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IDLab, University of Antwerp - imec

Prinsstraat 13, 2000 Antwerp, Belgium

October 2023

Abstract

Recent years have shown an increased development of meth-
ods for justifying the predictions of neural networks through
visual explanations. These explanations usually take the form
of heatmaps which assign a saliency (or relevance) value to
each pixel of the input image that expresses how relevant the
pixel is for the prediction of a label. Complementing this de-
velopment, evaluation methods have been proposed to assess
the ”goodness” of such explanations. On the one hand, some
of these methods rely on synthetic datasets. However, this
introduces the weakness of having limited guarantees regard-
ing their applicability on more realistic settings. On the other
hand, some methods rely on metrics for objective evaluation.
However the level to which some of these evaluation methods
perform with respect to each other is uncertain. Taking this
into account, we conduct a comprehensive study on a subset
of the ImageNet-1k validation set where we evaluate a number
of different commonly-used explanation methods following a
set of evaluation methods. We complement our study with
sanity checks on the studied evaluation methods as a means
to investigate their reliability and the impact of characteris-
tics of the explanations on the evaluation methods. Results
of our study suggest that there is a lack of coherency on the
grading provided by some of the considered evaluation meth-
ods. Moreover, we have identified some characteristics of the
explanations, e.g. sparsity, which can have a significant effect
on the performance.

1 Introduction

Neural Network models have risen from obscurity to the State-
of-the-Art in computer vision tasks such as Visual Question
Answering (VQA) [1, 2], Image Segmentation [3], Image Clas-
sification [4], Object Localisation [5], Image Captioning [6, 7]
and more. This explosive rise in effectiveness and popular-
ity can be attributed to better, larger datasets such as Im-
ageNet [8, 9], and Pascal-VOC [10], as well as exponentially
increasing compute power via stronger, more specialised hard-
ware.
As neural network models are more and more ubiquitous

and are applied in critical real-world applications, such as
medicine [11], self-driving cars [12, 13], military applica-
tions [14] and more, the need arises for explainability. End-
users should no longer blindly accept the predictions of a neu-
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ral network model, but rather the model should try to justify
its predictions towards the user. In doing so, the user can
determine via expert knowledge in the domain whether the
reasoning of the model is sound and valid.

Common tools used in this context are visual explanation
methods, algorithms that assign relevance scores to features
in the input image based on how relevant the feature is to
the predicted label. Numerous explanation methods have
been introduced in the literature, including but not limited
to: Grad-CAM [15], Guided Backpropagation [16], Layerwise
Relevance Propagation [17, 18], LIME [19], RISE [20], Sliding-
Window Occlusion [21], Excitation Backprop [22] and SHAP-
values [23].

Previous work evaluating multiple visual explanation meth-
ods can be classified in two categories: large-scale studies
such as [24, 25] that use computer-generated data to com-
pare the effectiveness of a large number of different methods,
and papers that propose a new explanation method and com-
pare their proposed method to a small set of directly related
methods. As far as our knowledge, no large scale comparison
has been done using standard datasets depicting real-world
scenes. Taking the above into account, the contributions of
this paper are: i) a large-scale comparison and evaluation of
multiple commonly used explanation methods in a more re-
alistic scenario, as well as ii) an in-depth study of the most
common evaluation methods for visual explanations.

The rest of this paper is structured as follows. section 2
presents an overview of the related work, while section 3 will
lay down the experimental methodology followed during the
study. In section 4 we share our experiments and results, and
we provide a high level discussion in section 5. Finally, we
conclude this paper in section 6.

2 Related Work

2.1 Explainability vs Interpretability

In the literature, the terms interpretability and explainabil-
ity are sometimes used interchangeably. However this is not
entirely correct, as these terms are subtly distinct in mean-
ing. Explainability is instance specific justification, justifying
why a specific prediction was made. It involves generating an
explanation for a specific input and prediction, such that the
explanation highlights the features present in the given input
that determine the prediction of the given label. In the case of
visual explanations, an explanation is given by a saliency map
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that assigns an importance value to each pixel in the image.
Interpretability is model-wide justification, indicating which
features the model has learned and how it associates those
features with the predictions it is trained to generate. The
end goal of Interpretability is aligning neural network learned
features with human interpretable concepts, concepts that are
easy to understand for humans. This is important to better
understand which relationships the neural network model has
learned and which internal representations are used. Here we
focus our analysis on explanation methods.

2.2 Explanation Methods

The explanation methods introduced in the literature can be
roughly grouped in four main categories: perturbation-based
methods, gradient-based methods, CAM-based methods and
backpropagation-based methods.

Perturbation-based methods generate visual explana-
tions by repeatedly perturbing the input image and using the
prediction score difference between the perturbed image and
the original image as a measure of relevance for the perturbed
area. This has the side effect that these approaches do not
need access to neural network internals and as such can also
generate explanations for other types of models. These meth-
ods include, but are not limited to, sliding window occlu-
sion [21] and RISE [20].

Gradient-based methods use the gradient of the input
w.r.t. the prediction score to explain neural network model
decisions. Originally pioneered in [26], later work extended
this method by overriding the backwards ReLU operator [21,
16]. As these explanation maps are often noisy, methods such
as smoothgrad [27] and Integrated Gradients [28] (IG) have
been introduced to make the explanations more class specific.

CAM-based methods (Class Activation Map methods)
were first introduced in [29] and use a weighted sum of the
feature maps generated by the last convolutional layer in a
network as explanations. In the original paper, the weights
were calculated using a Global Average Pooling layer, how-
ever later work explored different avenues to generate weights.
Several later publications [15, 30, 31, 32] use the gradients
of the feature maps as weights, with some minor variations,
while others follow a gradient-free approach due to issues such
as gradient saturation. Examples of the second kind include
Score-CAM [33] which uses the channel-wise Increase In Con-
fidence score, and Ablation-CAM [34] which uses an equation
to calculate a discrete gradient.

Backpropagation-based methods use the backpropa-
gation mechanism to distribute the prediction score over the
neural network nodes back to the pixel-level. This category
includes algorithms such as Deep Taylor Decomposition [35],
Layerwise Relevance Propagation (LRP) [17], DeepLIFT [36]
and Excitation Backpropagation [22].

2.3 Evaluating explanation methods

In the literature, there are four distinct categories of evalu-
ation methods for visual explanations : Proxy tasks, ground
truth-centered, model-centered, and human-centered evalua-
tion.

Proxy tasks quantify the effectiveness of explanation
methods by their performance in other tasks such as weakly
supervised object localisation and weakly supervised object
segmentation. Methods that have been introduced are the
pointing game [22] and outside-inside relevance ratio [37].
These methods follow an assumption that a high performance
in a proxy task translates to a high performing explanation.

Ground truth-centered methods depend on datasets
that have a ground truth mask, i.e., pixel-wise annotations
for each image, that indicate the relevant pixels for differ-
ent labels. The annotations are typically dependent on the
human notion of relevance and as such there can be a dis-
connect between annotated (human-relevant) pixels and the
actual model-relevant pixels. This might lead to explanations
seemingly failing in an unintuitive way, such as in the case
of the Clever Hans phenomenon [38]. To combat this, ar-
tificial datasets are used where the researcher has absolute
control over the relevant features. These datasets come with
the drawback that they are typically much less complex than
standard datasets depicting more real-world settings. This
category includes methods such as the pointing game [22],
Relevant Feature Coverage [39], Relevance Mass / Relevance
Rank [25] and ROC curves [24].

Model-centered methods determine the quality of a
saliency map by masking out pixels from the input samples
following a distribution based on the saliency map. By mea-
suring the change in prediction score, these methods deter-
mine how important the pixels, as indicated by the heatmap,
are for the prediction score. Commonly used methods are Av-
erage drop [30], deletion and insertion curves [20] and AOPC
values [40].
Human-centered (qualitative) methods are user stud-

ies that compare the visual quality of saliency maps generated
from different methods. A set of users is asked to grade dif-
ferent aspects of the saliency maps such as localization, dis-
crimination and more. Examples of this type of methods in
action are in [19, 15].

2.4 Sanity Checks and Axioms

Several efforts have tried to formalise the process of expla-
nation, and provide a rigorous framework for explanations to
adhere to, via sanity checks and axioms. [28] introduces the
axioms of sensitivity and implementation invariance. [41] dis-
cover that both guided back-propagation and DeConvNet are
doing (partial) image recovery instead of actual explanations
and determine the root cause to be the modifications to the
backward ReLU operator. Independently, [42] introduces sev-
eral parameter randomization tests as sanity checks for visual
explanations. [43] introduces the axiom of input invariance
and demonstrate that they can fool several saliency methods
by applying a transformation on the input such as a constant
shift. Finally, recent work by [44] introduced a number of
sanity checks on the evaluation metrics for saliency methods.

2.5 Related Studies

[24] used an artificial dataset to study a set of visual ex-
planation methods using recall, precision and ROC curves
that measure how well the explanations align with the class-
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relevant features. [25] evaluates visual explanation methods
on a synthetic dataset using the VQA task, by asking ques-
tions for an image and determining whether the explanation
highlights the correct object in the image. [40] conducted
a study using a small set of explanation methods on three
datasets consisting of real-world photos. [45] proposed an
evaluation protocol using a carefully selected dataset and a
set of metrics to evaluate explanations based on relative fea-
ture attribution.
Additionally, many works that introduce their own method

compare the results against a set of related methods. These
are typically more limited tests and serve to illustrate their
advancements. Example of these quantitative experiments
are [20, 22].

3 Methodology

This section will introduce the different components consid-
ered in our analysis. Moreover, it will provide an insight on
the choice-decisions of such components.

3.1 Datasets and Model Architectures

Datasets. We use in our study the ImageNet 2012 validation
set [8, 9]. This dataset is the de-facto baseline for Visual
Explanation research [20, 30] and contains 1000 image classes
with 50 samples per class.
Models. The architectures used in this paper are the

VGG16 network [46] and ResNet-50 [47]. To ensure repro-
ducibility, we use the pre-trained weights for both networks
provided by TorchVision [48].

3.2 Explanation Methods

We focus our study on a subset of explanation methods (see
Figure 1 for sample visualisations). These methods were cho-
sen to be representative of the breadth of the field while at
the same time being sufficiently distinct from one another. In
the paragraphs below, we describe the explanation methods
we studied.
Gradient-based methods such as smoothgrad [27] and

Integrated gradients [28] (IG) use the gradient ∂F (x)c/∂x as
a measure of relevance for each pixel. However, the gradient is
often noisy and discontinuous which can lead to artifacts. To
remedy this, smoothgrad uses multiple slightly perturbed
images and averages their gradients, such that only the most
robust signals remains. On the other hand, IG uses a discrete
integration technique by interpolating between a chosen unin-
formative baseline and the original image to generate a more
robust gradient.
CAM-based methods such as Grad-CAM [15] use the

fact that convolutional layers function as feature detectors
and calculate a weighted sum of the feature maps from those
convolutional layers for explanation. In this paper we only
discuss Grad-CAM, which uses the mean of the gradients of
the convolutional filter as weights, as it is the most widely
used CAM-based method.
Backpropagation-based methods such as Layer-wise

Relevance Propagation (LRP) [17] backpropagate a relevance

score to the pixel level using different rules that determine
how relevance is distributed between layers.

Perturbation-based methods such as (Sliding window)
occlusion [21] and RISE [20] generate explanations by per-
turbing parts of the input image with uninformative pixels
and calculating the difference in prediction score of the per-
turbed image and the original image. This score difference is
then used as a measure of importance of the perturbed part.
To generate an explanation, an image is perturbed for a large
number of iterations such that each pixel in the image is per-
turbed at least once. Occlusion accomplishes this by using a
sliding window, while RISE uses a large amount of upsampled
random masks generated from a Poisson distribution.
A special case is SISE [49], as this method combines as-

pects of CAM-based methods, backpropagation-based meth-
ods and perturbation-based methods. SISE can be classified
as a variant of RISE, but rather than using random masks,
it uses upsampled feature maps from within the model as
masks. The feature maps that are used are selected based
on the mean gradient for the feature map. In this paper, we
consider an extension called AdaSISE [50], which adaptively
sets the threshold on which feature maps are used as masks.
Attention-based methods such as TAME [51] train an

attention mechanism on top of the feature maps generated
by a classification model to accurately generate explanations
maps. In the case of TAME, this is enabled by a custom loss
function that combines Cross Entropy, an area-based loss, and
a variation loss to generate high-quality explanations.

3.3 Evaluation Methods

From the categories discussed in subsection 2.3, we will limit
ourselves and set the focus of our study on the model-centered
evaluation methods and the evaluations by proxy task. We will
motivate this briefly. Applying a ground truth-centered eval-
uation is impossible as the used dataset (see section 3) has no
pixel-level ground truth annotations. An alternative to this
would be to adopt a dataset related to semantic segmentation
tasks [52]. However, this is not necessarily correct given that
the pixel-level annotations from segmentation tasks do not
necessarily correspond to valid explanations. In few words,
accurate object localization does not imply accurate expla-
nation. Finally, since we focus our study on a quantitative
evaluation of the considered methods, we avoid the use of
qualitative evaluation protocols, as these mostly focus on the
subjective side of the analysis.

The Average Drop % score and Increase-In-
Confidence score [30] is calculated by performing an
element-wise multiplication of the saliency map Sc for class
c with the input image I. This results in an image where
the pixel intensities are proportional to the relevance in the
saliency map. This modified image is then used as input for
the neural network model F , resulting in a modified predic-
tion score. The average drop % metric is then calculated by

avg. Drop =
max(0, F (I)c − F (S ◦ I)c)

F (I)c
(1)

while increase-in-confidence is defined by

Confidence Increase = F (S ◦ I)c > F (Ic) (2)

3
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Figure 1: Visual explanations for different samples using the ResNet-50 network. Also pictured is the color scale used to
visualize the explanations. From left to right: input image, adaSISE, Grad-CAM, Integrated Gradients, LRP, occlusion,
RISE, smoothgrad, TAME.

The intuition behind this metric is that a good explanation
heatmap should give higher values to relevant parts of the
input. Therefore, no significant difference in the prediction
score is to be expected if only those pixels are preserved. On
the other hand, if the prediction score increases (Increase-in-
Confidence), this means that conflicting information that was
present within the original image, is no longer present in the
modified image, thus meaning that the explanation does not
highlight the conflicting information. A low Average Drop %
indicates that the explanation method correctly identified the
most relevant pixels in the input.

The Insertion and Deletion metrics [20] are met-
rics that start with an uninformative baseline/the original
image from which pixels are progressively inserted/replaced
by uniform values. The pixels are inserted/deleted based
on their saliency score, with higher scoring pixels being in-
serted/deleted first. Following each step the prediction score
is recalculated. This process is conducted gradually until all
the pixels are inserted or deleted. Then, an insertion/deletion
curve is produced by plotting the scores against the percent-
age of inserted/deleted pixels. For easier comparison, the
curves are quantified by calculating the Area Under Curve
(AUC).

Intuitively, if the AUC of the insertion curve is high, then
the pixels that are inserted first in the image have a large
impact on the prediction score, which indicates that the rel-
evance assigned by the explanation method correlates well to
the important pixels. An equivalent reasoning can be applied
to deletion curves with a low AUC.

The Remove-and-Debias metric [53] is a modification
of the deletion metric, stemming from an observation that it
is possible to infer class-specific information purely by using
the masks generated during the deletion steps. The authors
solve this issue by introducing a minimally revealing imputa-
tion, called Noisy Linear Interpolation. Rather than replacing
the removed pixels by fixed values, the authors use the ob-
servation that neighbouring pixels are highly correlated, to
generate replacements by solving a system of sparse linear
equations based on the neighbouring pixel values.
The Pointing Game metric [22] is a way to evaluate

explanations using the proxy task of weakly supervised local-
isation. Under the Pointing game, an explanation is deemed
good if its highest scored pixel lies inside the ground truth
bounding box associated with the predicted label. This im-
plies that good explanation method correctly localises objects
related to the prediction.

3.4 Sanity checks for evaluation metrics

To complement our study, we will apply sanity checks pro-
posed in the literature. These checks will allow us to assess
the level of fidelity that the considered evaluation metrics have
when applied on the generated explanations.
As in [44], we apply sanity checks on the studied evalua-

tion metrics. In particular, we study the Internal consistency
reliability and Inter-method reliability.
The Internal consistency reliability is a measurement

that determines how consistent the results from an evaluation
metric are for different configurations of the metric. To deter-
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Deletion Scores (ResNet-50)
adaSISE : 0.129
GradCAM : 0.169
IG : 0.059
LRP : 0.071
Occlusion : 0.088
RISE : 0.134
Smoothgrad : 0.101
TAME : 0.176

adaSISE Grad-CAM IG LRP Occlusion RISE smoothgrad TAME

Pointing Game (↑) 92.77% 86.30% 81.72% 80.31% 83.66% 91.94% 89.45% 83.26%
Avg. Drop % (↓) 47.05% 14.96% 96.85% 66.26% 94.77% 14.02% 96.99% 27.45%

I.i.C. (↑) 20.04% 41.51% 1.81% 9.40% 2.68 % 43.90% 1.67% 35.93%
ROAD (↓) 0.166 0.201 0.292 0.199 0.238 0.170 0.447 0.206

Figure 2: The resulting scores when evaluating the considered explanation methods. Top: The insertion and deletion curves.
Bottom : the other evaluation results in tabular form.

mine the correlation between different configurations, we use
the pairwise Spearman rank correlation.
Inter-method reliability indicates whether two metrics

have the same definition of goodness of an explanation. To
determine whether two metrics follow a similar definition of
’goodness’, we calculate a correlation score. In the case of two
methods that produce continuous values, we use the Spear-
man rank correlation, while in the case that one method pro-
duces binary values (e.g. Pointing Game) and the other con-
tinuous values, we use the point-biserial correlation. Finally,
When two metrics have opposing orderings (or ranks) — i.e.,
for one metric higher values are better, while for the other
metric lower values are better — we first fix the ordering of
both metrics to the same ordering. This is possible within
the Spearman correlation, as it is a correlation of the order-
ing instead of the actual values.

3.5 Implementation Details

Following common procedure, the images in the dataset are
rescaled to a (224, 224) image and normalised using the
ILSVRC-2012 mean ([0.485, 0.456, 0.406]) and standard de-
viation ([0.229, 0.224, 0.225]) before the explanation step.
The raw explanation maps are postprocessed using the fol-

lowing steps: First, negative relevance for the given label is
removed. Then, the explanation map is min-max normalised
to [0,1]. These steps serve to ease comparison and visualisa-
tion of explanation maps and follow common procedure, but
introduce a pitfall, namely that care needs to be taken when
comparing explanation maps. Due to the min-max normali-
sation, the relevances are now expressed in a relative factor
instead of an absolute factor.
To improve the reproducibility of this study, our code and

setup will be made publicly available1.

1https://github.com/Benjamin-Vandersmissen/quantitative-evaluation

4 Experiments

4.1 Evaluating Explanations

This first experiment will focus on quantitatively position-
ing each of the considered explanation methods based on the
evaluation metrics (subsection 2.3). We do this by follow-
ing the default configuration of each metric. Specifically for
insertion and deletion this is pixel-level replacement with a
dataset mean baseline (which is zero in this case). For easier
comparison between the different configurations, we calculate
the saliency map for the ground truth label (regardless of pre-
dicted label) and evaluate the methods accordingly. This is
necessary as the top-1 predictions by ResNet-50 and VGG16
are not always the same. In fact, on the considered dataset
ResNet-50 achieves a top-1 classification accuracy of 75.6%,
while VGG16 achieves only 71.9%.

When comparing results from different metrics, we can
notice a number of trends that start to appear(Figure 2).
Gradient-based methods together with LRP and Occlusion
seem to perform worse on the insertion metric, the average
drop metric and the Increase-in-Confidence, while perform-
ing better on the deletion metric and ROAD. In contrast, the
methods that produce a coarse saliency map (RISE, adaSISE,
Grad-CAM and TAME) perform better on the insertion met-
ric and the average drop metric, but worse on the deletion
metric. Our hypothesis is that this occurs due to the sparsity
of the generated explanations. We explore this in detail in
subsection 4.4. Finally, there seem to be no real connection
between the pointing game scores and any other metrics, as
the pointing game scores are similar for every method except
LRP on the ResNet-50 network, which scores slightly lower.
In that case, we can observe that several explanations gener-
ated by LRP have noise with high relevance around the edges
of the images, which is an observation that doesn’t hold true
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for the same method applied on VGG16.

4.2 Internal Consistency Reliability

In this experiment, we apply the Internal Consistency Relia-
bility (see subsection 3.4). In particular, we study the inser-
tion and deletion metric as these metrics have a number of
possible configurations introduced in the literature [40, 20].
The first of the two parameters we study is the uninformative
value used, which can be one of: the dataset mean (which
is zero), a blurred version of the image or random uniform
noise. In the case of blurring, a Gaussian kernel of size 11
with a σ of 5 is used. The second parameter is whether we in-
sert/delete purely based on the highest relevance, or whether
we insert/delete in a 9x9 neighbourhood around the highest
relevant pixel — similar to the AOPC values introduced in
[40].

A quick glance at Table 1 clearly shows a high correlation
between the different possible configurations for the insertion
and deletion metric. It should be noted that blurring has a
slightly lower correlation with the other uninformative val-
ues, which might be due to the fact that blurring the image
removes less information as opposed to replacing by the mean
or random noise. Due to space constraints, we limit ourselves
to only showing four configurations each for insertion and
deletion, namely the configurations originally introduced in
the literature. A full set of configurations as well as accompa-
nying visualisations can be found in the supplementary ma-
terial.

4.3 Inter-method reliability

Now we focus our study on the other sanity check, Inter-
method Reliability (subsection 3.4). This time we reuse the
evaluation results gotten from the first experiment to calcu-
late the pairwise reliability between every pair of metrics. We
report the computed pairwise correlation values in Table 2.

We can observe several trends in the computed correla-
tion results (see Table 2). First, the insertion and deletion
metrics have a high negative correlation, meaning that ex-
planations that have a higher insertion score, typically have
a lower deletion score. This suggests that the insertion and
deletion metric have opposing notions of what a good expla-
nation is. We will give an intuition to this observation in
section 5. Second, the average drop % metric has a relatively
low correlation with the insertion and deletion metric, but
exhibits and interesting behaviour. We can see that often the
sign of the correlation is different between LRP, Grad-CAM
and RISE on one hand and IG, Occlusion and Smoothgrad

on the other hand. We hypothesise that this is related to the
specific definition of average drop % and elaborate further
on this in subsection 4.5. Third, the pointing game metric
has very low correlation scores with any of the other metrics.
This might indicate that the pointing game — and by exten-
sion the weakly supervised object localization task — is not
a good proxy to measure the quality of visual explanations.
This further support the observation that good localization
does not imply good explanation.
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Figure 3: The kernel density estimation of the relevance as-
signed by different explanation methods.

4.4 Explanation Sparsity

In our observations, gradient-based methods such as IG and
Smoothgrad generate very sparse explanations, while meth-
ods such as RISE and Grad-CAM generate very coarse expla-
nations. This is demonstrated in Figure 3 by using a Gaussian
Kernel Density Estimation over all explanations in the test
set. These fundamental differences stem from the fact that
gradients are by nature very sparse, while the explanations
from Grad-CAM and RISE are coarse due to upsampling of
very small feature maps. To study whether this sparsity has
a large impact on the evaluation scores of the Gradient-based
methods, we apply a Gaussian blur on their explanation maps.
The goal of this step is to artificially induce coarseness, similar
as in [22]. We then repeat the same steps from the experiment
in subsection 4.1 and discuss the impact of the blurring step
below with regard to the original explanations. See Figure 4
for the results of this experiment.

It can be seen clearly that the resulting scores for the in-
sertion, deletion and average drop % metric are significantly
impacted. On the one hand, we notice a significantly bet-
ter insertion and average drop % score and a slightly worse
deletion score. On the other hand, there is only a negligible
difference between the pointing game scores.

The results regarding sparsity for the insertion/deletion
metric are similar to the results we found when comparing
the insertion/deletion by pixel with insertion/deletion by re-
gion experiment from subsection 4.2. In fact using the region-
based insertion and deletion is a similar way to evaluate sparse
explanations as coarse explanations. This because it perturbs
pixels in a neighbourhood around a selected pixel, which typi-
cally have — in the case of coarse explanations — very similar
values. Additional visualisations will be provided in the sup-
plementary materials.

4.5 Average Drop % reformulated

Here we further study the difference between average drop
with real-valued explanations (as it is originally formulated)
and average drop with binarized explanations on a per image
level. We posit that using binary explanations are better for
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Table 1: The average pairwise Spearman rank correlation between different configurations of the insertion and deletion
metric, calculated for ResNet-50.

Insertion mean+pixel blur+pixel mean+region blur+region

mean+pixel / 0.816 0.873 0.775
blur+pixel 0.816 / 0.786 0.948

mean+region 0.873 0.786 / 0.807
blur+region 0.775 0.948 0.807 /
Deletion mean+pixel random+pixel mean+region random+region

mean+pixel / 0.965 0.890 0.881
random+pixel 0.965 / 0.872 0.897
mean+region 0.890 0.872 / 0.966

random+region 0.881 0.897 0.966 /

Table 2: The pairwise Spearman correlation (and point-biserial correlation) coefficient between different evaluation metrics,
calculated for ResNet-50.

Correlation coefficients AdaSISE Grad-CAM IG LRP Occlusion RISE smoothgrad TAME

insertion & deletion -0.662 -0.695 -0.677 -0.659 -0.644 -0.676 -0.715 -0.64
insertion & avg. drop 0.09 0.172 -0.349 0.101 -0.322 0.017 -0.349 0.243
insertion & pointing -0.179 -0.137 -0.135 -0.155 -0.129 -0.212 -0.131 -0.215
insertion & ROAD -0.715 -0.724 -0.788 -0.698 -0.746 -0.712 -0.9 -0.668
deletion & avg. drop 0.008 -0.063 0.318 -0.146 0.309 0.106 0.272 0.042
deletion & pointing 0.060 0.084 0.014 0.040 -0.038 0.088 0.049 -0.051
deletion & ROAD 0.9 0.918 0.781 0.81 0.853 0.904 0.698 0.928

avg. drop & pointing -0.036 -0.047 0.076 -0.056 0.070 -0.089 0.084 -0.3
avg. drop & ROAD 0.075 -0.049 0.405 0.011 0.369 0.127 0.398 0.061
pointing & ROAD -0.062 -0.080 -0.086 -0.047 -0.000 -0.084 -0.129 0.059
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adaSISE : 0.635
GradCAM : 0.616
IG : 0.5
LRP : 0.603
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RISE : 0.642
Smoothgrad : 0.387
TAME : 0.611
Coarse IG : 0.55
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Deletion Scores (ResNet-50)
adaSISE : 0.129
GradCAM : 0.169
IG : 0.059
LRP : 0.071
Occlusion : 0.088
RISE : 0.134
Smoothgrad : 0.101
TAME : 0.176
Coarse IG : 0.134
Coarse Smoothgrad : 0.109

adaSISE Grad-CAM IG (* ) LRP Occlusion RISE smoothgrad (* ) TAME

Pointing (↑) 92.77% 86.30% 82.12% (81.72%) 80.31% 83.66% 91.94% 88.96% (89.45%) 83.26%
Drop % (↓) 47.05% 14.96% 44.99% (96.85%) 66.26% 94.77% 14.02% 49.11% (96.99%) 27.45%
I.i.C. (↑) 20.04% 41.51% 21.88% (1.81%) 9.40% 2.68 % 43.90% 15.12% (1.67%) 35.93%
ROAD (↓) 0.166 0.201 0.213 (0.292) 0.199 0.238 0.170 0.185 (0.447) 0.206

Figure 4: Comparing blurred versions of IG and smoothgrad explanations to the other explanation methods. Top: The
insertion and deletion curves. Bottom : the other evaluation results in tabular form (Original values of IG and smoothgrad

are provided between brackets).
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Table 3: Inter-method reliability between Binarized (50th
percentile) Average Drop % and other evaluation metrics.

Insertion Deletion Pointing ROAD

adaSISE 0.1361 -0.0344 0.00422 0.0256
Grad-CAM 0.2094 -0.1615 0.0309 -0.0793

IG 0.2411 -0.2626 0.0278 -0.0365
LRP 0.2398 -0.2617 0.1528 -0.1065

Occlusion 0.0169 0.0916 0.0013 0.1683
RISE 0.1328 -0.0782 0.0838 0.0152

smoothgrad 0.2285 0.0227 0.0344 -0.1306
TAME 0.2645 -0.0282 0.2763 0.0251

evaluation, as multiplication with a real-valued explanation
can introduce unexpected effects. Examples are f.e. colour
difference, which can lead to misclassification. We show the
inter-method reliability between the binarized formulization
and the other evaluation methods in Table 3. When com-
paring these results with the results from subsection 4.3, we
notice that the behaviour with binarized average drop % is
much more inline with the expected behaviour. A more in-
depth comparison with different levels of binarization, as well
as the impact on the evaluation score can be found in the
supplementary materials.

5 Discussion

Evaluation metric configurations. In subsection 4.2 we
demonstrated that using different configurations of the same
evaluation metric can have an impact on the scoring of expla-
nation maps, but has only a limited impact on the ranking of
explanation maps across different configurations of the eval-
uation metric. As such, it is difficult to quantify the exact
goodness of an explanation, but it is much easier to deter-
mine the better explanation from a set of explanations.

Coherency between metrics. Three groups of evalua-
tion metrics can be identified in our test set. (1) Metrics such
as insertion and average drop, which assign value to the set of
pixels that influence the prediction most when considered in
a vacuum. (2) Metrics such as deletion, which assign value to
the set of pixels that when removed from an image influence
the prediction most. Finally, (3) metrics that consider proxy
tasks, e.g. object detection or segmentation. By considering
the correlation results in subsection 4.3 and subsection 4.5,
we can conclude that (1) and (2) encode opposite notions
of ”goodness”, while (3) is almost uncorrelated to both (1)
and (2). This reflects upon the fact that localization is not
necessarily explanation.

Sparsity in explanations. Due to the nature of convo-
lution, filters will typically activate for a region of connected
pixels on which the filter is trained. As such metrics of group
(1) show better performance on coarse explanation maps (see
subsection 4.1). For evaluation methods of category (2), we
can make a similar argument why they perform better on
Gradient-based explanations, namely due to the fact that
when pixels with the highest gradient are removed, the pre-
diction score drops immensely. This property has been used
in f.e. adversarial attacks.

Artificially adding coarseness to gradient-based explana-
tions in subsection 4.4 reinforced these theoretical observa-
tions, as we can see that the metrics from group (1) record a
better score, while the metrics from group (2) record a worse
score.

As far as the impact of sparse explanations on metrics of
group (3), no significant difference can be noted, further re-
inforcing the observation that these metrics are unsuitable to
evaluate explanations.

Recommended evaluation protocol. Given the results
of this research, we advise against using proxy tasks for eval-
uation, such as the Pointing Game, weakly-supervised object
localization [29] or semantic segmentation [15]. These type
of methods operate under the assumption that good expla-
nation implies good object localization which is not the case;
think about visual explanations produced for a fine-grained
classification problem.

Additionally, while ground-truth based evaluation [39, 45] is
the most accurate way to measure the performance of visual
explanations, generating a ground-truth labelled dataset is
highly expensive, is often still dependent on human notions of
relevancy. Consequently, these type of methods operate under
the assumption that there is an alignment between features
considered by humans and those considered by machines when
making predictions for which there is evidence of the contrary
([54]) Moreover, these datasets produced for these ground-
truth based evaluations are often simpler than natural image
datasets.

Model-based evaluation is mainly based on perturbing the
input images based on the information contained within the
explanation. Unfortunately, this has as side effect that the
model is often evaluated with modified images that are not
anymore within the data distribution. This is an issue that
ROAD tries to avoid by solving large sets of sparse linear
equations. However, this makes it such that the runtime of
the evaluation is much higher. Furthermore, our experiments
show that ROAD has a very significant correlation with sim-
pler methods such as deletion with a blurred image. As such,
we recommend to consider the trade-off between speed and
theoretical soundness to determine which option to use for
evaluation.

6 Conclusion

In this paper we have studied a number of commonly used
explanation methods and quantitatively evaluated them using
a variety of evaluation metrics from the literature. We found
that the evaluation results for the explanations are generally
inconclusive - different saliency methods perform better or
worse on different metrics. This in turn makes it difficult to
rank explanations based on an ensemble of evaluation metrics.

Furthermore, elaborating on these empirical results, we
analysed the evaluation metrics and found that at best, there
is little correlation between metrics and at worst some met-
rics were shown to be contradictory. We identified two main
trends in evaluation metrics: either an explanation is judged
on how well the highest-scoring features perform in a vacuum,
or an explanation is judged on how bad the image without the
highest-scoring features performs. We also noticed that the
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pointing game is generally a poor metric to evaluate expla-
nations. Finally, we studied the impact of the sparsity of
visual explanations and its relation to the two categories of
evaluation methods we outlined.
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[38] S. Lapuschkin, S. Wäldchen, A. Binder, G. Montavon,
W. Samek, and K.-R. Müller, “Unmasking clever hans
predictors and assessing what machines really learn,” Na-
ture communications, vol. 10, no. 1, pp. 1–8, 2019.

[39] J. Oramas, K. Wang, and T. Tuytelaars, “Visual ex-
planation by interpretation: Improving visual feedback
capabilities of deep neural networks,” in International
Conference on Learning Representations, 2019.

[40] W. Samek, A. Binder, G. Montavon, S. Lapuschkin, and
K.-R. Müller, “Evaluating the visualization of what a
deep neural network has learned,” IEEE transactions on
neural networks and learning systems, vol. 28, no. 11,
pp. 2660–2673, 2016.

[41] W. Nie, Y. Zhang, and A. Patel, “A theoretical explana-
tion for perplexing behaviors of backpropagation-based
visualizations,” in International Conference on Machine
Learning, pp. 3809–3818, PMLR, 2018.

[42] J. Adebayo, J. Gilmer, M. Muelly, I. Goodfellow,
M. Hardt, and B. Kim, “Sanity checks for saliency
maps,” Advances in Neural Information Processing Sys-
tems, vol. 31, pp. 9505–9515, 2018.

[43] P.-J. Kindermans, S. Hooker, J. Adebayo, M. Alber,
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Table A1: The correlations between different configurations of the insertion / deletion metric for the ResNet-50 network,
broken down by explanation method. (1) = mean+pixel, (2) = uniform+pixel, (3) = blur+pixel, (4) = mean+region, (5) =
uniform+region, (6) = blur+region

insertion adaSISE Grad-CAM IG LRP Occlusion RISE smoothgrad TAME

(1) vs (2) 0.969 0.973 0.926 0.975 0.93 0.966 0.948 0.975
(1) vs (3) 0.851 0.865 0.745 0.846 0.72 0.847 0.804 0.854
(1) vs (4) 0.968 0.966 0.658 0.903 0.891 0.947 0.684 0.974
(1) vs (5) 0.946 0.949 0.683 0.897 0.852 0.926 0.71 0.955
(1) vs (6) 0.843 0.857 0.611 0.81 0.704 0.837 0.695 0.848
(2) vs (3) 0.837 0.852 0.744 0.834 0.691 0.832 0.809 0.84
(2) vs (4) 0.948 0.95 0.64 0.886 0.849 0.932 0.658 0.957
(2) vs (5) 0.973 0.972 0.695 0.909 0.899 0.957 0.702 0.978
(2) vs (6) 0.83 0.845 0.638 0.799 0.681 0.823 0.708 0.835
(3) vs (4) 0.845 0.861 0.686 0.833 0.705 0.843 0.665 0.848
(3) vs (5) 0.829 0.843 0.689 0.82 0.68 0.819 0.674 0.83
(3) vs (6) 0.994 0.998 0.827 0.968 0.962 0.997 0.839 0.998
(4) vs (5) 0.969 0.974 0.95 0.961 0.927 0.965 0.951 0.974
(4) vs (6) 0.842 0.857 0.772 0.827 0.719 0.838 0.756 0.845
(5) vs (6) 0.826 0.839 0.754 0.807 0.693 0.815 0.741 0.827

deletion adaSISE Grad-CAM IG LRP Occlusion RISE smoothgrad TAME

(1) vs (2) 0.966 0.971 0.968 0.973 0.961 0.966 0.941 0.975
(1) vs (3) 0.798 0.825 0.817 0.748 0.811 0.813 0.763 0.828
(1) vs (4) 0.959 0.96 0.768 0.805 0.967 0.948 0.737 0.973
(1) vs (5) 0.939 0.946 0.774 0.817 0.942 0.933 0.745 0.955
(1) vs (6) 0.791 0.819 0.774 0.728 0.8 0.804 0.691 0.823
(2) vs (3) 0.78 0.815 0.8 0.741 0.793 0.8 0.754 0.817
(2) vs (4) 0.935 0.944 0.754 0.785 0.939 0.934 0.727 0.956
(2) vs (5) 0.963 0.965 0.776 0.814 0.971 0.956 0.757 0.975
(2) vs (6) 0.774 0.81 0.766 0.721 0.78 0.792 0.692 0.812
(3) vs (4) 0.793 0.828 0.681 0.689 0.805 0.817 0.67 0.827
(3) vs (5) 0.773 0.815 0.672 0.677 0.787 0.8 0.666 0.813
(3) vs (6) 0.995 0.999 0.872 0.954 0.975 0.997 0.846 0.998
(4) vs (5) 0.966 0.975 0.958 0.962 0.959 0.973 0.957 0.976
(4) vs (6) 0.791 0.825 0.745 0.728 0.803 0.813 0.74 0.825
(5) vs (6) 0.771 0.812 0.721 0.704 0.782 0.796 0.712 0.811

Supplementary Material

A Overview

This supplementary contains additional visualisations for the different experiments mentioned in the main paper, as well as
additional secondary insights.

In section B, we highlight the results for the Internal Reliability Consistency test in greater detail. Related to this, we
provide some visualisations of the different types of uninformative values used in conjunction the deletion procedure in
section C. Additional visualisations illustrating the effect of Gaussian Blur to remove sparsity in visual explanations are
shown in section D. The average drop % with binarised explanations is discussed in section E. Finally, results for the VGG16
network are listed in section F.

B Internal Reliability Consistency

Notice that Integrated Gradients, Smoothgrad and Occlusion have better region-based insertion scores, but slightly worse
region-based deletion scores, while the other explanation methods show little to no difference. (See Figures A1 – A2) This is
due to the artificial coarsening done by region-based insertion / deletion. By considering regions, when a pixel is disturbed,
it is often due to another pixel in the region that has a high relevance. This is similar with coarse explanations where
highly relevant pixels are often in close proximity. As such, region-based perturbation follows the reasoning from the main
paper where we found that the sparsity of an explanation has an influence on the used evaluation metric. In this case, the
explanation is not made coarse by itself, but the evaluation metric achieves similar effect.
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Figure A1: The insertion curves for the ResNet-50 network. The curves on the left use pixel-level replacements, while the
curves on the right use region-level replacement
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Figure A2: The deletion curves for the ResNet-50 network. The curves on the left use pixel-level replacements, while the
curves on the right use region-level replacement
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(a) (b) (c)

(d) (e) (f)

Figure A3: Different types of uninformative values used within the Deletion procedure. From left-to-right, top-to-bottom: (a)
The original image, (b) Grad-CAM based explanation, (c) mean baseline, (d) gaussian blur, (e) uniform noise, (f) imputation
via sparse linear functions.

We also break the correlation tables that we mentioned in the main paper down in greater detail (Table A1, Table A4),
from which we can infer more detailed information. Specifically it is once again clear that correlating a blurred baseline with
either a mean-valued or uniform random baseline leads to lower correlation scores than correlating a mean-valued baseline
with a uniform random baseline. This is due to the fact that blurring removes less information from the input than uniform
noise or a mean value does. We can see that the average prediction score of the blurred image is still around 0.3, while for the
other methods the prediction score is almost 0. This might impact the ordering in which pixels need to be inserted or deleted
for an optimal evaluation score compared to another baseline. Another observation is that the correlation scores between
a pixel-based and a region-based evaluation for the gradient-based explanations are significantly lower than for the other
explanations. This indicates that the addition of region-based deletion has a large impact on the evaluation of gradient-based
methods, but not on the other methods. Once again, we can see from visual inspection that indeed the region-based insertion
and deletion curves for gradient-based methods differ significantly compared to the pixel-based insertion and deletion curves
(see Figures A1 – A2).

C Uninformative Values

As noted in the main paper, the model-based evaluation methods function by replacing parts of the image with uninformative
values. In the literature, there are a number of uninformative values used, namely using black pixels (zero-valued), uniform
random noise, blurred pixels and sparse linear equations (ROAD). Each of these follow different intuitions. Zero-valued
replacement, uses the dataset mean as that should occur most. Uniform randomness is used to minimize the occurrence of
hard edges within the perturbed image. Blurring is often use during the insertion procedure for exactly the same reason,
avoiding hard edges. Finally, Sparse Linear Equations are introduced by ROAD to avoid information leakage from the
explanation map and are based on the intuition that neighbouring pixels are often highly correlated. A visualisation of the
different types is given in Figure A3 using the deletion procedure where 50% of the image is perturbed based on the most
relevant pixels according to the Grad-CAM explanation method.,
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D Sparsity in Explanations

Here we visualise the result of the blurring operation on the Integrated Gradients (Figure A4a) and Smoothgrad (Fig-
ure A4b) explanation methods.

(a) Integrated Gradients (b) Smoothgrad

Figure A4: The effect of blurring on the explanations generated by Integrated Gradients and Smoothgrad

E Binarized Average Drop %

Table A2: The evaluation scores for Average Drop % with different binarizations.

orig 50% 75%

adaSISE 47.05% 24.77% 41.49%
Grad-CAM 14.96% 22.20% 51.11%

IG 96.85% 71.00% 91.21%
LRP 66.26% 39.8% 62.46%

Occlusion 94.77% 87.46% 95.90%
RISE 14.02% 25.82% 48.23%

smoothgrad 96.99% 84.43% 94.63%
TAME 27.45% 28.33% 49.41%

In this section, we further study the difference between average drop with real-valued explanations and average drop with
binary-valued explanations. We posit that using binary explanation are better for evaluation, as multiplying with a real-
valued explanation can introduce unexpected effects. Examples are f.e. colour difference, which can lead to misattribution
when combining the explanation and input to calculate the average drop % metric. We show the difference in evaluation
score between using real-valued saliency maps and binary saliency maps at different thresholds in Table A2. Binarizing a
saliency map is done on a per-image base by thresholding using a percentile-based approach. Other approaches, such as
thresholding on a fixed value are also possible, but not explored during this small experiment. We should additionally note
that the inter-method reliability between each level of binarization and real-valued explanations is exactly 1, which means
that binarizing doesn’t influence the ordering of the scoring.
When correlating the evaluation scores for binarised explanations to the other metrics (Table A3), we can notice that the

phenomenon described in the main paper — where the correlation coefficients differ wildly between IG and Smoothgrad,
and the other explanation methods — is not present for the lower binarization thresholds. Furthermore, the correlation
scores are generally more coherent when using binarization, even at unrealistic thresholds. This further suggest that due to
the definition of average drop % in the literature, some explanation methods — more specifically those with a few extreme
outliers such as Integrated Gradients and Smoothgrad — are penalized too harsh. Finally, the fact that the correlation
scores with the pointing game metric are still very low for different levels of binarization, further reinforces our reasoning
that pointing game is no good evaluation metric.
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Table A3: The correlation scores between the (binarized) Average drop % metric at different levels of binarization and other
metrics

real-valued 50% 70% 75% 80% 85% 90%

adaSISE 0.0898 0.1361 0.1452 0.1457 0.1461 0.131 0.0688
Grad-CAM 0.1725 0.2094 0.2182 0.2075 0.1771 0.1159 0.0169

IG -0.3492 0.2411 0.1194 0.0725 0.02 -0.0416 -0.1097
LRP 0.101 0.2398 0.1957 0.1745 0.1457 0.106 0.0414

Occlusion -0.322 0.0169 -0.1445 -0.1869 -0.2289 -0.2655 -0.3002
RISE 0.0167 0.1328 0.1388 0.1355 0.126 0.1057 0.0607

smoothgrad -0.3504 0.2285 0.0934 0.0491 -0.0018 -0.0607 -0.128
TAME 0.2433 0.2645 0.2806 0.2744 0.2572 0.218 0.1334
(a) Correlation scores between the Insertion metric and the average drop % metric.

real-valued 50% 70% 75% 80% 85% 90%

adaSISE 0.0078 -0.0344 -0.057 -0.0503 -0.0376 0.0025 0.0854
Grad-CAM -0.0626 -0.1615 -0.124 -0.1012 -0.0655 -0.0107 0.0697

IG 0.3182 -0.2626 -0.1144 -0.0632 -0.0065 0.0594 0.1332
LRP -0.1455 -0.2617 -0.2047 -0.176 -0.1412 -0.094 -0.02

Occlusion 0.3091 0.0916 0.1985 0.2284 0.2559 0.2755 0.2965
RISE 0.1059 -0.0782 -0.0826 -0.0807 -0.0767 -0.0571 -0.0127

smoothgrad 0.2725 -0.3762 -0.174 -0.1077 -0.03 0.058 0.1546
TAME 0.0419 -0.0282 -0.0334 -0.0257 -0.0101 0.0199 0.0787
(b) Correlation scores between the Deletion metric and the average drop % metric.

real-valued 50% 70% 75% 80% 85% 90%

adaSISE -0.0251 -0.0422 -0.0387 -0.035 -0.0342 -0.0291 -0.01
Grad-CAM -0.032 -0.0309 -0.0144 -0.0067 0.0026 0.0192 0.0366

IG 0.0673 -0.0278 -0.0144 -0.0074 0.0023 0.0128 0.0231
LRP -0.0487 -0.1528 -0.1412 -0.1319 -0.1184 -0.1048 -0.0778

Occlusion 0.0606 -0.0013 0.0344 0.0441 0.0521 0.0595 0.0652
RISE -0.091 -0.0838 -0.0688 -0.0659 -0.0565 -0.0414 -0.0176

smoothgrad 0.0665 -0.0227 -0.0052 0.004 0.0104 0.019 0.0272
TAME -0.2752 -0.2763 -0.2058 -0.1853 -0.1598 -0.1262 -0.0784

(c) Correlation scores between the Pointing game metric and the average drop % metric.
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Table A4: The correlations between different configurations of the insertion / deletion metric for the VGG16 network,
broken down by explanation method. (1) = mean+pixel, (2) = uniform+pixel, (3) = blur+pixel, (4) = mean+region, (5) =
uniform+region, (6) = blur+region

insertion adaSISE Grad-CAM IG LRP Occlusion RISE smoothgrad TAME

(1) vs (2) 0.966 0.964 0.941 0.97 0.936 0.962 0.959 0.972
(1) vs (3) 0.882 0.875 0.747 0.885 0.779 0.884 0.808 0.892
(1) vs (4) 0.964 0.95 0.689 0.92 0.917 0.939 0.711 0.97
(1) vs (5) 0.943 0.934 0.707 0.918 0.879 0.926 0.724 0.954
(1) vs (6) 0.873 0.864 0.634 0.868 0.766 0.872 0.714 0.886
(2) vs (3) 0.861 0.853 0.74 0.874 0.745 0.861 0.81 0.879
(2) vs (4) 0.945 0.937 0.676 0.901 0.887 0.925 0.691 0.954
(2) vs (5) 0.974 0.964 0.716 0.931 0.93 0.956 0.718 0.978
(2) vs (6) 0.855 0.847 0.65 0.852 0.74 0.853 0.718 0.874
(3) vs (4) 0.87 0.845 0.703 0.841 0.748 0.853 0.697 0.874
(3) vs (5) 0.856 0.834 0.699 0.832 0.724 0.844 0.695 0.865
(3) vs (6) 0.994 0.996 0.808 0.976 0.959 0.996 0.832 0.996
(4) vs (5) 0.969 0.97 0.955 0.962 0.942 0.969 0.959 0.975
(4) vs (6) 0.87 0.845 0.815 0.847 0.772 0.853 0.803 0.873
(5) vs (6) 0.856 0.834 0.78 0.829 0.748 0.844 0.771 0.864

deletion adaSISE Grad-CAM IG LRP Occlusion RISE smoothgrad TAME

(1) vs (2) 0.959 0.957 0.97 0.964 0.961 0.959 0.947 0.964
(1) vs (3) 0.847 0.852 0.774 0.727 0.824 0.864 0.747 0.859
(1) vs (4) 0.956 0.949 0.757 0.849 0.969 0.944 0.721 0.966
(1) vs (5) 0.939 0.935 0.772 0.861 0.948 0.937 0.737 0.949
(1) vs (6) 0.838 0.84 0.761 0.728 0.82 0.852 0.687 0.853
(2) vs (3) 0.825 0.833 0.753 0.713 0.81 0.849 0.726 0.842
(2) vs (4) 0.931 0.93 0.736 0.812 0.943 0.927 0.704 0.944
(2) vs (5) 0.967 0.962 0.761 0.851 0.973 0.96 0.735 0.973
(2) vs (6) 0.818 0.825 0.743 0.706 0.805 0.84 0.679 0.838
(3) vs (4) 0.83 0.842 0.691 0.689 0.817 0.862 0.69 0.847
(3) vs (5) 0.815 0.831 0.691 0.682 0.806 0.852 0.696 0.837
(3) vs (6) 0.993 0.995 0.853 0.952 0.979 0.996 0.816 0.995
(4) vs (5) 0.964 0.971 0.952 0.954 0.962 0.974 0.954 0.972
(4) vs (6) 0.83 0.842 0.782 0.735 0.822 0.861 0.787 0.848
(5) vs (6) 0.814 0.83 0.759 0.716 0.811 0.85 0.761 0.837

F VGG16 Results

Below, we list the visualizations and tables associated with VGG16. Overall, we find the same conclusions as on ResNet-50.
The following tables and figures are provided: Detailed internal consistency results (Table A4), a figure describing the effect
of blurring on IG and smoothgrad (Figure A7), and insertion + deletion curves for the different configurations (Figure A5
and Figure A6).
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Figure A5: The insertion curves for the VGG16 network. The curves on the left use pixel-level replacements, while the curves
on the right use region-level replacement
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Figure A6: The deletion curves for the VGG16 network. The curves on the left use pixel-level replacements, while the curves
on the right use region-level replacement
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adaSISE Grad-CAM IG (* ) LRP Occlusion RISE smoothgrad (* ) TAME

Pointing (↑) 90.11% 89.21% 86.57% (86.85%) 84.80% 84.52% 91.41% 87.92% (88.66%) 87.25%
Drop % (↓) 59.50% 26.44% 51.70% (96.46%) 85.14% 94.05% 13.53% 51.05% (96.52%) 42.37%
I.i.C. (↑) 14.18% 29.87% 17.66% (1.93%) 4.97% 2.93 % 44.55% 14.72% (1.91%) 21.90%
ROAD (↓) 0.148 0.136 0.155 (0.202) 0.135 0.166 0.367 0.141 (0.136) 0.148

Figure A7: Comparing blurred versions of IG and smoothgrad explanations to the other explanation methods. Top: The
insertion and deletion curves. Bottom : the other evaluation results in tabular form (Original values of IG and smoothgrad

are provided between brackets).
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