
This item is the archived preprint of:

Real-time adaptive abstraction and approximation using validity frames : an experience report

Reference:
Biglari Raheleh, Denil Joachim.- Real-time adaptive abstraction and approximation using validity frames : an experience report

arXiv, 2023, 16 p.

Full text (Publisher's DOI): https://doi.org/10.48550/arXiv.2303.07144

To cite this reference: https://hdl.handle.net/10067/2045330151162165141

Institutional repository IRUA

REAL-TIME ADAPTIVE ABSTRACTION

AND APPROXIMATION USING VALIDITY

FRAMES - AN EXPERIENCE REPORT

Raheleh Biglari

Joachim Denil

Department of Electronics and ICT

Faculty of Applied Engineering

Cosys-lab, University of Antwerp

Flanders Make@Uantwerpen

Groenenborgerlaan 171, Antwerp, Belgium

{raheleh.biglari,

joachim.denil}@uantwerpen.be

ABSTRACT

Designing a Cyber-Physical System (CPS), including modeling the control components

and services, is a challenging task. Using models and simulations during run-time is

crucial for successfully implementing advanced control and prediction components.

The complexity of designing an effective CPS system increases due to real-time con-

straints. Generating accurate predictions and making decisions using detailed models

in various contexts is computationally demanding and complex to manage within the

available computational resources. Employing approximated models and switching to

the most suited model adaptively at run-time is an effective technique. But an approxi-

mated model is most probable not valid in all the different contexts the system will be

in. This experience report uses the Validity Frame concept to enable adaptation at run-

time. In each environment, some influencing factors are outside the model’s control,

but these properties influence the model’s behavior. By defining Validity Frames, based

on specific contexts and related models, we present a possible perspective to address

the issue of selecting the more appropriate model in various contexts. Furthermore, we

discuss the insights and lessons obtained and determine future challenges.

Keywords: Cyber-Physical Systems (CPS), Model-Based Systems Engineering

(MBSE), Validity Frames, Adaptive Approximation, Real-time.

1

ar
X

iv
:2

30
3.

07
14

4v
2

 [
cs

.O
H

]
 1

4
M

ar
 2

02
3

1 INTRODUCTION

In the design and development of software-intensive systems, particularly in the

avionics and automotive industries, engineers are faced with the challenge of dealing

with highly complex systems composed of various interrelated and deeply integrated

components (Lee, 2008). These systems, known as Cyber-Physical Systems (CPS)

typically operate in harsh conditions with rapidly fluctuating environmental conditions.

In these dynamic environments, the ability to predict the behavior and performance of

the system is often not guaranteed(Palumbo et al., 2017).

To address the challenges presented by a changing environment, adaptivity is in-

tegrated into the design of CPSs to allow the system to respond to environmental

changes. This adaptation must typically be performed in a decentralized manner

due to the autonomous nature of many real-time CPSs, which increases the overall

complexity of designing these adaptive systems (Kit et al., 2015).

Cyber-Physical Systems, which integrate embedded control, mechanics, and network-

ing, are typically developed using a model-based approach. This approach involves

utilizing one or more physics-based models for designing and simulating the system.

Since a CPS is a complicated system, its model also tends to be complicated. Addi-

tionally, these models are employed for control of the system at run-time. Complicated

models have a heavy computational load on the embedded devices that typically

implement the control on the system. As such, implementing these computationally

demanding models is challenging, possibly resulting in missed deadlines and increased

costs. One way to balance improved performance and cost reduction in CPS is to

use adaptive abstraction and approximation techniques (Franceschini et al., 2019b;

Franceschini et al., 2019a; Biglari et al., 2022). Adaptive approximation specifically

switches between multiple prediction models to achieve improved computational

efficiency while maintaining an acceptable level of control performance. The adaptive

approximation technique enables the utilization of a simpler, less detailed model with

a lower computational cost.

In this experience report, we applied the idea of utilizing the Validity Frame to

ease the development of real-time Cyber-Physical Systems while using the run-time

adaptive abstraction and approximation technique. We use the properties of interest

and environment properties which are known as influencing factors within a Validity

Frame. Moreover, we exploit the relations between different Validity Frames to choose

the most appropriate model from the library of models.

The structure of this paper is as follows: section 2 provides the related work. Next,

section 3 introduces our case study and details the adaptive approximation method

applied to the system under study. Afterward, section 4 discusses the challenges en-

countered, lessons gained, and insights of this research. Finally, section 5 concludes

with a summary and future research based on the insights gained.

2

2 RELATED WORK

This section describes related work for both adaptive abstraction and approximation

and validity frames.

2.1 Adaptive Abstraction and Approximation

Due to the complexity of CPSs, CPS models also possess similar complexity. Utilizing

models with heavy computational requirements is challenging as it can cause missing

deadlines.

To avoid computationally expensive models, there is a possibility of eliminating

the reasoning on a set of properties within a model. This is known as a more abstract

model. As the model removes certain properties, it is typically also less computation-

ally expensive to simulate. An alternative way to exclude factors from a model is the

approximation of resolution which means removing detail, while retaining the set of

properties one can reason on with the model. As such a more approximate model uses

a simpler model to approximate the results of a more complicated model, assuming the

difference between the two is insignificant for the results of the simulation (Frantz and

Ellor, 1996).

It is possible to have multiple abstracted and approximated models. To switch

between these models at run-time, we benefit from the idea of adaptation by (Mathieu

et al., 2018; Franceschini et al., 2019a; Franceschini et al., 2019b) that dynamically

switches between abstractions during simulation or execution or simulation.

Therefore, the adaptive approximation technique allows for the use of a simpler,

less detailed model with a lower computational cost. Allowing adaptivity at run-time

is one technique for resolving the conflict between better performance and reduced cost

in CPS.

However, for this adaptation between the different models, we need to establish that

these models are substitutable in a specific situation. Figure 1 represents the conceptual

foundation from (Biglari et al., 2022) for reasoning about run-time adaptive approxi-

mation in a dynamic situation. This conceptual foundation is based on (Barroca et al.,

2014) that combines the use of ontology and language engineering.

A simulation of a model([[.]]) produces a trace. By analyzing this trace, we can use a

function (f ()) to calculate the system’s prediction value related to a logical property.

This prediction value is used in the decision-making process to make a decision. To

reason about an allowed approximation of a model, we must consider the goal models,

decision-making processes, and context. The sensitivities of the logical property in re-

lation to decision-making in a specific context and for a specific goal must be mapped

to enable this reasoning. The same reasoning process is applied when a different, more

approximate decision-making model is used in a specific context.

We explore the impact of approximating a model on cost reduction as a foundation

for a framework that enables real-time system adaptation. This framework allows for

swapping models with more approximate versions based on the available library of

models. Utilizing the insights from the conceptual framework, Biglari et al. proposed

an architecture for adaptive approximation in real-time systems. This architecture in

3

Figure 1: Conceptual Foundation for Model Approximation Technique from (Biglari

et al., 2022).

figure2 is based on MAPE-K architecture. MAPE-K is a high-level control loop for

self-adaptive systems from IBM (Kephart and Chess, 2003).

An approximated model is most probably not valid in all the different contexts the

system will be in. Consequently, the question arises: How can we do the adaptive

approximation and abstraction at run-time, and find the most appropriate model for a

specific context?

We use the Validity Frame concept to enable the adaptive approximation at run-time.

2.2 Validity Frames

The concept of frames has been present for some time, dating back to the early 1980s

when the original idea of ”experimental frames” was introduced by (Zeigler, 1984).

(Klikovits et al., 2017) addressed the structure of modeling frames, which depends on

the activity performed, and this work describes why different activities require differ-

ent frames. Extending the work of (Klikovits et al., 2017), (Van Acker et al., 2021)

formalizes the Validity Frame concept to specify the range-of-validity of a model.

A Validity Frame (V F) contains all necessary data and processes for determining

the appropriate usage of the model. A V F is defined as a structure:

V F =< SM,πM,γM,mapπ → SM,mapγ → SM,SPECexe,ValM,αval > (1)

Where:

4

Figure 2: Real-Time Adaptive Abstraction and Approximation Architecture

from (Biglari et al., 2022).

SM is the model structure, which defines the set of model components and their

relationship, πM is the modeled properties.

γM is the influencing factor that is captured within V F and enables reasoning about

the utilization of the model in terms of what properties the model can provide

valid answers for and under which influence factors. Properties of the environment

related to the system under study that can potentially influence a model’s behavior

and/or the range of validity concerning a particular property, even though they are out-

side of the model’s control, are referred to as ”influencing factors” (Mierlo et al., 2020).

mapπ→SM and mapγ→SM are explicitly mapped onto the model’s implementation.

The SPECexe shows the specification of the simulation environment, the simulator, or

the specification of the embedded platform (SPECMBD) on which M is executed. Model

validity, ValM , is a crucial part of V F , allowing reason about how well model M reflects

the real-world counterpart Sys.

Last is the set of validation activities αval includes a set of validation conditions v,

used to validate or invalidate the behavior of M in known or unknown contexts.

A V F is used to explicitly identify the influence factors and range-of-validity for a

model and to provide methods and processes to ensure the model accurately represents

the source system. This includes methods for calibrating the model, experiment design

for validation, validation metrics, etc.

The purpose of validity frames is to clearly express the contexts in which a model

generates valid results for a specific set of properties concerning a real-world system.

To convey different contexts, specific properties of the environment must be con-

sidered within our system.

5

3 ADAPTIVE ABSTRACTION AND APPROXIMA-

TION USING VALIDITY FRAMES

In this section, we present the process we followed to implement the adaptive approxi-

mation technique using V F in our case study.

3.1 Case study: Lane Changing

We use the Highway Lane change system as a case study to demonstrate our idea. A

lane-changing system controls the movement of the ego (target car) in both the longitu-

dinal (forward/backward) and lateral (left/right) directions. According to the environ-

mental properties, the ego car changes or follows the lane.

This research presents a scenario of lane changing depicted in Figure 3. We refer to this

illustration throughout the paper to demonstrate our concepts and findings. In this ex-

ample, there are three cars, ego car (Ego), middle car (MC), and front car (FC), which

have the velocity of vego, vmc, and v f c respectively. Moreover, v f c < vmc < vego

Figure 3: Scenario.

To predict the positions of the different cars, the simulation can use several models

with different levels of abstraction and approximation. The first uses the kinematic

equation x(t) = 1/2 ∗ a ∗ t2 + v ∗ t + x0. In this formula, a is the vehicle’s accelera-

tion in m/s2, v, the velocity of the vehicle in m/s, and x, the vehicle’s position. This

model is the original model. However, there is a possibility of using a more simplified

model. We obtain this model by removing the acceleration term. We call this model

the approximated model, which is less detailed but has a lower computational cost.

These two models only take into account that the cars do not change lanes during the

prediction of their position.

In (Biglari and Denil, 2022), the adaptive approximation is applied to a similar

lane changing case study using these two different models. In the study of Biglari and

Denil, a controller needs to select the most appropriate model at run-time between an

original and approximated model. However, both models reason on the same set of

properties and have the same environmental context, namely, the cars do not change

lanes. Hence, selecting one valid model within the specific context is essential during

model selection. The concept of a Validity Frame is highly beneficial in this regard.

The scenario in this paper describes an additional feature, a turning or blinking

light. A blinking light indicates the driver’s intention to change lanes. In our running

example, blinking is the influencing factor of interest, an environmental factor that is

outside of the model’s control but impacts model selection.

6

We also added a much more computationally expensive model. This model simu-

lates the lane changing behaviour of the different cars as well not only the ego car, and

as such is valid both in the blinking and non-blinking light context. In this model, we

simulate every car and considered each of them as an ego car, and run the simulation

to perceive the behaviour of the system.

3.2 Adaptation using a Validity Frame

Our validity frame defines the different contexts of the system based on influencing

factors in which the original model and approximated models are valid. For applying

the adaptation with frames, two challenges arise:

Challenge 1 - Properties of the environment and frames: Influencing factors are

those properties of the environment that influence a model’s behavior and are

quantified. We must identify these properties as factors that exert a significant

impact. Once the properties are properly identified, characterised, a validity

frame needs to be created. We will not focus on the aspect of building a frame

but assume that proper techniques are available for creating the frame.

Challenge 2 - Run-time selection of models: Having different models available,

both abstracted, approximated and combinations, requires model management

techniques. Organising these models is required. Furthermore, selecting the cor-

rect model at run-time requires proper data-structures and algorithms.

3.3 Design-time Model Organisation

As a starting point, we use the Validity Frame Graph (VFG) proposed by Van Acker

in (Van Acker et al., 2021). The validity graph encodes the relations between different

models based on their validity. It is therefore classified as a mega-model (Favre, 2006).

Mega-modeling, as defined in (Favre, 2006), is the practice of creating a model that

illustrates the global relationships between various modeling artifacts without focusing

on their specific content. This is precisely what a Validity Frame Graph (VFG) does,

capturing the abstract relationships between interrelated Validity Frames and their con-

taining models without considering their specific modeling details.

However, in our case, the data-structure is quite naive, in a sense that all models are

represented as a Vertex within the graph. Edges between the vertices encode how prop-

erties are removed, added, or the range of properties is changed between the models.

The organisation in this data-structure results in a fully connected graph.

Figure 4 depicts an example of V FG. This figure shows five interrelated Validity

Frames and corresponding models, which create a Validity Frame Graph. It visualizes

the relationships between various models using the sets of properties and factors of

influence, π , and γ . In the V FG, instances that depict the same π and γ are connected

by an abstraction relation represented by a solid arrow. If an instance represents only

a portion of the π and/or γ , it is connected to the corresponding instance via a view

decomposition relation represented by a dashed arrow (Van Acker et al.,).

Using the V FG technique, we define and classify models within a Validity Frame.

Figure 5 illustrates the V FG for this Highway Lane change scenario. In Figure 5, π

7

Figure 4: Validity Frame Graph example from (Van Acker et al.,).

is the set of properties and γ is the set of influencing factors. V Fd is the head of the

V FG, and the contained model, Md which is the most detailed model. The following

relations are between the contained models of the VFs:

– Ma = Abstract(Md)

– Ma1
= Approximate(Ma)

– Mb = Abstract(Md)

– Mb1
= Approximate(Mb)

Ma is the abstract version of Md and Ma1 is the approximated model based on Ma. And

also Mb is the abstracted model of Md , and Mb1 is the approximated model based on

Mb.

3.4 Run-time Model Organisation: Decision Tree

As hinted in the previous section, a fully connected graph is not ideal for selecting

models at run-time. As such, another data-structure is needed. We utilize a decision

tree to select the most suitable models for our system in a specific context, as depicted

in figure 6.

The organisation in a decision tree also requires a significant amount of domain

knowledge. The designer needs to select in what order the properties and influence

factors are ordered in the tree or possibly combined within a single splitting of the tree.

To select a set of models, we use Decision Tree, and its time complexity is

O(depth). Using a fully connected graph needs choosing between Breadth First Search

(BFS) and Depth First Search (DFS). The time complexity of the DFS and BFS graphs

are represented in the form of O(|V |+ |E|), where V is the number of nodes and E is

the number of edges. Therefore decision tree is computationally less expensive than

BFS or DFS (Cormen et al., 2022).

8

Figure 5: validity frames Graph for the Highway Lane change scenario.

Figure 6: Decision Tree of Highway Lane Change Scenario.

We select the model during run-time but build the decision tree at design time

to avoid increasing run-time computational cost. In Figure 6, we traverse from the

root to the leaf nodes according to the context. Afterward, we employ the response

surface graph for the model selection method suggested by Biglari and Denil. The

approximated model is a model with uncertainty and there is no possibility of using

as much uncertainty as you like. So, you can switch to the approximated model if the

uncertainty is within the bound. In (Biglari and Denil, 2022), the response surface

graph shows how to find the bound and where you are allowed to swap between

models. Algorithm 1 shows the pseudocode of selecting from the decision tree’s

leaf nodes and deciding to use the original or approximated model. This algorithm

compares nextTrajectories, which correspond to different decisions. For example, the

ego car may decide to change lanes or not, and if so, when and where. If simulations

conclude the same decision, then we use the approximated model, which has less

computational cost.

Finally, to ensure that the model tree is optimized for real-time performance, we

follow the MAPE-K control loop in figure 2, and constraints are applied to eliminate

infeasible solutions. As this is a real-time system, not all possible solutions are suitable.

9

Algorithm 1

out1← simulation result o f the original model

out2← simulation result o f the approximated model

if out1.nextTra jectories = out2.nextTra jectories then

Use Approximated model.
else

Use Original model.
end if

Thus, solutions that cannot meet deadlines are pruned.

3.5 Experiments and Results of the Adaptation

In our running example scenario in Figure 3, the velocity of vego, vmc, and v f c are as

follows: v f c ¡ vmc ¡ vego. We show the simulation results for different contexts. Figure 7

shows the simulation result when there is a non-blinking context. Accordingly, we add

Figure 7: Non-Blinking Context Simulation.

the influencing factor of blinking. Figure 8 shows the simulation result in the blinking

context. The optimal trajectory that the ego car follows is depicted by the arrowed line,

while the other lines represent alternative trajectories that are deemed inappropriate.

The simulation results depict that in a blinking context when the ego car knows

that MC intends to change the lane, in Figure 8, the ego car keeps the lane but in a

non-blinking context, the simulation result is different, Figure 7, the ego car decides to

change the lane.

Additionally, our scenario involves both an original and an approximated model. The

simulation will determine if either model leads to a differing conclusion. By using

Algorithm 1 and response surface graph, if there is no different conclusion and the

next trajectories are the same, the approximated model is considered suitable, as it

has lower computational cost. Logically, using an approximated model instead of the

10

Figure 8: Blinking Context Simulation.

original model decreases the computational cost because these models have a simpler

structure with fewer parameters compared to more detailed models.

4 DISCUSSION

In section 3, we described the experiments and simulations we performed to reduce

the computational cost while using the run-time adaptive approximation technique.

Consequently, we chose the more appropriate model from our library of models and

interrelated Validity Frames for our system under study.

In this section, we discuss some of these steps, presenting lessons learned and high-

lighting additional questions raised and identified challenges:

Challenge A: A library of related models’ data-structure. We use the library of

related models. Accordingly, we need to find out what such a library of related

models looks like. In our case, we used the validity frame graph at design

time and the decision tree at run-time. Multiple models are created for a single

system, Sys. By clearly defining the validity of each model within its Validity

Frame (V F), using a Validity Frame Graph V FG (Van Acker et al.,) can

visualize the relationships between the models. To overcome challenge A, we

also need to solve some sub-challenges.

Encoding relations between properties. There are three types of properties in

a system: (Van Acker et al.,) system properties, properties of interest, and

Influencing factors (environment properties).

• System properties: related to the real-world entity. It is part of the

possibly infinite set of properties required to grasp all possible contexts

and facets of the considered real-world entity. In practice, one cannot

fully specify this property set, as it is impossible to capture all object’s

facets in all its possible contexts.

11

• Properties of interest. The set of properties of interest gives rise to the

abstraction relation between model M and system Sys: a model only

provides (correct) answers with respect to these properties, while other

properties are abstracted away. More specifically, the implemented set

of properties of model M is a subset of the system properties.

• Influencing factors. The set of influence factors can also influence

the abstraction relation between model M and system Sys: a model is

only supposed to provide answers concerning the modeled properties

under the modeled influence factors, while other influence factors are

abstracted away. More specifically, the implemented set of influence

factors of the model is a subset of the system properties.

Therefore, properties of interest and influencing factors are properties that

we consider. After bringing out properties in our example are distance and

blinking, the next step is finding the relation between these properties. How

to encode this relation is still the question.

Order in the property set. There seems to be an intuitive concept on ordering

in the set of models that exist. However, the ordering can only be partial

as we cannot really compare different properties and their ranges to each

other and make a conclusion if the model has a bigger validity. As such

a partially ordered set or poset might be a better visualisation. In a poset,

each element can be compared to each other element and results in a bigger,

smaller, equal or incomparable result. However, when we create relations

per property, we get a fully ordered relation. Although these options still

need more thinking, handling multiple properties is still one of the unsolved

challenges.

Challenge B: How to select a model at run-time to use in a specific situation? We

can not use all our models at run-time in all different situations (context). Then

two questions pop up.

Search Algorithm. We use Decision Tree so the time complexity is O(depth).
The designer must decide on the arrangement of properties and impact fac-

tors in the tree or combine them into a single splitting. There are some

splitting decision tree methods to choose from.

Translation beforehand to a data-structure CPS is a real-time system, so we

can not do everything at run-time and tend to increase the computational

cost at run-time. To avoid the overhead at run-time, we propose to do trans-

lation beforehand to a data-structure at design time that is more feasible.

For instance, making a decision tree at design time.

Challenge C: Can we automatically convert a mega-model to a decision tree (or related data-structure)?

Currently, converting a mega-model to a decision tree is performed manually

as we fully understand our system, but this may not be the case in other

environments and systems. As previously mentioned, the order of the decisions

and organisation of properties and influence factors within the decision tree

12

affects its run-time performance. The challenge is to automatically create a

decision tree that is optimal to use at run-time. Figure 6 represents our first

idea of implementing the decision tree. In this data structure, level 1 of the tree

includes influencing factors. The nodes would be sorted down as the number of

branches in level 1 is less than level 2 of the tree, which is depicted in Figure 9.

Figure 9: Decision Tree Representation.

For building the decision tree, we utilize properties of interest and influencing

factors, and there are relationships between these properties. However, there is a

need to optimise the organisation of the tree. For this, there is a need for domain

knowledge about which contexts are accessed often. A heat map is a graphical

representation of data to visualize the relationship between variables. Heat maps

might help discover the feature importance of each property in the tree. A heat

map of feature importance provides a clear view of which properties have the

greatest impact and which play a less significant role. Figure 10 represents the

heatmap where the possibility of non-braking/non-blinking context is more than

other ones.

Figure 10: Heat Map.

Furthermore, it is essential to show that the resulting tree can be used in all differ-

ent contexts as the mega-model. However, this does not mean that all models in

the mega-model should be present in the run-time data structure. This is closely

related to the next challenge.

Challenge D: Which surrogate models to create? It is possible to create a set of sur-

13

rogate models starting from a single model. Typically, the smaller the context,

the less computational effort is required to simulate the model. However, creat-

ing a surrogate model, either by hand or computationally, requires a tremendous

amount of effort. Balancing the number of models and their operating range will

be needed. As such, guidelines and heuristics will need to be created to assist

designers in making appropriate decisions. Again, the domain knowledge about

often used contexts is important to see which surrogates to create for the model

at design time. Information from the operation phase of the system might be

needed to make optimised decisions. Digital twins are needed for such a setup.

This experience report acknowledges that validation is a crucial step in modeling.

However, for this study, we proceed with the assumption that the models have been

thoroughly validated and are functioning as intended.

In our running example, we used blinking as the influencing factor of interest to

represent the validity frame concept. There are other influencing factors that we could

add to our validity frame, for example, traffic, road and weather conditions.

5 CONCLUSIONS

Real-time adaptive approximation in Cyber-Physical Systems is a method used to

reduce the computational cost of running models. However, an approximated model

is not valid in all the various contexts the system may operate in. In this experience

report, we applied the adaptive approximation technique using the Validity Frames

concept in our case study. We utilized the concept of Validity Frames to enable adap-

tation at run-time in different contexts. In this work, we used the properties of interest

and environment properties known as influencing factors within a validity frame, and

the relations between different validity frames to choose the most appropriate model

from our library of models. We discussed identified challenges, lessons learned, and

additional questions raised.

Acknowledgments

Raheleh Biglari is funded by the BOF fund at the University of Antwerp.

References

Barroca, B., Kühne, T., and Vangheluwe, H. (2014). Integrating language and ontology

engineering. In MPM@ MoDELS, pages 77–86.

Biglari, R. and Denil, J. (2022). Model validity and tolerance quantification for real-

time adaptive approximation. In Proceedings of the 25th International Conference

on Model Driven Engineering Languages and Systems: Companion Proceedings,

pages 668–676.

14

Biglari, R., Mertens, J., and Denil, J. (2022). Towards real-time adaptive approxima-

tion. Embedded Real-Time Systems, ERTS.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2022). Introduction to

algorithms. MIT press.

Favre, J.-M. (2006). Megamodelling and etymology. In Dagstuhl Seminar Proceed-

ings. Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

Franceschini, R., Challenger, M., Cicchetti, A., Denil, J., and Vangheluwe, H. (2019a).

Challenges for automation in adaptive abstraction. In 2019 ACM/IEEE 22nd In-

ternational Conference on Model Driven Engineering Languages and Systems

Companion (MODELS-C), pages 443–448.

Franceschini, R., Mierlo, S. V., and Vangheluwe, H. (2019b). Towards adaptive ab-

straction in agent based simulation. In 2019 Winter Simulation Conference (WSC),

pages 2725–2736.

Frantz, F. K. and Ellor, A. J. (1996). Model abstraction techniques. Technical report,

COMPUTER SCIENCES CORP SYRACUSE NY.

Kephart, J. and Chess, D. (2003). The vision of autonomic computing. Computer,

36(1):41–50.

Kit, M., Gerostathopoulos, I., Bures, T., Hnetynka, P., and Plasil, F. (2015). An ar-

chitecture framework for experimentations with self-adaptive cyber-physical sys-

tems. In 2015 IEEE/ACM 10th International Symposium on Software Engineering

for Adaptive and Self-Managing Systems, pages 93–96. IEEE.

Klikovits, S., Denil, J., Muzy, A., and Salay, R. (2017). Modeling frames. In CEUR

workshop proceedings, pages 315–320.

Lee, E. A. (2008). Cyber physical systems: Design challenges. In 2008 11th IEEE

international symposium on object and component-oriented real-time distributed

computing (ISORC), pages 363–369. IEEE.

Mathieu, P., Morvan, G., and Picault, S. (2018). Multi-level agent-based simula-

tions: Four design patterns. Simulation Modelling Practice and Theory, 83:51–64.

Agent-based Modelling and Simulation.

Mierlo, S. V., Oakes, B. J., Acker, B. V., Eslampanah, R., Denil, J., and Vangheluwe,

H. (2020). Exploring validity frames in practice. In International Conference on

Systems Modelling and Management, pages 131–148. Springer.

Palumbo, F., Sau, C., Fanni, T., and Raffo, L. (2017). Challenging cps trade-off adap-

tivity with coarse-grained reconfiguration. In International Conference on Appli-

cations in Electronics Pervading Industry, Environment and Society, pages 57–63.

Springer.

Van Acker, B., De Meulenaere, P., Vangheluwe, H., and Denil, J. Validity frame en-

abled model-based engineering processes. unpublished.

15

Van Acker, B., Mertens, J., De Meulenaere, P., and Denil, J. (2021). Validity frame

supported digital twin design of complex cyber-physical systems. In 2021 Annual

Modeling and Simulation Conference (ANNSIM), pages 1–12. IEEE.

Zeigler, B. P. (1984). Structures for model-based simulation systems. In Simulation

and Model-Based Methodologies: An Integrative View, pages 185–216. Springer.

Author Biographies

RAHELEH BIGLARI is a doctoral student at the University of Antwerp, Fac-

ulty of Applied Engineering in Electronics and ICT. Her email address is ra-

heleh.biglari@uantwerpen.be.

JOACHIM DENIL is an associate professor at the University of Antwerp,

Faculty of Applied Engineering in Electronics and ICT. His email address is

joachim.denil@uantwerpen.be.

16

