by Ropke and Pisinger (2006)), albeit 

with a slight modification, we select the neighborhoods based on their performance. 

In this strategy, the invocation of the neighborhoods occurs in the order of their 

effectiveness with respect to the problem at hand. 

In practice, the search process is divided into a number of segments, each consisting 

of a number of consecutive iterations, denoted as 𝑛. The roulette-wheel mechanism is 

utilized to select the next neighborhood ℎ𝑖 for the operation in each iteration 𝑛 as 

follows: 
𝑤(ℎ𝑖)

∑ 𝑤(ℎ𝑖)𝑖∈𝐼
 

                                                                                (6-37) 

 

The expression 𝑤(ℎ𝑖) represents the weight assigned to each employed 

neighborhood. This probability is contingent on the weight of each operator. Initially, 

all neighborhoods have equal weight. However, at the end of each segment (following 

a series of consecutive iterations), the weights of all heuristics are updated based on 

the following formula: 

𝑤𝑖,𝑗+1 = (1 − 𝛾)𝑤𝑖,𝑗 + 𝛾
μ(ℎ𝑖)

𝜑𝑖𝑗
 (6-38) 

 

When a segment ends, new weights are calculated based on the accumulated score 

of each heuristic in that segment.  

In the formula above, 𝑤𝑖,𝑗  represents the weight of neighborhood 𝑖 in segment j, 

μ(ℎ𝑖) indicates the accumulated score of neighborhood 𝑖 in the last segment, and 𝜑𝑖𝑗 

denotes the number of times neighborhood 𝑖 is repeated in the last segment. The value 

of 0 < 𝛾<1 is a crucial factor for controlling the adaptive mechanism's behavior in the 

proposed algorithm. When 𝛾 is set close to 0, the previous heuristic weight is 

considered, but if 𝛾 is set to 1, the heuristic weight is determined solely based on new 

accumulated scores. 

This study's modification pertains to the neighborhood scoring mechanism. 

Specifically, instead of assigning a fixed score to neighborhoods that generate better 

or worse solutions, each neighborhood's score is dynamically calculated based on its 

performance and role in the intensification and diversification mechanism (refer to 

Nasri et al. (2021) for more details). This method dynamically influences operator 

selection through a combination of three partial functions, which are aggregated to 

determine the score of heuristic 𝑖 in each iteration 𝑛 as follows: 
μ(ℎ𝑖) = 0.5 ∗ ∅𝑛(𝑓1(ℎ𝑖) + 0.5 ∗ ∅𝑛𝑓2(ℎ𝑖 , ℎ𝑘) + 𝛿𝑛𝑓3(ℎ𝑖)      (6-39) 

The first criterion is expressed by the following formula:  
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𝑓1(ℎ𝑖) =
𝐼𝑛(ℎ𝑖)

𝑇𝑛(ℎ𝑖)
 

 

(6-40) 

where 𝐼𝑛(ℎ𝑖) represents the change in the objective function when the heuristic is 

applied, and 𝑇𝑛(ℎ𝑗) is the time it takes the heuristic to explore.  

The second criterion explores the dependency among operators in terms of their 

performance, expressed by the following formula: 

𝑓2(ℎ𝑖) =
𝐼𝑛(ℎ𝑖 , ℎ𝑘)

𝑇𝑛(ℎ𝑖,ℎ𝑘)
 

(6-41) 

where 𝐼𝑛(ℎ𝑖, ℎ𝑘) represents the change in the fitness function, and 𝑇𝑛(ℎ𝑖,ℎ𝑘) 

represents the time it takes the heuristic i to be recalled after the heuristic k. 

The third criterion, presented below, conveys the time elapsed since the last 

execution of the heuristic. It indicates the duration of inactivity for the heuristic and 

assesses the possibility of using it.  
𝑓3(ℎ𝑖) = 𝜏𝑛(ℎ𝑖) (6-42) 

The measures 𝑓1 and 𝑓2 are used to control intensification, and the measure 𝑓3 is 

used to control diversification. ∅𝑛 and 𝛿𝑛 parameters in this model are used to weigh  

𝑓1, 𝑓2 and 𝑓3.  Specifically, ∅𝑛  is the intensification parameter that controls and weighs 

𝑓1 and 𝑓2, and 𝛿𝑛 is used to weigh 𝑓3.  In each iteration, if there is an improvement in 

the objective function, the value of ∅𝑛 is increased and the value of 𝛿𝑛  is reduced. 

Conversely, the value of ∅𝑛 decreases and the value of 𝛿𝑛 increases when the objective 

function shows a worse performance. This concept is expressed as follows: 

 

∅𝑛((ℎ𝑗) = {
0.99                  𝑖𝑓 𝑖𝑚𝑝𝑟𝑜𝑣𝑒 

𝑚𝑎𝑥{(∅𝑛−1) − 0.01,0.01}
   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

 
} 

 

(6-43) 

 

𝛿𝑛=1-∅𝑛(ℎ𝑗) 

 
(6-44) 

 

Compared to the traditional VND, our adaptive model is novel in several aspects: 

1) The assigned weight to each neighborhood aligns with its performance, operation 

time, and operator's dependency; 2) Our approach is more adaptable to problem size; 

3) It achieves a balance between diversification and intensification in the search space; 

and 4) Even bad moves have a chance of selection, albeit with a lower probability. 

 Type of neighborhoods  

This study incorporates two types of neighborhoods, specifically designed for the 

special and common school bus routing problem (SBRP). The common neighborhood 

resembles the well-known VRP, while Special cases align with problem characteristics 
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such as single-load, mixed load, and health concepts. The selection mechanism for 

neighborhoods differs between the two strategies outlined. In the adaptive layer, 

neighborhoods are chosen based on their performance, while the Variable 

Neighborhood Descent (VND) approach requires recalling neighborhoods in order of 

complexity, from small to large (more complex). 

To achieve the right combination of neighborhoods using the VND approach, a pilot 

study is conducted (refer to Section 6-6-1). 

 Remove-insert intra route operator 

This operator removes a stop from the candidate route and inserts it at another 

location within the route without checking the feasibility constraint. 

 2-opt intra route operator  

This operator tries to select two edges and removes them from a candidate route, 

resulting in an incomplete route. Subsequently, two new edges are introduced to 

reconnect the route, necessitating a reversal in the order of visited stops. 

 Remove-insert operator (considering health feature) 

This operator tries to remove a stop and reinsert it within the same district, whether 

on the same route or not. It executes this move independently in each district (red, 

orange, and yellow), thereby (1) mitigating the potential spread of coronavirus 

between districts and (2) enhancing intensification in the solution space. 

 Similar school-remove-insert  

This operator segregates bus stops and incorporates them into routes where the 

associated schools for those stops' students are already assigned. This action prevents 

additional school insertions on the route, contributing to local intensification in the 

search space.  

 Convert single to mixed load  

This operator aims to decrease the number of single-load routes by relocating stops 

from single-load routes to mixed-load routes. This aligns with the concept of the mixed 

load effect. 

 

 Convert mixed load to single load  

This operator removes a stop from a mixed-load route and inserts it into another 

route to eliminate stops where students travel a long distance relative to existing 

school(s). 

 Replace 

To minimize total travel time, this operator selects a non-visited stop from the list 

and replaces it with a stop already included in a route. The list of non-visited stops is 

sorted in descending order based on the number of students who can reach that stop. 

Before applying any move, both a cost check and a student allocation subproblem 

(refer to Chapters 2 and 3) must be executed. 

 Remove  

 

This operator is executed by removing a stop from the current route to decrease the 
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cost while maintaining solution feasibility. Similar to the previous move, before 

applying any move, a student allocation subproblem must be solved. If it contributes 

to achieving a feasible solution, the move is performed. Due to the triangular inequality 

characteristic, performing a cost check is not essential since stop removal always 

results in a reduction in travel cost. 

 Diversification stage 

Diversification strategies aim to generate new initial solutions, helping escape local 

optima and explore diverse areas of the search space. This contributes to establishing 

a promising starting point for the subsequent local search block. The diversification 

mechanism guides the algorithm to search unexplored regions of the solution. To 

discover the impact of diversification, it's essential to examine the degree of 

perturbation. The size of perturbation is crucial, as it can lead to significant 

improvement or exacerbate the current solution.  

Previous evidence indicates that lower deterioration increases the risk of getting 

trapped in local optima. Conversely, large degrees of deterioration can lead the 

algorithm away from the path toward the global optimum. Therefore, diversification 

heuristics must be designed to align with the size of perturbation and the status of 

exploration. In this context, two diversification structures are proposed: 1) Perturbing 

part of the solution space (randomly or constructively); 2) Generating new initial 

solutions compatible with the multi-start procedure. 

The multi-start metaheuristic aims to escape from local optima by repeating a 

number of iterations in both the construction and improvement phases. In contrast, the 

perturbation configuration involves executing the construction phase only once and 

then repeating the local search and perturbed heuristic for consecutive iterations. 

In the perturbation configuration, destroy and repair heuristics are employed. 

Initially, the best-found solution is partially ruined by the destroy operator. 

Subsequently, the repair heuristic aids in reconstructing the new current solution, 

preparing it for the local search block. The destruction phase introduces two types of 

heuristics: 1) a random-destroy heuristic, which randomly destroys a part of the 

solution space; 2) a constructed-destroy operator, which aims to destroy the part of the 

solution with the highest removal gain. When a random part of the solution is chosen, 

there is no prior knowledge about which part needs to be destroyed. In contrast, when 

the constructed-destroy heuristic is used, the part of the solution space with the lowest 

gain (based on previous performance) is destroyed. The following explanation focuses 

solely on the perturbation configuration, encompassing the destroy and repair 

operators. 
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6-4-5-1- Destroy phase 

 Random destroy heuristic  
In this method, a random part of the solution space (i.e., random bus stops) is 

selected, removed, and added to the list U. The perturbation size is controlled by the 

value of 𝑝 ∗ q  , where p denotes the number of routes constructed in the improvement 

phase, and q is the perturbation size, controlled between 𝑞𝑚𝑖𝑛  and 𝑞𝑚𝑎𝑥. If the 

perturbation mechanism guides the search towards the global best solution in the next 

improvement phase, the value of q is set to 𝑞𝑚𝑖𝑛  to preserve the intensification 

strategy. However, if no global best solution emerges, the value of q is increased by 

10% to maintain diversification. This process continues until the value of q reaches 

𝑞𝑚𝑎𝑥. In this case, the value of q is set to 𝑞𝑚𝑖𝑛  again. The reason behind this procedure 

lies in the fact that when the value of q is close to 𝑞𝑚𝑎𝑥 , the large value of q proves 

inadequate for enhancing the current solution. Consequently, a smaller value of q can 

contribute significantly to the improvement of the current solution. Switching from 

𝑞𝑚𝑎𝑥  to 𝑞𝑚𝑖𝑛 involves addressing two objectives: controlling computing time and 

considering the intensification in the search space. 

 Constructed destroy heuristic 

In this stage, the heuristic attempts initially to select the stops based on the ratio of  
d𝑖

𝑠𝑖
, where the value of d𝑖  represents the amount of demand in each stop, while the value 

of 𝑠𝑖 is represented by the following formula:𝑑𝑖𝑠𝑡(𝑝𝑟𝑒𝑣(𝑖), 𝑖) + 𝑑𝑖𝑠𝑡(𝑖, 𝑛𝑒𝑥𝑡(𝑖)) −

𝑑𝑖𝑠𝑡(𝑝𝑟𝑒𝑣(𝑖), 𝑛𝑒𝑥𝑡(𝑖)). 

This ratio is sorted for all bus stops in ascending order. Following this, 𝑘 stops from 

the top of the list are selected and added to list U to choose the bus stop with the lowest 

demand and the highest removal gain. The priority is to remove stops and add them in 

a location that reduces the cost. The value of 𝑘 is controlled between 𝑘𝑚𝑖𝑛(𝑘𝑚𝑖𝑛 =

𝑛. 𝜀𝑚𝑖𝑛)  and 𝑘𝑚𝑎𝑥 (𝑘𝑎𝑚𝑥 = 𝑛. 𝜀𝑚𝑎𝑥), where n is the number of stops, and 𝜀 𝑚𝑖𝑛 and 

𝜀𝑚𝑎𝑥 are the minimum and maximum percentages of stops to be removed in the 

diversification stage. Each time diversification is applied, one of the aforementioned 

destroy operators is randomly chosen. The mechanism of updating ε is similar to q in 

the random-destroy heuristic. 

 Repair phase   

The repair operation is straightforward and efficient. All removed stops in list U are 

added to the solution through the GRASP procedure, ensuring the completion of the 

current solution without violating the considered constraints. During this stage, all 

students associated with a given stop in list U remain fixed, eliminating the need for 

student allocation. The newly generated solution becomes the input for the local search 

heuristic, considered for further improvement. 
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6-5- Instance generation 

The process of generating certain features is akin to what is outlined in Chapter 4, 

which includes generating stops, schools, students, and garages. However, our focus 

here is specifically on issues related to risk consideration. In this context, our generated 

instance is divided into three districts: north (represented by area a), center 

(represented by area b), and south (represented by area c). To integrate the risk concept 

into the current problem, we consider characteristics such as population density and 

traffic volume. 

To be more specific, the risks associated with high-density population and high 

traffic volume are confined to the center and south districts (B and C), underscoring 

the significance of integrating risk analysis into the studied problem. In these areas, 

the risk factors for each traffic volume and population density are randomly generated 

within the intervals of (1.1 to 1.40), respectively. 

For other areas with low and medium levels of risks, both traffic volume and 

population density risks are set to 0 to mitigate the complexity of the problem. To 

visualize the prevalence distribution of COVID-19, three health coefficients are 

considered for the north (1), center (1.1), and south (1.2) districts. This coefficient is 

multiplied by the number of students to be picked up or dropped off. Accordingly, 

when the bus picks up a student from the north district, they are equivalent to 1, but 

when a student is picked up in the south district, they are equivalent to 1.2. Therefore, 

for a bus with a capacity of 25 passengers, the maximum number of students that can 

be picked up in the southern district adheres to the social distancing rule on the bus 

(25/1.2). In other words, for the district with a high prevalence of COVID-19, the bus 

picks up a limited number of students lower than its default capacity. 

6-6- Computational results  

Our computational experiments consist of three stages outlined below: 

In the first stage, the heuristic parameters are tuned (refer to Table 6-3) through a full 

factorial experiment conducted on a subset of instances. 

In the second stage, the performance of the four proposed algorithms is compared 

across all instances, including small, medium, and large. 

In the third stage, some risk analyses are undertaken to illustrate the impact of risk 

constraints on the objective function. 
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 Calibration of metaheuristic  

The previously introduced metaheuristics have parameters that require adjustment 

and calibration to strike a reasonable balance between solution quality and computing 

time. The configuration of controllable parameters in metaheuristic algorithms is 

crucial in their design, aiding in a better understanding of their behavior. To tune the 

controllable parameters of the multi-start and perturbation configurations, an 

evaluation is conducted under various values, and the optimal values are selected. 

The primary parameters are detailed in Table 6-3. A full factorial experiment, 

combining all parameter settings shown in Table 6-3, is conducted to solve 10 

instances (4 from set S, 4 from set M, and 2 from set L) using the four proposed 

metaheuristics. For each instance and specific parameter, 5 runs are executed. In some 

analysis runs, all neighborhoods in the improvement phase are deactivated for all 

metaheuristics, rendering the algorithm behaves like a random restart. 

Two performance metrics are examined: the average solution cost and the average 

computational time. It's essential to highlight that the maximum number of iterations 

is not included in the list of analyzed parameters. A larger number of iterations 

logically leads to better solutions but requires more computational time. Hence, in this 

calibration stage, the number of iterations is kept constant at 400 for all calculations, 

and only the maximum number of non-improvement iterations is considered in our 

analysis. 

Table 6-4 displays the P-values obtained from the F-tests. Asterisk values signify 

the significance of each parameter on both the objective function and the solution time 

of the algorithm. As per Table 6-3, crucial parameters of the algorithm that 

significantly impact both solution quality and computational time include the majority 

of local search operators, the minimum and maximum percentage of routes and stops 

to be destroyed, and the maximum number of non-improvement iterations. 

Meanwhile, parameters like school removal and mixed-to-single-load operators 

only exhibit a significant effect on computing time. The optimal values for these 

parameters are provided in Table 6-5. Analysis of the considered neighborhoods 

indicates that, on average, the impacts of similar school removal (for all metaheuristic 

configurations) and mixed load-to-single-load operators (for m-VND and p-HA 

metaheuristics) on the quality of solutions are less pronounced than other operators. 

However, they do yield a slight improvement in results when activated. As a result, 

these two operators are excluded from further analysis. 

It is worth noting that we independently explore the effect of different numbers of 

iterations on the solution's quality. Other parameters are held constant at their optimal 

values as listed in Table 6-5. Similar to the previous analysis, 10 instances are utilized, 

and the solution is assessed for varying numbers (200, 250, 300, 350, 400, 450, 500, 

550, and 600) of iterations. The analyses reveal that the optimal number of iterations, 

striking an ideal balance between computing time and solution quality, is 450. 
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Table (6-3)  Parameters and Levels Tested 

Parameter Description Value No. of levels 

N1=remove-insert within route 
Remove and insert the stop on the same 

route 
On, off 2 

N2= remove-insert (considering 

healthy feature) 

Remove and insert the stop in the area 

with the same level of risk 
On, off 2 

N3=Similar school removal 
Remove and insert the stop on the route 

that has the same school 
On, off 2 

N4=convert single to mixed 

load 

Remove the stop from the single-load 

route and insert it on a mixed-load route 
On, off 2 

N5=convert mixed load to 

single load 

Remove the stop from the mixed-load 

route and insert it on another route 
On, off 2 

N6=replace 
Replace a non-visited stop on the current 

route 
On, off 2 

N7=remove 
Remove the stop on the current solution 

and reallocate its students to all stops 
On, off 2 

N8=2-opt  On, off 2 

α Size of restricted candidate list 1,2,3,4 4 

qmin 
Minimum percentage of routes to be 

removed at perturbation phase 
1%,5%,10% 3 

qmax 
Maximum percentage of routes to be 

removed at perturbation phase 
20%,30%,40% 3 

γ Reaction factor in adaptive mechanism 0.5, 0.6,0.7 3 

nit 
Maximum number of iterations without 

improvement 
10,15,20 3 

εmin 
Minimum percentage of stops to be 

removed 
1%,5%,10% 3 

εmax 
Maximum percentage of stops to be 

removed 
25%,30%,35% 3 

 

Table (6-4)  P-values of the F-tests 

Parameter Average solution cost CPU time 

N1=remove-insert within route <0.05 <0.05 

N2= remove-insert (considering healthy 

feature) 
<0.05 <0.05 

N3=Similar school removal >0.05 <0.05 

N4=convert single to mixed load <0.05 <0.05 

N5=convert mixed load to single load >0.05 <0.05 

N6=replace <0.05 <0.05 

N7=remove <0.05 <0.05 

N8=2-opt <0.05 <0.05 

α <0.05 >0.05 

𝑞𝑚𝑖𝑛 <0.05 <0.05 

𝑞𝑚𝑎𝑥 <0.05 <0.05 

𝜀𝑚𝑖𝑛 <0.05 <0.05 

𝜀𝑚𝑎𝑥 <0.05 <0.05 

𝛾 <0.05 >0.05 

𝑛𝑖𝑡 <0.05 <0.05 
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Table (6-5)  Optimal Setting of Considered Metaheuristics 

Parameters m-HA m-VND p-HA p–VNDA 

N1=remove-insert within route On On On On 

N2= remove-insert (considering 

healthy feature) 
On On On On 

N3=similar school removal Off Off Off Off 

N4=convert single to mixed load On On On On 

N5=convert mixed load to single 

load 
On Off Off On 

N6=replace On On On On 

N7=remove On On On On 

N8=2-opt On On On On 

α 3 3 2 3 

𝑞𝑚𝑖𝑛   %5 5% 

𝑞𝑚𝑎𝑥   30% 40% 

𝛾 0.5   0.7 

𝑛𝑖𝑡 10 15 15 20 

𝜀𝑚𝑖𝑛   5% 10% 

𝜀𝑚𝑎𝑥   30% 25% 

 

 

In general, determining the optimal order of neighborhoods used in a Variable 

Neighborhood Descent (VND) heuristic can significantly impact the solution's quality. 

To comprehend which combination works best, we test different orders of 

neighborhoods on a subset of instances. On average, the most effective order of 

neighborhoods incorporated in the VND heuristic is as follows: Remove-insert intra-

route operator, 2-opt intra-route operator, remove-insert (considering the health 

situation), convert single-load to mixed-load, remove, and replace operators. 

 Metaheuristic comparison 

Having established the optimal parameter settings for each solution approach, we 

now compare the proposed metaheuristics by testing them on small, medium, and large 

instances. To ensure a fair comparison in terms of solution quality and computing time, 

we run each metaheuristic five times with a fixed number of 450 iterations for each 

instance. 

The experimental analysis is carried out on 100 instances divided into three subsets: 

Set S, Set M, and Set L. Set S encompasses 30 instances (10-30 stops), Set M 

comprises 30 instances (40-60 stops), and Set L includes 40 instances (70-100 stops). 

Furthermore, we take into account maximum walking distances of 5, 10, 15, and 20 in 

our calculations. (For a more in-depth look at the results of each experiment, refer to 

Appendix 9). 

The consolidated results are displayed in Tables 6-6 and 6-7. Table 6-6 delineates 

the percentage gap between the best-found solution of each metaheuristic after 5 runs 
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and the optimal solution (GAMS/CPLEX solver). Meanwhile, Table 6-7 illustrates the 

percentage difference between the four metaheuristic configurations. Specifically, 

after all runs are executed, the metaheuristic with a better quality of solution (on 

average) serves as the basis, and the performance of other metaheuristics is compared 

against it. In both Tables 6-6 and 6-7, the first column indicates the type of 

metaheuristic, while the subsequent three columns present the set of instances (from 

small to large). 
Table (6-6)  Best Gap from Optimal Solution 

Metaheuristic SET S SET M SET L 

p-HA 2.28% ---- ---- 

m-VND 3.23% ---- ---- 

m-HA 4.37% ---- ---- 

p-VND 5.05% ---- ---- 

 
Table (6-7)  Percentage Gap between p-HA and the other Three Proposed Metaheuristics in Sets S, M, 

and L 

Metaheuristic SET S SET M Set L 

m-VND 2.20% 2.95% 3.51% 

m-HA 2.61% 3.36% 4.05% 

p-VND 3.81% 4.32% 4.70% 

  

 

 

 
Table (6-8)  Total Computing Time of each Metaheuristic in Small, Medium, and Large Instances (in 

Seconds) 

Metaheuristic SET S SET M Set L 

p-HA 86,476 1,662,819 64,237,940 

m-VND 147,065 2,887,037 98,656,048 

m-HA 209,155 3,856,332 126,537,481 

p-NVD 80,165 1,544,327 61,366,479 

 

 

Analyzing the results in Table 6-6 reveals that p-HA features the lowest percentage 

gap with the optimum solutions (exact method) in small instances. Additionally, m-

VND ranks second in terms of this gap. 

Comparing the four proposed metaheuristics (Table 6-7), we observe that, on 

average, p-HA outperforms the other configurations. It appears that the combination 

of perturbation and adaptive mechanisms can lead to better performance. Accordingly, 

p-HA utilizes two mechanisms simultaneously: the perturbation heuristic and the 

selection of a local search operator based on its performance. Hence, p-HA is 

considered the baseline algorithm against which comparisons are made with the other 

proposed metaheuristics. 

For a better understanding of the performance of the four metaheuristics, we 

compared them across small, medium, and large instances. It's worth noting that m-
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VND, followed by m-HA, exhibits a lower percentage gap than the baseline 

metaheuristic. On the other hand, p-VND shows a higher deviation from the baseline, 

indicating that this combination is not consistent with the considered instances and is 

therefore of little interest. Additionally, in terms of computing time, Table 6-8 

indicates that m-HA is the slowest metaheuristic, and relying on this combination 

requires more computational time. 

 Risk factor effect 

This supplementary analysis aims to investigate the effect of each risk constraint on 

the objective function. Considering its superior performance compared to the other 

three proposed metaheuristics, the p-HA configuration is selected for this purpose. The 

experiment is conducted on a subset of 12 instances. 

Specifically, we aim to understand the extent to which the value of the objective 

function would increase if all the risk constraints are active in the model, and how 

much it can decrease if the risk constraints are relaxed. 

The results indicate that omitting the safety risk constraints (constraints 1) leads to 

a decrease in the value of the objective function by up to 6.53%. If all risk constraints 

(safety, healthy, and traffic) are relaxed, the objective function decreases by 15.07%. 

This substantial difference should be taken into consideration by the municipality or 

any organization in the private sector. Additionally, the results show that the size of 

the problem has a greater effect on the risk constraints. Furthermore, risk constraint 

relaxation significantly impacts the objective function in all instances, particularly in 

large ones. 

 

Figure (6-2)  Objective Function Reduction due to Relaxing Risk Constraints 
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6-7- Conclusions and future research 

This chapter addresses the school bus routing problem by integrating both bus stop 

selection and route generation while considering a mixed-load context and various risk 

constraints. Specifically, students are assigned to potential bus stops based on the 

walking distance from their homes. Simultaneously, these stops are incorporated into 

the bus route to transport the students to school with the aim of minimizing travel time. 

The study incorporates safety, traffic, and health risk constraints, including a 

maximum number of students to be assigned to a bus stop, as well as traffic and health 

risk constraints imposed on the arcs and nodes. 

To efficiently solve the generated small, medium, and large instances of the 

problem (totaling 100 instances) within a reasonable computing time, we have devised 

and proposed four different metaheuristics capable of generating various 

diversification strategies in the solution space. Overall, on average, the p-HA 

metaheuristic outperforms other metaheuristics in terms of solution quality. Regarding 

computing time, the p-VND metaheuristic, followed by p-HA (though with a slight 

difference), demonstrates faster performance than others. Consequently, p-HA appears 

to be a more reliable metaheuristic. On the other hand, the m-HA configuration cannot 

provide the solution in a reasonable time and, therefore, requires more computing time. 

These metaheuristic configurations operate in two directions, placing as much 

emphasis on the mechanism of neighborhood selection as on the status of 

diversification. It can be inferred that in designing the metaheuristic, consideration 

needs to be given to the mechanism of diversification, the type of neighborhoods, and 

the execution time of neighborhoods. 

We have conducted risk analyses and identified three major risks. Clearly, these 

risk constraints will become more prominent as the student transportation situation 

returns to normal. With the reopening of schools, the safety of school buses will be a 

major concern for many transport companies and students' parents. In this regard, 

taking safety instructions seriously can help efficiently mitigate and control such 

concerns, thereby reducing the probability of accidents. Concerning safety risk, many 

accidents occur for students when they are waiting for the bus or getting on or off the 

vehicle. 

Future research can aim to include stochastic parameters in the model. In all 

chapters presented so far, all input parameters of the case study (e.g., arrival time of 

the bus, speed of the bus) are considered to be deterministic. However, in real-world 

applications, there are different factors that make these parameters stochastic. For 

example, due to an unpredictable situation, a bus may have a delay on the route. 

Moreover, the expected speed of the bus is not usually a fixed parameter due to 

traffic conditions. As a future work, these parameters can be considered within 

uncertain conditions. Another interesting idea is to consider an objective function to 

minimize the total student journey, including travel time from home to stop, waiting 



 

170 
 

time at the stop, travel time on the bus, as well as pick-up time at the stop and drop-

off time at the school. Finally, it is more rewarding to investigate both hard and soft 

time window constraints simultaneously. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 7:  

Conclusion and future research 
 



 

 

 

7-1- Conclusion 

A bus network plan greatly influences an urban transport system in real-life 

situations, impacting safety, reliability, and desirability. Transporting students to and 

from school poses a challenge for local governments aiming to optimize budgets. 

Inefficient transportation plans may result in issues like heightened noise, pollution, 

accident rates, and dissatisfaction among students and citizens. The surge in fuel prices 

and extended time spent in traffic has prompted families to explore the public bus 

transportation system for their children. 

Efficient coordination and planning in the urban transportation network are crucial 

for any action or policy in this area. Authorities aim to provide an effective transport 

system, generating significant budget savings by considering limited resources. 

However, due to resource constraints, assigning a bus to each school is not feasible 

(see Park and Kim, 2010).  

In student transportation, a key challenge involves effectively managing both 

morning and afternoon shifts in an integrated manner during student pick-up and drop-

off. Municipalities are actively seeking solutions to efficiently share resources between 

these two shifts.  

Sharing resources between schools enhances the efficiency of the school bus system 

but introduces complexity, leading to overcrowded buses and lengthy routes. 

Designing bus routes based on a mixed-load/multi-load plan appears to be an effective 

solution. This approach considers appropriate objectives, assumptions, and 

constraints. 

In another scenario, a student from a specific bus stop may have different school 

time windows, involving both primary and elementary school students at each stop. 

When a bus serves students from different schools simultaneously, there's a higher 

chance of missing eligible students at the next stops, leading to increased computing 

time and costs. Unlike the classical routing problems where each customer is visited 

only once, allowing split loading means students from the same stop can be served 

through multiple visits. This potentially results in significant savings in travel costs 

and the number of buses. 

The split pick-up and drop-off method allows multiple visits to serve each stop, 

proving particularly beneficial when dealing with students from different schools at a 

candidate stop or facing tight capacity constraints. In Tehran, where the majority of 

students rely on public transport, it is crucial to raise awareness about the risks 

associated with each mode of transportation. This awareness should extend to the 

school bus routing problem, considering factors such as the time taken for bus stops, 

evacuating a bus due to an accident, and the duration students spend on the bus. 

These policies establish rules that facilitate the safe and convenient transportation 

of students to their respective schools. In real-life applications, Student Bus Routing 

(SBR) must consider additional constraints and factors related to the usability of the 
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transportation network. Large municipalities consistently strive to develop operational 

strategies for efficiently managing school bus transport systems. Real-world student 

transportation typically involves incorporating various features such as student riding 

time, stop and school time windows, mixed-load and single-load planning, and forward 

and backward trips. Undoubtedly, these features align with the real-life nature of the 

problem. 

This research makes key contributions, summarized as follows: 

 
➢ Proposing a novel mathematical formulation for the Student Bus Routing Problem (SBRP) 

that incorporates defined objectives and constraints. 

➢ Introducing a distinctive SBRP scheme with morning and afternoon features, addressing 

mixed-load (transporting students from different schools on the same bus), multi-shift load 

(carrying students from morning and afternoon shifts simultaneously), and split-load all at 

once. 

➢ Comparing the impact of mixed-load and single-load approaches on minimizing the 

number of buses, total traveled distance, weighted average riding distance of students, and 

occupied bus capacity.  

➢ Offering a risk assessment method to identify more significant threats that adversely affect 

the health and safety of students. 

➢ Examining the total transportation cost when relaxing risk constraints in the model. 

➢ Addressing three decision-making subproblems: location, allocation, and routing. 

The SBRP is an NP-hard problem, making polynomial-time solutions impractical. 

To tackle large instances effectively, employing metaheuristic approaches is more 

efficient. Numerous heuristic and metaheuristic methods exist in the literature for 

solving SBRP. The challenge lies in designing a suitable heuristic tailored to the 

specific problem type, striking a balance between computing time and solution quality, 

and managing the trade-off between intensification and diversification. 

An effective metaheuristic should possess enhanced capabilities, including the 

ability to generate new solutions likely to improve current or previous ones. It should 

also facilitate exploration of the most promising search areas to reach the global 

optimum and be capable of escaping local optima. These conditions emphasize the 

significance of intensification and diversification strategies in metaheuristic 

approaches. 

Two crucial considerations in designing a metaheuristic are diversification and 

intensification. Diversification involves the ability to explore various and different 

parts of a search space, while intensification focuses on attaining high-quality solutions 

within those areas. Both diversification and intensification are essential strategies that 

guide the search process efficiently. In clearer terms, the current research aims to 

devise a heuristic capable of exploring both new regions of the search space and the 

existing desirable areas. 

The combination of diversification and intensification helps the algorithm find the 

optimal solution. However, the challenge lies in determining the appropriate extent to 

apply each strategy to the solution space. Excessive exploration increases the 
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likelihood of finding the global optimum but reduces efficiency, while heavy 

exploitation can lead the algorithm to get stuck in local optima. Continuous 

intensification raises the risk of being trapped in local optima. Therefore, a careful 

analysis is necessary to calculate the right degree of exploration. Despite its 

importance, there is currently no robust practical guideline for achieving this balance. 

Each algorithm employs a unique balance between exploitation and exploration. 

Therefore, it is crucial to design an algorithm with a flexible architecture that can strike 

a compromise between diversification and intensification. Intensification and 

diversification can be implemented as operators, actions, or acceptance criteria 

strategies in metaheuristics. Addressing these considerations involves defining 

specific neighborhoods, perturbation mechanisms, probability of accepting objective 

functions, size of perturbation, and other relevant factors. 

The contributions of this thesis in incorporating metaheuristic approaches are as 

follows: 

➢ Incorporating an oscillation strategy to explore the infeasible part of the solution 

space. 

➢ Investigating the heuristic's ability to navigate the infeasible part of the solution 

space. 

➢ Examining the speed of transition between the feasible and infeasible parts of the 

solution space. 

➢ Proposing an ALNS (Adaptive Large Neighborhood Search) metaheuristic for 

solving medium and large instances of SBRP, tuning its parameters through a 

statistical experiment, and subsequently comparing it with existing benchmarks.  

➢ Analyzing separately the performance of each insertion and removal operator;  

➢ Developing neighborhoods specific to SBRP; 

➢ Configuring the Iterated Local Search (ILS) metaheuristic with an adaptive 

mechanism. 

➢ Introducing heuristics that investigate and define the type of diversification and 

intensification within the solution space. 

In Chapter 2, we initially introduced two metaheuristics, N-ILS and I-ILS, designed 

to address the school bus routing problem. The core concept involves introducing an 

oscillation strategy with three key features: exploring both the infeasible and feasible 

parts of the solution space, regulating both the exploration capability and the transition 

speed between feasible and infeasible parts of the solution space, and implementing 

the restore operator when the solution exhibits a high rate of violation. 

This chapter focuses on the School Bus Routing Problem (SBRP), integrating bus 

stop selection and route generation into a single optimization approach. Students are 

assigned to potential bus stops based on their walking distance from home. 

Simultaneously, these stops are incorporated into the bus route to enable students to 

reach school while minimizing travel distance. 
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In comparison with Schittekat et al. (2013), computational experiment results 

indicate that N-ILS outperforms I-ILS. In terms of computation time, N-ILS can yield 

near-optimal solutions within a limited timeframe. Consequently, the N-ILS 

metaheuristic emerges as the superior approach concerning solution quality, 

robustness, and computation time compared to I-ILS.  

In Chapter 3, various types of Large Neighborhood Search (LNS) and Adaptive 

Large Neighborhood Search (ALNS) metaheuristics are introduced, leveraging the 

oscillation strategy. Similar to the second chapter, the problem presented by Schittekat 

et al. (2013) is examined as an interesting variant of the Vehicle Routing Problem 

(VRP). The metaheuristic is evaluated on a set of 104 School Bus Routing Problem 

(SBRP) benchmark instances proposed by Schittekat et al. (2013). In the initial stage, 

the formulation presented is precisely solved using the CPLEX solver in GAMS. 

Since only 43 instances could be solved using the mentioned method, simplified 

Large Neighborhood Search (LNS) and Adaptive Large Neighborhood Search 

(ALNS) metaheuristics are designed to tackle small, medium, and large problem 

instances within a reasonable timeframe. Statistical analysis is conducted for each 

metaheuristic to determine the optimal parameter settings. After establishing the best 

parameter settings for each solution, a comprehensive comparison is made between 

the two metaheuristics, considering solution quality, robustness, and computing time 

across all instances. Additionally, two scenarios are devised to delve more precisely 

into the proposed algorithm, aiding in understanding the behavior of algorithms, 

whether the oscillation strategy is employed or not. 

Evaluating the percentage gap between the best solution found and the best-known 

solutions (𝐵𝐾𝑆𝑀𝐻), we have observed that both LNS-1 and LNS-2 produced 

approximately similar results for both scenarios. However, other heuristics exhibited 

poor performance in the second scenario. Conversely, heuristics in the first scenario 

delivered results in a shorter computing time. In summary, the first scenario appears 

to be more reliable and offers better performance in terms of solution quality and 

computing time. 

In the first scenario, computational experiment results reveal that the Adaptive 

Large Neighborhood Search (ALNS) is highly competitive compared to the best 

metaheuristic introduced by Schittekat et al. (2013). Moreover, the ALNS algorithm 

systematically explores extensive portions of the solution space, demonstrating its 

robustness by adapting to various cases and avoiding frequent entrapment in local 

optima. A pivotal conclusion from this research is that ALNS stands out as the most 

effective metaheuristic among all proposed solution algorithms. Additionally, in terms 

of computing time, both ALNS and Rand-removal with Regret-2 outperform other 

algorithms. 

In Chapter 4, our objective is to introduce a new mathematical formulation and 

solution approach, considering a mixed-load mode. The results validate the 

effectiveness of the proposed framework, as it yields higher cost savings compared to 
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the single load mode. The characteristics considered in this study for the School Bus 

Routing Problem (SBRP) include homogeneous buses, a maximum allowable number 

of students for each stop, school arrival time, and multiple garages. 

In the initial phase, the proposed model is solved for small instances using the 

CPLEX solver in GAMS. Since this solver can handle up to 20 instances within a 

reasonable computing time, an Adaptive Large Neighborhood Search (ALNS) with a 

different configuration is introduced to solve all generated instances. Four experiments 

are conducted to assess the algorithm's efficiency. In the first scenario, it is evident 

that implementing mixed-load yields superior solutions. However, concerning student 

maximum riding time and total route length, the results indicate that, on average, the 

single-load strategy incurs lower costs. Hence, it becomes imperative to consider 

accurate constraints for maximum riding time and total route length. 

In the second stage, various metaheuristic configurations are applied, and among 

these, the Shaw removal with Regret-2 demonstrates the best performance. In the third 

stage, the solutions obtained by the proposed metaheuristic are compared with those 

obtained by the CPLEX solver in GAMS. The results indicate the average percentage 

gap with CPLEX is lower than 1.5%, and in seven instances, it attains an optimal 

solution. Finally, the results of analyzing the proposed metaheuristics are compared 

with those of the best-known solutions, revealing that ALNS stands out as the most 

effective metaheuristic configuration. The results of other Large Neighborhood Search 

(LNS) configurations are not particularly promising. 

In Chapter 5, we have explored additional aspects of the School Bus Routing 

Problem (SBRP), considering both forward and backward trips corresponding to 

morning and afternoon shifts. This problem not only examines costs but also considers 

average riding time and the fluctuation of time windows in the two shifts. 

Instances for the problem are generated and then categorized into three subsets: 

small, medium, and large. As anticipated, as the problem size grows, the exact method 

cannot find an optimal solution within a reasonable timeframe, particularly after 

instance 16. To address this, we've developed a metaheuristic with an adaptive 

mechanism. This mechanism selects and implements a local search operator from a set 

of predefined operators based on its performance, thereby enhancing the likelihood of 

choosing an efficient operator. The aim is to solve small, medium, and large problem 

instances within a reasonable time frame using this adaptive metaheuristic. 

Two scenarios are devised to comprehend the configuration of the proposed 

metaheuristic. The objective is to compare neighborhood selection conventionally 

(based on size) versus systematically.  

In the second aspect, we delved deeper into understanding the influence of 

metaheuristic elements in achieving improved solutions. It's observed that employing 

the problem-specific knowledge heuristic followed by the cross-exchange heuristic 

yields superior results. Specifically, we explored the impact of imposing maximum 

riding time constraints on reducing both total travel time and the number of required 

buses. Although imposing a maximum riding time can decrease the number of buses, 
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it comes at the cost of longer total travel time. Therefore, policymakers should adopt 

a trade-off mechanism to efficiently lower both the number of buses and total travel 

time. The hybrid policy of mixed- and multi-shift loading can result in approximately 

a 6.82% reduction in the number of buses needed for small instances. 

Chapter 6 builds on the discussions of mixed-load mode, bus stop selection, and the 

school bus routing problem from earlier chapters. It introduces risk characteristics, 

including safety, traffic, and the maximum number of students allowed at each stop, 

to enhance the model's realism. To solve the generated small, medium, and large 

instances of the problem within a reasonable computing time, four different 

metaheuristics are proposed, each offering distinct diversification strategies. 

On average, the p-HA metaheuristic demonstrates superior performance in solution 

quality compared to other metaheuristics. In terms of computing time, the p-VND 

metaheuristic, closely followed by p-HA, exhibits faster performance than the others. 

Consequently, p-HA appears to be a more reliable metaheuristic. However, the m-HA 

configuration struggles to attain an effective solution within a reasonable time, 

necessitating more computing time. 

7-2- Future works 

This dissertation explores various aspects of the School Bus Routing Problem 

(SBRP) to enhance its realism, as discussed in earlier chapters. Additionally, diverse 

approaches to designing metaheuristics for this problem are proposed. Despite the 

contributions of this study, further research in this area is essential. Opportunities for 

future work have been extensively outlined at the conclusion of each chapter; however, 

they are summarized as follows: 

 

 

➢ Constraints and objective functions 

 

Further research can be expanded in several ways, such as considering: 

A) Expanding research by incorporating additional objective functions, constraints, 

and features to model real-life situations. Specifically, minimizing students' walking 

distance from their houses to stops could be introduced as a second objective function 

or embedded in the existing one. Another interesting idea is to include an objective 

function aimed at minimizing the total student journey, encompassing travel time from 

home to stop, waiting time at the stop, travel time on the bus, as well as pick-up and 

drop-off times. Additionally, exploring the transportation of some students through an 

outsourcing mechanism while adhering to budget constraints is essential. This research 

proposes a beneficial trade-off between the private sector's involvement and the 

municipality's commitment to cost optimization. 
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B) Including stochastic parameters into the SBRP model can be beneficial. In the 

preceding chapters, all input parameters in the case study (e.g., bus arrival time, bus 

speed) are treated as deterministic. However, in real-world scenarios, various factors 

can make these parameters stochastic. For instance, unforeseen situations may cause 

delays in the bus route. Additionally, the expected speed of the bus is typically not 

fixed due to varying traffic conditions. Future research can explore incorporating these 

parameters under uncertain conditions. 

 

➢ Metaheuristic Approach  

For future research, one of my main priorities is to design metaheuristics that can 

adapt to the specific problem under investigation. Substantial progress in this field, 

both practical and theoretical, adds value for any researcher aiming to develop 

commercial software. 

The second focus area involves enhancing specific parts of the metaheuristic to 

boost its performance and reduce computing time. Moreover, finding more effective 

methods to verify student allocation feasibility before applying each improvement 

operator is particularly interesting. 

Concerning the oscillation strategy, efforts can be directed towards enhancing its 

performance by creating a memory list that retains infeasible solutions leading to the 

global best solution. As capacity violations rise, focus can shift to devising fast 

heuristics capable of returning to feasible sections of the search space. Ultimately, the 

researcher is keen on exploring new ideas to strike a profitable balance between 

diversification and intensification. 
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Appendix 1 

 

ID stop stud cap wd BKS(MH) BKS (exact) 

N-ILS 

cost Time(s) 

Best sol Avg sol %Best Gap (exact) %Best Gap (MH) %Avg Gap (exact) % Avg Gap (MH) Avg time 

1 5 25 25 5 141.01 141.01 141.01 142.26 0.000% 0.000% 0.89% 0.89% 1.06 

2 5 25 50 5 161.62 161.62 162.12 162.22 0.309% 0.309% 0.37% 0.37% 1.52 

3 5 25 25 10 182.14 182.14 182.14 182.35 0.000% 0.000% 0.12% 0.12% 1.83 

4 5 25 50 10 195.80 195.80 195.80 196.22 0.000% 0.000% 0.21% 0.21% 1.61 

5 5 25 25 20 111.65 111.65 111.93 112.36 0.251% 0.251% 0.64% 0.64% 1.79 

6 5 25 50 20 103.18 103.18 103.18 103.39 0.000% 0.000% 0.20% 0.20% 1.81 

7 5 25 25 40 7.63 7.63 7.87 8.02 3.098% 3.098% 5.11% 5.11% 1.33 

8 5 25 50 40 25.64 25.64 25.83 26.12 0.741% 0.741% 1.87% 1.87% 1.75 

9 5 50 25 5 286.68 286.68 286.68 288.13 0.000% 0.000% 0.51% 0.51% 1.81 

10 5 50 50 5 197.20 197.20 199.41 201.38 1.121% 1.121% 2.12% 2.12% 1.43 

11 5 50 25 10 193.55 193.55 193.55 198.12 0.000% 0.000% 2.36% 2.36% 1.89 

12 5 50 50 10 215.86 215.85 215.86 217.20 0.005% 0.000% 0.63% 0.62% 1.79 

13 5 50 25 20 130.53 130.53 131.85 133.11 1.014% 1.014% 1.98% 1.98% 3.14 

14 5 50 50 20 96.26 96.26 98.56 100.02 2.389% 2.389% 3.91% 3.91% 2.97 

15 5 50 25 40 12.89 12.89 13.94 13.98 8.131% 8.131% 8.46% 8.46% 3.56 

16 5 50 50 40 30.24 30.24 30.63 30.93 1.283% 1.283% 2.27% 2.27% 2.85 

17 5 100 25 5 360.35 360.35 360.35 372.54 0.000% 0.000% 3.38% 3.38% 2.82 

18 5 100 50 5 304.23 304.23 309.94 312.25 1.877% 1.877% 2.64% 2.64% 2.73 

19 5 100 25 10 294.21 294.21 302.57 303.12 2.843% 2.842% 3.03% 3.03% 4.34 

20 5 100 50 10 229.41 229.41 232.45 235.25 1.326% 1.326% 2.55% 2.55% 3.76 

21 5 100 25 20 134.95 134.95 137.54 139.90 1.917% 1.917% 3.67% 3.67% 6.90 

22 5 100 50 20 144.41 144.41 144.48 146.20 0.048% 0.048% 1.24% 1.24% 3.37 

23 5 100 25 40 58.95 58.95 58.95 59.25 0.000% 0.000% 0.51% 0.51% 9.22 

24 5 100 50 40 39.44 39.44 41.90 42.84 6.248% 6.248% 8.63% 8.63% 6.89 

25 10 50 25 5 242.85 242.85 242.85 247.76 0.000% 0.000% 2.02% 2.02% 3.72 

26 10 50 50 5 282.12 282.12 285.34 287.26 1.142% 1.142% 1.82% 1.82% 3.47 
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ID stop stud cap wd BKS(MH) BKS (exact) 

N-ILS 

cost Time(s) 

Best sol Avg sol %Best Gap (exact) %Best Gap (MH) %Avg Gap (exact) % Avg Gap (MH) Avg time 

27 10 50 25 10 244.54 244.54 252.51 255.12 3.260% 3.260% 4.33% 4.33% 5.32 

28 10 50 50 10 288.33 283.33 297.32 297.65 4.937% 3.117% 5.05% 3.23% 3.82 

29 10 50 25 20 108.98 108.98 110.69 112.58 1.567% 1.567% 3.30% 3.30% 4.89 

30 10 50 50 20 157.48 157.48 159.76 160.92 1.448% 1.448% 2.18% 2.18% 4.77 

31 10 50 25 40 32.25 32.25 34.01 34.87 5.451% 5.451% 8.14% 8.14% 5.20 

32 10 50 50 40 36.66 36.66 38.85 39.07 5.983% 5.983% 6.57% 6.57% 4.93 

33 10 100 25 5 403.18 403.18 404.36 410.51 0.293% 0.293% 1.82% 1.82% 2.20 

34 10 100 50 5 296.53 296.53 297.29 298.12 0.256% 0.256% 0.54% 0.54% 2.45 

35 10 100 25 10 388.87 388.87 395.01 396.62 1.580% 1.580% 1.99% 1.99% 8.50 

36 10 100 50 10 294.80 294.80 306.26 306.61 3.889% 3.887% 4.01% 4.00% 9.47 

37 10 100 25 20 178.28 178.28 178.28 181.04 0.000% 0.000% 1.55% 1.55% 9.53 

38 10 100 50 20 175.96 175.96 180.60 182.47 2.636% 2.636% 3.70% 3.70% 10.66 

39 10 100 25 40 57.50 57.50 60.27 61.83 4.816% 4.816% 7.53% 7.53% 11.03 

40 10 100 50 40 31.89 31.89 32.19 33.63 0.951% 0.951% 5.46% 5.46% 11.18 

41 10 200 25 5 735.27 735.27 736.92 757.55 0.224% 0.224% 3.03% 3.03% 10.65 

42 10 200 50 5 512.16 506.06 512.32 528.97 1.237% 0.031% 4.53% 3.28% 9.71 

43 10 200 25 10 513.00 513.00 523.30 529.48 2.008% 2.008% 3.21% 3.21% 31.19 

44 10 200 50 10 475.21  484.17 486.82  1.885%  2.4% 14.37 

45 10 200 25 20 347.29  362.12 367.81  4.271%  5.6% 26.54 

46 10 200 50 20 217.46  217.69 221.39  0.106%  1.8% 25.36 

47 10 200 25 40 102.93  104.42 105.84  1.444%  2.7% 39.43 

48 10 200 50 40 55.05  60.01 60.93  9.010%  9.7% 16.76 

49 20 100 25 5 520.24  526.54 529.18  1.211%  1.7% 11.09 

50 20 100 50 5 420.64  421.09 425.12  0.106%  1.1% 6.55 

51 20 100 25 10 422.21  426.91 428.40  1.113%  1.4% 10.23 

52 20 100 50 10 360.86  364.05 379.58  0.883%  4.9% 9.45 

53 20 100 25 20 245.17  246.45 251.69  0.522%  2.6% 11.38 

54 20 100 50 20 185.06  190.28 192.00  2.820%  3.6% 9.13 
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ID stop stud cap wd BKS(MH) BKS (exact) 

N-ILS 

cost Time(s) 

Best sol Avg sol %Best Gap (exact) %Best Gap (MH) %Avg Gap (exact) % Avg Gap (MH) Avg time 

55 20 100 25 40 52.52  52.85 53.60  0.631%  2.0% 12.73 

56 20 100 50 40 19.05  19.65 20.16  3.150%  5.5% 29.14 

57 20 200 25 5 903.84  923.81 926.72  2.209%  2.5% 13.76 

58 20 200 50 5 485.65  497.83 500.31  2.507%  2.9% 30.65 

59 20 200 25 10 616.93  626.48 627.86  1.548%  1.7% 32.87 

60 20 200 50 10 462.31  479.73 483.26  3.768%  4.3% 22.19 

61 20 200 25 20 373.21  381.15 384.45  2.126%  2.9% 57.18 

62 20 200 50 20 250.75  251.36 257.13  0.241%  2.5% 30.16 

63 20 200 25 40 93.01  95.05 95.52  2.193%  2.6% 77.44 

64 20 200 50 40 45.40  46.18 48.25  1.721%  5.9% 38.64 

65 20 400 25 5 1323.35  1376.13 1390.65  3.988%  4.8% 293.12 

66 20 400 50 5 733.54  734.12 750.28  0.079%  2.2% 42.21 

67 20 400 25 10 975.12  990.23 1002.58  1.549%  2.7% 194.19 

68 20 400 50 10 614.67  635.65 641.25  3.413%  4.1% 88.19 

69 20 400 25 20 763.76  790.02 795.39  3.438%  4.0% 177.37 

70 20 400 50 20 298.47  309.32 310.25  3.636%  3.8% 105.13 

71 20 400 25 40 239.58  242.56 246.32  1.245%  2.7% 354.02 

72 20 400 50 40 84.49  89.56 90.06  6.001%  6.2% 142.75 

73 40 200 25 5 831.94  846.71 852.12  1.775%  2.4% 80.27 

74 40 200 50 5 593.35  608.22 617.20  2.507%  3.9% 55.95 

75 40 200 25 10 728.44  734.98 737.59  0.898%  1.2% 902.38 

76 40 200 50 10 481.05  498.53 499.02  3.634%  3.6% 129.50 

77 40 200 25 20 339.75  341.19 348.51  0.422%  2.5% 192.11 

78 40 200 50 20 273.88  276.25 279.49  0.865%  2.0% 56.27 

79 40 200 25 40 76.77  78.25 79.98  1.928%  4.0% 151.78 

80 40 200 50 40 58.46  58.56 59.51  0.171%  1.8% 95.20 

81 40 400 25 5 1407.05  1431.90 1458.52  1.766%  3.5% 430.71 

82 40 400 50 5 858.80  885.80 889.55  3.144%  3.5% 773.02 



 

192 

 

ID stop stud cap wd BKS(MH) BKS (exact) 

N-ILS 

cost Time(s) 

Best sol Avg sol %Best Gap (exact) %Best Gap (MH) %Avg Gap (exact) % Avg Gap (MH) Avg time 

83 40 400 25 10 891.02  899.49 925.75  0.950%  3.8% 580.62 

84 40 400 50 10 757.42  776.30 790.72  2.493%  4.2% 469.93 

85 40 400 25 20 586.29  600.38 605.92  2.403%  3.2% 897.30 

86 40 400 50 20 395.95  404.51 411.01  2.161%  3.7% 323.68 

87 40 400 25 40 195.33  198.26 201.99  1.500%  3.3% 1491.45 

88 40 400 50 40 70.77  73.95 74.20  4.493%  4.6% 690.38 

89 40 800 25 5 2900.14  3005.33 3102.91  3.627%  6.5% 4023.58 

90 40 800 50 5 1345.70  1374.92 1377.93  2.171%  2.3% 1795.17 

91 40 800 25 10 2200.57  2308.45 2347.69  4.902%  6.3% 4930.25 

92 40 800 50 10 1025.16  1045.23 1068.89  1.958%  4.1% 5125.67 

93 40 800 25 20 1404.16  1458.25 1459.94  3.852%  3.8% 4142.30 

94 40 800 50 20 616.58  630.19 632.49  2.207%  2.5% 4246.67 

95 40 800 25 40 396.92  405.26 408.96  2.101%  2.9% 4332.19 

96 40 800 50 40 200.94  207.45 211.25  3.240%  4.9% 3836.31 

97 80 400 25 5 1546.23  1579.37 1593.47  2.143%  3.0% 1225.87 

98 80 400 50 5 1048.56  1071.65 1085.19  2.202%  3.4% 681.78 

99 80 400 25 10 1216.74  1258.94 1273.16  3.468%  4.4% 2470.60 

100 80 400 50 10 760.61  768.92 781.97  1.093%  2.7% 745.81 

101 80 400 25 20 565.49  581.38 588.23  2.811%  3.9% 1790.90 

102 80 400 50 20 372.05  383.18 383.48  2.992%  3.0% 1281.41 

103 80 400 25 40 131.75  133.96 138.45  1.677%  4.8% 1356.89 

104 80 400 50 40 95.84  98.25 99.17  2.515%  3.4% 4020.56 
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Appendix 2 

 

ID stop stud cap wd BKS(MH) BKS(exact) 

I-ILS 

cost Time(s) 

Best sol Avg sol %Best Gap (exact) %Best Gap(MH) %Avg Gap (exact) % Avg Gap(MH) Avg time 

1 5 25 25 5 141.01 141.01 141.01 144.10 0.000% 0.000% 2.19% 2.19% 1.05 

2 5 25 50 5 161.62 161.62 161.62 162.19 0.000% 0.000% 0.36% 0.36% 1.73 

3 5 25 25 10 182.14 182.14 182.14 183.48 0.000% 0.000% 0.74% 0.74% 2.02 

4 5 25 50 10 195.80 195.80 200.01 200.76 2.150% 2.150% 2.53% 2.53% 1.76 

5 5 25 25 20 111.65 111.65 115.31 116.54 3.278% 3.278% 4.38% 4.38% 1.98 

6 5 25 50 20 103.18 103.18 105.35 106.93 2.103% 2.103% 3.63% 3.63% 2.03 

7 5 25 25 40 7.63 7.63 7.93 8.01 3.932% 3.932% 5.01% 5.01% 1.73 

8 5 25 50 40 25.64 25.64 27.06 27.58 5.538% 5.538% 7.58% 7.58% 1.82 

9 5 50 25 5 286.68 286.68 289.95 291.17 1.141% 1.141% 1.56% 1.56% 1.73 

10 5 50 50 5 197.20 197.20 200.16 201.50 1.501% 1.501% 2.18% 2.18% 1.62 

11 5 50 25 10 193.55 193.55 195.19 197.85 0.847% 0.847% 2.22% 2.22% 1.86 

12 5 50 50 10 215.86 215.85 215.85 218.35 0.000% -0.005% 1.16% 1.15% 2.07 

13 5 50 25 20 130.53 130.53 132.25 133.84 1.318% 1.318% 2.53% 2.53% 3.47 

14 5 50 50 20 96.26 96.26 97.80 97.91 1.601% 1.601% 1.71% 1.71% 3.34 

15 5 50 25 40 12.89 12.89 13.36 13.69 3.637% 3.637% 6.19% 6.19% 3.94 

16 5 50 50 40 30.24 30.24 32.02 32.45 5.879% 5.879% 7.30% 7.30% 3.20 

17 5 100 25 5 360.35 360.35 360.35 368.15 0.000% 0.000% 2.16% 2.16% 3.09 

18 5 100 50 5 304.23 304.23 313.72 315.75 3.120% 3.120% 3.79% 3.79% 2.62 

19 5 100 25 10 294.21 294.21 306.94 309.12 4.329% 4.328% 5.07% 5.07% 4.73 

20 5 100 50 10 229.41 229.41 232.19 237.59 1.212% 1.212% 3.56% 3.56% 4.13 

21 5 100 25 20 134.95 134.95 139.41 140.23 3.305% 3.305% 3.92% 3.92% 6.81 

22 5 100 50 20 144.41 144.41 149.17 152.95 3.295% 3.295% 5.92% 5.92% 3.23 

23 5 100 25 40 58.95 58.95 58.95 60.05 0.000% 0.000% 1.87% 1.87% 9.09 

24 5 100 50 40 39.44 39.44 41.12 41.90 4.260% 4.260% 6.24% 6.24% 7.76 

25 10 50 25 5 242.85 242.85 242.85 247.25 0.000% 0.000% 1.81% 1.81% 4.76 

26 10 50 50 5 282.12 282.12 286.30 289.37 1.482% 1.482% 2.57% 2.57% 3.37 
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ID stop stud cap wd BKS(MH) BKS(exact) 

I-ILS 

cost Time(s) 

Best sol Avg sol %Best Gap (exact) %Best Gap(MH) %Avg Gap (exact) % Avg Gap(MH) Avg time 

27 10 50 25 10 244.54 244.54 244.68 249.63 0.056% 0.056% 2.08% 2.08% 4.93 

28 10 50 50 10 288.33 283.33 288.33 289.09 1.765% 0.000% 2.03% 0.26% 3.97 

29 10 50 25 20 108.98 108.98 110.34 112.19 1.250% 1.250% 2.94% 2.94% 4.84 

30 10 50 50 20 157.48 157.48 160.28 161.13 1.779% 1.779% 2.32% 2.32% 4.73 

31 10 50 25 40 32.25 32.25 32.76 32.88 1.587% 1.587% 1.96% 1.96% 5.82 

32 10 50 50 40 36.66 36.66 37.81 38.23 3.146% 3.146% 4.29% 4.29% 4.78 

33 10 100 25 5 403.18 403.18 404.21 409.80 0.255% 0.255% 1.64% 1.64% 2.63 

34 10 100 50 5 296.53 296.53 299.76 307.18 1.088% 1.088% 3.59% 3.59% 2.35 

35 10 100 25 10 388.87 388.87 390.53 397.55 0.427% 0.427% 2.23% 2.23% 8.96 

36 10 100 50 10 294.80 294.80 307.16 308.88 4.194% 4.192% 4.78% 4.78% 9.03 

37 10 100 25 20 178.28 178.28 178.28 181.48 0.000% 0.000% 1.79% 1.79% 8.89 

38 10 100 50 20 175.96 175.96 178.68 182.28 1.548% 1.548% 3.59% 3.59% 10.46 

39 10 100 25 40 57.50 57.50 59.66 59.99 3.751% 3.751% 4.33% 4.33% 11.28 

40 10 100 50 40 31.89 31.89 32.92 33.99 3.231% 3.231% 6.57% 6.57% 10.42 

41 10 200 25 5 735.27 735.27 739.23 745.72 0.539% 0.539% 1.42% 1.42% 12.38 

42 10 200 50 5 512.16 506.06 511.42 515.29 1.059% -0.145% 1.82% 0.61% 9.16 

43 10 200 25 10 513.00 513.00 518.36 522.29 1.045% 1.045% 1.81% 1.81% 33.38 

44 10 200 50 10 475.21  489.71 490.84  3.051%  3.2% 14.05 

45 10 200 25 20 347.29  360.99 361.56  3.945%  3.9% 30.96 

46 10 200 50 20 217.46  225.17 229.25  3.545%  5.1% 29.17 

47 10 200 25 40 102.93  109.19 111.13  6.084%  7.4% 44.06 

48 10 200 50 40 55.05  56.92 57.99  3.392%  5.1% 18.03 

49 20 100 25 5 520.24  535.19 535.70  2.874%  2.9% 12.61 

50 20 100 50 5 420.64  420.64 432.13  0.000%  2.7% 6.83 

51 20 100 25 10 422.21  437.38 439.89  3.594%  4.0% 11.23 

52 20 100 50 10 360.86  368.17 375.02  2.025%  3.8% 9.62 

53 20 100 25 20 245.17  245.17 247.63  0.000%  1.0% 12.38 

54 20 100 50 20 185.06  190.36 194.07  2.864%  4.6% 8.65 
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ID stop stud cap wd BKS(MH) BKS(exact) 

I-ILS 

cost Time(s) 

Best sol Avg sol %Best Gap (exact) %Best Gap(MH) %Avg Gap (exact) % Avg Gap(MH) Avg time 

55 20 100 25 40 52.52  53.92 55.12  2.666%  4.7% 14.23 

56 20 100 50 40 19.05  19.36 20.57  1.627%  7.4% 30.18 

57 20 200 25 5 903.84  924.01 930.06  2.231%  2.8% 15.14 

58 20 200 50 5 485.65  497.39 497.51  2.417%  2.4% 34.19 

59 20 200 25 10 616.93  621.84 626.44  0.797%  1.5% 35.55 

60 20 200 50 10 462.31  476.09 476.46  2.981%  3.0% 24.06 

61 20 200 25 20 373.21  373.21 380.91  0.000%  2.0% 53.96 

62 20 200 50 20 250.75  259.68 264.21  3.561%  5.1% 32.88 

63 20 200 25 40 93.01  97.92 98.21  5.279%  5.3% 83.13 

64 20 200 50 40 45.40  45.40 46.80  0.000%  3.0% 36.53 

65 20 400 25 5 1323.35  1343.98 1353.94  1.559%  2.3% 315.01 

66 20 400 50 5 733.54  755.96 760.54  3.056%  3.6% 47.96 

67 20 400 25 10 975.12  1000.30 1001.71  2.582%  2.7% 215.92 

68 20 400 50 10 614.67  629.16 631.72  2.357%  2.7% 92.85 

69 20 400 25 20 763.76  765.61 785.33  0.242%  2.7% 192.72 

70 20 400 50 20 298.47  312.61 316.90  4.738%  5.8% 99.37 

71 20 400 25 40 239.58  245.48 246.76  2.464%  2.9% 387.12 

72 20 400 50 40 84.49  86.63 89.23  2.533%  5.3% 156.41 

73 40 200 25 5 831.94  858.11 870.25  3.146%  4.4% 89.31 

74 40 200 50 5 593.35  609.72 619.09  2.760%  4.2% 61.73 

75 40 200 25 10 728.44  750.38 750.71  3.012%  3.0% 1002.42 

76 40 200 50 10 481.05  503.17 505.05  4.598%  4.8% 138.96 

77 40 200 25 20 339.75  353.30 353.12  3.987%  3.8% 210.45 

78 40 200 50 20 273.88  275.46 278.04  0.577%  1.5% 62.70 

79 40 200 25 40 76.77  77.34 80.35  0.737%  4.5% 160.79 

80 40 200 50 40 58.46  59.12 61.78  1.129%  5.4% 101.98 

81 40 400 25 5 1407.05  1441.25 1468.33  2.431%  4.2% 422.19 

82 40 400 50 5 858.80  865.19 883.78  0.745%  2.8% 853.34 
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ID stop stud cap wd BKS(MH) BKS(exact) 

I-ILS 

cost Time(s) 

Best sol Avg sol %Best Gap (exact) %Best Gap(MH) %Avg Gap (exact) % Avg Gap(MH) Avg time 

83 40 400 25 10 891.02  909.31 916.30  2.053%  2.8% 623.18 

84 40 400 50 10 757.42  771.12 772.44  1.809%  1.9% 533.15 

85 40 400 25 20 586.29  587.12 596.07  0.142%  1.6% 963.29 

86 40 400 50 20 395.95  396.39 397.77  0.111%  0.5% 355.63 

87 40 400 25 40 195.33  200.35 203.10  2.570%  3.8% 1657.30 

88 40 400 50 40 70.77  73.92 75.32  4.451%  6.0% 785.89 

89 40 800 25 5 2900.14  2951.94 2965.10  1.786%  2.2% 4363.20 

90 40 800 50 5 1345.70  1392.20 1411.06  3.455%  4.6% 2012.87 

91 40 800 25 10 2200.57  2231.96 2254.61  1.426%  2.4% 5471.92 

92 40 800 50 10 1025.16  1039.70 1053.44  1.419%  2.7% 5552.97 

93 40 800 25 20 1404.16  1430.19 1487.48  1.854%  5.6% 4559.61 

94 40 800 50 20 616.58  630.44 632.70  2.248%  2.5% 4765.21 

95 40 800 25 40 396.92  397.21 409.71  0.073%  3.1% 4816.45 

96 40 800 50 40 200.94  210.77 214.09  4.890%  6.1% 4256.84 

97 80 400 25 5 1546.23  1578.36 1578.40  2.078%  2.0% 1347.76 

98 80 400 50 5 1048.56  1086.21 1105.93  3.591%  5.2% 782.60 

99 80 400 25 10 1216.74  1254.93 1273.44  3.139%  4.5% 2693.68 

100 80 400 50 10 760.61  762.82 776.29  0.291%  2.0% 846.50 

101 80 400 25 20 565.49  578.12 585.38  2.233%  3.4% 2012.93 

102 80 400 50 20 372.05  377.34 387.22  1.422%  3.9% 1464.64 

103 80 400 25 40 131.75  136.72 137.92  3.775%  4.5% 1564.08 

104 80 400 50 40 95.84  101.07 101.29  5.457%  5.4% 4531.00 
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Appendix 3 

 

ID stop stud cap wd BKS(MH) 
BKS 

(exact) 

ALNS LNS-1 

cost Time(s) cost Time(s) 

Best sol Avg sol 

%Best 

Gap 

(exact) 

%Best 

Gap 

(MH) 

%Avg 

Gap 

(exact) 

% Avg 

Gap 

(MH) 

Avg 

time 
Best sol Avg sol 

%Best 

Gap 

(exact) 

%Best 

Gap 

(MH) 

%Avg 

Gap 

(exact) 

% Avg 

Gap 

(MH) 

Avg 

time 

1 5 25 25 5 141.01 141.01 141.01 144.98 0.00 0.00 2.82 2.82 1.06 141.01 145.28 0.00 0.00 3.03 3.03 1.04 

2 5 25 50 5 161.62 161.62 164.38 164.44 1.71 1.71 1.74 1.74 1.48 163.78 166.19 1.34 1.34 2.83 2.83 1.35 

3 5 25 25 10 182.14 182.14 186.32 187.29 2.29 2.29 2.83 2.83 1.74 182.14 188.13 0.00 0.00 3.29 3.29 1.78 

4 5 25 50 10 195.80 195.80 195.80 196.09 0.00 0.00 0.15 0.15 1.56 195.80 198.62 0.00 0.00 1.44 1.44 1.70 

5 5 25 25 20 111.65 111.65 111.65 115.18 0.00 0.00 3.16 3.16 1.81 112.98 115.09 1.19 1.19 3.08 3.08 1.70 

6 5 25 50 20 103.18 103.18 105.89 106.90 2.63 2.63 3.60 3.60 1.91 103.18 105.47 0.00 0.00 2.22 2.22 1.98 

7 5 25 25 40 7.63 7.63 7.89 7.98 3.41 3.41 4.59 4.59 1.50 7.75 7.78 1.57 1.57 1.97 1.97 1.45 

8 5 25 50 40 25.64 25.64 26.69 26.98 4.10 4.10 5.23 5.23 1.45 26.95 27.01 5.11 5.11 5.34 5.34 1.48 

9 5 50 25 5 286.68 286.68 286.68 292.34 0.00 0.00 1.97 1.97 1.68 286.68 293.35 0.00 0.00 2.33 2.33 1.65 

10 5 50 50 5 197.20 197.20 197.20 200.07 0.00 0.00 1.46 1.46 1.57 204.93 208.87 3.92 3.92 5.92 5.92 1.50 

11 5 50 25 10 193.55 193.55 193.55 194.29 0.00 0.00 0.38 0.38 1.82 197.27 199.93 1.92 1.92 3.30 3.30 1.70 

12 5 50 50 10 215.86 215.85 215.85 218.89 0.00 0.00 1.41 1.40 1.79 219.49 228.45 1.69 1.68 5.84 5.83 1.87 

13 5 50 25 20 130.53 130.53 130.53 132.78 0.00 0.00 1.72 1.72 3.16 131.34 136.58 0.62 0.62 4.63 4.63 2.98 

14 5 50 50 20 96.26 96.26 99.02 99.24 2.87 2.87 3.10 3.10 3.09 99.73 102.13 3.60 3.60 6.10 6.10 2.83 

15 5 50 25 40 12.89 12.89 13.38 13.48 3.80 3.80 4.58 4.58 3.53 13.54 13.69 5.04 5.04 6.21 6.21 3.37 

16 5 50 50 40 30.24 30.24 31.12 31.23 2.91 2.91 3.27 3.27 2.96 31.53 31.82 4.27 4.27 5.22 5.22 2.81 

17 5 100 25 5 360.35 360.35 360.35 367.39 0.00 0.00 1.96 1.95 3.01 370.39 377.71 2.79 2.79 4.82 4.82 2.56 

18 5 100 50 5 304.23 304.23 307.43 307.86 1.05 1.05 1.19 1.19 2.79 312.75 318.65 2.80 2.80 4.74 4.74 2.50 

19 5 100 25 10 294.21 294.21 294.21 296.13 0.00 0.00 0.65 0.65 4.26 300.85 305.42 2.26 2.26 3.81 3.81 4.06 

20 5 100 50 10 229.41 229.41 232.29 232.59 1.26 1.26 1.39 1.39 3.85 238.54 241.90 3.98 3.98 5.44 5.44 3.68 

21 5 100 25 20 134.95 134.95 134.95 136.14 0.00 0.00 0.88 0.88 7.43 141.52 143.02 4.87 4.87 5.98 5.98 6.40 

22 5 100 50 20 144.41 144.41 144.41 145.32 0.00 0.00 0.63 0.63 3.43 146.39 151.08 1.37 1.37 4.62 4.62 3.73 

23 5 100 25 40 58.95 58.95 58.95 60.32 0.00 0.00 2.32 2.32 8.85 61.54 62.12 4.39 4.39 5.38 5.38 9.37 

24 5 100 50 40 39.44 39.44 40.98 41.11 3.90 3.90 4.23 4.23 7.09 40.83 41.85 3.52 3.52 6.11 6.11 6.80 
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ID stop stud cap wd BKS(MH) 
BKS 

(exact) 

ALNS LNS-1 

cost Time(s) cost Time(s) 

Best sol Avg sol 

%Best 

Gap 

(exact) 

%Best 

Gap 

(MH) 

%Avg 

Gap 

(exact) 

% Avg 

Gap 

(MH) 

Avg 

time 
Best sol Avg sol 

%Best 

Gap 

(exact) 

%Best 

Gap 

(MH) 

%Avg 

Gap 

(exact) 

% Avg 

Gap 

(MH) 

Avg 

time 

25 10 50 25 5 242.85 242.85 250.12 251.02 2.99 2.99 3.36 3.36 3.74 247.49 252.97 1.91 1.91 4.17 4.17 3.60 

26 10 50 50 5 282.12 282.12 289.73 290.07 2.70 2.70 2.82 2.82 3.20 289.30 290.39 2.55 2.55 2.93 2.93 3.40 

27 10 50 25 10 244.54 244.54 244.54 249.18 0.00 0.00 1.90 1.90 4.85 259.17 262.12 5.98 5.98 7.19 7.19 4.66 

28 10 50 50 10 288.33 283.33 297.65 298.63 5.05 3.23 5.40 3.57 3.88 300.24 307.20 5.97 4.13 8.42 6.54 3.82 

29 10 50 25 20 108.98 108.98 111.67 112.57 2.47 2.47 3.29 3.29 4.84 112.73 112.87 3.44 3.44 3.57 3.57 4.83 

30 10 50 50 20 157.48 157.48 159.20 160.19 1.09 1.09 1.72 1.72 4.67 160.94 163.09 2.20 2.20 3.56 3.56 4.50 

31 10 50 25 40 32.25 32.25 33.48 33.54 3.81 3.81 4.00 4.00 5.25 32.85 33.91 1.86 1.86 5.15 5.15 4.97 

32 10 50 50 40 36.66 36.66 36.89 37.91 0.63 0.63 3.40 3.40 5.12 38.31 38.52 4.50 4.50 5.07 5.07 4.74 

33 10 100 25 5 403.18 403.18 403.18 404.98 0.00 0.00 0.45 0.45 2.84 403.18 414.55 0.00 0.00 2.82 2.82 2.09 

34 10 100 50 5 296.53 296.53 305.87 306.57 3.15 3.15 3.39 3.39 2.20 308.17 309.90 3.93 3.93 4.51 4.51 2.69 

35 10 100 25 10 388.87 388.87 388.87 389.41 0.00 0.00 0.14 0.14 8.84 388.87 403.11 0.00 0.00 3.66 3.66 8.64 

36 10 100 50 10 294.80 294.80 301.17 302.26 2.16 2.16 2.53 2.53 9.59 309.18 312.85 4.88 4.88 6.12 6.12 9.08 

37 10 100 25 20 178.28 178.28 178.28 183.12 0.00 0.00 2.71 2.71 9.81 189.30 192.94 6.18 6.18 8.22 8.22 10.18 

38 10 100 50 20 175.96 175.96 182.78 183.53 3.88 3.88 4.30 4.30 10.71 182.28 185.60 3.59 3.59 5.48 5.48 11.59 

39 10 100 25 40 57.50 57.50 57.50 57.74 0.00 0.00 0.42 0.42 10.68 59.42 61.25 3.34 3.34 6.52 6.52 9.94 

40 10 100 50 40 31.89 31.89 32.59 33.03 2.20 2.20 3.57 3.57 10.37 33.12 33.82 3.86 3.86 6.05 6.05 11.06 

41 10 200 25 5 735.27 735.27 738.42 749.47 0.43 0.43 1.93 1.93 10.91 735.27 753.39 0.00 0.00 2.46 2.46 11.74 

42 10 200 50 5 512.16 506.06 509.03 519.08 0.59 -0.61 2.57 1.35 8.74 525.12 530.05 3.77 2.53 4.74 3.49 9.62 

43 10 200 25 10 513.00 513.00 513.00 519.27 0.00 0.00 1.22 1.22 34.13 522.14 534.11 1.78 1.78 4.12 4.12 30.83 

44 10 200 50 10 475.21  479.54 481.36  0.91  1.29 13.72 490.35 493.06  3.19  3.76 14.75 

45 10 200 25 20 347.29  359.07 364.08  3.39  4.83 30.14 360.11 364.93  3.69  5.08 26.75 

46 10 200 50 20 217.46  222.98 225.62  2.54  3.75 26.71 219.41 230.12  0.90  5.82 25.07 

47 10 200 25 40 102.93  102.93 106.49  0.00  3.46 40.57 105.39 107.19  2.39  4.14 38.71 

48 10 200 50 40 55.05  57.66 58.01  4.74  5.38 16.75 56.83 59.91  3.23  8.83 16.30 

49 20 100 25 5 520.24  534.12 536.01  2.67  3.03 11.38 534.19 542.10  2.68  4.20 11.05 

50 20 100 50 5 420.64  418.73 429.16  -0.45  2.03 6.18 434.17 438.95  3.22  4.35 6.21 
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ID stop stud cap wd BKS(MH) 
BKS 

(exact) 

ALNS LNS-1 

cost Time(s) cost Time(s) 

Best sol Avg sol 

%Best 

Gap 

(exact) 

%Best 

Gap 

(MH) 

%Avg 

Gap 

(exact) 

% Avg 

Gap 

(MH) 

Avg 

time 
Best sol Avg sol 

%Best 

Gap 

(exact) 

%Best 

Gap 

(MH) 

%Avg 

Gap 

(exact) 

% Avg 

Gap 

(MH) 

Avg 

time 

51 20 100 25 10 422.21  422.21 432.98  0.00  2.55 10.46 434.26 437.74  2.85  3.68 10.68 

52 20 100 50 10 360.86  368.02 368.87  1.98  2.22 8.53 368.93 382.19  2.24  5.91 9.22 

53 20 100 25 20 245.17  245.17 249.12  0.00  1.61 11.58 251.19 260.17  2.46  6.12 10.90 

54 20 100 50 20 185.06  190.32 191.07  2.84  3.25 8.22 192.74 194.90  4.15  5.32 9.27 

55 20 100 25 40 52.52  53.73 53.85  2.30  2.53 12.73 53.90 55.83  2.63  6.30 12.36 

56 20 100 50 40 19.05  20.01 20.13  5.04  5.67 29.11 20.49 21.04  7.56  10.45 28.83 

57 20 200 25 5 903.84  926.65 929.52  2.52  2.84 13.33 925.19 935.37  2.36  3.49 13.56 

58 20 200 50 5 485.65  481.11 495.12  -0.93  1.95 32.22 481.93 503.82  -0.77  3.74 31.63 

59 20 200 25 10 616.93  629.95 633.93  2.11  2.76 32.81 630.25 639.17  2.16  3.60 32.41 

60 20 200 50 10 462.31  469.21 470.47  1.49  1.77 22.67 475.19 489.81  2.79  5.95 21.82 

61 20 200 25 20 373.21  380.97 385.05  2.08  3.17 59.99 386.31 389.16  3.51  4.27 55.96 

62 20 200 50 20 250.75  250.75 258.23  0.00  2.98 30.98 259.45 271.26  3.47  8.18 29.80 

63 20 200 25 40 93.01  96.25 96.30  3.48  3.54 80.13 96.90 97.75  4.18  5.10 77.25 

64 20 200 50 40 45.40  45.40 48.09  0.00  5.93 40.67 47.39 48.26  4.38  6.30 38.71 

65 20 400 25 5 1323.35  1349.87 1354.94  2.00  2.39 291.37 1349.45 1368.19  1.97  3.39 283.28 

66 20 400 50 5 733.54  730.94 747.12  -0.35  1.85 43.67 751.38 768.13  2.43  4.72 43.51 

67 20 400 25 10 975.12  988.11 989.59  1.33  1.48 203.85 999.32 1017.82  2.48  4.38 193.90 

68 20 400 50 10 614.67  627.12 628.78  2.03  2.29 86.97 637.45 639.35  3.71  4.02 85.22 

69 20 400 25 20 763.76  763.76 789.13  0.00  3.32 181.83 788.42 795.04  3.23  4.10 172.73 

70 20 400 50 20 298.47  309.12 311.29  3.57  4.30 110.01 309.38 311.71  3.66  4.44 105.00 

71 20 400 25 40 239.58  239.58 243.12  0.00  1.48 371.78 244.19 248.12  1.92  3.56 357.18 

72 20 400 50 40 84.49  88.05 88.70  4.21  4.98 148.93 87.09 89.01  3.08  5.35 142.38 

73 40 200 25 5 831.94  831.94 845.67  0.00  1.65 84.38 867.41 878.06  4.26  5.54 80.00 

74 40 200 50 5 593.35  593.35 600.07  0.00  1.13 58.22 614.83 621.92  3.62  4.82 55.14 

75 40 200 25 10 728.44  743.43 748.92  2.06  2.81 952.89 746.11 759.19  2.43  4.22 889.80 

76 40 200 50 10 481.05  486.12 489.09  1.05  1.67 131.57 508.39 511.97  5.68  6.43 119.52 



 

200 

 

ID stop stud cap wd BKS(MH) 
BKS 

(exact) 

ALNS LNS-1 

cost Time(s) cost Time(s) 

Best sol Avg sol 

%Best 

Gap 

(exact) 

%Best 

Gap 

(MH) 

%Avg 

Gap 
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% Avg 

Gap 

(MH) 

Avg 
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Best sol Avg sol 

%Best 

Gap 

(exact) 

%Best 

Gap 

(MH) 

%Avg 

Gap 

(exact) 

% Avg 

Gap 

(MH) 

Avg 

time 

77 40 200 25 20 339.75  347.12 349.90  2.17  2.99 207.38 349.18 366.95  2.78  8.01 181.03 

78 40 200 50 20 273.88  282.09 282.97  3.00  3.32 61.64 282.07 293.12  2.99  7.02 59.48 

79 40 200 25 40 76.77  79.92 79.96  4.10  4.16 155.05 79.75 81.02  3.88  5.54 143.31 

80 40 200 50 40 58.46  58.46 59.92  0.00  2.50 97.26 60.24 62.27  3.04  6.52 92.79 

81 40 400 25 5 1407.05  1477.23 1483.22  4.99  5.41 402.59 1473.54 1489.41  4.73  5.85 399.68 

82 40 400 50 5 858.80  858.80 883.21  0.00  2.84 767.15 889.19 898.19  3.54  4.59 737.98 

83 40 400 25 10 891.02  909.32 911.55  2.05  2.30 600.42 916.52 938.73  2.86  5.35 566.48 

84 40 400 50 10 757.42  775.09 779.98  2.33  2.98 480.05 789.12 792.27  4.19  4.60 449.96 

85 40 400 25 20 586.29  598.12 607.12  2.02  3.55 895.72 600.91 609.81  2.49  4.01 868.21 

86 40 400 50 20 395.95  407.89 408.81  3.02  3.25 340.75 420.96 422.75  6.32  6.77 308.89 

87 40 400 25 40 195.33  204.67 206.32  4.78  5.63 1573.11 201.38 211.06  3.10  8.05 1456.04 

88 40 400 50 40 70.77  70.77 72.12  0.00  1.91 710.02 74.03 75.41  4.61  6.56 671.06 

89 40 800 25 5 2900.14  2949.54 2955.61  1.70  1.91 4007.23 3011.26 3028.11  3.83  4.41 4034.39 

90 40 800 50 5 1345.70  1360.54 1371.13  1.10  1.89 1908.75 1389.55 1427.38  3.26  6.07 1697.66 

91 40 800 25 10 2200.57  2200.57 2298.45  0.00  4.45 4963.79 2239.78 2342.87  1.78  6.47 4757.52 

92 40 800 50 10 1025.16  1039.45 1040.17  1.39  1.46 5077.73 1062.44 1086.52  3.64  5.99 4959.48 

93 40 800 25 20 1404.16  1456.19 1467.12  3.71  4.48 4377.77 1469.52 1478.39  4.65  5.29 4266.13 

94 40 800 50 20 616.58  630.18 634.76  2.21  2.95 4358.62 643.83 649.12  4.42  5.28 4228.77 

95 40 800 25 40 396.92  407.21 409.42  2.59  3.15 4526.01 417.56 421.56  5.20  6.21 4220.77 

96 40 800 50 40 200.94  207.78 209.59  3.40  4.31 4076.39 211.53 214.35  5.27  6.67 3762.38 

97 80 400 25 5 1546.23  1584.78 1589.76  2.49  2.82 1262.13 1616.90 1618.19  4.57  4.65 1229.19 

98 80 400 50 5 1048.56  1048.56 1065.12  0.00  1.58 711.48 1089.45 1103.92  3.90  5.28 672.84 

99 80 400 25 10 1216.74  1276.26 1282.14  4.89  5.37 2513.03 1262.09 1280.54  3.73  5.24 2275.78 

100 80 400 50 10 760.61  760.61 773.45  0.00  1.69 746.12 796.41 799.35  4.71  5.09 704.78 

101 80 400 25 20 565.49  580.38 581.24  2.63  2.78 1795.11 591.45 595.01  4.59  5.22 1752.69 

102 80 400 50 20 372.05  378.98 380.90  1.86  2.38 1339.74 389.14 391.86  4.59  5.32 1199.91 



 

201 

 

ID stop stud cap wd BKS(MH) 
BKS 

(exact) 

ALNS LNS-1 

cost Time(s) cost Time(s) 

Best sol Avg sol 

%Best 

Gap 

(exact) 

%Best 

Gap 

(MH) 

%Avg 

Gap 
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% Avg 

Gap 

(MH) 
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Best sol Avg sol 

%Best 

Gap 

(exact) 

%Best 

Gap 

(MH) 

%Avg 

Gap 

(exact) 

% Avg 

Gap 

(MH) 

Avg 

time 

103 80 400 25 40 131.75  136.09 137.07  3.29  4.04 1285.62 137.98 144.06  4.73  9.34 1289.44 

104 80 400 50 40 95.84  95.84 100.03  0.00  4.37 3998.27 100.35 102.90  4.71  7.37 3981.10 

 

 

 

ID 
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p 

stu

d 
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p 

w

d 
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(MH) 
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) 
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(MH) 
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Gap 
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% 
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) 
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Avg 
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%Best Gap 
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%Best Gap 

(MH) 

%Avg 

Gap 

(exact

) 

% Avg Gap 

(MH) 

avg 

time 

1 5 25 25 5 141.01 141.01 141.01 144.37 0.00 0.00 2.38 2.38 1.06 141.01 145.12 0.00 0.00 2.91 2.91 1.15 

2 5 25 50 5 161.62 161.62 163.07 164.28 0.90 0.90 1.65 1.65 1.52 161.62 164.12 0.00 0.00 1.55 1.55 1.66 

3 5 25 25 10 182.14 182.14 182.14 185.78 0.00 0.00 2.00 2.00 1.71 182.89 183.29 0.41 0.41 0.63 0.63 1.81 

4 5 25 50 10 195.80 195.80 197.09 200.49 0.66 0.66 2.40 2.40 1.55 195.80 197.12 0.00 0.00 0.67 0.67 1.73 

5 5 25 25 20 111.65 111.65 112.29 114.63 0.57 0.57 2.67 2.67 1.84 114.87 115.32 2.88 2.88 3.29 3.29 2.11 

6 5 25 50 20 103.18 103.18 103.18 104.21 0.00 0.00 1.00 1.00 1.93 103.45 107.54 0.26 0.26 4.23 4.23 2.04 

7 5 25 25 40 7.63 7.63 8.10 8.27 6.16 6.16 8.39 8.39 1.62 7.63 7.78 0.00 0.00 1.97 1.97 2.08 

8 5 25 50 40 25.64 25.64 25.64 27.09 0.00 0.00 5.66 5.66 1.47 26.18 26.45 2.11 2.11 3.16 3.16 1.51 

9 5 50 25 5 286.68 286.68 286.93 288.56 0.09 0.09 0.66 0.66 1.75 286.68 289.42 0.00 0.00 0.96 0.96 1.81 

10 5 50 50 5 197.20 197.20 201.37 205.73 2.11 2.11 4.33 4.33 1.71 197.20 199.54 0.00 0.00 1.19 1.19 1.66 

11 5 50 25 10 193.55 193.55 193.55 194.12 0.00 0.00 0.29 0.29 1.85 193.55 195.67 0.00 0.00 1.10 1.10 1.91 

12 5 50 50 10 215.86 215.85 217.14 218.45 0.60 0.59 1.20 1.20 1.84 215.86 219.42 0.00 0.00 1.65 1.65 1.93 

13 5 50 25 20 130.53 130.53 130.53 132.19 0.00 0.00 1.27 1.27 3.18 131.68 133.78 0.88 0.88 2.49 2.49 3.41 

14 5 50 50 20 96.26 96.26 99.77 100.22 3.65 3.65 4.11 4.11 3.14 98.79 98.93 2.63 2.63 2.77 2.77 3.74 

15 5 50 25 40 12.89 12.89 13.38 13.48 3.80 3.80 4.58 4.58 3.62 13.19 13.31 2.33 2.33 3.26 3.26 3.82 
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ID 
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p 
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d 
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p 

w
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) 
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(MH) 
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16 5 50 50 40 30.24 30.24 31.44 31.75 3.97 3.97 4.99 4.99 2.97 31.02 31.48 2.58 2.58 4.10 4.10 3.40 

17 5 100 25 5 360.35 360.35 371.67 379.19 3.14 3.14 5.23 5.23 3.02 367.89 369.41 2.09 2.09 2.52 2.51 3.14 

18 5 100 50 5 304.23 304.23 311.41 315.04 2.36 2.36 3.55 3.55 2.82 311.67 312.28 2.45 2.45 2.65 2.65 2.93 

19 5 100 25 10 294.21 294.21 301.78 305.88 2.57 2.57 3.97 3.97 4.35 305.12 307.42 3.71 3.71 4.49 4.49 4.51 

20 5 100 50 10 229.41 229.41 234.09 236.87 2.04 2.04 3.25 3.25 3.88 229.41 243.78 0.00 0.00 6.26 6.26 4.15 

21 5 100 25 20 134.95 134.95 138.96 140.76 2.97 2.97 4.31 4.31 7.56 139.08 139.37 3.06 3.06 3.28 3.28 7.98 

22 5 100 50 20 144.41 144.41 145.39 148.87 0.68 0.68 3.09 3.09 3.52 147.87 149.41 2.40 2.40 3.46 3.46 3.62 

23 5 100 25 40 58.95 58.95 58.95 60.43 0.00 0.00 2.51 2.51 9.36 58.95 59.91 0.00 0.00 1.63 1.63 9.87 

24 5 100 50 40 39.44 39.44 41.20 42.07 4.46 4.46 6.67 6.67 7.17 41.12 41.17 4.26 4.26 4.39 4.39 7.69 

25 10 50 25 5 242.85 242.85 242.85 251.37 0.00 0.00 3.51 3.51 4.00 242.85 247.31 0.00 0.00 1.84 1.84 4.28 

26 10 50 50 5 282.12 282.12 286.30 289.76 1.48 1.48 2.71 2.71 3.40 285.39 285.73 1.16 1.16 1.28 1.28 3.49 

27 10 50 25 10 244.54 244.54 252.59 257.92 3.29 3.29 5.47 5.47 5.09 250.25 251.31 2.33 2.33 2.77 2.77 5.32 

28 10 50 50 10 288.33 283.33 297.67 301.13 5.06 3.24 6.28 4.44 4.03 288.75 299.45 1.91 0.15 5.69 3.86 4.16 

29 10 50 25 20 108.98 108.98 112.01 114.10 2.78 2.78 4.70 4.70 5.91 110.72 111.38 1.60 1.60 2.20 2.20 5.33 

30 10 50 50 20 157.48 157.48 160.90 162.35 2.17 2.17 3.09 3.09 4.79 159.27 159.91 1.14 1.14 1.54 1.54 4.99 

31 10 50 25 40 32.25 32.25 33.09 33.48 2.60 2.60 3.81 3.81 5.40 32.45 33.49 0.62 0.62 3.84 3.84 5.62 

32 10 50 50 40 36.66 36.66 38.84 39.52 5.95 5.95 7.80 7.80 5.18 37.82 38.10 3.16 3.16 3.93 3.93 5.45 

33 10 100 25 5 403.18 403.18 403.18 408.73 0.00 0.00 1.38 1.38 2.93 404.21 408.21 0.26 0.26 1.25 1.25 3.04 

34 10 100 50 5 296.53 296.53 296.53 309.12 0.00 0.00 4.25 4.25 2.47 302.69 303.91 2.08 2.08 2.49 2.49 2.51 

35 10 100 25 10 388.87 388.87 394.12 396.19 1.35 1.35 1.88 1.88 8.98 388.87 394.76 0.00 0.00 1.51 1.51 9.39 

36 10 100 50 10 294.80 294.80 306.05 310.24 3.82 3.82 5.24 5.24 9.51 304.98 307.45 3.45 3.45 4.29 4.29 10.17 

37 10 100 25 20 178.28 178.28 179.45 182.65 0.66 0.66 2.45 2.45 9.98 187.12 187.42 4.96 4.96 5.13 5.13 10.43 

38 10 100 50 20 175.96 175.96 182.16 183.34 3.52 3.52 4.19 4.19 11.12 180.32 181.19 2.48 2.48 2.97 2.97 11.42 

39 10 100 25 40 57.50 57.50 60.89 61.90 5.90 5.90 7.65 7.65 11.00 59.13 59.45 2.83 2.83 3.39 3.39 11.33 

40 10 100 50 40 31.89 31.89 32.65 33.29 2.38 2.38 4.39 4.39 10.59 33.12 33.27 3.86 3.86 4.33 4.33 10.98 

41 10 200 25 5 735.27 735.27 745.87 751.19 1.44 1.44 2.17 2.17 11.19 735.27 740.21 0.00 0.00 0.67 0.67 13.77 
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42 10 200 50 5 512.16 506.06 511.42 525.92 1.06 -0.14 3.92 2.69 9.12 510.73 512.82 0.92 -0.28 1.34 0.13 9.51 

43 10 200 25 10 513.00 513.00 522.12 525.84 1.78 1.78 2.50 2.50 34.94 513.00 520.67 0.00 0.00 1.50 1.50 36.22 

44 10 200 50 10 475.21  485.12 489.32  2.09  2.97 14.59 487.92 488.13  2.67  2.72 15.58 

45 10 200 25 20 347.29  361.73 367.83  4.16  5.91 31.06 357.02 358.91  2.80  3.35 32.52 

46 10 200 50 20 217.46  217.46 222.11  0.00  2.14 27.63 223.09 226.65  2.59  4.23 28.25 

47 10 200 25 40 102.93  104.69 108.39  1.71  5.30 41.88 107.21 108.91  4.16  5.81 43.85 

48 10 200 50 40 55.05  57.34 58.12  4.16  5.58 16.97 56.98 57.02  3.51  3.58 18.13 

49 20 100 25 5 520.24  531.92 533.76  2.25  2.60 11.66 531.09 533.12  2.09  2.48 12.23 

50 20 100 50 5 420.64  420.64 434.75  0.00  3.35 6.29 419.05 431.49  -0.38  2.58 6.52 

51 20 100 25 10 422.21  433.38 438.22  2.65  3.79 10.70 434.29 436.25  2.86  3.33 11.21 

52 20 100 50 10 360.86  368.85 371.39  2.21  2.92 9.06 367.98 376.45  1.97  4.32 9.49 

53 20 100 25 20 245.17  245.17 251.83  0.00  2.72 12.07 245.17 252.19  0.00  2.86 12.48 

54 20 100 50 20 185.06  189.32 191.69  2.30  3.58 8.41 191.46 193.49  3.46  4.56 8.01 

55 20 100 25 40 52.52  52.98 53.97  0.88  2.76 13.22 54.12 54.27  3.05  3.33 13.65 

56 20 100 50 40 19.05  19.65 20.37  3.15  6.93 30.11 19.84 19.91  4.15  4.51 30.95 

57 20 200 25 5 903.84  919.74 925.39  1.76  2.38 14.70 922.89 925.92  2.11  2.44 15.39 

58 20 200 50 5 485.65  497.12 502.57  2.36  3.48 33.19 496.08 497.09  2.15  2.36 34.10 

59 20 200 25 10 616.93  628.89 631.98  1.94  2.44 34.57 616.93 620.41  0.00  0.56 36.08 

60 20 200 50 10 462.31  478.30 480.57  3.46  3.95 23.28 477.12 478.12  3.20  3.42 24.39 

61 20 200 25 20 373.21  376.52 382.12  0.89  2.39 61.79 373.21 380.19  0.00  1.87 63.84 

62 20 200 50 20 250.75  258.29 261.07  3.01  4.12 31.89 258.67 264.19  3.16  5.36 33.20 

63 20 200 25 40 93.01  96.53 97.72  3.78  5.06 83.10 95.02 96.22  2.16  3.45 86.64 

64 20 200 50 40 45.40  46.11 47.20  1.56  3.96 42.44 45.40 47.12  0.00  3.79 44.60 

65 20 400 25 5 
1323.3

5 
 1364.9

0 

1384.4

9 
 3.14  4.62 298.62 1341.07 

1353.2

9 
 1.34  2.26 324.71 

66 20 400 50 5 733.54  731.67 755.90  -0.25  3.05 45.59 752.98 759.28  2.65  3.51 47.86 
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67 20 400 25 10 975.12  992.10 
1004.1

7 
 1.74  2.98 208.98 998.30 

1000.4

5 
 2.38  2.60 220.56 

68 20 400 50 10 614.67  634.12 646.33  3.16  5.15 90.30 627.14 629.81  2.03  2.46 95.37 

69 20 400 25 20 763.76  789.02 805.35  3.31  5.45 187.45 763.76 775.56  0.00  1.54 197.13 

70 20 400 50 20 298.47  309.45 313.11  3.68  4.91 112.59 310.49 315.43  4.03  5.68 118.89 

71 20 400 25 40 239.58  244.12 246.02  1.89  2.69 378.38 243.39 244.98  1.59  2.25 399.32 

72 20 400 50 40 84.49  87.90 88.73  4.04  5.02 152.40 86.29 87.45  2.13  3.50 161.65 

73 40 200 25 5 831.94  848.29 853.39  1.97  2.58 86.99 858.12 860.39  3.15  3.42 91.32 

74 40 200 50 5 593.35  608.73 619.25  2.59  4.37 60.74 607.42 608.25  2.37  2.51 63.50 

75 40 200 25 10 728.44  734.19 737.68  0.79  1.27 981.90 748.37 750.53  2.74  3.03 1028.44 

76 40 200 50 10 481.05  500.98 508.12  4.14  5.63 137.54 501.94 502.97  4.34  4.56 142.86 

77 40 200 25 20 339.75  339.75 346.28  0.00  1.92 215.40 351.29 357.49  3.40  5.22 225.19 

78 40 200 50 20 273.88  275.42 281.74  0.56  2.87 63.14 273.88 286.49  0.00  4.60 66.52 

79 40 200 25 40 76.77  79.90 80.12  4.08  4.36 158.58 77.65 80.02  1.15  4.23 166.92 

80 40 200 50 40 58.46  60.21 60.37  2.99  3.27 99.92 60.12 61.01  2.84  4.36 104.61 

81 40 400 25 5 
1407.0

5 
 1462.1

9 

1481.1

9 
 3.92  5.27 423.40 1448.65 

1458.3

8 
 2.96  3.65 442.93 

82 40 400 50 5 858.80  879.32 890.21  2.39  3.66 808.04 858.80 880.27  0.00  2.50 845.43 

83 40 400 25 10 891.02  899.12 901.93  0.91  1.22 617.99 913.39 919.87  2.51  3.24 643.77 

84 40 400 50 10 757.42  784.30 791.26  3.55  4.47 492.75 774.39 776.65  2.24  2.54 515.28 

85 40 400 25 20 586.29  594.19 600.76  1.35  2.47 951.78 586.29 599.21  0.00  2.20 992.06 

86 40 400 50 20 395.95  402.17 408.12  1.57  3.07 351.32 412.65 413.97  4.22  4.55 365.26 

87 40 400 25 40 195.33  199.03 201.54  1.89  3.18 1607.68 203.09 205.41  3.97  5.16 1704.52 

88 40 400 50 40 70.77  74.93 75.59  5.88  6.81 723.28 73.12 73.54  3.32  3.91 764.01 

89 40 800 25 5 
2900.1

4 
 2976.5

4 

2997.2

8 
 2.63  3.35 4297.35 2952.39 

2953.2

1 
 1.80  1.83 4495.55 

90 40 800 50 5 
1345.7

0 
 1373.1

9 

1406.7

8 
 2.04  4.54 1955.48 1385.67 

1399.4

3 
 2.97  3.99 2031.99 

91 40 800 25 10 
2200.5

7 
 2223.3

0 

2287.9

1 
 1.03  3.97 5060.71 2289.38 

2293.1

2 
 4.04  4.21 5438.28 
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ID 
sto

p 

stu

d 

ca

p 

w

d 

BKS 

(MH) 

BKS 

(exact

) 

LNS-2 LNS-3 

cost 
time 

(s) 
cost time (s) 

Best 

sol 

Avg 

sol 

%Best 

Gap 

(exct) 

%Bes

t Gap 

(MH) 

%Avg 

Gap 

(exact

) 

% 

Avg 

Gap 

(MH

) 

avg 

time 

Best 

sol 

Avg 

sol 

%Best Gap 

(exact) 

%Best Gap 

(MH) 

%Avg 

Gap 

(exact

) 

% Avg Gap 

(MH) 

avg 

time 

92 40 800 50 10 
1025.1

6 
 1048.3

1 

1074.1

7 
 2.26  4.78 5239.34 1047.39 

1058.1

5 
 2.17  3.22 5518.28 

93 40 800 25 20 
1404.1

6 
 1438.9

0 

1459.9

5 
 2.47  3.97 4455.99 1430.19 

1476.2

1 
 1.85  5.13 4677.14 

94 40 800 50 20 616.58  635.29 640.12  3.03  3.82 4394.49 631.98 636.29  2.50  3.20 4612.66 

95 40 800 25 40 396.92  411.94 415.39  3.78  4.65 4555.08 409.38 412.90  3.14  4.03 4958.06 

96 40 800 50 40 200.94  208.65 210.28  3.84  4.65 4190.83 209.89 210.45  4.45  4.73 4484.15 

97 80 400 25 5 
1546.2

3 
 1576.1

9 

1600.3

9 
 1.94  3.50 1328.56 1579.45 

1583.4

5 
 2.15  2.41 1303.99 

98 80 400 50 5 
1048.5

6 
 1083.2

1 

1085.3

4 
 3.30  3.51 744.23 1068.45 

1079.4

1 
 1.90  2.94 717.44 

99 80 400 25 10 
1216.7

4 
 1258.4

3 

1278.6

7 
 3.43  5.09 2584.15 1242.89 

1267.5

6 
 2.15  4.18 2559.52 

100 80 400 50 10 760.61  785.12 785.35  3.22  3.25 768.05 760.61 773.39  0.00  1.68 769.32 

101 80 400 25 20 565.49  584.38 587.45  3.34  3.88 1890.40 578.43 582.12  2.29  2.94 1944.50 

102 80 400 50 20 372.05  385.74 386.22  3.68  3.81 1381.76 380.12 383.12  2.17  2.98 1375.31 

103 80 400 25 40 131.75  137.39 139.61  4.28  5.97 1348.11 134.68 136.98  2.22  3.97 1660.14 

104 80 400 50 40 95.84  98.56 99.78  2.84  4.11 4254.52 100.90 101.84  5.28  6.26 4721.85 

 

 

 

ID 
sto

p 

stu

d 

ca

p 

w

d 

BKS(M

H) 

BKS(exac

t) 

LNS-4 LNS-5 

cost 
Time(s

) 
cost 

Time 

(s) 

Best 

sol 

Avg 

sol 

%Best Gap 

(exct) 

%Best 

Gap(MH) 

%Avg 

Gap 

(exac

t) 

% Avg 

Gap(MH

) 

avg 

time 

Best 

sol 

Avg 

sol 

%Best Gap 

(exact) 

%Best 

Gap(MH) 

%Avg 

Gap 

(exac

t) 

% Avg 

Gap(MH) 

Avg 

time 

1 5 25 25 5 141.01 141.01 141.01 143.19 0.00 0.00 1.55 1.55 1.18 141.01 144.06 0.00 0.00 2.16 2.16 1.04 

2 5 25 50 5 161.62 161.62 161.67 161.78 0.03 0.03 0.10 0.10 1.72 161.62 163.02 0.00 0.00 0.87 0.87 1.57 

3 5 25 25 10 182.14 182.14 184.02 184.49 1.03 1.03 1.29 1.29 1.92 187.86 188.48 3.14 3.14 3.48 3.48 1.79 
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ID 
sto

p 

stu

d 

ca

p 

w

d 

BKS(M

H) 

BKS(exac

t) 

LNS-4 LNS-5 

cost 
Time(s

) 
cost 

Time 

(s) 

Best 

sol 

Avg 

sol 

%Best Gap 

(exct) 

%Best 

Gap(MH) 

%Avg 

Gap 

(exac

t) 

% Avg 

Gap(MH

) 

avg 

time 

Best 

sol 

Avg 

sol 

%Best Gap 

(exact) 

%Best 

Gap(MH) 

%Avg 

Gap 

(exac

t) 

% Avg 

Gap(MH) 

Avg 

time 

4 5 25 50 10 195.80 195.80 195.80 195.87 0.00 0.00 0.04 0.04 1.83 201.17 201.45 2.74 2.74 2.89 2.89 1.63 

5 5 25 25 20 111.65 111.65 114.12 115.09 2.21 2.21 3.08 3.08 2.16 111.78 112.06 0.12 0.12 0.37 0.37 1.90 

6 5 25 50 20 103.18 103.18 103.18 104.12 0.00 0.00 0.91 0.91 2.10 103.78 104.27 0.58 0.58 1.06 1.06 1.92 

7 5 25 25 40 7.63 7.63 7.96 7.98 4.33 4.33 4.59 4.59 1.72 7.73 7.91 1.31 1.31 3.67 3.67 1.87 

8 5 25 50 40 25.64 25.64 26.65 26.92 3.94 3.94 4.99 4.99 1.49 26.32 27.92 2.65 2.65 8.89 8.89 1.47 

9 5 50 25 5 286.68 286.68 288.02 288.93 0.47 0.47 0.78 0.78 1.80 286.97 293.84 0.10 0.10 2.50 2.50 1.72 

10 5 50 50 5 197.20 197.20 199.91 207.87 1.37 1.37 5.41 5.41 1.67 205.67 207.73 4.30 4.30 5.34 5.34 1.58 

11 5 50 25 10 193.55 193.55 193.55 194.12 0.00 0.00 0.29 0.29 1.92 193.55 196.65 0.00 0.00 1.60 1.60 1.83 

12 5 50 50 10 215.86 215.85 215.86 219.87 0.00 0.00 1.86 1.86 1.90 218.78 223.12 1.36 1.35 3.37 3.36 1.90 

13 5 50 25 20 130.53 130.53 131.02 134.09 0.38 0.38 2.73 2.73 3.36 130.53 135.12 0.00 0.00 3.52 3.52 3.28 

14 5 50 50 20 96.26 96.26 99.02 100.26 2.87 2.87 4.16 4.16 2.87 99.72 102.19 3.59 3.59 6.16 6.16 3.55 

15 5 50 25 40 12.89 12.89 13.45 13.58 4.34 4.34 5.35 5.35 3.76 13.29 13.47 3.10 3.10 4.50 4.50 3.69 

16 5 50 50 40 30.24 30.24 31.29 31.39 3.47 3.47 3.80 3.80 3.35 30.24 30.67 0.00 0.00 1.42 1.42 3.11 

17 5 100 25 5 360.35 360.35 360.35 362.18 0.00 0.00 0.51 0.51 3.27 370.72 376.19 2.88 2.88 4.40 4.40 3.07 

18 5 100 50 5 304.23 304.23 310.94 311.81 2.21 2.21 2.49 2.49 3.04 310.94 313.19 2.21 2.21 2.95 2.95 2.67 

19 5 100 25 10 294.21 294.21 294.21 297.84 0.00 0.00 1.23 1.23 4.65 297.19 301.09 1.01 1.01 2.34 2.34 4.08 

20 5 100 50 10 229.41 229.41 232.39 234.98 1.30 1.30 2.43 2.43 4.29 234.89 238.12 2.39 2.39 3.80 3.80 3.53 

21 5 100 25 20 134.95 134.95 134.95 139.92 0.00 0.00 3.68 3.68 8.77 139.97 140.98 3.72 3.72 4.47 4.47 7.01 

22 5 100 50 20 144.41 144.41 147.81 149.21 2.35 2.35 3.32 3.32 3.83 147.67 149.73 2.26 2.26 3.68 3.68 3.09 

23 5 100 25 40 58.95 58.95 60.02 60.84 1.82 1.82 3.21 3.21 9.94 61.08 61.42 3.61 3.61 4.19 4.19 8.54 

24 5 100 50 40 39.44 39.44 41.83 41.93 6.06 6.06 6.31 6.31 7.84 41.83 42.63 6.06 6.06 8.09 8.09 6.71 

25 10 50 25 5 242.85 242.85 242.85 246.53 0.00 0.00 1.52 1.52 4.95 246.90 247.67 1.67 1.67 1.98 1.98 3.71 

26 10 50 50 5 282.12 282.12 282.45 283.11 0.12 0.12 0.35 0.35 3.86 282.12 283.12 0.00 0.00 0.35 0.35 3.11 

27 10 50 25 10 244.54 244.54 251.05 253.90 2.66 2.66 3.83 3.83 5.02 250.39 255.13 2.39 2.39 4.33 4.33 4.55 

28 10 50 50 10 288.33 283.33 289.67 293.05 2.24 0.46 3.43 1.64 4.43 294.86 295.39 4.07 2.26 4.26 2.45 3.51 

29 10 50 25 20 108.98 108.98 112.98 113.28 3.67 3.67 3.95 3.95 5.40 113.46 114.87 4.11 4.11 5.40 5.40 4.70 
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ID 
sto

p 

stu

d 

ca

p 

w

d 

BKS(M

H) 

BKS(exac

t) 

LNS-4 LNS-5 

cost 
Time(s

) 
cost 

Time 

(s) 

Best 

sol 

Avg 

sol 

%Best Gap 

(exct) 

%Best 

Gap(MH) 

%Avg 

Gap 

(exac

t) 

% Avg 

Gap(MH

) 

avg 

time 

Best 

sol 

Avg 

sol 

%Best Gap 

(exact) 

%Best 

Gap(MH) 

%Avg 

Gap 

(exac

t) 

% Avg 

Gap(MH) 

Avg 

time 

30 10 50 50 20 157.48 157.48 161.19 161.19 2.36 2.36 2.36 2.36 6.10 160.82 162.89 2.12 2.12 3.44 3.44 4.34 

31 10 50 25 40 32.25 32.25 33.29 33.62 3.22 3.22 4.25 4.25 6.73 33.87 34.05 5.02 5.02 5.58 5.58 4.86 

32 10 50 50 40 36.66 36.66 37.46 37.90 2.18 2.18 3.38 3.38 6.11 37.83 39.07 3.19 3.19 6.57 6.57 4.81 

33 10 100 25 5 403.18 403.18 403.97 405.76 0.20 0.20 0.64 0.64 3.32 405.79 407.19 0.65 0.65 0.99 0.99 2.64 

34 10 100 50 5 296.53 296.53 309.21 310.56 4.28 4.28 4.73 4.73 2.95 310.54 312.21 4.72 4.72 5.29 5.29 2.30 

35 10 100 25 10 388.87 388.87 388.87 393.76 0.00 0.00 1.26 1.26 11.82 388.87 394.42 0.00 0.00 1.43 1.43 8.34 

36 10 100 50 10 294.80 294.80 307.21 307.38 4.21 4.21 4.27 4.27 11.23 305.39 309.98 3.59 3.59 5.15 5.15 8.76 

37 10 100 25 20 178.28 178.28 178.28 179.92 0.00 0.00 0.92 0.92 10.51 178.28 180.09 0.00 0.00 1.02 1.02 9.08 

38 10 100 50 20 175.96 175.96 181.93 182.90 3.39 3.39 3.94 3.94 12.03 184.93 186.84 5.10 5.10 6.18 6.18 10.00 

39 10 100 25 40 57.50 57.50 58.09 58.96 1.03 1.03 2.54 2.54 11.80 58.89 59.76 2.42 2.42 3.93 3.93 9.99 

40 10 100 50 40 31.89 31.89 32.08 32.45 0.60 0.60 1.76 1.76 12.01 32.58 32.84 2.16 2.16 2.98 2.98 9.64 

41 10 200 25 5 735.27 735.27 743.39 745.12 1.10 1.10 1.34 1.34 13.97 754.46 758.54 2.61 2.61 3.16 3.16 11.86 

42 10 200 50 5 512.16 506.06 511.08 525.90 0.99 -0.21 3.92 2.68 10.63 511.90 532.19 1.15 -0.05 5.16 3.91 8.40 

43 10 200 25 10 513.00 513.00 522.12 524.12 1.78 1.78 2.17 2.17 36.85 524.39 529.02 2.22 2.22 3.12 3.12 31.64 

44 10 200 50 10 475.21  475.21 486.92  0.00  2.46 16.00 487.62 488.59  2.61  2.82 13.46 

45 10 200 25 20 347.29  361.19 362.59  4.00  4.41 32.08 361.78 368.93  4.17  6.23 29.06 

46 10 200 50 20 217.46  217.46 219.87  0.00  1.11 27.99 219.85 226.45  1.10  4.13 26.58 

47 10 200 25 40 102.93  106.29 107.45  3.26  4.39 43.97 103.93 104.90  0.97  1.91 41.07 

48 10 200 50 40 55.05  57.02 57.83  3.58  5.05 17.00 56.84 57.66  3.25  4.74 18.14 

49 20 100 25 5 520.24  530.98 532.92  2.06  2.44 12.44 526.89 528.19  1.28  1.53 12.37 

50 20 100 50 5 420.64  432.39 433.12  2.79  2.97 7.00 431.09 432.05  2.48  2.71 6.73 

51 20 100 25 10 422.21  433.89 436.98  2.77  3.50 11.37 437.54 440.35  3.63  4.30 11.52 

52 20 100 50 10 360.86  364.89 368.90  1.12  2.23 12.34 364.92 364.83  1.13  1.10 9.52 

53 20 100 25 20 245.17  245.17 252.92  0.00  3.16 12.73 245.67 255.19  0.20  4.09 12.53 

54 20 100 50 20 185.06  186.80 186.99  0.94  1.04 8.92 185.06 190.95  0.00  3.18 8.62 

55 20 100 25 40 52.52  53.93 54.43  2.68  3.64 13.84 54.39 54.62  3.56  4.00 14.01 
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ID 
sto

p 

stu

d 

ca

p 

w

d 

BKS(M

H) 

BKS(exac

t) 

LNS-4 LNS-5 

cost 
Time(s

) 
cost 

Time 

(s) 

Best 

sol 

Avg 

sol 

%Best Gap 

(exct) 

%Best 

Gap(MH) 

%Avg 

Gap 

(exac

t) 

% Avg 

Gap(MH

) 

avg 

time 

Best 

sol 

Avg 

sol 

%Best Gap 

(exact) 

%Best 

Gap(MH) 

%Avg 

Gap 

(exac

t) 

% Avg 

Gap(MH) 

Avg 

time 

56 20 100 50 40 19.05  19.49 19.65  2.31  3.15 30.13 19.62 19.91  2.99  4.51 30.99 

57 20 200 25 5 903.84  922.17 923.98  2.03  2.23 14.29 931.28 937.95  3.04  3.77 15.17 

58 20 200 50 5 485.65  481.42 503.76  -0.87  3.73 34.50 501.90 508.45  3.35  4.69 34.05 

59 20 200 25 10 616.93  631.49 633.41  2.36  2.67 38.18 636.18 638.19  3.12  3.45 35.23 

60 20 200 50 10 462.31  474.29 478.39  2.59  3.48 24.63 478.89 481.12  3.59  4.07 24.37 

61 20 200 25 20 373.21  373.21 379.67  0.00  1.73 65.25 379.56 385.05  1.70  3.17 62.50 

62 20 200 50 20 250.75  250.75 252.98  0.00  0.89 33.89 262.89 264.72  4.84  5.57 32.01 

63 20 200 25 40 93.01  94.93 95.48  2.06  2.66 89.66 97.78 98.16  5.13  5.54 81.26 

64 20 200 50 40 45.40  46.41 46.98  2.22  3.48 44.48 46.03 47.82  1.39  5.33 41.39 

65 20 400 25 5 
1323.3

5 
 1369.4

7 

1386.9

0 
 3.49  4.80 326.67 

1371.1

9 

1383.5

6 
 3.62  4.55 307.76 

66 20 400 50 5 733.54  748.12 756.20  1.99  3.09 48.66 753.12 756.42  2.67  3.12 45.06 

67 20 400 25 10 975.12  1008.3

1 

1010.5

4 
 3.40  3.63 219.47 975.12 989.59  0.00  1.48 212.67 

68 20 400 50 10 614.67  639.87 645.97  4.10  5.09 90.08 642.91 644.12  4.59  4.79 89.79 

69 20 400 25 20 763.76  792.32 803.92  3.74  5.26 196.87 799.36 806.85  4.66  5.64 188.48 

70 20 400 50 20 298.47  312.49 312.87  4.70  4.82 119.56 313.29 315.84  4.97  5.82 113.95 

71 20 400 25 40 239.58  239.58 245.39  0.00  2.43 382.09 244.97 247.13  2.25  3.15 385.83 

72 20 400 50 40 84.49  87.39 87.79  3.43  3.91 176.00 87.65 88.67  3.74  4.95 153.76 

73 40 200 25 5 831.94  848.92 853.12  2.04  2.55 90.73 872.97 877.32  4.93  5.45 86.53 

74 40 200 50 5 593.35  613.95 620.76  3.47  4.62 60.12 618.42 624.19  4.23  5.20 60.50 

75 40 200 25 10 728.44  753.62 755.43  3.46  3.71 
1039.4

2 
728.44 741.08  0.00  1.74 990.75 

76 40 200 50 10 481.05  506.42 506.98  5.27  5.39 152.99 506.98 507.48  5.39  5.49 138.67 

77 40 200 25 20 339.75  345.19 349.76  1.60  2.95 228.99 346.95 352.36  2.12  3.71 220.56 

78 40 200 50 20 273.88  283.12 283.39  3.37  3.47 67.29 279.91 281.13  2.20  2.65 64.12 

79 40 200 25 40 76.77  78.83 78.92  2.68  2.80 170.18 78.48 79.53  2.23  3.60 160.89 

80 40 200 50 40 58.46  59.65 59.92  2.04  2.50 109.62 59.92 60.83  2.50  4.05 97.16 
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ID 
sto

p 

stu

d 

ca

p 

w

d 

BKS(M

H) 

BKS(exac

t) 

LNS-4 LNS-5 
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) 
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Avg 
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%Best Gap 

(exct) 
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Gap(MH) 

%Avg 
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t) 

% Avg 

Gap(MH

) 

avg 

time 

Best 

sol 

Avg 

sol 

%Best Gap 

(exact) 

%Best 

Gap(MH) 

%Avg 

Gap 

(exac

t) 

% Avg 

Gap(MH) 

Avg 

time 

81 40 400 25 5 
1407.0

5 
 1464.1

2 

1475.5

4 
 4.06  4.87 449.47 

1479.8

9 

1486.1

9 
 5.18  5.62 430.58 

82 40 400 50 5 858.80  887.12 892.21  3.30  3.89 854.59 889.37 901.29  3.56  4.95 821.90 

83 40 400 25 10 891.02  891.02 901.38  0.00  1.16 652.54 911.09 924.37  2.25  3.74 634.11 

84 40 400 50 10 757.42  786.31 789.31  3.81  4.21 519.68 797.34 803.15  5.27  6.04 499.27 

85 40 400 25 20 586.29  598.29 603.37  2.05  2.91 997.36 608.25 612.28  3.75  4.43 961.68 

86 40 400 50 20 395.95  402.39 405.83  1.63  2.50 369.18 408.34 410.39  3.13  3.65 356.31 

87 40 400 25 40 195.33  199.65 203.45  2.21  4.16 
1718.6

7 
202.93 205.31  3.89  5.11 

1648.1

0 

88 40 400 50 40 70.77  73.52 74.21  3.89  4.86 764.54 74.41 74.95  5.14  5.91 738.03 

89 40 800 25 5 
2900.1

4 
 2999.4

3 

3033.1

9 
 3.42  4.59 

4525.3

2 

2965.5

1 

2976.3

7 
 2.25  2.63 

4306.0

1 

90 40 800 50 5 
1345.7

0 
 1345.6

4 

1370.1

2 
 0.00  1.81 

2063.5

8 

1376.1

5 

1397.1

4 
 2.26  3.82 

1998.4

6 

91 40 800 25 10 
2200.5

7 
 2258.3

9 

2266.5

9 
 2.63  3.00 

5499.2

8 

2286.5

4 

2309.5

5 
 3.91  4.95 

5096.8

9 

92 40 800 50 10 
1025.1

6 
 1057.3

1 

1068.9

0 
 3.14  4.27 

5591.4

1 

1025.1

6 

1060.3

9 
 0.00  3.44 

5271.2

1 

93 40 800 25 20 
1404.1

6 
 1444.8

9 

1445.9

0 
 2.90  2.97 

4805.5

6 

1438.1

9 

1457.1

9 
 2.42  3.78 

4526.4

9 

94 40 800 50 20 616.58  631.29 636.67  2.39  3.26 
4741.3

3 
636.93 637.71  3.30  3.43 

4504.2

8 

95 40 800 25 40 396.92  403.12 408.39  1.56  2.89 
5016.9

7 
410.72 417.12  3.48  5.09 

4801.1

9 

96 40 800 50 40 200.94  204.15 205.81  1.60  2.42 
4500.0

6 
204.67 210.27  1.86  4.64 

4214.6

4 

97 80 400 25 5 
1546.2

3 
 1546.2

3 

1579.1

9 
 0.00  2.13 

1317.3

4 

1586.3

9 

1588.3

2 
 2.60  2.72 

1271.6

9 

98 80 400 50 5 
1048.5

6 
 1089.6

4 

1091.3

1 
 3.92  4.08 740.30 

1079.5

8 

1088.3

9 
 2.96  3.80 687.93 

99 80 400 25 10 
1216.7

4 
 1268.4

2 

1286.6

5 
 4.25  5.75 

2619.6

5 

1289.7

5 

1295.5

3 
 6.00  6.48 

2500.5

9 

100 80 400 50 10 760.61  779.39 782.41  2.47  2.87 851.40 779.18 785.37  2.44  3.26 739.42 

101 80 400 25 20 565.49  581.74 585.92  2.87  3.61 
1943.5

7 
591.05 591.84  4.52  4.66 

1883.3

7 

102 80 400 50 20 372.05  380.29 384.98  2.21  3.48 
1621.7

6 
381.12 384.30  2.44  3.29 

1351.1

4 

103 80 400 25 40 131.75  135.29 137.98  2.69  4.73 
1704.3

2 
136.90 139.34  3.91  5.76 

1618.9

0 
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Gap 

(exac

t) 

% Avg 

Gap(MH

) 

avg 

time 

Best 

sol 

Avg 

sol 

%Best Gap 

(exact) 

%Best 

Gap(MH) 

%Avg 

Gap 

(exac

t) 

% Avg 

Gap(MH) 

Avg 

time 

104 80 400 50 40 95.84  98.12 100.02  2.38  4.36 
4897.1

6 
99.83 101.90  4.16  6.32 

4520.5

0 
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Appendix 4 

 

ID stop stud cap wd BKS(MH) BKS(exact) 

ALNS LNS-1 

cost Time(s) cost Time(s) 

Best sol Avg sol 

%Best 

Gap 

(exact) 

%Best 

Gap(MH) 

%Avg 

Gap 

(exact) 

% Avg 

Gap(MH) 
Avg time Best sol Avg sol 

%Best 

Gap 

(exact) 

%Best 

Gap(MH) 

%Avg 

Gap 

(exact) 

% Avg 

Gap(MH) 
Avg time 

1 5 25 25 5 141.01 141.01 141.01 143.00 0.00 0.00 1.41 1.41 1.10 141.01 146.00 0.00 0.00 3.54 3.54 1.05 

2 5 25 50 5 161.62 161.62 163.47 165.36 1.14 1.14 2.31 2.31 1.54 162.69 163.23 0.66 0.66 1.00 1.00 1.37 

3 5 25 25 10 182.14 182.14 183.03 186.39 0.49 0.49 2.33 2.33 1.88 182.14 186.62 0.00 0.00 2.46 2.46 1.80 

4 5 25 50 10 195.80 195.80 195.80 196.64 0.00 0.00 0.43 0.43 2.05 198.19 199.13 1.22 1.22 1.70 1.70 1.72 

5 5 25 25 20 111.65 111.65 112.21 114.89 0.50 0.50 2.90 2.90 1.87 113.97 114.87 2.08 2.08 2.88 2.88 1.72 

6 5 25 50 20 103.18 103.18 103.18 105.90 0.00 0.00 2.64 2.64 2.11 103.18 104.75 0.00 0.00 1.52 1.52 2.01 

7 5 25 25 40 7.63 7.63 7.89 8.10 3.41 3.41 6.18 6.18 1.86 7.85 7.88 2.89 2.89 3.27 3.27 1.47 

8 5 25 50 40 25.64 25.64 26.84 28.20 4.67 4.67 9.97 9.97 1.69 27.78 27.88 8.34 8.34 8.72 8.72 1.77 

9 5 50 25 5 286.68 286.68 286.68 290.37 0.00 0.00 1.29 1.29 1.81 286.68 299.16 0.00 0.00 4.35 4.35 1.67 

10 5 50 50 5 197.20 197.20 201.14 203.04 2.00 2.00 2.96 2.96 1.70 205.81 208.16 4.37 4.37 5.56 5.56 1.52 

11 5 50 25 10 193.55 193.55 194.11 196.40 0.29 0.29 1.47 1.47 1.90 195.07 201.16 0.79 0.79 3.93 3.93 1.72 

12 5 50 50 10 215.86 215.85 218.64 220.12 1.29 1.29 1.98 1.97 1.95 224.50 229.75 4.01 4.00 6.44 6.43 1.90 

13 5 50 25 20 130.53 130.53 131.12 133.76 0.45 0.45 2.47 2.47 3.33 132.17 135.58 1.26 1.26 3.87 3.87 3.03 

14 5 50 50 20 96.26 96.26 99.11 101.13 2.96 2.96 5.06 5.06 3.16 102.84 104.79 6.83 6.83 8.86 8.86 2.88 

15 5 50 25 40 12.89 12.89 13.44 14.00 4.27 4.27 8.62 8.62 3.71 13.59 13.90 5.43 5.43 7.84 7.84 3.43 

16 5 50 50 40 30.24 30.24 31.21 31.82 3.22 3.22 5.22 5.22 3.15 30.82 31.48 1.92 1.92 4.10 4.10 2.86 

17 5 100 25 5 360.35 360.35 360.35 362.30 0.00 0.00 0.54 0.54 2.95 369.89 374.99 2.65 2.65 4.06 4.06 2.61 

18 5 100 50 5 304.23 304.23 308.41 310.34 1.37 1.37 2.01 2.01 2.92 309.76 312.80 1.82 1.82 2.82 2.82 2.54 

19 5 100 25 10 294.21 294.21 295.29 297.16 0.37 0.37 1.00 1.00 4.42 299.25 299.65 1.71 1.71 1.85 1.85 4.13 

20 5 100 50 10 229.41 229.41 234.29 237.95 2.13 2.13 3.72 3.72 3.93 240.64 242.90 4.90 4.90 5.88 5.88 3.74 

21 5 100 25 20 134.95 134.95 134.95 136.27 0.00 0.00 0.98 0.98 7.84 143.54 144.71 6.37 6.37 7.23 7.23 6.50 

22 5 100 50 20 144.41 144.41 145.09 145.75 0.47 0.47 0.93 0.93 3.51 148.74 152.24 3.00 3.00 5.42 5.42 3.79 

23 5 100 25 40 58.95 58.95 59.03 60.23 0.14 0.14 2.17 2.17 9.06 58.95 62.87 0.00 0.00 6.64 6.64 9.52 

24 5 100 50 40 39.44 39.44 42.01 42.75 6.52 6.52 8.40 8.40 7.31 40.96 42.10 3.85 3.85 6.74 6.74 6.90 

25 10 50 25 5 242.85 242.85 249.31 250.09 2.66 2.66 2.98 2.98 3.88 247.75 252.06 2.02 2.02 3.79 3.79 3.66 
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ID stop stud cap wd BKS(MH) BKS(exact) 

ALNS LNS-1 

cost Time(s) cost Time(s) 

Best sol Avg sol 

%Best 

Gap 

(exact) 

%Best 

Gap(MH) 

%Avg 

Gap 

(exact) 

% Avg 

Gap(MH) 
Avg time Best sol Avg sol 

%Best 

Gap 

(exact) 

%Best 

Gap(MH) 

%Avg 

Gap 

(exact) 

% Avg 

Gap(MH) 
Avg time 

26 10 50 50 5 282.12 282.12 288.95 289.70 2.42 2.42 2.69 2.69 3.26 290.52 292.55 2.98 2.98 3.70 3.70 3.46 

27 10 50 25 10 244.54 244.54 244.54 249.84 0.00 0.00 2.17 2.17 5.03 259.24 262.42 6.01 6.01 7.31 7.31 4.73 

28 10 50 50 10 288.33 283.33 296.20 296.58 4.54 2.73 4.67 2.86 4.04 299.94 305.88 5.86 4.03 7.96 6.09 3.88 

29 10 50 25 20 108.98 108.98 110.48 111.59 1.38 1.38 2.39 2.39 5.06 111.93 113.14 2.71 2.71 3.81 3.81 4.91 

30 10 50 50 20 157.48 157.48 158.16 160.41 0.43 0.43 1.86 1.86 4.90 160.12 161.99 1.68 1.68 2.86 2.86 4.57 

31 10 50 25 40 32.25 32.25 33.85 33.98 4.96 4.96 5.36 5.36 5.46 33.43 33.81 3.67 3.67 4.84 4.84 5.05 

32 10 50 50 40 36.66 36.66 37.24 37.41 1.59 1.59 2.05 2.05 5.23 37.54 38.58 2.39 2.39 5.24 5.24 4.82 

33 10 100 25 5 403.18 403.18 403.18 407.82 0.00 0.00 1.15 1.15 2.41 410.32 414.96 1.77 1.77 2.92 2.92 1.98 

34 10 100 50 5 296.53 296.53 307.72 308.82 3.77 3.77 4.15 4.15 2.71 302.25 310.80 1.93 1.93 4.81 4.81 2.74 

35 10 100 25 10 388.87 388.87 388.87 391.41 0.00 0.00 0.65 0.65 10.05 390.93 404.01 0.53 0.53 3.89 3.89 8.78 

36 10 100 50 10 294.80 294.80 302.24 304.76 2.52 2.52 3.38 3.38 10.11 306.61 311.29 4.01 4.01 5.60 5.60 9.23 

37 10 100 25 20 178.28 178.28 178.28 182.01 0.00 0.00 2.09 2.09 11.30 191.00 194.84 7.13 7.13 9.29 9.29 10.34 

38 10 100 50 20 175.96 175.96 183.00 184.05 4.00 4.00 4.60 4.60 12.10 182.86 185.97 3.92 3.92 5.69 5.69 11.78 

39 10 100 25 40 57.50 57.50 59.90 60.06 4.17 4.17 4.45 4.45 11.43 57.97 62.27 0.81 0.81 8.30 8.30 10.10 

40 10 100 50 40 31.89 31.89 33.14 33.37 3.90 3.90 4.63 4.63 11.43 34.05 34.99 6.76 6.76 9.73 9.73 11.23 

41 10 200 25 5 735.27 735.27 735.27 756.23 0.00 0.00 2.85 2.85 13.00 735.27 756.41 0.00 0.00 2.87 2.87 11.93 

42 10 200 50 5 512.16 506.06 510.36 512.08 0.85 -0.35 1.19 -0.02 10.14 523.29 532.03 3.40 2.17 5.13 3.88 9.77 

43 10 200 25 10 513.00 513.00 514.16 514.34 0.23 0.23 0.26 0.26 35.64 517.22 526.04 0.82 0.82 2.54 2.54 31.33 

44 10 200 50 10 475.21  479.12 480.38  0.82  1.09 14.97 493.67 495.04  3.89  4.17 14.98 

45 10 200 25 20 347.29  361.08 361.25  3.97  4.02 31.28 361.11 363.80  3.98  4.75 27.18 

46 10 200 50 20 217.46  225.20 225.76  3.56  3.81 27.94 219.38 226.65  0.88  4.23 25.47 

47 10 200 25 40 102.93  102.93 105.16  0.00  2.17 41.31 107.46 109.40  4.40  6.29 39.33 

48 10 200 50 40 55.05  57.69 58.03  4.80  5.41 17.82 56.56 59.20  2.75  7.54 16.57 

49 20 100 25 5 520.24  520.24 532.12  0.00  2.28 11.58 520.24 541.01  0.00  3.99 11.22 

50 20 100 50 5 420.64  428.17 430.08  1.79  2.24 6.75 435.48 441.53  3.53  4.97 6.31 

51 20 100 25 10 422.21  429.12 436.18  1.64  3.31 11.22 437.00 439.83  3.50  4.17 10.85 

52 20 100 50 10 360.86  369.65 370.94  2.44  2.79 8.88 371.66 375.19  2.99  3.97 9.37 

53 20 100 25 20 245.17  245.17 248.12  0.00  1.20 11.96 254.59 259.06  3.84  5.67 11.07 
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ID stop stud cap wd BKS(MH) BKS(exact) 

ALNS LNS-1 

cost Time(s) cost Time(s) 

Best sol Avg sol 

%Best 

Gap 

(exact) 

%Best 

Gap(MH) 

%Avg 

Gap 

(exact) 

% Avg 

Gap(MH) 
Avg time Best sol Avg sol 

%Best 

Gap 

(exact) 

%Best 

Gap(MH) 

%Avg 

Gap 

(exact) 

% Avg 

Gap(MH) 
Avg time 

54 20 100 50 20 185.06  190.89 193.05  3.15  4.32 9.05 189.61 193.82  2.46  4.73 9.42 

55 20 100 25 40 52.52  54.90 55.06  4.53  4.83 13.36 53.08 54.86  1.07  4.46 12.56 

56 20 100 50 40 19.05  20.10 20.43  5.51  7.24 30.42 19.91 20.38  4.52  6.99 29.29 

57 20 200 25 5 903.84  903.84 933.58  0.00  3.29 13.64 914.53 932.48  1.18  3.17 13.78 

58 20 200 50 5 485.65  486.65 489.31  0.21  0.75 33.55 489.55 512.66  0.80  5.56 32.14 

59 20 200 25 10 616.93  633.06 636.55  2.62  3.18 33.71 629.53 644.16  2.04  4.41 32.93 

60 20 200 50 10 462.31  465.77 471.46  0.75  1.98 23.04 471.00 479.80  1.88  3.78 22.17 

61 20 200 25 20 373.21  380.07 385.97  1.84  3.42 61.65 379.19 391.39  1.60  4.87 56.85 

62 20 200 50 20 250.75  250.75 257.76  0.00  2.80 33.71 262.40 274.09  4.65  9.31 30.27 

63 20 200 25 40 93.01  96.97 97.94  4.26  5.30 83.06 98.01 100.00  5.37  7.52 78.49 

64 20 200 50 40 45.40  45.40 47.33  0.00  4.25 41.87 47.52 49.06  4.67  8.06 39.33 

65 20 400 25 5 1323.35  1354.64 1364.86  2.36  3.14 299.95 1352.96 1372.16  2.24  3.69 287.82 

66 20 400 50 5 733.54  733.54 750.33  0.00  2.29 44.79 751.40 760.13  2.43  3.63 44.20 

67 20 400 25 10 975.12  990.30 991.80  1.56  1.71 207.16 1002.13 1012.79  2.77  3.86 197.00 

68 20 400 50 10 614.67  629.23 630.78  2.37  2.62 88.51 637.45 638.64  3.71  3.90 86.59 

69 20 400 25 20 763.76  763.76 787.26  0.00  3.08 185.77 791.98 798.79  3.70  4.59 175.50 

70 20 400 50 20 298.47  311.49 312.29  4.36  4.63 112.05 312.30 315.09  4.63  5.57 106.68 

71 20 400 25 40 239.58  241.12 246.63  0.64  2.94 378.97 247.27 251.45  3.21  4.96 362.90 

72 20 400 50 40 84.49  88.67 88.89  4.95  5.21 152.38 88.08 90.05  4.25  6.58 144.66 

73 40 200 25 5 831.94  835.78 849.63  0.46  2.13 86.52 880.24 890.10  5.81  6.99 81.28 

74 40 200 50 5 593.35  593.35 600.98  0.00  1.29 59.97 614.55 629.90  3.57  6.16 56.02 

75 40 200 25 10 728.44  728.44 734.98  0.00  0.90 966.70 741.32 749.32  1.77  2.87 904.05 

76 40 200 50 10 481.05  487.10 490.22  1.26  1.91 133.84 514.45 529.89  6.94  10.15 121.43 

77 40 200 25 20 339.75  349.05 351.89  2.74  3.57 212.45 350.27 362.93  3.10  6.82 183.93 

78 40 200 50 20 273.88  273.88 280.23  0.00  2.32 62.72 283.07 292.96  3.35  6.97 60.43 

79 40 200 25 40 76.77  80.84 80.95  5.30  5.44 157.58 80.75 82.01  5.18  6.82 145.60 

80 40 200 50 40 58.46  58.46 59.06  0.00  1.02 99.87 61.11 62.99  4.53  7.75 94.27 

81 40 400 25 5 1407.05  1487.12 1490.66  5.69  5.94 411.51 1475.23 1498.18  4.85  6.48 406.08 
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ID stop stud cap wd BKS(MH) BKS(exact) 

ALNS LNS-1 

cost Time(s) cost Time(s) 

Best sol Avg sol 

%Best 

Gap 

(exact) 

%Best 

Gap(MH) 

%Avg 

Gap 

(exact) 

% Avg 

Gap(MH) 
Avg time Best sol Avg sol 

%Best 

Gap 

(exact) 

%Best 

Gap(MH) 

%Avg 

Gap 

(exact) 

% Avg 

Gap(MH) 
Avg time 

82 40 400 50 5 858.80  858.80 881.21  0.00  2.61 779.89 893.41 902.63  4.03  5.10 749.79 

83 40 400 25 10 891.02  912.86 920.20  2.45  3.27 608.61 908.62 921.80  1.98  3.45 575.55 

84 40 400 50 10 757.42  777.75 782.26  2.68  3.28 487.77 781.85 788.41  3.23  4.09 457.17 

85 40 400 25 20 586.29  604.14 608.32  3.04  3.76 911.11 596.93 603.07  1.82  2.86 882.12 

86 40 400 50 20 395.95  410.65 419.73  3.71  6.01 346.14 403.09 405.36  1.80  2.38 313.84 

87 40 400 25 40 195.33  207.89 209.68  6.43  7.34 1564.80 205.21 206.96  5.06  5.96 1479.35 

88 40 400 50 40 70.77  70.77 72.01  0.00  1.75 721.95 76.00 76.67  7.39  8.34 681.81 

89 40 800 25 5 2900.14  2958.20 2961.60  2.00  2.12 4066.00 3015.87 3028.18  3.99  4.41 4098.99 

90 40 800 50 5 1345.70  1368.30 1376.92  1.68  2.32 1940.25 1388.13 1417.07  3.15  5.30 1724.85 

91 40 800 25 10 2200.57  2256.90 2275.11  2.56  3.39 5034.75 2240.43 2289.25  1.81  4.03 4833.69 

92 40 800 50 10 1025.16  1046.24 1053.99  2.06  2.81 5195.63 1082.93 1089.95  5.64  6.32 5038.89 

93 40 800 25 20 1404.16  1466.95 1476.93  4.47  5.18 4535.68 1438.95 1496.48  2.48  6.57 4334.43 

94 40 800 50 20 616.58  632.08 639.69  2.51  3.75 4460.79 638.86 647.34  3.61  4.99 4296.48 

95 40 800 25 40 396.92  409.05 416.91  3.06  5.04 4633.56 413.59 417.33  4.20  5.14 4288.36 

96 40 800 50 40 200.94  209.20 212.08  4.11  5.54 4157.34 210.13 219.63  4.57  9.30 3822.62 

97 80 400 25 5 1546.23  1591.74 1599.64  2.94  3.45 1282.88 1567.95 1588.78  1.40  2.75 1248.87 

98 80 400 50 5 1048.56  1048.56 1060.19  0.00  1.11 725.72 1098.42 1141.76  4.75  8.89 683.61 

99 80 400 25 10 1216.74  1298.78 1301.20  6.74  6.94 2559.89 1244.85 1288.51  2.31  5.90 2312.22 

100 80 400 50 10 760.61  773.12 775.61  1.64  1.97 757.43 768.82 789.31  1.08  3.77 716.06 

101 80 400 25 20 565.49  582.31 586.22  2.97  3.67 1828.95 585.78 598.79  3.59  5.89 1780.76 

102 80 400 50 20 372.05  379.88 380.56  2.10  2.29 1364.48 387.50 395.16  4.15  6.21 1219.13 

103 80 400 25 40 131.75  135.00 136.00  2.47  3.23 1309.71 143.16 145.52  8.66  10.45 1310.09 

104 80 400 50 40 95.84  95.84 97.76  0.00  2.00 4057.13 102.70 104.34  7.16  8.86 4044.84 
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ID stop stud cap wd BKS(MH) BKS(exact) 

LNS-2 LNS-3 

cost Time(s) cost Time(s) 

Best sol Avg sol 

%Best 

Gap 

(exact) 

%Best 

Gap(MH) 

%Avg 

Gap 

(exact) 

% Avg 

Gap(MH) 
Avg time Best sol Avg sol 

%Best 

Gap 

(exact) 

%Best 

Gap(MH) 

%Avg 

Gap 

(exact) 

% Avg 

Gap(MH) 
Avg time 

1 5 25 25 5 141.01 141.01 142.11 143.11 0.78 0.78 1.49 1.49 1.10 141.01 146.23 0.00 0.00 3.70 3.70 1.21 

2 5 25 50 5 161.62 161.62 162.80 163.66 0.73 0.73 1.26 1.26 1.60 161.62 162.35 0.00 0.00 0.45 0.45 1.77 

3 5 25 25 10 182.14 182.14 182.14 182.74 0.00 0.00 0.33 0.33 1.93 182.89 183.66 0.41 0.41 0.83 0.83 1.98 

4 5 25 50 10 195.80 195.80 196.27 199.12 0.24 0.24 1.69 1.69 1.35 196.21 196.88 0.21 0.21 0.55 0.55 1.74 

5 5 25 25 20 111.65 111.65 111.65 112.91 0.00 0.00 1.13 1.13 1.84 115.31 116.65 3.28 3.28 4.48 4.48 2.22 

6 5 25 50 20 103.18 103.18 103.18 104.06 0.00 0.00 0.85 0.85 1.74 104.39 107.73 1.18 1.18 4.41 4.41 2.11 

7 5 25 25 40 7.63 7.63 7.97 8.15 4.46 4.46 6.81 6.81 1.24 7.69 7.89 0.78 0.78 3.40 3.40 2.17 

8 5 25 50 40 25.64 25.64 25.83 26.10 0.74 0.74 1.79 1.79 1.48 26.98 27.61 5.22 5.22 7.68 7.68 1.58 

9 5 50 25 5 286.68 286.68 287.07 287.40 0.14 0.14 0.25 0.25 1.91 288.34 291.44 0.58 0.58 1.66 1.66 1.87 

10 5 50 50 5 197.20 197.20 199.62 204.41 1.23 1.23 3.66 3.66 1.52 198.19 200.87 0.50 0.50 1.86 1.86 1.68 

11 5 50 25 10 193.55 193.55 193.55 199.27 0.00 0.00 2.96 2.96 2.04 194.73 197.77 0.61 0.61 2.18 2.18 1.88 

12 5 50 50 10 215.86 215.85 216.15 217.67 0.14 0.13 0.84 0.84 1.92 215.85 218.56 0.00 0.00 1.26 1.25 2.00 

13 5 50 25 20 130.53 130.53 133.41 134.16 2.21 2.21 2.78 2.78 3.36 131.68 133.96 0.88 0.88 2.63 2.63 3.32 

14 5 50 50 20 96.26 96.26 99.50 101.02 3.37 3.37 4.94 4.94 3.15 97.80 98.00 1.60 1.60 1.81 1.81 3.86 

15 5 50 25 40 12.89 12.89 13.28 13.61 3.05 3.05 5.58 5.58 3.77 13.36 13.70 3.64 3.64 6.29 6.29 3.95 

16 5 50 50 40 30.24 30.24 31.50 31.93 4.16 4.16 5.59 5.59 3.02 32.02 32.48 5.88 5.88 7.40 7.40 3.53 

17 5 100 25 5 360.35 360.35 373.87 380.23 3.75 3.75 5.52 5.52 3.16 360.35 368.50 0.00 0.00 2.26 2.26 3.23 

18 5 100 50 5 304.23 304.23 311.41 315.28 2.36 2.36 3.63 3.63 2.90 313.72 316.05 3.12 3.12 3.88 3.88 3.05 

19 5 100 25 10 294.21 294.21 302.74 305.85 2.90 2.90 3.96 3.96 4.60 306.94 309.41 4.33 4.33 5.17 5.17 4.65 

20 5 100 50 10 229.41 229.41 235.06 236.80 2.46 2.46 3.22 3.22 3.99 230.22 237.81 0.35 0.35 3.66 3.66 4.33 

21 5 100 25 20 134.95 134.95 138.62 140.96 2.72 2.72 4.45 4.45 7.88 139.41 140.37 3.30 3.30 4.02 4.02 8.23 

22 5 100 50 20 144.41 144.41 145.39 148.10 0.68 0.68 2.55 2.55 3.56 149.17 153.10 3.30 3.30 6.02 6.02 3.83 

23 5 100 25 40 58.95 58.95 58.95 59.46 0.00 0.00 0.87 0.87 9.80 58.95 60.11 0.00 0.00 1.97 1.97 10.29 

24 5 100 50 40 39.44 39.44 41.61 42.09 5.51 5.51 6.72 6.72 7.40 41.12 41.94 4.26 4.26 6.34 6.34 7.98 

25 10 50 25 5 242.85 242.85 243.01 248.15 0.07 0.07 2.18 2.18 3.96 242.85 247.48 0.00 0.00 1.91 1.91 4.57 

26 10 50 50 5 282.12 282.12 285.43 288.73 1.17 1.17 2.34 2.34 3.67 282.12 289.65 0.00 0.00 2.67 2.67 3.74 

27 10 50 25 10 244.54 244.54 251.49 256.56 2.84 2.84 4.92 4.92 5.55 244.68 249.87 0.06 0.06 2.18 2.18 5.60 

28 10 50 50 10 288.33 283.33 296.55 298.96 4.67 2.85 5.52 3.69 4.12 288.33 289.36 1.76 0.00 2.13 0.36 4.32 
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ID stop stud cap wd BKS(MH) BKS(exact) 

LNS-2 LNS-3 

cost Time(s) cost Time(s) 

Best sol Avg sol 

%Best 

Gap 

(exact) 

%Best 

Gap(MH) 

%Avg 

Gap 

(exact) 

% Avg 

Gap(MH) 
Avg time Best sol Avg sol 

%Best 

Gap 

(exact) 

%Best 

Gap(MH) 

%Avg 

Gap 

(exact) 

% Avg 

Gap(MH) 
Avg time 

29 10 50 25 20 108.98 108.98 112.89 114.60 3.59 3.59 5.16 5.16 5.22 110.34 112.30 1.25 1.25 3.04 3.04 5.63 

30 10 50 50 20 157.48 157.48 159.87 160.94 1.52 1.52 2.20 2.20 5.08 160.28 161.29 1.78 1.78 2.42 2.42 5.19 

31 10 50 25 40 32.25 32.25 33.09 33.62 2.60 2.60 4.24 4.24 6.06 32.76 32.91 1.59 1.59 2.06 2.06 5.73 

32 10 50 50 40 36.66 36.66 38.94 39.79 6.22 6.22 8.53 8.53 5.48 37.81 38.27 3.15 3.15 4.39 4.39 5.76 

33 10 100 25 5 403.18 403.18 403.18 410.42 0.00 0.00 1.80 1.80 2.81 404.21 410.19 0.26 0.26 1.74 1.74 3.18 

34 10 100 50 5 296.53 296.53 296.53 299.91 0.00 0.00 1.14 1.14 2.59 299.76 307.47 1.09 1.09 3.69 3.69 2.69 

35 10 100 25 10 388.87 388.87 395.39 398.10 1.68 1.68 2.37 2.37 9.03 388.87 397.93 0.00 0.00 2.33 2.33 9.73 

36 10 100 50 10 294.80 294.80 305.40 307.08 3.60 3.60 4.17 4.16 9.96 307.16 309.17 4.19 4.19 4.88 4.88 10.40 

37 10 100 25 20 178.28 178.28 178.28 181.71 0.00 0.00 1.92 1.92 10.04 178.28 181.65 0.00 0.00 1.89 1.89 10.80 

38 10 100 50 20 175.96 175.96 182.37 184.26 3.64 3.64 4.72 4.72 11.52 178.68 182.46 1.55 1.55 3.69 3.69 11.73 

39 10 100 25 40 57.50 57.50 61.01 61.84 6.10 6.10 7.55 7.55 11.93 59.66 60.05 3.75 3.75 4.43 4.43 11.50 

40 10 100 50 40 31.89 31.89 32.61 33.23 2.27 2.27 4.19 4.19 10.77 32.92 34.02 3.23 3.23 6.68 6.68 11.40 

41 10 200 25 5 735.27 735.27 735.27 753.21 0.00 0.00 2.44 2.44 10.84 735.27 746.43 0.00 0.00 1.52 1.52 14.39 

42 10 200 50 5 512.16 506.06 513.50 527.48 1.47 0.26 4.23 2.99 10.26 511.42 515.79 1.06 -0.14 1.92 0.71 9.86 

43 10 200 25 10 513.00 513.00 522.09 528.23 1.77 1.77 2.97 2.97 35.26 513.00 522.79 0.00 0.00 1.91 1.91 38.20 

44 10 200 50 10 475.21  484.13 489.14  1.88  2.93 15.16 489.71 491.31  3.05  3.39 16.41 

45 10 200 25 20 347.29  362.85 369.00  4.48  6.25 30.43 360.99 361.91  3.94  4.21 33.36 

46 10 200 50 20 217.46  217.46 221.37  0.00  1.80 27.26 225.17 229.47  3.55  5.52 29.77 

47 10 200 25 40 102.93  103.49 105.32  0.54  2.33 43.61 109.19 111.24  6.08  8.07 45.71 

48 10 200 50 40 55.05  56.56 57.92  2.74  5.21 17.28 56.92 58.05  3.39  5.45 19.19 

49 20 100 25 5 520.24  529.83 536.31  1.84  3.09 11.86 532.00 536.55  2.26  3.14 13.16 

50 20 100 50 5 420.64  423.76 430.18  0.74  2.27 7.01 420.64 432.54  0.00  2.83 7.02 

51 20 100 25 10 422.21  434.40 439.55  2.89  4.11 10.55 437.38 440.31  3.59  4.29 11.81 

52 20 100 50 10 360.86  368.94 372.27  2.24  3.16 9.92 368.17 375.38  2.03  4.02 10.12 

53 20 100 25 20 245.17  246.21 251.80  0.42  2.70 12.48 245.17 247.87  0.00  1.10 13.03 

54 20 100 50 20 185.06  190.20 192.39  2.78  3.96 8.95 191.67 195.26  3.57  5.51 9.11 

55 20 100 25 40 52.52  52.98 53.93  0.88  2.68 14.23 55.00 55.60  4.72  5.87 14.95 

56 20 100 50 40 19.05  19.76 20.57  3.72  7.99 31.22 19.95 20.57  4.72  7.96 31.96 
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ID stop stud cap wd BKS(MH) BKS(exact) 

LNS-2 LNS-3 

cost Time(s) cost Time(s) 

Best sol Avg sol 

%Best 

Gap 

(exact) 

%Best 

Gap(MH) 

%Avg 

Gap 

(exact) 

% Avg 

Gap(MH) 
Avg time Best sol Avg sol 

%Best 

Gap 

(exact) 

%Best 

Gap(MH) 

%Avg 

Gap 

(exact) 

% Avg 

Gap(MH) 
Avg time 

57 20 200 25 5 903.84  924.75 930.68  2.31  2.97 15.20 924.01 930.95  2.23  3.00 16.35 

58 20 200 50 5 485.65  498.41 504.81  2.63  3.94 33.89 497.39 497.99  2.42  2.54 35.97 

59 20 200 25 10 616.93  631.04 635.51  2.29  3.01 35.11 621.84 627.11  0.80  1.65 37.40 

60 20 200 50 10 462.31  480.38 483.12  3.91  4.50 23.55 476.09 476.92  2.98  3.16 25.31 

61 20 200 25 20 373.21  378.32 385.19  1.37  3.21 63.16 373.21 381.28  0.00  2.16 66.25 

62 20 200 50 20 250.75  251.49 259.23  0.30  3.38 33.47 259.68 267.47  3.56  6.67 34.60 

63 20 200 25 40 93.01  96.41 96.48  3.66  3.73 85.08 97.97 99.31  5.33  6.77 87.42 

64 20 200 50 40 45.40  45.60 47.75  0.43  5.17 42.49 45.40 46.85  0.00  3.19 45.65 

65 20 400 25 5 1323.35  1376.10 1379.16  3.99  4.22 309.73 1343.98 1355.24  1.56  2.41 331.35 

66 20 400 50 5 733.54  733.52 756.63  0.00  3.15 45.89 755.96 761.27  3.06  3.78 50.57 

67 20 400 25 10 975.12  994.43 1008.63  1.98  3.44 215.01 1000.30 1002.66  2.58  2.82 227.17 

68 20 400 50 10 614.67  636.19 640.29  3.50  4.17 94.45 629.16 632.33  2.36  2.87 97.69 

69 20 400 25 20 763.76  790.57 801.05  3.51  4.88 191.26 765.61 786.08  0.24  2.92 202.76 

70 20 400 50 20 298.47  309.45 313.11  3.68  4.91 116.14 312.61 317.20  4.74  6.28 124.58 

71 20 400 25 40 239.58  242.11 246.80  1.06  3.01 390.95 245.48 247.00  2.46  3.10 407.66 

72 20 400 50 40 84.49  89.00 89.69  5.34  6.15 157.71 87.06 89.31  3.04  5.71 165.30 

73 40 200 25 5 831.94  848.97 855.53  2.05  2.83 88.03 859.02 871.09  3.25  4.71 94.18 

74 40 200 50 5 593.35  609.84 618.71  2.78  4.27 61.72 609.72 619.69  2.76  4.44 64.94 

75 40 200 25 10 728.44  736.18 740.47  1.06  1.65 1007.86 750.38 751.43  3.01  3.16 1054.67 

76 40 200 50 10 481.05  499.61 501.59  3.86  4.27 142.01 503.17 505.53  4.60  5.09 146.20 

77 40 200 25 20 339.75  341.93 349.69  0.64  2.92 219.83 353.54 354.82  4.06  4.44 229.82 

78 40 200 50 20 273.88  276.71 282.68  1.03  3.21 62.43 273.88 279.15  0.00  1.92 68.07 

79 40 200 25 40 76.77  79.97 81.79  4.17  6.54 160.37 78.72 81.67  2.54  6.39 169.17 

80 40 200 50 40 58.46  60.19 60.21  2.96  2.99 100.16 61.38 62.03  5.00  6.10 108.34 

81 40 400 25 5 1407.05  1470.42 1490.30  4.50  5.92 427.48 1450.57 1474.15  3.09  4.77 454.25 

82 40 400 50 5 858.80  858.80 874.59  0.00  1.84 823.05 865.80 887.29  0.82  3.32 866.00 

83 40 400 25 10 891.02  900.32 921.21  1.04  3.39 637.24 911.47 919.93  2.30  3.24 657.18 

84 40 400 50 10 757.42  785.30 791.07  3.68  4.44 504.70 773.30 775.50  2.10  2.39 529.37 
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ID stop stud cap wd BKS(MH) BKS(exact) 

LNS-2 LNS-3 

cost Time(s) cost Time(s) 

Best sol Avg sol 

%Best 

Gap 

(exact) 

%Best 

Gap(MH) 

%Avg 

Gap 

(exact) 

% Avg 

Gap(MH) 
Avg time Best sol Avg sol 

%Best 

Gap 

(exact) 

%Best 

Gap(MH) 

%Avg 

Gap 

(exact) 

% Avg 

Gap(MH) 
Avg time 

85 40 400 25 20 586.29  603.29 612.20  2.90  4.42 972.37 586.29 598.43  0.00  2.07 1013.50 

86 40 400 50 20 395.95  404.83 410.80  2.24  3.75 358.96 395.95 397.36  0.00  0.36 374.16 

87 40 400 25 40 195.33  199.84 202.63  2.31  3.74 1653.99 204.00 204.17  4.44  4.53 1743.68 

88 40 400 50 40 70.77  74.70 75.42  5.55  6.58 752.67 74.00 75.78  4.56  7.08 790.02 

89 40 800 25 5 2900.14  2985.26 2999.62  2.93  3.43 4457.17 2954.01 2956.78  1.86  1.95 4590.61 

90 40 800 50 5 1345.70  1375.09 1386.83  2.18  3.06 1986.41 1395.55 1416.66  3.70  5.27 2073.59 

91 40 800 25 10 2200.57  2245.40 2266.51  2.04  3.00 5222.63 2233.52 2263.55  1.50  2.86 5546.70 

92 40 800 50 10 1025.16  1030.22 1064.39  0.49  3.83 5406.53 1040.43 1057.61  1.49  3.17 5631.97 

93 40 800 25 20 1404.16  1454.79 1467.27  3.61  4.49 4589.12 1461.75 1503.41  4.10  7.07 4849.87 

94 40 800 50 20 616.58  632.84 638.77  2.64  3.60 4573.13 630.88 635.21  2.32  3.02 4709.51 

95 40 800 25 40 396.92  409.08 416.61  3.06  4.96 4632.69 396.92 411.33  0.00  3.63 5056.97 

96 40 800 50 40 200.94  211.42 212.24  5.22  5.63 4249.70 210.91 215.94  4.96  7.47 4583.92 

97 80 400 25 5 1546.23  1576.19 1629.29  1.94  5.37 1351.98 1579.47 1593.70  2.15  3.07 1333.83 

98 80 400 50 5 1048.56  1081.76 1086.32  3.17  3.60 750.38 1089.72 1120.35  3.93  6.85 742.53 

99 80 400 25 10 1216.74  1268.51 1287.65  4.25  5.83 2719.15 1265.87 1298.57  4.04  6.73 2619.44 

100 80 400 50 10 760.61  767.94 785.03  0.96  3.21 742.44 763.35 779.36  0.36  2.47 785.41 

101 80 400 25 20 565.49  582.74 589.39  3.05  4.23 1958.91 580.51 587.70  2.66  3.93 1988.42 

102 80 400 50 20 372.05  385.75 387.89  3.68  4.26 1415.04 379.37 388.76  1.97  4.49 1414.73 

103 80 400 25 40 131.75  139.07 140.43  5.56  6.59 1403.39 136.82 138.77  3.85  5.33 1707.68 

104 80 400 50 40 95.84  98.57 100.90  2.85  5.28 4393.12 102.14 102.70  6.57  7.15 4830.29 
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ID stop stud cap wd BKS(MH) BKS(exact) 

LNS-4 LNS-5 

cost Time(s) cost Time(s) 

Best sol Avg sol 

%Best 

Gap 

(exact) 

%Best 

Gap(MH) 

%Avg 

Gap 

(exact) 

% Avg 

Gap(MH) 
Avg time Best sol Avg sol 

%Best 

Gap 

(exact) 

%Best 

Gap(MH) 

%Avg 

Gap 

(exact) 

% Avg 

Gap(MH) 
Avg time 

1 5 25 25 5 141.01 141.01 141.01 142.19 0.00 0.00 0.84 0.84 1.28 141.01 144.20 0.00 0.00 2.26 2.26 1.09 

2 5 25 50 5 161.62 161.62 162.28 163.37 0.41 0.41 1.08 1.08 1.84 161.62 164.03 0.00 0.00 1.49 1.49 1.67 

3 5 25 25 10 182.14 182.14 186.07 186.29 2.16 2.16 2.28 2.28 2.08 182.76 186.83 0.34 0.34 2.58 2.58 1.88 

4 5 25 50 10 195.80 195.80 195.80 197.99 0.00 0.00 1.12 1.12 1.90 195.97 203.21 0.09 0.09 3.79 3.79 1.61 

5 5 25 25 20 111.65 111.65 112.90 114.10 1.12 1.12 2.19 2.19 2.33 111.78 114.17 0.12 0.12 2.26 2.26 2.05 

6 5 25 50 20 103.18 103.18 104.35 105.98 1.13 1.13 2.71 2.71 2.28 104.83 106.00 1.60 1.60 2.73 2.73 1.94 

7 5 25 25 40 7.63 7.63 7.92 7.98 3.80 3.80 4.59 4.59 1.90 7.83 8.12 2.59 2.59 6.42 6.42 1.97 

8 5 25 50 40 25.64 25.64 26.67 27.03 4.02 4.02 5.42 5.42 1.68 27.09 28.22 5.66 5.66 10.06 10.06 1.57 

9 5 50 25 5 286.68 286.68 289.37 290.18 0.94 0.94 1.22 1.22 2.02 287.41 290.81 0.25 0.25 1.44 1.44 1.82 

10 5 50 50 5 197.20 197.20 200.91 209.27 1.88 1.88 6.12 6.12 1.90 206.18 208.62 4.55 4.55 5.79 5.79 1.68 

11 5 50 25 10 193.55 193.55 194.23 195.19 0.35 0.35 0.85 0.85 2.12 194.32 195.05 0.40 0.40 0.77 0.77 1.91 

12 5 50 50 10 215.86 215.85 215.86 223.08 0.00 0.00 3.35 3.35 2.02 215.86 217.69 0.00 0.00 0.85 0.85 2.14 

13 5 50 25 20 130.53 130.53 131.58 136.06 0.81 0.81 4.24 4.24 3.54 136.14 138.98 4.30 4.30 6.47 6.47 3.55 

14 5 50 50 20 96.26 96.26 99.93 101.51 3.81 3.81 5.46 5.46 2.98 99.86 104.76 3.74 3.74 8.83 8.83 3.74 

15 5 50 25 40 12.89 12.89 13.56 13.95 5.20 5.20 8.22 8.22 3.91 13.08 13.49 1.49 1.49 4.65 4.65 3.94 

16 5 50 50 40 30.24 30.24 31.97 32.98 5.73 5.73 9.05 9.05 3.83 31.02 31.54 2.58 2.58 4.31 4.31 3.37 

17 5 100 25 5 360.35 360.35 360.35 364.08 0.00 0.00 1.04 1.04 3.52 370.70 372.87 2.87 2.87 3.48 3.48 3.34 

18 5 100 50 5 304.23 304.23 312.86 314.28 2.84 2.84 3.30 3.30 3.28 313.27 315.26 2.97 2.97 3.63 3.63 3.00 

19 5 100 25 10 294.21 294.21 297.49 306.31 1.12 1.12 4.11 4.11 4.91 300.18 303.18 2.03 2.03 3.05 3.05 4.22 

20 5 100 50 10 229.41 229.41 234.42 238.96 2.19 2.19 4.16 4.16 4.34 236.35 241.20 3.02 3.02 5.14 5.14 3.67 

21 5 100 25 20 134.95 134.95 134.95 139.83 0.00 0.00 3.61 3.61 9.10 134.95 137.98 0.00 0.00 2.25 2.25 7.14 

22 5 100 50 20 144.41 144.41 147.81 152.24 2.35 2.35 5.42 5.42 4.08 146.86 149.73 1.70 1.70 3.68 3.68 3.22 

23 5 100 25 40 58.95 58.95 60.74 61.94 3.03 3.03 5.06 5.06 10.28 62.13 62.48 5.39 5.39 5.99 5.99 8.89 

24 5 100 50 40 39.44 39.44 42.02 42.75 6.54 6.54 8.40 8.40 8.91 39.95 41.72 1.29 1.29 5.79 5.79 7.01 

25 10 50 25 5 242.85 242.85 246.12 251.23 1.35 1.35 3.45 3.45 5.18 252.32 256.54 3.90 3.90 5.64 5.64 3.83 

26 10 50 50 5 282.12 282.12 282.12 284.03 0.00 0.00 0.68 0.68 4.10 289.12 292.51 2.48 2.48 3.68 3.68 3.36 

27 10 50 25 10 244.54 244.54 252.33 256.09 3.19 3.19 4.72 4.72 5.24 251.51 254.49 2.85 2.85 4.07 4.07 4.76 

28 10 50 50 10 288.33 283.33 288.33 293.06 1.76 0.00 3.43 1.64 4.37 299.83 304.29 5.82 3.99 7.40 5.53 3.69 
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ID stop stud cap wd BKS(MH) BKS(exact) 

LNS-4 LNS-5 

cost Time(s) cost Time(s) 

Best sol Avg sol 

%Best 

Gap 

(exact) 

%Best 

Gap(MH) 

%Avg 

Gap 

(exact) 

% Avg 

Gap(MH) 
Avg time Best sol Avg sol 

%Best 

Gap 

(exact) 

%Best 

Gap(MH) 

%Avg 

Gap 

(exact) 

% Avg 

Gap(MH) 
Avg time 

29 10 50 25 20 108.98 108.98 113.47 115.46 4.12 4.12 5.95 5.95 5.63 114.36 115.18 4.94 4.94 5.69 5.69 4.96 

30 10 50 50 20 157.48 157.48 161.70 164.29 2.68 2.68 4.32 4.32 6.16 160.84 162.98 2.13 2.13 3.49 3.49 4.55 

31 10 50 25 40 32.25 32.25 33.56 34.92 4.05 4.05 8.29 8.29 6.77 34.87 36.02 8.11 8.11 11.68 11.68 5.00 

32 10 50 50 40 36.66 36.66 37.51 38.68 2.33 2.33 5.51 5.51 6.26 38.80 39.80 5.85 5.85 8.57 8.57 4.98 

33 10 100 25 5 403.18 403.18 404.91 408.79 0.43 0.43 1.39 1.39 3.31 407.45 411.16 1.06 1.06 1.98 1.98 2.88 

34 10 100 50 5 296.53 296.53 311.23 314.96 4.96 4.96 6.21 6.21 3.20 311.52 317.32 5.05 5.05 7.01 7.01 2.46 

35 10 100 25 10 388.87 388.87 389.95 397.80 0.28 0.28 2.30 2.30 12.61 390.16 393.15 0.33 0.33 1.10 1.10 8.66 

36 10 100 50 10 294.80 294.80 311.63 313.58 5.71 5.71 6.37 6.37 11.70 304.39 308.43 3.26 3.25 4.62 4.62 9.03 

37 10 100 25 20 178.28 178.28 179.21 181.21 0.52 0.52 1.65 1.65 11.11 178.28 179.08 0.00 0.00 0.45 0.45 9.35 

38 10 100 50 20 175.96 175.96 182.97 184.71 3.98 3.98 4.97 4.97 12.42 186.40 188.11 5.93 5.93 6.90 6.90 10.33 

39 10 100 25 40 57.50 57.50 58.90 60.05 2.43 2.43 4.43 4.43 12.33 59.87 60.19 4.12 4.12 4.68 4.68 10.47 

40 10 100 50 40 31.89 31.89 31.89 32.87 0.00 0.00 3.08 3.08 12.42 31.89 32.79 0.00 0.00 2.82 2.82 9.97 

41 10 200 25 5 735.27 735.27 744.39 749.77 1.24 1.24 1.97 1.97 14.57 754.64 759.03 2.63 2.63 3.23 3.23 12.18 

42 10 200 50 5 512.16 506.06 526.26 530.49 3.99 2.75 4.83 3.58 11.71 514.87 529.23 1.74 0.53 4.58 3.33 8.89 

43 10 200 25 10 513.00 513.00 522.88 527.01 1.93 1.93 2.73 2.73 38.93 522.30 525.13 1.81 1.81 2.36 2.36 32.41 

44 10 200 50 10 475.21  475.21 489.94  0.00  3.10 16.90 489.55 492.26  3.02  3.59 13.81 

45 10 200 25 20 347.29  362.29 366.33  4.32  5.48 34.16 361.68 363.95  4.14  4.80 29.84 

46 10 200 50 20 217.46  217.46 222.57  0.00  2.35 28.56 220.42 221.31  1.36  1.77 28.26 

47 10 200 25 40 102.93  107.08 111.00  4.03  7.84 45.47 102.93 104.65  0.00  1.67 42.48 

48 10 200 50 40 55.05  57.50 58.87  4.44  6.93 17.61 55.94 58.58  1.62  6.41 19.20 

49 20 100 25 5 520.24  532.31 537.86  2.32  3.39 12.91 525.31 530.10  0.97  1.89 12.72 

50 20 100 50 5 420.64  434.06 439.94  3.19  4.59 7.26 432.80 434.60  2.89  3.32 6.94 

51 20 100 25 10 422.21  436.38 441.24  3.36  4.51 11.90 441.18 441.93  4.49  4.67 12.12 

52 20 100 50 10 360.86  366.82 378.96  1.65  5.01 12.83 367.74 368.62  1.91  2.15 10.01 

53 20 100 25 20 245.17  245.17 254.97  0.00  4.00 13.30 248.94 251.19  1.54  2.46 13.05 

54 20 100 50 20 185.06  188.01 189.17  1.59  2.22 9.28 187.85 191.11  1.51  3.27 9.05 

55 20 100 25 40 52.52  54.95 55.42  4.62  5.53 14.36 52.56 54.57  0.08  3.90 14.37 

56 20 100 50 40 19.05  19.05 19.94  0.00  4.66 31.09 19.71 21.13  3.46  10.92 31.74 
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ID stop stud cap wd BKS(MH) BKS(exact) 

LNS-4 LNS-5 

cost Time(s) cost Time(s) 

Best sol Avg sol 

%Best 

Gap 

(exact) 

%Best 

Gap(MH) 

%Avg 

Gap 

(exact) 

% Avg 

Gap(MH) 
Avg time Best sol Avg sol 

%Best 

Gap 

(exact) 

%Best 

Gap(MH) 

%Avg 

Gap 

(exact) 

% Avg 

Gap(MH) 
Avg time 

57 20 200 25 5 903.84  924.69 931.30  2.31  3.04 14.82 903.84 939.95  0.00  4.00 15.83 

58 20 200 50 5 485.65  484.10 511.97  -0.32  5.42 36.11 503.90 506.89  3.76  4.37 35.11 

59 20 200 25 10 616.93  633.70 635.86  2.72  3.07 40.05 639.18 642.18  3.61  4.09 36.18 

60 20 200 50 10 462.31  478.54 484.18  3.51  4.73 25.65 478.29 483.44  3.46  4.57 25.38 

61 20 200 25 20 373.21  377.16 385.99  1.06  3.43 67.24 380.56 386.28  1.97  3.50 64.27 

62 20 200 50 20 250.75  251.83 255.98  0.43  2.08 35.86 251.02 256.01  0.11  2.10 32.95 

63 20 200 25 40 93.01  96.02 97.38  3.23  4.70 92.91 97.71 98.46  5.05  5.86 84.08 

64 20 200 50 40 45.40  46.99 47.09  3.50  3.71 45.98 46.38 48.42  2.17  6.64 42.77 

65 20 400 25 5 1323.35  1384.95 1397.52  4.65  5.60 338.89 1338.09 1351.25  1.11  2.11 317.69 

66 20 400 50 5 733.54  750.21 757.58  2.27  3.28 51.07 754.94 758.31  2.92  3.38 46.68 

67 20 400 25 10 975.12  1006.38 1008.45  3.21  3.42 228.05 980.21 981.84  0.52  0.69 220.42 

68 20 400 50 10 614.67  637.59 644.94  3.73  4.92 93.12 638.81 642.49  3.93  4.53 92.05 

69 20 400 25 20 763.76  790.89 802.65  3.55  5.09 203.74 776.50 804.78  1.67  5.37 194.47 

70 20 400 50 20 298.47  310.40 314.77  4.00  5.46 123.10 314.40 319.68  5.34  7.11 117.46 

71 20 400 25 40 239.58  239.58 240.81  0.00  0.51 394.51 245.63 247.01  2.52  3.10 396.14 

72 20 400 50 40 84.49  87.14 87.74  3.14  3.85 180.23 87.55 88.63  3.62  4.90 158.62 

73 40 200 25 5 831.94  848.74 850.94  2.02  2.28 101.58 873.95 875.42  5.05  5.23 89.47 

74 40 200 50 5 593.35  613.33 616.61  3.37  3.92 62.98 593.68 599.20  0.05  0.99 62.00 

75 40 200 25 10 728.44  749.62 760.52  2.91  4.40 1091.78 728.44 744.41  0.00  2.19 1014.25 

76 40 200 50 10 481.05  505.59 511.52  5.10  6.33 157.61 516.95 518.26  7.46  7.74 144.57 

77 40 200 25 20 339.75  342.11 355.38  0.69  4.60 236.35 350.19 353.94  3.07  4.18 228.41 

78 40 200 50 20 273.88  282.03 282.23  2.98  3.05 69.95 280.21 281.57  2.31  2.81 66.47 

79 40 200 25 40 76.77  78.81 79.14  2.66  3.08 176.84 78.35 79.49  2.06  3.54 165.47 

80 40 200 50 40 58.46  59.67 61.29  2.07  4.85 114.82 60.44 60.95  3.38  4.26 100.03 

81 40 400 25 5 1407.05  1484.04 1490.99  5.47  5.97 464.42 1466.60 1481.56  4.23  5.30 443.75 

82 40 400 50 5 858.80  888.07 897.51  3.41  4.51 880.34 883.15 888.65  2.84  3.48 843.86 

83 40 400 25 10 891.02  898.80 902.16  0.87  1.25 673.48 920.98 927.86  3.36  4.13 652.17 

84 40 400 50 10 757.42  787.19 791.97  3.93  4.56 536.36 797.91 801.48  5.35  5.82 518.48 
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ID stop stud cap wd BKS(MH) BKS(exact) 

LNS-4 LNS-5 

cost Time(s) cost Time(s) 

Best sol Avg sol 

%Best 

Gap 

(exact) 

%Best 

Gap(MH) 

%Avg 

Gap 

(exact) 

% Avg 

Gap(MH) 
Avg time Best sol Avg sol 

%Best 

Gap 

(exact) 

%Best 

Gap(MH) 

%Avg 

Gap 

(exact) 

% Avg 

Gap(MH) 
Avg time 

85 40 400 25 20 586.29  601.47 606.03  2.59  3.37 1034.19 611.49 615.90  4.30  5.05 987.46 

86 40 400 50 20 395.95  403.47 408.00  1.90  3.04 381.56 405.23 407.47  2.34  2.91 365.48 

87 40 400 25 40 195.33  203.37 206.76  4.12  5.85 1775.91 201.93 205.51  3.38  5.21 1694.91 

88 40 400 50 40 70.77  73.45 75.20  3.79  6.27 788.07 73.01 74.26  3.17  4.93 755.08 

89 40 800 25 5 2900.14  2999.43 3041.80  3.42  4.88 4650.40 3028.92 3034.37  4.44  4.63 4411.96 

90 40 800 50 5 1345.70  1345.64 1388.19  0.00  3.16 2135.60 1393.84 1400.01  3.58  4.04 2047.09 

91 40 800 25 10 2200.57  2272.58 2288.36  3.27  3.99 5658.80 2200.57 2295.55  0.00  4.32 5217.78 

92 40 800 50 10 1025.16  1087.79 1089.05  6.11  6.23 5808.31 1051.21 1055.33  2.54  2.94 5391.43 

93 40 800 25 20 1404.16  1451.01 1464.80  3.34  4.32 4951.05 1436.22 1484.96  2.28  5.75 4635.86 

94 40 800 50 20 616.58  634.36 639.47  2.88  3.71 4889.83 639.82 645.08  3.77  4.62 4629.46 

95 40 800 25 40 396.92  405.10 411.36  2.06  3.64 5169.93 408.47 417.79  2.91  5.26 5000.96 

96 40 800 50 40 200.94  207.25 209.02  3.14  4.02 4634.26 207.00 208.50  3.02  3.76 4312.12 

97 80 400 25 5 1546.23  1546.23 1589.06  0.00  2.77 1362.64 1591.34 1602.19  2.92  3.62 1304.00 

98 80 400 50 5 1048.56  1100.97 1112.34  5.00  6.08 763.05 1083.69 1098.19  3.35  4.73 709.76 

99 80 400 25 10 1216.74  1280.54 1288.73  5.24  5.92 2704.81 1279.75 1297.65  5.18  6.65 2569.52 

100 80 400 50 10 760.61  782.41 784.51  2.87  3.14 878.33 783.67 784.61  3.03  3.16 746.19 

101 80 400 25 20 565.49  582.96 587.58  3.09  3.91 2009.07 589.39 599.75  4.23  6.06 1953.19 

102 80 400 50 20 372.05  385.59 389.08  3.64  4.58 1678.28 385.10 388.11  3.51  4.32 1376.61 

103 80 400 25 40 131.75  136.38 139.29  3.52  5.72 1763.71 135.70 138.80  3.00  5.35 1725.10 

104 80 400 50 40 95.84  98.85 100.59  3.14  4.96 5049.86 99.86 104.57  4.19  9.11 4689.32 
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Appendix 5 

 

Instance size 
Problem characteristics  results 

no of school no of stop capacity Walking distance Exact solution Best sol meta Avg time (ms) %Best gap 

1 1 10 25 5 135.43 135.43 35 0.00 

2 1 10 50 5 242.62 247.56 97 2.04 

3 1 10 25 10 151.34 155.19 71 2.54 

4 1 10 50 10 224.68 224.68 46 0.00 

5 1 10 25 15 219.45 223.12 71 1.67 

6 1 10 50 15 177.50 177.50 50 0.00 

7 1 10 25 20 103.45 105.19 62 1.68 

8 1 10 50 20 155.47 155.47 69 0.00 

9 1 10 25 25 136.35 138.90 65 1.87 

10 1 10 50 25 65.98 68.34 113 3.58 

11 2 20 25 5 161.45 161.45 186 0.00 

12 2 20 50 5 267.21 272.12 214 1.84 

13 2 20 25 10 226.06 228.90 242 1.26 

14 2 20 50 10 326.34 330.23 252 1.19 

15 2 20 25 15 244.49 244.50 260 0.00 

16 2 20 50 15 234.68 243.12 244 3.60 

17 2 20 25 20 247.42 250.21 220 1.13 

18 2 20 50 20 171.99 178.23 212 3.63 

19 2 20 25 25 167.22 169.12 174 1.14 

20 2 20 50 25 187.82 190.45 272 1.40 

21 3 30 25 5  794.80 383  

22 3 30 50 5  1012.46 345  

23 3 30 25 10  958.37 390  

24 3 30 50 10  1306.17 442  

25 3 30 25 15  1243.76 347  

26 3 30 50 15  1105.14 440  

27 3 30 25 20  863.20 428  
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Instance size 
Problem characteristics  results 

no of school no of stop capacity Walking distance Exact solution Best sol meta Avg time (ms) %Best gap 

28 3 30 50 20  894.34 395  

29 3 30 25 25  835.51 314  

30 3 30 50 25  321.89 464  

31 4 40 25 5  1760.12 891  

32 4 40 50 5  2872.21 852  

33 4 40 25 10  1919.67 967  

34 4 40 50 10  1807.95 987  

35 4 40 25 15  2456.78 659  

36 4 40 50 15  2035.56 869  

37 4 40 25 20  1169.80 1,141  

38 4 40 50 20  1351.13 1,082  

39 4 40 25 25  1431.12 659  

40 4 40 50 25  912.34 904  

41 5 50 25 5  1897.23 3,016  

42 5 50 50 5  2182.69 3,000  

43 5 50 25 10  1987.59 2,667  

44 5 50 50 10  2878.45 2,723  

45 5 50 25 15  3114.09 2,104  

46 5 50 50 15  2304.29 2,396  

47 5 50 25 20  1455.34 3,903  

48 5 50 50 20  1678.32 3,345  

49 5 50 25 25  1790.32 1,785  

50 5 50 50 25  1903.34 2,585  

51 6 60 25 5  1900.34 11,912  

52 6 60 50 5  2234.19 14,565  

53 6 60 25 10  2543.19 8,142  

54 6 60 50 10  2664.45 9,970  

55 6 60 25 15  2732.21 7,805  

56 6 60 50 15  2021.45 9,801  

57 6 60 25 20  1450.39 15,648  



 

225 

 

Instance size 
Problem characteristics  results 

no of school no of stop capacity Walking distance Exact solution Best sol meta Avg time (ms) %Best gap 

58 6 60 50 20  2097.34 13,211  

59 6 60 25 25  1891.13 7,219  

60 6 60 50 25  2793.12 9,466  

61 7 70 25 5  2121.34 43,367  

62 7 70 50 5  3043.12 63,767  

63 7 70 25 10  2570.57 38,718  

64 7 70 50 10  4096.50 42,285  

65 7 70 25 15  3362.22 30,057  

66 7 70 50 15  3021.54 34,506  

67 7 70 25 20  3098.45 69,988  

68 7 70 50 20  2560.87 62,995  

69 7 70 25 25  2272.12 32,626  

70 7 70 50 25  2341.34 45,017  

71 8 80 25 5  3023.32 208,465  

72 8 80 50 5  3957.43 330,594  

73 8 80 25 10  3652.32 164,202  

74 8 80 50 10  4432.12 178,967  

75 8 80 25 15  5034.21 127,729  

76 8 80 50 15  4321.14 146,634  

77 8 80 25 20  4567.23 347,841  

78 8 80 50 20  3457.21 309,300  

79 8 80 25 25  3094.32 155,156  

80 8 80 50 25  3101.15 240,337  

81 9 90 25 5  3987.21 763,417  

82 9 90 50 5  4976.54 1,056,142  

83 9 90 25 10  4674.23 601,323  

84 9 90 50 10  4867.12 692,230  

85 9 90 25 15  4523.13 523,622  

86 9 90 50 15  3987.12 614,957  

87 9 90 25 20  4231.23 1,418,512  
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Instance size 
Problem characteristics  results 

no of school no of stop capacity Walking distance Exact solution Best sol meta Avg time (ms) %Best gap 

88 9 90 50 20  4578.20 1,328,981  

89 9 90 25 25  4309.21 673,320  

90 9 90 50 25  3211.98 1,039,881  

91 10 100 25 5  4219.20 2,396,318  

92 10 100 50 5  5396.95 4,116,779  

93 10 100 25 10  4748.18 1,949,401  

94 10 100 50 10  5763.43 2,938,713  

95 10 100 25 15  5626.40 1,821,001  

96 10 100 50 15  4473.65 2,114,905  

97 10 100 25 20  4514.68 4,276,218  

98 10 100 50 20  4352.37 4,091,803  

99 10 100 25 25  4228.80 2,408,016  

100 10 100 50 25  4589.78 3,968,672  
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Appendix 6 

 
 Problem characteristics  Metaheuristic Deviation  Time  (ms) 

Instance 

size 

No of 

school 

No of 

stop 
Capacity 

Exact 

method 

First 

scenario 

Second 

scenario 

Deviation-first 

scenario from 

exact 

Deviation-

second scenario 

from exact 

Percentage Gap 

between two 

scenarios 

Time first 

scenario 

Time Second 

scenario 

1 1 10 20 508.48 517.42 508.48 1.76% 0.00% 1.759% 233.07 234.62 

2 1 10 25 472.94 495.66 483.27 4.80% 2.19% 2.563% 223.18 227.13 

3 1 10 30 441.75 457.57 441.75 3.58% 0.00% 3.581% 222.71 221.19 

4 1 10 35 407.14 415.27 413.82 2.00% 1.64% 0.349% 212.31 218.00 

5 1 10 40 379.90 379.94 379.90 0.01% 0.00% 0.011% 201.54 205.35 

6 1 10 45 354.21 362.05 361.74 2.21% 2.13% 0.085% 168.47 171.12 

7 1 10 50 346.14 365.20 369.63 5.51% 6.78% -1.198% 151.59 153.60 

8 2 20 20 516.30 533.67 525.03 3.37% 1.69% 1.646% 801.90 811.63 

9 2 20 25 517.36 540.07 540.36 4.39% 4.44% -0.054% 813.76 831.76 

10 2 20 30 465.12 471.75 465.12 1.43% 0.00% 1.427% 786.90 818.00 

11 2 20 35 394.29 404.64 400.03 2.62% 1.46% 1.152% 754.51 767.96 

12 2 20 40 387.42 387.42 387.42 0.00% 0.00% 0.000% 768.45 777.83 

13 2 20 45 365.36 370.57 365.36 1.43% 0.00% 1.427% 749.73 759.53 

14 2 20 50 523.77 554.60 549.53 5.89% 4.92% 0.923% 777.55 792.77 

15 3 30 20 2690.49 2791.86 2,770.75 3.77% 2.98% 0.762% 1,882.94 1,903.46 

16 3 30 25 2815.25 2910.42 2,828.38 3.38% 0.47% 2.901% 1,920.68 1,929.92 

17 3 30 30  2813.94 2,685.32 2.88% 1.79% 4.789% 1,813.77 1,875.44 

18 3 30 35  2576.69 2,478.97   3.942% 1,760.28 1,830.40 

19 3 30 40  2574.07 2,442.15   5.402% 1,838.89 1,809.79 

20 3 30 45  2652.20 2,540.88   4.381% 2,140.86 2,117.35 

21 3 30 50  2753.47 2,568.37   7.207% 2,445.68 2,489.19 

22 4 40 20  6187.74 5,933.82   4.279% 2,208.62 2,264.60 

23 4 40 25  5397.82 5,380.35   0.325% 2,076.96 2,101.22 

24 4 40 30  4748.77 4,665.43   1.786% 1,942.84 1,966.11 

25 4 40 35  4627.31 4,492.84   2.993% 1,986.20 2,072.31 

26 4 40 40  2094.04 2,004.55   4.464% 1,381.60 1,398.64 



 

228 

 

 Problem characteristics  Metaheuristic Deviation  Time  (ms) 

Instance 

size 

No of 

school 

No of 

stop 
Capacity 

Exact 

method 

First 

scenario 

Second 

scenario 

Deviation-first 

scenario from 

exact 

Deviation-

second scenario 

from exact 

Percentage Gap 

between two 

scenarios 

Time first 

scenario 

Time Second 

scenario 

27 4 40 45  4961.57 4,869.46   1.892% 2,579.74 2,580.26 

28 4 40 50  5398.40 5,434.95   -0.672% 3,181.44 3,188.88 

29 5 50 20  7650.01 7,645.89   0.054% 6,469.21 6,692.40 

30 5 50 25  7220.51 7,198.33   0.308% 6,959.11 6,968.47 

31 5 50 30  7189.75 7,168.76   0.293% 7,556.36 7,557.80 

32 5 50 35  6215.73 5,941.68   4.612% 7,206.24 7,154.60 

33 5 50 40  5895.65 5,694.89   3.525% 6,997.28 7,092.17 

34 5 50 45  4877.70 4,668.33   4.485% 6,482.34 6,675.51 

35 5 50 50  4527.52 4,355.11   3.959% 6,829.01 6,923.93 

36 6 60 20  4281.40 4,053.72   5.616% 22,836.83 23,232.36 

37 6 60 25  3407.83 3,374.28   0.994% 20,944.32 21,457.46 

38 6 60 30  5367.18 5,342.48   0.462% 28,614.99 28,968.10 

39 6 60 35  4894.48 4,855.67   0.799% 30,852.85 31,574.81 

40 6 60 40  2487.37 2,356.20   5.567% 22,513.96 23,267.05 

41 6 60 45  5029.85 4,764.60   5.567% 37,205.38 37,686.81 

42 6 60 50  4919.48 4,824.20   1.975% 39,855.45 40,825.53 

43 7 70 20  8672.19 8,214.87   5.567% 115,021.60 121,796.37 

44 7 70 25  6495.58 6,388.21   1.681% 101,513.44 103,726.19 

45 7 70 30  6554.89 6,275.99   4.444% 107,115.53 109,779.50 

46 7 70 35  3253.67 3,091.06   5.261% 79,129.12 78,767.66 

47 7 70 40  2991.91 2,834.13   5.567% 77,436.38 77,255.18 

48 7 70 45  3124.97 2,959.61   5.587% 78,531.93 80,374.29 

49 7 70 50  7796.07 7,361.94   5.897% 138,612.74 141,107.77 

50 8 80 20  13128.58 12,565.06   4.485% 496,285.01 505,163.56 

51 8 80 25  13363.42 12,328.68   8.393% 515,016.36 524,235.16 

52 8 80 30  12754.39 12,081.79   5.567% 525,407.46 543,810.66 

53 8 80 35  12188.42 11,774.55   3.515% 545,230.65 560,308.24 

54 8 80 40  11610.93 10,998.63   5.567% 538,866.86 552,613.97 
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 Problem characteristics  Metaheuristic Deviation  Time  (ms) 

Instance 

size 

No of 

school 

No of 

stop 
Capacity 

Exact 

method 

First 

scenario 

Second 

scenario 

Deviation-first 

scenario from 

exact 

Deviation-

second scenario 

from exact 

Percentage Gap 

between two 

scenarios 

Time first 

scenario 

Time Second 

scenario 

55 8 80 45  11228.50 10,667.32   5.261% 549,781.88 563,989.93 

56 8 80 50  11012.74 10,150.45   8.495% 567,089.27 584,385.59 

57 9 90 20  10858.43 10,396.41   4.444% 1,910,241.48 1,957,455.98 

58 9 90 25  10715.12 10,172.80   5.331% 1,971,801.67 2,024,524.25 

59 9 90 30  10167.99 10,121.21   0.462% 2,052,379.64 2,104,965.26 

60 9 90 35  9427.20 9,548.79   -1.273% 2,020,067.42 2,187,338.56 

61 9 90 40  9154.39 9,215.28   -0.661% 2,202,195.97 2,252,750.15 

62 9 90 45  9630.85 9,248.19   4.138% 2,296,793.04 2,350,050.17 

63 9 90 50  9365.56 8,917.47   5.025% 2,293,937.55 2,368,517.81 

64 10 100 20  12369.85 11,890.01   4.036% 2,379,043.61 2,454,715.75 

65 10 100 25  14139.01 13,568.03   4.208% 3,875,459.70 4,016,668.85 

66 10 100 30  12801.97 12,126.86   5.567% 3,952,160.86 4,085,025.95 

67 10 100 35  11905.98 11,399.39   4.444% 3,921,046.40 4,057,558.85 

68 10 100 40  11920.24 11,291.63   5.567% 4,260,672.42 4,366,624.21 

69 10 100 45  10257.58 9,716.65   5.567% 4,277,208.42 4,379,699.39 

70 10 100 50  11013.81 10,899.98   1.044% 4,518,653.71 4,691,370.90 

71 11 110 20  15480.36 14,821.69   4.444% 2,932,599.24 3,078,296.25 

72 11 110 25  15592.69 14,907.37   4.597% 7,594,535.59 7,969,096.28 

73 11 110 30  12913.37 12,363.92   4.444% 7,728,092.23 7,927,654.38 

74 11 110 35  13614.00 13,129.71   3.689% 7,281,692.03 7,526,856.65 

75 11 110 40  13864.98 13,342.59   3.915% 8,307,852.73 8,464,057.57 

76 11 110 45  11123.89 10,520.99   5.730% 8,115,809.07 8,162,279.65 

77 11 110 50  10932.81 10,340.27   5.730% 7,268,654.66 7,433,834.20 
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Appendix 7 (District 12) 

 

Problem characteristics Cost  Problem characteristics Cost 

Instance size no of school no of stop Capacity 
First 

scenario 
Second 

scenario 
 Instance size no of school no of stop Capacity 

First 
scenario 

Second 
scenario 

1 5 50 20 2,678 2,689  29 20 200 20 7,751 7,589 

2 5 50 25 2,477 2,469  30 20 200 25 10,153 9,887 

3 5 50 30 2,265 2,179  31 20 200 30 5,675 5,556 

4 5 50 35 1,890 1,771  32 20 200 35 7,615 7,539 

5 5 50 40 1,713 1,656  33 20 200 40 8,347 8,371 

6 5 50 45 1,366 1,317  34 20 200 45 3,543 3,414 

7 5 50 50 1,236 1,225  35 20 200 50 3,273 3,126 

8 10 100 20 3,191 3,151  36 25 250 20 10,418 9,879 

9 10 100 25 3,560 3,401  37 25 250 25 14,503 14,516 

10 10 100 30 3,042 2,932  38 25 250 30 6,841 6,511 

11 10 100 35 2,764 2,688  39 25 250 35 10,309 10,058 

12 10 100 40 2,737 2,660  40 25 250 40 11,827 11,322 

13 10 100 45 2,302 2,229  41 25 250 45 4,074 3,923 

14 10 100 50 2,495 2,392  42 25 250 50 3,574 3,435 

15 12 120 20 4,290 4,346  43 30 300 20 13,581 13,170 

16 12 120 25 5,036 4,854  44 30 300 25 20,610 19,508 

17 12 120 30 3,754 3,578  45 30 300 30 8,081 7,619 

18 12 120 35 3,878 3,722  46 30 300 35 12,562 11,840 

19 12 120 40 4,002 3,850  47 30 300 40 16,544 15,608 

20 12 120 45 2,659 2,478  48 30 300 45 4,611 4,437 

21 12 120 50 2,743 2,744  49 30 300 50 4,021 3,855 

22 15 150 20 5,710 5,567  50 35 350 20 17,553 17,246 

23 15 150 25 7,108 6,561  51 35 350 25 28,450 27,384 
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24 15 150 30 4,588 4,542  52 35 350 30 9,272 8,842 

25 15 150 35 5,420 5,362  53 35 350 35 13,776 13,212 

26 15 150 40 5,819 5,670  54 35 350 40 23,038 21,858 

27 15 150 45 3,050 2,970  55 35 350 45 5,069 5,087 

28 15 150 50 2,996 2,777  56 35 350 50 4,690 4,511 
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Appendix 7 (District 13) 

Problem characteristics Cost  Problem characteristics Cost 

Instance size no of school no of stop capacity 
first 

scenario 
second 

scenario 
 Instance size no of school no of stop capacity 

first 
scenario 

second 
scenario 

1 5 50 20 4150.1 4054.4  29 20 120 0 11087.68 10991.24 

2 5 50 25 3454.9 3320.2  30 20 120 0 14254.07 14026.52 

3 5 50 30 3054 2964  31 20 120 0 9942.52 9541.432 

4 5 50 35 2723.9 2705.3  32 20 120 0 10567.07 10233.98 

5 5 50 40 2628.1 2637.1  33 20 120 0 11578.82 11213.84 

6 5 50 45 2053.4 1967.6  34 20 120 0 4100.551 3971.294 

7 50 50 50 1980.5 1920.3  35 20 120 0 4650.066 4566.663 

8 10 100 20 5168.6 4972  36 25 120 0 14428.85 14144.54 

9 10 100 25 5535.4 5356.3  37 25 120 0 20195.93 19754.52 

10 10 100 30 5517.7 5302.6  38 25 120 0 12251.32 11995.52 

11 10 100 35 3895.2 3780.4  39 25 120 0 13925.71 13513.45 

12 10 100 40 3843.3 3693.4  40 25 120 0 15495.06 14888.92 

13 10 100 45 3210.5 3109.7  41 25 120 0 4443.228 4227.969 

14 10 100 50 3515.3 3378.2  42 25 120 0 5186.524 4864.414 

15 12 120 20 6253.7 6004  43 30 120 0 19487.09 18724.8 

16 12 120 25 7642.4 7351.7  44 30 120 0 27661.75 26842.85 

17 12 120 30 6538.2 6314.3  45 30 120 0 15062.43 14587.63 

18 12 120 35 5415.1 5183.7  46 30 120 0 19036.29 18472.74 

19 12 120 40 5507 5266.5  47 30 120 0 22413.5 22189.37 

20 12 120 45 3261.4 3200.5  48 30 120 0 6455.694 6456.353 

21 12 120 50 3884.8 3722.4  49 30 120 0 5721.992 5746.029 
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22 15 120 0 8356.704 7951.85  50 35 120 0 25885.62 25069.66 

23 15 120 0 10357.54 9942.634  51 35 120 0 36685.09 35514.68 

24 15 120 0 8038.648 7982.45  52 35 120 0 17635.46 16562.36 

25 15 120 0 7672.582 7595.856  53 35 120 0 25167.14 25167.14 

26 15 120 0 7921.494 7671.794  54 35 120 0 31099.61 30791.7 

27 15 120 0 3779.57 3659.347  55 35 120 0 6994.879 6761.027 

28 15 120 0 4380.103 4236.174  56 35 120 0 6211.032 6015.249 
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Appendix 8 

Type of Hazard Severity 
Probability North South Center 

Avg. Score 
North South Center Rank1 Rank2 Rank3 

Safety risk in area         

The route leading to bus stop 4 5 6 6 20 24 24 22.7 

Pedestrian crossing 3 4 4 5 12 12 15 13.0 

The location of bus stop  5 4 4 6 20 20 30 23.3 

Size of waiting area (bus stop) 7 5 6 5 35 42 35 37.3 

Quality of place in waiting area 6 2 3 3 12 18 18 16.0 

Healthy and safety risk         

Density of population 7 3 6 5 21 42 35 32.7 

Prevalence to corona virus 8 3 6 5 24 48 40 37.3 

Household Income 4 1 7 6 4 28 24 18.7 

Traffic and road condition         

Complex intersection 4 3 4 4 12 16 16 14.7 

High traffic volume 6 4 6 5 24 36 30 30.0 

Traffic speed 7 2 3 5 14 21 35 23.3 

Highway area 5 2 5 4 10 25 20 18.3 
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 Appendix 9 

 

ID School stop cap wd 

P-HA 

Exact solution Metaheuristic Exact (Gap) Time (ms) 

1 1 10 25 5 168.69 170.64 1.2% 183.83 

2 1 10 50 5 316.58 319.30 0.9% 476.81 

3 1 10 25 10 195.29 199.42 2.1% 341.61 

4 1 10 50 10 265.09 265.09 0.0% 203.80 

5 1 10 25 15 281.130 281.13 0.0% 321.13 

6 1 10 50 15 218.27 220.48 1.0% 218.18 

7 1 10 25 20 127.83 130.96 2.4% 246.94 

8 1 10 50 20 189.67 189.67 0.0% 281.83 

9 1 10 25 25 166.72 168.84 1.3% 243.37 

10 1 10 50 25 86.14 88.16 2.3% 458.24 

11 2 20 25 5 201.64 201.64 0.0% 677.96 

12 2 20 50 5 348.27 365.22 4.9% 950.51 

13 2 20 25 10 277.29 286.13 3.2% 1,084.98 

14 2 20 50 10 365.11 386.37 5.8% 1,265.42 

15 2 20 25 15 303.18 309.48 2.1% 1,367.90 

16 2 20 50 15 310.17 321.24 3.6% 1,517.23 

17 2 20 25 20 317.20 332.78 4.9% 1,272.31 

18 2 20 50 20 217.03 228.64 5.3% 1,330.56 

19 2 20 25 25  229.16  1,072.35 

20 2 20 50 25  262.82  1,637.99 

21 3 30 25 5  988.69  2,298.73 

22 3 30 50 5  1254.93  2,014.19 

23 3 30 25 10  1216.25  2,317.61 
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ID School stop cap wd 

P-HA 

Exact solution Metaheuristic Exact (Gap) Time (ms) 

24 3 30 50 10  1626.29  3,052.50 

25 3 30 25 15  1544.17  2,351.55 

26 3 30 50 15  1401.59  2,996.71 

27 3 30 25 20  1089.76  3,025.66 

28 3 30 50 20  1148.67  2,878.71 

29 3 30 25 25  1078.93  2,270.02 

30 3 30 50 25  406.73  3,186.63 

31 4 40 25 5  2216.34  6,087.58 

32 4 40 50 5  3618.56  4,928.99 

33 4 40 25 10  2423.53  5,526.24 

34 4 40 50 10  2301.20  4,896.02 

35 4 40 25 15  3055.99  3,260.82 

36 4 40 50 15  2571.68  3,745.01 

37 4 40 25 20  1480.59  5,149.40 

38 4 40 50 20  1707.33  4,652.23 

39 4 40 25 25  1755.35  2,704.40 

40 4 40 50 25  1152.69  3,979.90 

41 5 50 25 5  2333.12  16,074.33 

42 5 50 50 5  4503.13  19,772.68 

43 5 50 25 10  2484.24  17,052.59 

44 5 50 50 10  3650.59  14,684.70 

45 5 50 25 15  3999.66  12,339.82 

46 5 50 50 15  2929.55  15,259.26 

47 5 50 25 20  1805.20  22,875.76 

48 5 50 50 20  2119.03  20,265.91 
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ID School stop cap wd 

P-HA 

Exact solution Metaheuristic Exact (Gap) Time (ms) 

49 5 50 25 25  2237.47  8,599.10 

50 5 50 50 25  2363.21  11,657.29 

51 6 60 25 5  2441.54  52,070.96 

52 6 60 50 5  3126.39  56,262.28 

53 6 60 25 10  3265.08  25,415.23 

54 6 60 50 10  3452.92  34,632.04 

55 6 60 25 15  3509.18  24,369.98 

56 6 60 50 15  2828.69  32,595.97 

57 6 60 25 20  1975.11  57,051.02 

58 6 60 50 20  2739.81  44,847.21 

59 6 60 25 25  2646.33  23,934.19 

60 6 60 50 25  3862.02  34,479.00 

61 7 70 25 5  2724.59  125,310.30 

62 7 70 50 5  3908.50  176,424.21 

63 7 70 25 10  3302.91  94,039.44 

64 7 70 50 10  5476.67  97,789.45 

65 7 70 25 15  4687.39  72,966.97 

66 7 70 50 15  3879.22  82,139.38 

67 7 70 25 20  3911.55  151,041.96 

68 7 70 50 20  3304.83  135,447.48 

69 7 70 25 25  2907.61  78,552.63 

70 7 70 50 25  3005.94  104,867.55 

71 8 80 25 5  4214.92  480,711.82 

72 8 80 50 5  5105.46  844,852.86 

73 8 80 25 10  4350.86  408,832.66 
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ID School stop cap wd 

P-HA 

Exact solution Metaheuristic Exact (Gap) Time (ms) 

74 8 80 50 10  5671.75  446,486.49 

75 8 80 25 15  6232.73  323,359.92 

76 8 80 50 15  5147.59  396,422.09 

77 8 80 25 20  5863.65  727,727.52 

78 8 80 50 20  4529.16  637,288.66 

79 8 80 25 25  4416.60  320,934.84 

80 8 80 50 25  3731.95  487,288.66 

81 9 90 25 5  5134.21  1,451,588.66 

82 9 90 50 5  5938.65  1,949,344.91 

83 9 90 25 10  5428.59  1,124,575.45 

84 9 90 50 10  5859.72  1,317,101.91 

85 9 90 25 15  5976.94  966,449.96 

86 9 90 50 15  5544.09  1,095,494.84 

87 9 90 25 20  5895.65  2,425,230.52 

88 9 90 50 20  6147.85  2,254,604.73 

89 9 90 25 25  5645.33  1,272,487.93 

90 9 90 50 25  4584.54  1,812,233.96 

91 10 100 25 5  5568.00  4,259,078.90 

92 10 100 50 5  7133.91  7,143,027.31 

93 10 100 25 10  6224.44  2,868,644.26 

94 10 100 50 10  7006.72  4,284,048.45 

95 10 100 25 15  7370.62  2,570,007.29 

96 10 100 50 15  5860.76  2,817,816.07 

97 10 100 25 20  6440.56  5,722,787.89 

98 10 100 50 20  5563.31  5,520,410.63 
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ID School stop cap wd 

P-HA 

Exact solution Metaheuristic Exact (Gap) Time (ms) 

99 10 100 25 25  6037.21  3,303,408.12 

100 10 100 50 25  6353.84  5,005,692.82 

 

 

ID School stop cap wd 

M-VND 

Metaheuristic Exact (Gap) Heuristic(Gap) Time (ms) 

1 1 10 25 5 170.64 1.16% 0.00% 248.40 

2 1 10 50 5 325.34 2.77% 1.89% 675.99 

3 1 10 25 10 201.41 3.14% 1.00% 599.39 

4 1 10 50 10 270.13 1.90% 1.90% 352.12 

5 1 10 25 15 281.13 0.00% 0.00% 542.68 

6 1 10 50 15 219.21 0.43% -2.00% 386.50 

7 1 10 25 20 133.03 4.07% 1.58% 352.37 

8 1 10 50 20 193.26 1.89% 1.89% 487.46 

9 1 10 25 25 166.72 0.00% -1.26% 357.72 

10 1 10 50 25 90.32 4.85% 2.45% 824.88 

11 2 20 25 5 201.64 0.00% 0.00% 1,069.55 

12 2 20 50 5 370.33 6.33% 1.40% 1,461.97 

13 2 20 25 10 288.70 4.11% 0.90% 1,797.99 

14 2 20 50 10 386.54 5.87% 0.05% 2,226.67 

15 2 20 25 15 311.28 2.67% 0.58% 2,429.82 

16 2 20 50 15 325.73 5.02% 1.40% 2,532.54 

17 2 20 25 20 341.30 7.60% 2.56% 1,837.82 

18 2 20 50 20 230.92 6.40% 1.00% 2,402.80 
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ID School stop cap wd 

M-VND 

Metaheuristic Exact (Gap) Heuristic(Gap) Time (ms) 

19 2 20 25 25 233.74  2.00% 1,725.79 

20 2 20 50 25 268.87  2.30% 3,000.98 

21 3 30 25 5 1018.35  3.00% 4,484.77 

22 3 30 50 5 1269.99  1.20% 3,756.37 

23 3 30 25 10 1244.23  2.30% 3,941.08 

24 3 30 50 10 1735.25  6.70% 5,502.45 

25 3 30 25 15 1579.68  2.30% 4,166.03 

26 3 30 50 15 1428.22  1.90% 5,267.20 

27 3 30 25 20 1067.97  -2.00% 4,649.58 

28 3 30 50 20 1162.45  1.20% 4,882.85 

29 3 30 25 25 1111.30  3.00% 3,897.77 

30 3 30 50 25 416.08  2.30% 5,324.58 

31 4 40 25 5 2282.83  3.00% 10,355.97 

32 4 40 50 5 3734.71  3.21% 9,700.71 

33 4 40 25 10 2479.28  2.30% 9,716.72 

34 4 40 50 10 2354.13  2.30% 9,110.06 

35 4 40 25 15 3260.75  6.70% 5,732.78 

36 4 40 50 15 2725.98  6.00% 5,415.59 

37 4 40 25 20 1511.68  2.10% 7,904.67 

38 4 40 50 20 1859.28  8.90% 7,358.24 

39 4 40 25 25 1839.61  4.80% 4,235.45 

40 4 40 50 25 1235.68  7.20% 6,348.47 

41 5 50 25 5 2393.32  2.58% 26,136.62 

42 5 50 50 5 4667.50  3.65% 33,014.95 

43 5 50 25 10 2583.11  3.98% 25,944.19 
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ID School stop cap wd 

M-VND 

Metaheuristic Exact (Gap) Heuristic(Gap) Time (ms) 

44 5 50 50 10 3694.39  1.20% 22,384.11 

45 5 50 25 15 4102.05  2.56% 19,874.24 

46 5 50 50 15 3003.97  2.54% 23,663.18 

47 5 50 25 20 1863.87  3.25% 38,200.11 

48 5 50 50 20 2197.22  3.69% 31,119.58 

49 5 50 25 25 2317.79  3.59% 14,618.79 

50 5 50 50 25 2422.29  2.50% 21,027.15 

51 6 60 25 5 2578.26  5.60% 92,423.12 

52 6 60 50 5 3263.64  4.39% 98,920.74 

53 6 60 25 10 3340.18  2.30% 39,799.07 

54 6 60 50 10 3562.31  3.17% 55,761.28 

55 6 60 25 15 3575.85  1.90% 43,237.99 

56 6 60 50 15 2859.44  1.09% 55,913.45 

57 6 60 25 20 2020.54  2.30% 98,683.62 

58 6 60 50 20 2812.96  2.67% 73,555.03 

59 6 60 25 25 2691.32  1.70% 42,462.32 

60 6 60 50 25 3961.28  2.57% 60,652.01 

61 7 70 25 5 2811.78  3.20% 213,009.19 

62 7 70 50 5 3982.77  1.90% 328,799.25 

63 7 70 25 10 3408.60  3.20% 166,854.67 

64 7 70 50 10 5706.69  4.20% 180,794.83 

65 7 70 25 15 4958.32  5.78% 121,861.24 

66 7 70 50 15 3968.44  2.30% 144,536.52 

67 7 70 25 20 4087.57  4.50% 252,239.05 

68 7 70 50 20 3380.85  2.30% 230,219.55 
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ID School stop cap wd 

M-VND 

Metaheuristic Exact (Gap) Heuristic(Gap) Time (ms) 

69 7 70 25 25 2954.14  1.60% 135,875.18 

70 7 70 50 25 3078.08  2.40% 195,456.25 

71 8 80 25 5 4349.80  3.20% 795,621.78 

72 8 80 50 5 5161.62  1.10% 1,360,502.91 

73 8 80 25 10 4550.12  4.58% 640,027.18 

74 8 80 50 10 5793.69  2.15% 705,642.24 

75 8 80 25 15 6310.64  1.25% 501,441.47 

76 8 80 50 15 5258.05  2.15% 656,095.54 

77 8 80 25 20 5746.38  -2.00% 1,052,554.60 

78 8 80 50 20 4646.92  2.60% 969,365.45 

79 8 80 25 25 4528.78  2.54% 464,149.32 

80 8 80 50 25 3820.22  2.36% 806,550.99 

81 9 90 25 5 5283.82  2.91% 2,424,068.65 

82 9 90 50 5 6132.13  3.26% 2,964,723.48 

83 9 90 25 10 5627.16  3.66% 1,777,427.94 

84 9 90 50 10 6087.78  3.89% 2,238,857.38 

85 9 90 25 15 6223.19  4.12% 1,469,879.60 

86 9 90 50 15 5663.84  2.16% 1,682,469.44 

87 9 90 25 20 6303.45  6.92% 3,760,843.58 

88 9 90 50 20 6344.58  3.20% 3,563,433.94 

89 9 90 25 25 5900.95  4.53% 1,840,467.01 

90 9 90 50 25 4790.84  4.50% 2,567,097.36 

91 10 100 25 5 6236.16  12.00% 6,609,813.87 

92 10 100 50 5 7376.47  3.40% 10,324,797.60 

93 10 100 25 10 6504.54  4.50% 4,451,933.59 
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ID School stop cap wd 

M-VND 

Metaheuristic Exact (Gap) Heuristic(Gap) Time (ms) 

94 10 100 50 10 7216.92  3.00% 6,322,677.41 

95 10 100 25 15 7812.86  6.00% 3,988,500.38 

96 10 100 50 15 6095.19  4.00% 4,373,085.06 

97 10 100 25 20 6646.66  3.20% 8,881,430.70 

98 10 100 50 20 5680.14  2.10% 8,567,353.08 

99 10 100 25 25 6308.89  4.50% 5,126,695.40 

100 10 100 50 25 6569.87  3.40% 7,768,541.28 

 

 

 

ID School stop cap wd 

m-HA 

Metaheuristic Exact (Gap) Heuristic(Gap) Time (ms) 

1 1 10 25 5 170.6 1.16% 0.00% 427 

2 1 10 50 5 330.3 4.34% 3.45% 1,144 

3 1 10 25 10 204.3 4.63% 2.46% 773.40 

4 1 10 50 10 270.0 1.87% 1.87% 508.90 

5 1 10 25 15 281.1 0.00% 0.00% 791.13 

6 1 10 50 15 222.6 2.00% 0.98% 562.14 

7 1 10 25 20 133.4 4.37% 1.87% 557.67 

8 1 10 50 20 198.7 4.74% 4.74% 704.32 

9 1 10 25 25 182.2 9.28% 7.91% 560.49 

10 1 10 50 25 94.3 9.43% 6.92% 1,136.17 

11 2 20 25 5 204.6 1.48% 1.47% 1,660.19 
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ID School stop cap wd 

m-HA 

Metaheuristic Exact (Gap) Heuristic(Gap) Time (ms) 

12 2 20 50 5 369.0 5.95% 1.04% 2,408.54 

13 2 20 25 10 285.8 3.06% -0.12% 2,780.39 

14 2 20 50 10 392.8 7.57% 1.65% 3,079.08 

15 2 20 25 15 317.0 4.55% 2.42% 3,334.19 

16 2 20 50 15 329.5 6.24% 2.58% 3,680.65 

17 2 20 25 20 331.7 4.57% -0.33% 3,205.58 

18 2 20 50 20 224.6 3.50% -1.75% 3,490.60 

19 2 20 25 25 234.0  2.10% 2,556.24 

20 2 20 50 25 269.4  2.50% 4,061.63 

21 3 30 25 5 1,043.0  5.49% 5,606.58 

22 3 30 50 5 1,278.1  1.85% 5,303.66 

23 3 30 25 10 1,248.1  2.62% 5,171.04 

24 3 30 50 10 1,682.7  3.47% 7,321.38 

25 3 30 25 15 1,569.5  1.64% 5,715.56 

26 3 30 50 15 1,437.3  2.55% 7,726.14 

27 3 30 25 20 1,106.9  1.57% 7,425.19 

28 3 30 50 20 1,178.7  2.61% 6,905.96 

29 3 30 25 25 1,098.8  1.84% 5,735.91 

30 3 30 50 25 412.2  1.35% 7,453.61 

31 4 40 25 5 2,196.1  -0.91% 14,825.82 

32 4 40 50 5 3,743.6  3.45% 12,832.41 

33 4 40 25 10 2,612.8  7.81% 12,447.46 

34 4 40 50 10 2,374.1  3.17% 11,741.68 

35 4 40 25 15 3,222.4  5.44% 6,592.46 
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ID School stop cap wd 

m-HA 

Metaheuristic Exact (Gap) Heuristic(Gap) Time (ms) 

36 4 40 50 15 2,652.6  3.15% 8,611.97 

37 4 40 25 20 1,519.1  2.60% 12,205.15 

38 4 40 50 20 1,840.7  7.81% 11,557.93 

39 4 40 25 25 1,819.5  3.65% 6,643.44 

40 4 40 50 25 1,170.4  1.53% 9,909.02 

41 5 50 25 5 2,420.4  3.74% 42,113.56 

42 5 50 50 5 4,964.1  10.24% 45,234.91 

43 5 50 25 10 2,675.6  7.70% 42,767.52 

44 5 50 50 10 3,658.7  0.22% 35,065.68 

45 5 50 25 15 4,223.6  5.60% 30,118.44 

46 5 50 50 15 3,035.0  3.60% 35,775.81 

47 5 50 25 20 1,893.7  4.90% 53,918.10 

48 5 50 50 20 2,208.0  4.20% 45,955.61 

49 5 50 25 25 2,304.0  2.97% 20,562.16 

50 5 50 50 25 2,517.3  6.52% 25,672.93 

51 6 60 25 5 2,524.6  3.40% 135,310.95 

52 6 60 50 5 3,335.9  6.70% 120,188.73 

53 6 60 25 10 3,413.4  4.54% 59,220.10 

54 6 60 50 10 3,686.0  6.75% 79,459.40 

55 6 60 25 15 3,697.7  5.37% 56,966.52 

56 6 60 50 15 2,872.1  1.53% 78,821.24 

57 6 60 25 20 2,026.7  2.61% 118,045.91 

58 6 60 50 20 2,781.8  1.53% 107,916.65 

59 6 60 25 25 2,713.1  2.52% 57,878.50 
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ID School stop cap wd 

m-HA 

Metaheuristic Exact (Gap) Heuristic(Gap) Time (ms) 

60 6 60 50 25 3,947.7  2.22% 82,302.51 

61 7 70 25 5 2,818.7  3.45% 279,629.47 

62 7 70 50 5 3,966.2  1.47% 426,455.76 

63 7 70 25 10 3,335.3  0.98% 214,496.06 

64 7 70 50 10 5,427.3  -0.90% 229,454.64 

65 7 70 25 15 4,547.7  -2.98% 166,272.89 

66 7 70 50 15 3,978.7  2.56% 196,443.54 

67 7 70 25 20 4,023.5  2.86% 344,044.65 

68 7 70 50 20 3,386.0  2.46% 309,714.64 

69 7 70 25 25 2,939.6  1.10% 176,473.57 

70 7 70 50 25 3,090.1  2.80% 240,051.63 

71 8 80 25 5 4,303.4  2.10% 1,051,591.48 

72 8 80 50 5 5,338.8  4.57% 1,904,080.52 

73 8 80 25 10 4,742.4  9.00% 931,334.22 

74 8 80 50 10 5,615.0  -1.00% 967,831.90 

75 8 80 25 15 6,376.1  2.30% 632,774.04 

76 8 80 50 15 5,325.2  3.45% 897,733.30 

77 8 80 25 20 5,998.5  2.30% 1,659,572.91 

78 8 80 50 20 4,773.7  5.40% 1,365,846.77 

79 8 80 25 25 4,509.3  2.10% 725,301.18 

80 8 80 50 25 3,817.8  2.30% 1,164,062.75 

81 9 90 25 5 5,365.2  4.50% 3,190,822.35 

82 9 90 50 5 6,064.0  2.11% 4,439,637.56 

83 9 90 25 10 5,734.7  5.64% 2,562,119.75 
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ID School stop cap wd 

m-HA 

Metaheuristic Exact (Gap) Heuristic(Gap) Time (ms) 

84 9 90 50 10 6,018.9  2.72% 3,045,570.07 

85 9 90 25 15 6,344.6  6.15% 1,901,562.25 

86 9 90 50 15 5,666.7  2.21% 2,378,089.83 

87 9 90 25 20 6,172.1  4.69% 4,999,142.70 

88 9 90 50 20 6,347.0  3.24% 4,871,710.48 

89 9 90 25 25 5,790.4  2.57% 2,722,695.01 

90 9 90 50 25 4,666.6  1.79% 4,044,359.76 

91 10 100 25 5 5,929.9  6.50% 9,385,382.65 

92 10 100 50 5 7,611.9  6.70% 10,583,988.42 

93 10 100 25 10 6,439.2  3.45% 5,900,888.41 

94 10 100 50 10 7,348.6  4.88% 9,117,974.90 

94 10 100 25 15 7,502.5  1.79% 5,886,409.78 

96 10 100 50 15 6,226.4  6.24% 6,192,687.34 

96 10 100 25 20 6,877.3  6.78% 9,436,397.53 

96 10 100 50 20 5,988.5  7.64% 9,114,426.88 

96 10 100 25 25 6,532.7  8.21% 7,259,868.32 

96 10 100 50 25 6,508.6  2.44% 8,203,618.11 
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ID School stop cap wd 

P-VND 

Metaheuristic Exact (Gap) Heuristic (Gap) Time (ms) 

1 1 10 25 5 174.7 3.55% 2.37% 155.93 

2 1 10 50 5 340.8 7.64% 6.72% 412.93 

3 1 10 25 10 197.4 1.09% -1.00% 295.22 

4 1 10 50 10 268.5 1.28% 1.28% 182.16 

5 1 10 25 15 281.1 0.00% 0.00% 267.10 

6 1 10 50 15 233.6 7.00% 5.93% 183.15 

7 1 10 25 20 134.6 5.28% 2.76% 224.04 

8 1 10 50 20 192.2 1.32% 1.32% 246.60 

9 1 10 25 25 180.2 8.08% 6.72% 227.80 

10 1 10 50 25 90.3 4.87% 2.46% 371.41 

11 2 20 25 5 203.4 0.88% 0.88% 624.23 

12 2 20 50 5 374.6 7.55% 2.56% 883.46 

13 2 20 25 10 299.4 7.98% 4.64% 1,008.63 

14 2 20 50 10 395.9 8.43% 2.46% 1,095.22 

15 2 20 25 15 314.0 3.59% 1.47% 1,196.91 

16 2 20 50 15 325.3 4.89% 1.28% 1,311.67 

17 2 20 25 20 343.1 8.16% 3.10% 1,202.26 

18 2 20 50 20 237.1 9.23% 3.69% 1,259.28 

19 2 20 25 25 237.1  3.45% 995.66 

20 2 20 50 25 268.4  2.11% 1,505.28 

21 3 30 25 5 1,033.9  4.58% 2,092.18 

22 3 30 50 5 1,300.7  3.65% 1,834.35 

23 3 30 25 10 1,264.0  3.93% 2,132.30 

24 3 30 50 10 1,662.4  2.22% 2,778.46 
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ID School stop cap wd 

P-VND 

Metaheuristic Exact (Gap) Heuristic (Gap) Time (ms) 

25 3 30 25 15 1,615.9  4.65% 2,118.00 

26 3 30 50 15 1,445.5  3.13% 2,764.83 

27 3 30 25 20 1,140.4  4.65% 2,620.44 

28 3 30 50 20 1,210.2  5.35% 2,439.05 

29 3 30 25 25 1,129.1  4.65% 1,987.19 

30 3 30 50 25 427.2  5.03% 3,129.72 

31 4 40 25 5 2,293.6  3.48% 6,089.49 

32 4 40 50 5 3,773.9  4.29% 4,311.45 

33 4 40 25 10 2,635.8  8.76% 4,997.81 

34 4 40 50 10 2,455.4  6.70% 4,975.74 

35 4 40 25 15 3,288.2  7.60% 3,084.44 

36 4 40 50 15 2,750.4  6.95% 3,544.09 

37 4 40 25 20 1,532.4  3.50% 4,753.68 

38 4 40 50 20 1,857.1  8.77% 4,487.85 

39 4 40 25 25 1,799.2  2.50% 2,608.42 

40 4 40 50 25 1,198.8  4.00% 3,766.76 

41 5 50 25 5 2,416.2  3.56% 14,929.68 

42 5 50 50 5 4,872.4  8.20% 18,178.93 

43 5 50 25 10 2,586.1  4.10% 16,446.73 

44 5 50 50 10 3,744.8  2.58% 14,689.89 

45 5 50 25 15 4,147.6  3.70% 10,687.12 

46 5 50 50 15 3,099.5  5.80% 12,262.55 

47 5 50 25 20 1,871.1  3.65% 20,014.85 

48 5 50 50 20 2,145.7  1.26% 17,186.92 
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ID School stop cap wd 

P-VND 

Metaheuristic Exact (Gap) Heuristic (Gap) Time (ms) 

49 5 50 25 25 2,291.2  2.40% 8,447.63 

50 5 50 50 25 2,467.2  4.40% 10,824.89 

51 6 60 25 5 2,632.0  7.80% 49,293.30 

52 6 60 50 5 3,235.8  3.50% 56,234.04 

53 6 60 25 10 3,384.3  3.65% 25,873.08 

54 6 60 50 10 3,610.4  4.56% 34,942.56 

55 6 60 25 15 3,785.0  7.86% 24,804.81 

56 6 60 50 15 3,023.0  6.87% 30,564.74 

57 6 60 25 20 2,082.0  5.41% 49,419.27 

58 6 60 50 20 2,918.4  6.52% 39,235.84 

59 6 60 25 25 2,818.3  6.50% 20,724.69 

60 6 60 50 25 3,960.1  2.54% 29,239.31 

61 7 70 25 5 2,825.1  3.69% 105,185.74 

62 7 70 50 5 4,087.9  4.59% 152,773.23 

63 7 70 25 10 3,388.8  2.60% 88,160.46 

64 7 70 50 10 5,903.9  7.80% 91,677.61 

65 7 70 25 15 4,952.2  5.65% 61,893.06 

66 7 70 50 15 4,013.0  3.45% 74,811.58 

67 7 70 25 20 3,833.3  -2.00% 151,049.02 

68 7 70 50 20 3,400.7  2.90% 139,072.99 

69 7 70 25 25 2,981.5  2.54% 73,643.92 

70 7 70 50 25 3,115.7  3.65% 102,058.93 

71 8 80 25 5 4,388.6  4.12% 484,993.29 

72 8 80 50 5 5,340.3  4.60% 792,036.17 
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ID School stop cap wd 

P-VND 

Metaheuristic Exact (Gap) Heuristic (Gap) Time (ms) 

73 8 80 25 10 4,503.0  3.50% 401,523.27 

74 8 80 50 10 5,930.9  4.57% 446,486.49 

75 8 80 25 15 6,522.6  4.65% 326,244.70 

76 8 80 50 15 5,441.0  5.70% 371,629.17 

77 8 80 25 20 6,268.2  6.90% 688,725.71 

78 8 80 50 20 4,583.5  1.20% 603,227.47 

79 8 80 25 25 4,840.6  9.60% 297,993.49 

80 8 80 50 25 3,825.3  2.50% 456,833.12 

81 9 90 25 5 5,323.7  3.69% 1,451,557.07 

82 9 90 50 5 5,793.7  -2.44% 1,966,736.46 

83 9 90 25 10 5,589.3  2.96% 1,084,416.49 

84 9 90 50 10 6,076.4  3.70% 1,234,787.86 

85 9 90 25 15 6,245.9  4.50% 975,083.70 

86 9 90 50 15 5,904.5  6.50% 1,115,031.31 

87 9 90 25 20 6,150.6  4.33% 2,446,899.50 

88 9 90 50 20 6,455.2  5.00% 2,214,308.74 

89 9 90 25 25 6,198.6  9.80% 1,102,068.73 

90 9 90 50 25 4,680.8  2.10% 1,569,549.02 

91 10 100 25 5 6,111.4  9.76% 3,569,920.19 

92 10 100 50 5 7,340.1  2.89% 6,052,282.12 

93 10 100 25 10 6,822.0  9.60% 2,770,381.27 

94 10 100 50 10 7,139.8  1.90% 4,176,337.76 

95 10 100 25 15 7,554.9  2.50% 2,552,211.37 

96 10 100 50 15 6,065.9  3.50% 2,798,304.21 
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ID School stop cap wd 

P-VND 

Metaheuristic Exact (Gap) Heuristic (Gap) Time (ms) 

97 10 100 25 20 6,730.4  4.50% 5,683,160.65 

98 10 100 50 20 5,874.9  5.60% 5,482,184.74 

99 10 100 25 25 6,564.9  8.74% 3,280,533.79 

100 10 100 50 25 6,643.6  4.56% 4,971,031.08 
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