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Abstract—Hardware-intensive engineering domains are under-
going a paradigm shift toward digitalization. This is caused by
increased technological advances in conjunction with stricter
regulations on sustainability, while customer satisfaction and
market competitiveness need to be achieved. In domains such
as construction equipment and railway, strong foundations of
Systems Engineering exist for development and management of
products. With the advent of digitalization, Model-based Systems
Engineering (MBSE) is increasingly seeing interest and industrial
adoption. An expected benefit of an MBSE approach is the
analysis capabilities early on in systems development. This is
enabled by full-system models that can assist in early-stage design
decision-making. This paper discusses how symbolic reasoning
may facilitate knowledge reuse and support automation of design
decisions based on previous development efforts and experiments.
We situate this contribution in a typical industrial MBSE process
and highlight its potential use and implementation.

Index Terms—MBSE, Early phase, Symbolic reasoning

I. INTRODUCTION

The traditional Systems Engineering (SE) development with

islands of development centred around specific engineering

domains and supporting tools is proving to not scale well.

With increasing digitalization, companies and businesses look

towards seamless integration of processes and tools. In partic-

ular, the notion of the digital thread in industrial landscapes is

seeing growing interest [15]. A more interconnected develop-

ment process offers many opportunities for stronger collabora-

tion, traceability, and more widespread knowledge reuse. The

traditionally document-centric development is less and less

effective in dealing with the increasing complexity of systems

and processes. In SE particularly, the increasingly applied

paradigm of Model-based Systems Engineering (MBSE) fits

well with the needs and incentives of increasingly digitalized

workflows. The International Council on Systems Engineering

(INCOSE) defines MBSE as “[...] the formalised application

of modelling to support system requirements, design, analysis,

verification and validation activities beginning in the con-

ceptual design phase and continuing throughout development
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and later life-cycle phases.” [18]. Its use is reported to have

significant benefits in industry due to increased traceability,

communication, and reuse [11], [13], [16].

Standard SE knowledge tells us that costs of correcting

design or requirement issues increase exponentially as one

progresses through the system development lifecycle [9], [18].

To take correct design decisions earlier is valuable and can

reduce costs significantly. Using models in the early stages

enables more sophisticated analysis and evaluation of system

requirements and design. However, models in early phases

of development inherently contain uncertainty due to the

nature of the development progression [3]. Customer input

and developmental progress introduce continuous shifts in

the system to be delivered, while models at early phases

often are semi-formal or highly abstract. Knowledge from

previous projects or from previous development iterations may,

however, be reused to increase decision capability.

Here, we describe how knowledge graphs and symbolic

reasoning can improve analytical capabilities during the early

phases of development. With knowledge graphs representing

knowledge from previously performed experiments1, symbolic

reasoning can be used to analyse systems by reusing the

results of experiments of similar enough nature. In particular,

the use of an ontology for MBSE experimentation enables

a user to launch queries that can automatically determine

whether similar experiments have been performed in the past,

and return an answer based on the recorded results of these

earlier experiments, or suggest a new experiment to perform to

provide such a response and thus also to expand the knowledge

graph further.

The rest of the paper is structured as follows: Section II

details the necessary background and industry motivation.

Section III briefly discusses some related work. We detail a

requirements analysis of our considered system in Section IV.

In Section V, we detail and discuss an initial case study.

Section VI concludes the paper.

1We do not commit to a specific formal notion of an experiment here and
use the term in a broad sense.



II. INDUSTRY BACKGROUND AND MOTIVATION

MBSE promises to improve developmental efficiency and

reduce the time to market of products. Industrial practice

shows that there are many benefits to moving from traditional,

document-centric to model-centric development, in the form of

traceability, management of information, and clarity provided

by diagrammatic views [5], [7]. More recently, MBSE has

been employed to achieve a robust digital thread across the

development stages of a typical process such as the common

V-model [15]. In particular, with the advent of increased

digitalization, increased collaboration can be expected due to a

more integrated engineering landscape. By leveraging models

and other digital artefacts, existing silos of development and

operation processes can be joined to increase collaboration and

knowledge reuse as well as to improve analysis capabilities.

One such capability is using early validation to analyze

system viability in the design process quicker. Early validation

is seeing increasing interest in MBSE [3], [6], and actors such

as INCOSE predict an increasing amount of analysis using

high-fidelity models in MBSE during design2. In particular,

this includes the notion that partially or fully automated,

machine-assisted operations could increase design effective-

ness while reducing traditionally labour-intensive manual tasks

[13]. Increased effectiveness of processes and tasks in MBSE

directly affects the time-to-market, hinting at the potential

value. As a system is developed, the confidence in the system

progressively increases. MBSE adds value to the traditional

SE process by introducing models as the main developmental

artefacts instead of documents. Similarly, the early validation

concept promises further value by extending the analytical

capabilities via various methods.

In large complex systems such as heavy machinery, devel-

opment is often performed in long development cycles, over

many years. Additionally, most machines are part of product

families or lines, with many points of variability in design

and potential optional or configurable features [4]. Early

validation can greatly impact decision-making and eventual

system delivery time in this context. A primary need in

early decision-making is to make “good enough” estimates

of what design to pursue and, often more importantly, what

not to investigate further. As such, it is a heuristic which

supports pruning the search space. Such analysis is often based

on expert engineering knowledge. Implementing automation

in this decision-making process reduces manual labour and

allows more widespread design validation by reducing the

need for costly human expert intervention at each step.

In this context of machine-enhanced analysis capabilities to

allow early decision-making, we propose our work on sym-

bolic reasoning over knowledge of experiments represented by

knowledge graphs.

III. RELATED WORK

As discussed above, the reuse of prior experiments by

means of a knowledge graph can be seen as integrating a

2https://www.incose.org/2023 redesign/publications/se-vision-2035

digital thread into a system. Indeed, our approach is closely

related to the twinning paradigm (including Digital Shadows,

Digital Twins (DTs) and digital threads) that has recently

come to the fore. It uses digital counterparts to analyse and

optimize real systems or performs what-if scenarios before

new product variants are developed. Abadi et al. [2] consider

decision-making for cyber-physical production systems with

DTs. Our approach is not restricted to such systems nor to

systems with DTs, but rather focuses on early-stage decision-

making in which the system of interest and DT counterpart

may not yet be realized. In addition, we separate concerns,

modularizing knowledge graphs, reasoning, and experiment

management. Cognitive Twins, building on DTs, have been

proposed to support decision-making [12] in settings where

DTs are available or make sense for a system of interest.

D’Amico et al. [8] provide a recent overview of their use for

improving maintenance management. Kamburjan et al. [10]

similarly integrate knowledge graphs for self-adaptive DTs to

make information about the DT available. In this work, they do

not consider prior experiments, only current physical structure.

In contrast to these works, we do not aim to limit the use of

knowledge graphs to the runtime of the deployed DTs but

provide a general framework for reasoning and reuse.

Beyond DTs, combining logical inference in rule-based

expert systems with quantitative analysis (numerical simula-

tion) was explored by Vangheluwe and Vansteenkiste [17],

who combined high-level domain knowledge, in the form of

rules, with low-level, case-specific knowledge in the form of

simulation models, including initial values and parameters.

IV. REQUIREMENTS ANALYSIS

To enable early validation of system designs and reuse of

the results and insights gained from these analyses in later

development, one needs to support experiment design automa-

tion, as well as storage and management of, and reasoning

about performed experiments. In the following, we give a

more detailed analysis of the requirements for a framework

that implements such operations.

To systematically enable experiment (and experiment result)

management, a uniform and formal way to describe experi-

ments is required. Ontologies have not only proven to be a

suitable formalism to describe static structures, but they also

offer reasoning, querying, and storage mechanisms. As we

shall see below, we do require additional mechanisms beyond

what ontologies offer. As a start, we formalize experiments by

a suitable ontology and store them in a knowledge graph.

More precisely, the knowledge graphs must contain triples

of the form ⟨Q, E ,A⟩ where Q is a question asked by the

end-user of the framework, E is an experiment performed to

answer that question, and A is the answer to question Q, which

is obtained by performing E . We take E as a broad term, which

can be virtual (e.g., a simulation) or real (e.g., a test scenario

executed in the real world).

The framework, thus, consists of some interface that takes a

new question q, decides on which experiments to answer that

question, and derives an answer from the experiments. It needs



Given: 

Set of triples ⟨𝒬,ε,𝒜⟩ 
 Question q

∃𝒬.q = 𝒬? ∃𝒬. justify(q,𝒬)?

compute justify
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Fig. 1. Workflow of reasoning in Q2A before performing Q2E.

to perform two kinds of –preferably automated– reasoning

about experiments:

Q2A The first kind of reasoning goes from question q to

answer a directly: Given a new question q, it tries to

find some already performed and stored experiment

E , so that we can reuse its answer A to produce a.

Q2E The second kind of reasoning goes from question to

(a set of) experiments: Given a new question q, it

tries to design some new experiment e that can be

used to produce a new answer a.

Let us examine these reasoning components in more detail.

First, we observe that Q2A implies case-based reasoning

(CBR) [1], as it tries to produce new knowledge based on a set

of previously solved cases and finding (and possibly adapting)

similar ones. Second, Q2A implies both deductive reasoning

and planning: based on general knowledge (about the domain,

experiments, etc.), it deduces what experiment is most suited.

As experiments are rarely monolithic tasks, their execution

must be planned based on a decomposition into smaller tasks.

Fig. 1 shows a possible workflow for the overall system—

covering Q2A which possibly invokes Q2E—, where a new

question q is asked. We illustrate a simple CBR approach in

the setting of an experiment manager, with 2 CBR systems;

both implement the usual CBR cycle [1].

A pre-processing step (1) checks whether the exact same

question has been asked before (and it and its answer have

been stored). If this is the case, CBR is trivial, and the

already available answer is returned. This is simple instance-

based reasoning (or memoization). The next step (2) performs

symbolic reasoning, where an answer A to an old question Q
can be used to infer an answer a to a new question q based on

some knowledge of the domain. As an example, consider the

new question of whether some Construction Equipment (CE)

machinery comes to a halt after dnew meters under certain

conditions (often encoded in the form of parameters such as

mass, slipperiness of the road surface, etc.). If there exists

an old question that asks whether it comes to a halt after

dold meters with dnew < dold, under the same conditions,

with a recorded negative answer, then q can directly be

answered negatively as well. This is based on our knowledge

of continuity in the physical process of braking. Furthermore,

if the new question has dold > dnew, but with |dold−dnew| < δ
for some sufficiently small value δ, then it is close enough to

the old question, making a new experiment unnecessary.

The next steps use a domain and application-specific dis-

tance measure | · | between questions to reuse either experi-

ments or answers. Distance-based CBR is performed in two

steps. Given some distance threshold dans, one tries to find

a question that is not the same, but similar enough, to the

new question to justify using the found question’s answer as

a new answer directly (3). Note that contrary to (2), where a

justification step must be taken, here the answer is returned

directly. Given some larger distance threshold dexp, one tries

to find a question whose answer does not justify a new answer,

but whose experiment can be used to compute a new answer,

taking into account the differences between Q and q (4).

In the CBR for 2 and 3, different prior instances are

retrieved to be reused (in terms of the CBR cycle). We thus

consider them as two conceptually different cases. This also

highlights the need for an appropriate distance measure.

Note that in cases 2, 3, and 4, a new triple ⟨q, E , a⟩ with

new answer and question, but old experiment is stored. The

new answer is justified differently: in the case of symbolic

reasoning, the justification of a is from A, Q and q, in the

case of distance reasoning, one must also consider E . The

knowledge graph can also be used to store this information as

a sort of provenance for the answer, detailing its justification

beyond the relevant experiment.

If no answer can be inferred from previous experiments,

it implies that we need to construct a new experiment to

answer the question q, using the reasoning component Q2E.

An experiment should be designed. Reasoning may help

the experiment designer build a new experiment (both its

workflow and its architecture). The workflow details the steps

and the order in which they should be performed, while the

architecture details the needed structures and their connection.

Based on the type of question being asked, we can store in the

knowledge graph information about the relations of workflows

and goals to be achieved in experiments. If the goal of the

question can be mapped to a workflow goal, we could provide

that workflow for the engineer. Regarding the architecture, for

instance, if the experiment is a simulation using Simulink®,

according to the initial input and expected output, we can

employ deductive reasoning to suggest which blocks can be

used and how they should be connected. Nevertheless, the

experiment design returned is a suggestion, which the engineer

must still validate. However, suppose the engineer adjusts the

experiment to fit their needs. In that case, the newly validated

experiment can be stored in the knowledge graph to be used

as a reference for future similar questions.

When the experiment is ready, it can be executed, and its

result is returned as an answer. This result is also stored in the



knowledge graph for future reuse. Given that the elements are

properly typed in the ontology, we can also reason over those

types to provide knowledge on their structure, operations that

can be performed on them, and also enhanced traceability. For

instance, we may discover all the elements of a product family

given a type that relates to a particular family.

V. CASE STUDY

We illustrate our paper using an example from the pre-

viously mentioned CE domain. A crucial safety requirement

for moving machinery is the maximum braking distance. CE

machines travel at relatively low speeds but are typically

heavy and many have large carry capacities. CE sites often

contain many slopes with poor grip, with surfaces such as mud

or gravel. Therefore it is important to understand the brake

performance of CE machinery so that regulatory requirements

ensuring safety are met. We display the case in Figure 2.

Machine velocity

Road incline

Machine
Total mass

Maximumbraking distance

Fig. 2. Braking distance use case for the CE domain

The braking distance is a common function for all moving

machines and a valuable target for reducing manual activities,

particularly in early design phases. Many machines are de-

veloped in product families, and new products are often re-

designs or improvements of existing machines, more often

than not, in production. As such, there are many similar

cases to extract knowledge from and gain valuable insight for

decision-making. In some cases, such as the braking distance,

the properties of interest can be reasonably reduced to a small

number. The machine velocity is often set to a maximum.

Likewise, the road type is often set for a particular condition

(i.e., mud or gravel). This way, the machine’s total mass

(machine + load) and the road condition become the two most

significant parameters, specifying conditions under which to

verify braking capability. Such experiments, whether virtual

or real, are performed for detailed prototyping. This historical

knowledge can help guide developers when evaluating/testing

similar enough designs. For example, Figure 3 highlights five

tests for a brake system of a given machine with maximum

operational speed. In this example, we consider two variables,

road incline and mass, to visualize how symbolic reasoning

works. However, the approach is not restricted to that.3

3The overall problem can be seen as a classification problem, where the
experiments are the data points used to learn the classifier then used in Q2A

step (2). Due to the cost of an experiment, the engineer is interested in
minimizing the number of data points while also minimizing the uncertainty
around the decision boundary, i.e., to perform active learning [14]. We leave
this avenue open for future investigation as we do not focus on Q2E or the
general workflow.
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Fig. 3. Experiment map leveraging symbolic reasoning

We visualise the results in a map with open dots correspond-

ing to passed tests and filled black dots corresponding to failed

tests. Using our symbolic reasoning, we infer that the regions

in blue (dashed) and red (crossed) can be considered passed

and failed based on domain knowledge, which in this case

corresponds to the laws of physics. For instance, if we know

that a particular machinery weighing 15220 kg and a road

incline of 19 degrees could not brake and stop as expected,

for any value of mass greater than this, it will not come to

a stop in time either. Also, for a greater incline angle, it will

be more difficult to halt, given the force of gravity. In the

dual case, if we know that a machine weighing 22330 kg

and a road incline angle of 6 degrees was able to brake, any

machine with less weight on a less inclined road will also

be able to brake. Therefore, given the previously performed

experiments, we can extend the points to areas. For any point

inside these areas, no extra experiments are needed. Finally, in

the observed case, there is some exact boundary between pass

and fail, and depending on the aim of experiments, it could be

interesting to identify it as part of a larger process of iterative

experimentation. This example provides an intuition of the

strategy, but other types of knowledge could be considered, for

example, from the available models (e.g., system architecture,

experiment workflows, and domain artefacts in general).

We can still apply some reasoning for the points in the blank

area, given that domain-specific information on distances is

provided in the knowledge graph. For instance, assume that we

can replicate positive results for machinery with masses below

15000 kg and incline below 10 degrees to mass variability of

less than 0.5%. Although a question for a machine with a mass

of 14500 kg and an incline of 7 degrees is in the blank area

of the graph, a positive answer can be inferred, thanks to the

data of a previous experiment where the machine could brake

and stop having a mass of 14020 kg and an inclination degree

of 7 (14500 < 15000 and |14500− 14020|/14020 < 0.5% ).

Finally, if these reasoning mechanisms cannot infer a valid

result, a new experiment must be performed to provide an

answer. Nevertheless, we can still support the engineer by

Q2E reasoning. First, if an experiment has already been

executed to achieve the goals of the question, then, querying
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Fig. 4. Example of experiment architecture.

the knowledge graph, we can provide the workflow and

architecture that has been used earlier, for the engineer to redo

that experiment with different parameters.

Even in the case of no previous architecture, we can also

support the engineer if information about structural elements

is available in the knowledge graph. Consider that a simulation

experiment needs to evaluate the average torque of a drivetrain

given the acceleration sensor readings. Assuming that our

knowledge graph stores information about block signatures,

i.e., their input and output types, we can apply deductive

reasoning to propose an architecture of blocks. Our reasoner

carries out a search resulting in a proposed architecture con-

necting blocks, where the system output is torque average, and

the system input is accelerometer sensor readings. A possible

result is the one shown in Figure 4. It is an architecture com-

posed of three blocks: one for the Accelerometer Sensor, which

outputs acceleration from an input signal such as mechnical

rotation; followed by a block that converts acceleration to

torque; and the last block calculating an average of an input

signal over time. The engineer must still evaluate whether the

proposed architecture is suitable. Eventually, the final architec-

ture must be stored in the knowledge base as an experiment e
to the question q. After performing this experiment, the triple

⟨q, e, a⟩ is stored to use in future reasoning.

Hence, using these kinds of reasoning, an engineer could

get a valuable feedback of a coarse-grained nature in early

decisions. More detailed analysis is required for proper eval-

uation, certification, and eventual release, but this approach

helps the developer to speed up development.

VI. CONCLUSION

This paper motivates the need for managing, and reason-

ing over, experiments to enable early validation and reuse

of results and knowledge accumulated during the design of

systems. Based on industrial experience, we have derived

requirements for the formalization of experiments, particularly

the reasoning components needed to realize our vision. In the

paper, we use a SE case to describe the applicability of our

approach based on this experience. A foreseen limitation of

this approach is the data gathering, as it requires involved

parties to store vast amounts of sensitive data, which might

be challenging to gather. Similarly, the approach relies on

cases where it is possible to reason about the similarity of ex-

periments, which might require extensive domain knowledge.

Especially the notion of what can be considered close enough

results or experiments requires further investigation into how

generalization might be done. Nonetheless, we believe the

approach can increase process value and are now develop-

ing and implementing an architecture for reasoning about

experiments, including an ontology for justifying answers to

questions through experiments or reasoning.
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