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Abstract

As digitalization is permeating all sectors of society towards the concept of ”smart everything”, and virtual technologies

and data are gaining a dominant place in the engineering and control of intelligent systems, the Digital Twin (DT)

concept has surfaced as one of the top technologies to adopt. This paper discusses the DT concept from the viewpoint

of Modeling and Simulation (M&S) experts. It both provides literature review elements and adopts a commentary-driven

approach. We first examine the DT from a historical perspective, tracing the historical development of M&S from its roots

in computational experiments to its applications in various fields and the birth of DT-related and allied concepts. We

then approach DTs as an evolution of M&S, acknowledging the overlap in these different concepts. We also look at the

M&S workflow and its evolution toward a DT workflow from a software engineering perspective, highlighting significant

changes. Finally, we look at new challenges and requirements DTs entail, potentially leading to a revolutionary shift

in M&S practices. In this way, we hope to foster the discussion on DTs and provide the M&S expert with innovative

perspectives.
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1 Introduction

Modeling and Simulation (M&S) is an established scientific

discipline. Computer simulation has its roots in the

computational experiments of neutron scattering developed

by Ulam and Von Neumann, who developed the Monte

Carlo method1,2. Since then, researchers have made

many foundational contributions to M&S. The number of

applications of simulations to solve real-world problems is

even many times more. Computational science has even been

called the third pillar of science for that reason3.

In recent years, the Digital Twin (DT) concept has

surfaced in many areas e.g., aerospace4, manufacturing5,

healthcare6, transportation systems7 and smart cities8. The

DT approach landed in the top strategic technology trends,

as shown in the Gartner hype cycle of 20179 and 201810.

However, for most M&S researchers, the DT concept

seems like a natural evolution of M&S. Though seemingly

evolutionary, there might be some revolutionary aspects to

the concept. In this paper, we look at the DT from both

perspectives and identify challenges related to the DT from

the perspective of an M&S practitioner.

The various fields and industries that employ DTs all

have their own understanding of the concept influenced

by the way they use it to create more value in their

business. This has, unfortunately, resulted in a plethora of

definitions11 of the term, which has hollowed it out. We

therefore briefly revisit five historical developments from the

classic simulation model to the DT concept. We also look

at the current viewpoints of some major industrial players

and standardization bodies, as well as recent classifications

suggested in the literature.

This paper discusses the transitioning from M&S to DT.

First, section 2 discusses a historical overview of digital

twins. In section 3, we discuss how the current state of digital

twinning is an evolution from M&S; the evolutionary process

of the M&S workflow towards a DT workflow is presented.

In section 4, we discuss how DT can be seen as a revolution

due to some drastic changes in traditional M&S practice.

New requirements for the adoption of DT are paired with

open challenges, which we discuss. Finally, we conclude the

paper in section 5 and give some perspectives.

2 Digital Twin: a Historical Perspective

In the 1960s the DT idea was born at NASA from the “living

model” of its Apollo missions12. Figure 1 illustrates the

historical perspective of the emergence and budding of the

DT concept.

The evolution of M&S has progressed alongside the

significant advancements witnessed in computer science.

This is why the history of M&S dates back to the 1960s

when the first computers could support simulations. During

the initial decades of simulation development, the generated

output primarily consisted of textual reports13.
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In the 1980s, visual animation was integrated into

commercial simulations to enable all stakeholders to

communicate with the model appropriately. Since the 1980s,

real-time simulation (RtS) has been increasingly used in

industrial and entertainment applications14. In this approach,

the simulation model generates outputs and responds to

inputs at a pace corresponding to the system’s real-world

dynamics. These developments influenced other industries to

adopt real-time simulation techniques for training, planning,

and testing purposes. RtS possesses the capability not only

to model the future state of systems but also to depict the

current state of real systems such as hospitals, factories,

distribution hubs, supply chain networks, airports, and

container ports. The term ”RtS” can be traced back to the

1950s, when Rubinoff defined RtS as a simulation of the

performance of a process or device at its regular operating

speed. The digital simulator is responsible for keeping up

with the simulated process or device15. However, the RtS

concept has evolved over time. The MIT Servomechanisms

Laboratory and the United States Air Force developed the

Whirlwind I project, which was publicly announced in

195116. Historically, the project has consistently focused

on the domains of real-time simulation and control17. Most

RtSs are identified by including some physical components

in the simulation. This might be hardware, software, or a

human(s) in the loop. In every case, the simulation needs to

be synchronous with a wall clock to ensure the correct timing

of the interactions between the simulation and the external

agent18.

Simulation is one of the most important tools for

evaluating system performance and assisting in decision-

making. However, RtS for decision-making plays a key role

in many sectors, spanning from manufacturing plants19,20 to

sociotechnical systems such as healthcare services21.

In 1991, we find Gelernter’s concept of “Mirror Worlds”,

a software model of a part of the real world, fed with

information streams such that the model is ever up-to-

date with reality. He envisions this mirror world to be

accessible by multiple users simultaneously, each of which

can request and view exactly those aspects of the model they

are interested in, at whatever level of detail necessary. A city

Mirror World would contain the state of bridges, locations

of policemen, occupancy of buildings, etc. Those occupied

buildings would have a mirror world themselves, with,

for example in a hospital, digital versions of patients and

doctors, but also rooms and medical inventory22. Gelernter’s

view is that of a doppelgänger and is bordering on what is

nowadays called a DT.

The origin of the Symbiotic Simulation can be traced back

to 1998 to Davis’ concept of online simulation23, but the

term Symbiotic was introduced at the Dagstuhl seminar on

Grand Challenges for Modeling and Simulation in 200224.

A Symbiotic Simulation System is a system in which

a simulation and physical system interact with each other

through an exchange of data. The physical system sends

measurements to the simulation, which sets up what-if

experiments to control or influence that physical system

optimally. In this initial definition, the Symbiotic Simulation

System forms a closed loop. It behaves in a mutually

beneficial way, but this does not need to be the case,

as argued by Aydt et al.25. If the model used in the

simulation does not accurately represent the physical system,

suboptimal or even detrimental decisions might be made.

Aydt et al.25 also propose other uses of the Symbiotic

Simulation System that do not require a closed loop, such

as forecasting, model validation, and anomaly detection. We

see that Symbiotic Simulation Systems have found their way

into Industry 4.026, and as Cao et al. put it succinctly27:

“Symbiotic simulation systems describe the whole process

of using a DT...”.

Grieves’s initial concept of DT is found in a University

of Michigan presentation on Product Lifecycle Management

(PLM). At the time, the slide was called “Conceptual Ideal

for PLM”, and over time, the concept was renamed to

“the information mirroring model” initially and later on to

“digital twin”. This slide, reproduced in Figure 2, contains

all the elements of what is nowadays considered a DT:

a real space, which is mirrored by a virtual space (VS)

that consists of any number of sub-spaces (VS1, VS2, ...,

VSn), and the accompanying data flow from the real space

to the virtual one, as well as an information flow in the

opposite direction. The central idea is that the real space

represents a physical system, and the virtual space represents

all the information of this physical system throughout its

lifecycle, from (prototype) production to disposal28. This

view is similar to Gelernter’s concept but brought in the

more specific context of PLM, and with the extension of an

automated information flow from the virtual to the real space.

It is also clear that there is definite overlap with Symbiotic

Simulation Systems. The main difference is that in Symbiotic

Simulation, the one-to-one mapping of real space to virtual

space is not a necessity, though it may be optionally present,

e.g. in its model validation usage.

2010 brings us NASA’s definition, which stems from

a roadmap on modeling, simulation, and information

technology29. NASA describes a DT as follows: “A Digital

Twin is an integrated multiphysics, multiscale, probabilistic

simulation of an as-built vehicle or system that uses the

best available physical models, sensor updates, fleet history,

etc., to mirror the life of its corresponding flying twin”29,30.

They consider the DT to be ultra-realistic, based on high-

fidelity physical models, onboard sensor data, maintenance

history, and fleet data. The central idea is that due to

future missions being more complex and longer, a DT can

aid by continuously forecasting the system health and the

probability of mission success, as well as uncover issues

before they become critical30. Compared to Grieves’ view,

this definition is less general and clearly influenced by an

aeronautics background, yet the basic elements from Figure 2

remain present.

Several industrial consortia, individual researchers, and

standardization bodies are actively participating in the

progress of DT technology. For example, “Alliance Industrie

du Future” (AIF, a large French consortium of industries

and academics) defines the DT as (i) an organized set of

digital models representing a real-world entity designed to

address specific issues and uses, (ii) updated in relation

to reality, with a frequency and precision adapted to

its issues and uses and, (iii) equipped with advanced

operating tools including the ability to understand, analyze,

predict and optimize the operations and management of the

real entity31. As stated by the Digital Twin Consortium,
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Figure 1. Historical perspective of the Digital Twin concept

Real Space Virtual Space
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VS1 VS2 VSn... 

Figure 2. Adaptation of Dr. Michael Grieves’ slide from 2002 28.

a DT is a virtual replication of a real-world physical

object, entity, or process, which is synchronized with its

physical counterpart at a certain frequency and fidelity.

The DT supports businesses through holistic understandings,

optimal decision-making, and effective actions. DT predicts

possible future scenarios and represents the present and

past, by using real-time and historical data32. According

to Siemens, a DT is a virtual duplicate of an object,

machine, process or a complete facility of production. It

can carry all the data and models relevant to the real-world

entity along all the value chain processes, from design to

production, operation, maintenance, and the recycling of

the product. This makes it possible to design, simulate and

manufacture products faster whilst improving the factors

of economy, performance, robustness or environmental

compatibility33. General Electric (GE) defines the DT as

a software representation of a physical asset, system, or

process designed to detect, prevent, predict, and optimize

through real-time analytics to deliver business value34. In

an attempt to consolidate various DT definitions, Wright35

distilled the following three required parts in a DT: (i)

a model of the twinned system is needed, (ii) an ever-

evolving dataset related to the twinned system is needed,

(iii) a means of updating the model in accordance with the

data is needed. This aligns with the definition given by the

ISO (International Organization for Standardization), which

defines the DT in a manufacturing context as the digital

representation of an observable manufacturing element

with synchronization between the element and its digital

representation36.

Because all these definitions are rather broad, there have

been attempts in the literature to define further classifications

in the DT technology according to some properties.

Kritzinger et al.’s classification5 is a classification based on

the level of data integration between a physical object and its

digital counterpart. Specifically, the classification looks at the

presence of computer-automated data/information exchange

between the digital world and the real-world entity, as shown

in Figure 3. Based on that presence, it distinguishes between

a digital model, digital shadow, or digital twin. A digital

model only has manual data exchange between the two

objects, a digital shadow has automatic data exchange from

the physical object to the digital one, and a digital twin has

an automated data exchange in both directions; that is, the

digital object can directly influence the physical one. Despite

stemming from the manufacturing field, this classification is

generic and broadly applicable. Babic37 classifies DTs for

smart manufacturing in two groups based on the awareness

of the digital twin about the manufacturing equipment’s

layout. He classifies them as the static twin, in which the

equipment layout is configured manually, and dynamic, in

which the twin automatically determines this configuration.

Bao et al.’s classification7 also stems from manufacturing,

yet their classification focuses on what the DT captures: the

produced product or the production process. They describe

the product DT as a virtual information carrier of the product

that carries information associated with that product through

the various phases of its life, that is, design, manufacturing,

maintenance, repair, and operations. The process DT then

supports the production process and captures the appropriate

attributes and manufacturing procedures in a digital way.

3 Digital Twin: An Evolution?

Some scholars posit that DT can be attributed to the evolution

of the simulation model. For example, Lugaresi et al.38

state that DT can be seen as an evolved form of simulation

that has been used for years. Compared to mere simulation,

the evolved features are a bidirectional data flow and

synchronization between the real and the virtual elements38.

This idea is not just an assumption; in fact, it can be deduced

from the previously mentioned DT definitions28,30,35. Shao

et al.39 argue that although concepts behind DT might be old

and known by simulation experts, DT is however a prominent

step over the simulation model because classic simulations

typically represent what happened in the past or may happen

in the future based on initial assumptions, while DT focuses

on what is happening right now and may be used to predict

future states as well. VanDerHorn & Mahadevan40 have the

same viewpoint and argue that one reason for the potential

confusion between simulation models and DT arises from the

fact that while a simulation model is not necessarily a DT, the

use of a simulation model combined with DT is prevalent.

Prepared using sagej.cls



4 Journal Title XX(X)

Figure 3. From digital model to DT according to Kritzinger et al.’s classification

Based on an evolved workflow, we look to clarify the

evolution that has occurred.

3.1 M&S Workflow

As M&S is such a mature discipline, workflows exist for

practitioners to guide them through a simulation study. The

different concepts of the workflow are combined in the work

of Balci, where a life-cycle model for M&S is defined41.

Figure 4 defines a simplified view of such a workflow

of a simulation study based on41,42. Activities are shown

using ellipses. The control flow between different activities

is shown with a full arrow. The dashed lines show the

interaction with the system under study. We distinguish the

following activities in the workflow:

1.1 Model Objective Definition: This activity defines the

reasons for the simulation study. The problem of

interest is defined. From this high-level question,

the simulation analysts and domain experts define

the specific questions of the study. These specific

questions are translated into the properties of interest.

Furthermore, the scope of the model is defined.

1.2 Create the Conceptual Model: The conceptual model

is the model that is formulated in the head of the

developer41. Zeigler defined a hierarchy of system

specification that can be used as a foundation for

creating a conceptual model43.

1.3 Create a Programmed Model: The conceptual model

must be captured in an executable/programmed model.

Different programming languages and simulation

formalisms are available to create the executable

model. Once the programmed model is available,

we can check if it is a good implementation of the

conceptual model and does not contain any errors. This

process is often referred to as verification.

1.4 Calibration or Parameter Estimation: The conceptual

and programmed model are typically parametrized,

so for a virtual experiment, these parameters must

be assigned a value. Some parameters can be taken

from component data sheets or literature. However,

sometimes experiments need to be set up to measure

the parameter. Finally, some parameters can only be

estimated using optimization techniques to ensure the

model’s output is calibrated to the system’s output.

1.5 Model Validation: Once a calibrated model is

available, it still needs to be checked if it has

any predictive capabilities within its domain of

applicability. The process is called validation: “A

computerized model within its domain of applicability

possesses a satisfactory range of accuracy consistent

with the intended application of the model”44.

Different techniques and statistical metrics are

available for doing model validation45.

1.6 Model Experimentation and Decision-making: The

model can now be used for its purpose. In

silico experiments are conducted using designed

experiments. The results are used for decision-making,

understanding a system, etc.

Note that most of these activities are done iteratively.

Furthermore, the simplified life-cycle model does not show

feedback loops to return to previous phases when needed. We

refer to Balci41 for a more detailed treatise of the life-cycle

of M&S.

3.2 Evolution Towards DT Workflow

A simplified DT workflow is shown in Figure 5. This

workflow is based on our experience of building digital twins

and on typical model-based systems engineering workflows

and standard software life-cycle models such as DevOps46.

Compared to the simplified simulation study workflow, a lot

has changed. A single step within this workflow contains

the entire simulation study workflow. We see the following

activities.

2.1 DT Objective definition: A digital twin is devel-

oped for a specific purpose, e.g., optimization of per-

formance parameters of the system, control-oriented

applications, monitoring and dashboarding. Based on

these specific objectives of the DT, the developers cre-

ate a set of requirements for the DT. The requirements

and specifications also include the operational domain

of the DT. The requirements translate into the specific

properties of interest the DT needs to work on.

2.2 Model development life-cycle: This activity contains

the life cycle shown in Figure 4. Based on the

requirements and specifications of the DT, a model

needs to be created or possibly reused from a library

of models. M&S experts use the requirements of the

DT to translate them into model requirements.

2.3 DT Architecture: The architecture of the digital twin

is created. Decisions, such as using a distributed or

Prepared using sagej.cls



Ali et al. 5

Figure 4. Simplified M&S workflow

centralized architecture, are taken. Besides the model,

the DT needs many other components to operate,

e.g., instrumentation, data collection, networking, data

storage, and decision-making. Furthermore, the model

is used for a specific purpose within the DT, e.g.,

what-if analysis or optimization. Decision-making

components, based on the simulation outcomes, are

defined.

2.4 DT Create/Build: Based on the architecture, the digital

twin is developed, e.g., coding and testing of software

components and setting up the networking and data

infrastructure.

2.5 DT Deployment: Deployment is releasing the digital

twin for use. The different data streams are connected

to the DT. Deployment of a DT is typically done

in cloud environments. However, fog and edge

computing is also considered47.

2.6 DT Verification and Validation: As a digital twin

is a complicated software-based system, current

software engineering practices should be considered.

Verification is the process of checking if the services

offered by the DT are created correctly. Validation

checks that the services provided by the DT meet

the needs of the system users. Note that verification

starts in the DT build phase when testing the various

components.

2.7 Data Collection: From the instrumented environment

and system, the data is gathered by the system for

use by the DT services and validation processes.

Depending on the services, the data is also made

persistent for later use.

2.8 DT Services: These are the services that implement

the objectives of the digital twin. The services use

the data and actuate the system. The service typically

runs automated simulation experiments to support

the automated decision-making provided by the DT

service. Matta and Lugaresi classify these services

as descriptive (e.g., health-monitoring), predictive

(e.g., prognosis), and prescriptive (e.g., optimization)

services48.

2.9 DT Synchronization: The current state of the system

must be estimated to be able to use the digital

twin properly. These estimates can be used in the

underlying models to initialize the models. Once the

state is estimated, we need to be sure that the model

that is used within the digital twin is up-to-date with

the system and its environment. This is necessary

because the system and environment can evolve over

time (e.g., wear and tear, replacement of components).

Furthermore, once it is detected that the underlying

models are no longer valid, the model should be

brought back in synchronization with the actual DT.

The parameters must be updated if the model is

valid for a larger operational domain (and/or a new

initial state should be estimated). However, in some

instances, a new model should be created or selected

for use.

Note that the activities shown in grey, in Figure 5,

are offline or development activities, while those in white

are online or run-time activities. We also note that the

semantics of this model might be slightly different compared

to the semantics of Figure 4. While the digital twin is

operational (and thus providing services), the continual

validation techniques can run in parallel. Furthermore, a new

model must be created when the current model is no longer

valid while certain DT services are still up and running.
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The two workflow models show that the DT workflow

builds on top of the M&S workflow. From that perspective,

DT can be seen as an evolution of M&S. However,

when examined thoroughly, such evolution also brings new

requirements for the concept to be truly feasible, i.e., to allow

the simulation model to co-evolve with the actual system,

capturing and reflecting its modifications. Defining new

methods, techniques, and tools to address those requirements

could lead to a revolution in the area of M&S.

4 Digital Twin: A Revolution?

The adoption of DT technology brings drastic changes both

in the engineering and the practice of simulation methods

and infrastructures. For example, at the engineering level, the

usability of DT is most pronounced when a real system or

object undergoes modifications over time, making the initial

model of the object obsolete35. While in traditional M&S

a new model has to be built, the DT model rather captures

and reflects these modifications. At the practical level, DT

simulation experiments are not based on assumptions on the

initial conditions like in traditional M&S, but on current

information available from the system49. Consequently, the

space of possible initial conditions to explore is larger with a

traditional M&S model than with the DT model.

In this section, we first revisit major requirements for

DT engineering. Then we discuss some of the disruptive

challenges that these requirements bring in the M&S field.

4.1 Requirements for Digital Twin Engineering

To create a successful DT, it must fulfill a set of requirements.

These include both reinforced forms of M&S requirements

and novel DT context-specific requirements. In what follows,

we discuss the most prevalent requirements mentioned in the

literature. These requirements typically are interdependent,

and each one can include one or several sub-requirements.

4.1.1 Data value chain covers the critical need for the

DT to access appropriate data pertaining to its real-world

counterpart at the appropriate moment. Digital models

collect and analyze huge amounts of data throughout the

entire life cycle38. There is a need for a well-defined data

hierarchy because, at each abstraction level DT provides

data. Thus, the determination of handy information and

data with considerable accuracy is vital50. Oliver identified

an issue; for a DT there is still a need for adequate

and reliable data sources and this problem has been the

same for decades39. The identifiable information sources

must retain information history and must be trustworthy,

valuable, optimized, and available at any time for evaluating

deterministic behavior, audit, and analytical purposes51.

The International Telecommunication Union proposed a

three-layered architecture of a digital twin network with

a primary focus on three key subsystems, (i) unified data

repository, (ii) unified data models, and (iii) digital twin

entity management. The ITU also set out the requirements

of a unified data repository as to be trustful and fast, it

should provide a variety of data timely and accurately,

be able to exchange real-time data within acceptable time

delay, be easy to maintain, and be available at all times52.

Reliability, integrity, and speed of data are crucial for system

performance and for representing the state of a physical

entity in real-time with an acceptable time delay because a

system can be described based on its logic and input data53.

Data value chain is the foundation of an end-to-end

process responsible for collecting, processing, and supplying

data from various sources, that could better be utilized

for decision-making and optimization. Interoperability

facilitates effective and efficient integration of the data across

the different components of a DT. The next section highlights

the interoperability requirements for a DT.

4.1.2 Interoperability is the ability of two or more DTs

to exchange information and mutually use the information

that has been exchanged54. Interoperability allows DT to

communicate and exchange data between different DTs,

simulation models, software, and platforms such that the

same data can be used for different purposes, which can be

achieved by establishing equivalence between various model

representations55,56.

Platform Interoperability is a DT’s extension by using

value-added services, such as AI, simulation, visualization,

etc.57. However, System Interoperability is communication

and interaction between DTs of different physical entities57.

In a practical approach, few DT elements may already

exist. In this case, there is no need to develop them as

part of the new DT, but a need for a suitable interface to

integrate the already existing DTs50. Integrating multiple

simulations could be challenging. Open architectures and

relevant interoperability standards can help to integrate dif-

ferent simulations at different fidelity levels58. The Digital

Twin Consortium presented a complete DT interoperability

framework based on seven key components: the system-

centric approach, model-based interactions, holistic flow of

information, state-based synchronization, heterogeneously

distributed federated repository integration, actionable infor-

mation exchange, and scalable mechanisms to streamline

connectivity and collaboration in DT ecosystems51. Interop-

erability standards such as ISO 23247-436 and IEEE 151659

can be used for the mutual interaction and integration of

heterogeneous DTs. Table 1 shows the review of different

literature and their main focus in the area of DT interoper-

ability.

Interoperability set out the foundations for effective col-

laboration and communication among the different DT com-

ponents. However, this communication and collaboration

need to be synchronized at a certain frequency and fidelity

as defined by the Digital Twin consortium32. The next

section addresses the synchronization aspects of DT and the

subsequent section explores the fidelity requirements of DT.

4.1.3 Synchronization means that the state of the real

system and its DT are kept consistent and up-to-date with

each other’s state using appropriate event-based or time-

based methods36,62. Depending on the data flow in the DT,

synchronization can be seen in both directions, from virtual

to physical and physical to virtual62. In the former case, the

synchronization concerns the tracking of the physical world

by the virtual one, in the latter it concerns the control enacted

by the virtual world upon the physical one. The level of

synchronization (e.g., rate, quality, and volume) can vary

and depends on the intended purpose63. Table 2 shows an

overview of relevant literature and which synchronization
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Figure 5. Simplified workflow for Digital Twins

Ref. System

Interop-

erability

Platform

Interop-

erability

Integration

D.T.C.51 x x x

Lehner et al.57 x x x

Schleich et al.55 x x

Durao et al.56 x x

Wagner et al.50 x

Shao et al.58 x

Rasheed et al.60 x x x

Niaki et al.61 x x

Table 1. DT interoperability literature considerations

aspects are mentioned in their reviews/research. Most of

the literature considers the bidirectional dataflows, such as

in Grieves’ definition, but fewer also consider the data

rate and data volume considerations and their effect on the

synchronization.

Synchronization ensures that the real-time representation

of the virtual entity is closely aligned with the physical

entity, while fidelity ensures the accurate representation of

the complexities of the physical entity. The following section

highlights the DT fidelity requirements.

4.1.4 Fidelity is vital for a DT to represent the current state

of its physical counterpart as accurately as possible56. So,

it is the fidelity of DT that determines nearness to the real

counterpart.

From the perspective of M&S, it can be argued that

DT needs high-fidelity simulation modeling technology,

where this fidelity is not only related to the fidelity of the

model construction but also to the data-related issues, e.g.,

accuracy and frequency68. While certain scholars discuss

fully mirroring66, ultra-realistic65 and ultra-high-fidelity

simulation69,70, others seek to establish fidelity levels to

optimize the DT’s advantage to existing challenges36,40,71.

Academic definitions commonly imply that a high-fidelity

model is a crucial requirement for a DT. However, practical

use does not always require high fidelity, as it can be costlier.

Therefore, it is crucial to determine the appropriate level of

Ref. Physical

to

Virtual

Sync.

Virtual

to

Physi-

cal

Data

Rate

Data

Vol-

ume

ITU52 x x x

Jones et al.62 x x x

Liu et al.64 x x x x

Moyne et al.63 x x x

Rasheed et al.60 x x x x

Sjarov et al.65 x x

Meng et al.4 x x x x

Talkhestani et

al.66

x

Wagner et al.50 x x

Wang et al.67 x

Zhang et al.68 x x

Table 2. Synchronization considerations.

fidelity for DT72. Jones et al, 202062 argue that DT fidelity

levels comprise multiple dimensions, including the number

of parameters, the precision of those parameters, and the

degree of abstraction in the reciprocal exchange between the

virtual and physical twins. The appropriate fidelity level is

not necessarily the highest level of model fidelity feasible40,

and is dependent on the use-case. It seems that While DT

fidelity pertains specifically to the suitable precision of the

model’s representation, DT validity encompasses the broader

notion of whether the DT serves as a fitting and efficient tool

for its intended application. The subsequent section discusses

the Verification and validation aspects of DT.

4.1.5 Verification and validation (V&V) of DTs pertain to

the assurance of constructing a DT in alignment with its

objectives (validation) and ensuring its accurate implementa-

tion (verification)73. DTs typically include different models,

components, sub-components, and processes, which neces-

sitates V&V on an individual basis as well as for the entire

system40,55. To maintain the model’s validity throughout the

entire life cycle; clear and well-defined guidelines are needed

for V&V58. A DT must have a validated specification of
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what to simulate and what to predict, with which input, and

which approach50. The system’s output should be contin-

uously compared and monitored with a reference point to

detect errors and anomalies60.

Primarily DT concept applies to highly automated

systems. When there is human involvement and decision-

making, then due to the high degree of randomness of human

actions, the system cannot be perfectly shadowed virtually39,

thus directly affecting the V&V of DT.

Hua et al.74 argue that we may need a two-layer approach

for V&V of DT, one at the system level and the other at

the constituent system level. In general, due to the dynamic

nature of DTs, V&V should be a continuous process (either

online or offline) that needs to be performed periodically

(or on-demand)38. Sargent stated that V&V of a basic

simulation model comprises four pillars; (i) Conceptual

Model Verification, (ii) Computerized Model Validation, (iii)

Operational Validation, and (iv) Data Validation75. Lugaresi

et al.38 presented the DT V&V approach based on the

following four levels; (i) Logic-level Validation (Digital

Model), (ii) Input-level Validation (Input Data), (iii) Event-

level validation (System Events) and (iv) Performance-level

Validation (KPIs). Table 3 shows the comparison between

different literature and their considerations for the V&V of

DT.

For a well-established and accurate system, there could

be a need for system improvement, reduction, or extension

depending on the requirements. These modifications could

be at the core architectural level of the system, or either at the

output or input level of the system. These are categorized as

extensibility and scalability; the successive sections address

these issues.

Ref. Online

DT

V&V

Offline

DT

V&V

Data

V&V

General

System

V&V

ITU52 x

Lehner et al.57 x x

Sargent75 x

Lugaresi et al.38 x

Khan et al.76 x x x

Peter et al.39 x

Dahmen et al.77 x

Hua et al.74 x x x

Shao et al.58 x

Wagner et al.50 x x

Locklin et al.? x x x x

Rasheed et al.60 x

Schleich et al.55 x

Table 3. DT V&V literature considerations.

4.1.6 Extensibility refers to the DT’s capability to inte-

grate, add, or replace models55,56, that allows a DT to expand

or enhance easily. Extensibility allows DT to accommo-

date new applications and functionalities without significant

effort. The evolution of DT must be aligned with its physical

counterpart57, while maintaining its backward compatibil-

ity52,60. The DT functionalities should smoothly extend their

capabilities with no effect on existing functions52,63. Extensi-

bility requirements can vary and may encompass subordinate

requirements, notably modularity and standardization.

Extensibility can vary from small sensor integration to a

whole new model integration within the already existing DT

ecosystem. Thus, it is an important aspect to focus on at

the time of designing a DT architecture. It could directly

affect the cost and other related aspects. When a system

evolves over time, it has a direct effect on its parameters and

data, which gives rise to the problems of scalability. The DT

scalability is described in the following section.

4.1.7 Scalability refers to a DT’s capability to show

the state of its real counterpart at different dimensional,

temporal and spatial scales (microscopic scale - fine

detail, mesoscopic scale - medium detail, and macroscopic

scale)55,56. Processing data at different levels of granularity

contributes a lot to the holistic understanding of the

modeled entity. Multiscale simulation has been recognized

as one of the most important visions of DTs64. To

enhance the scalability, models should support different

dimensions, spatial, and time scales68. DT must be capable

of automatically adjusting the scale of the virtual twin

regarding the growth or shrink of its physical entity52. Like

extensibility, scalability could also be sometimes a constraint

and could limit the reduction, modification, or extension of

a system to a step above or below. Some systems change

constantly, few grow rapidly, and others evolve over time,

thus, they have fuzzy borders78.

In addition to the aforementioned requirements, DT needs

to be explainable to the user. Explainability enhances user

trust. It helps to describe a system and how it processes data

and makes conclusion and predictions.

4.1.8 Explainability is an ability that aims to provide

insight into how a DT can be understood by the user

entity. According to ISO 2324779, the user can be human,

applications, or other systems that use the DT. When a

human being is a DT user, visual representation is essential

to provide them with comprehensible outputs80. The

International Telecommunication Union (ITU) emphasizes

that all the elements of DT, such as data and models,

should be developed by means of visualization to provide

better access for involved humans52. Commonly, the

M&S community focuses more on model explainability,

which facilitates the collaboration and interaction between

models and users to provide a consistent understanding67.

Table 4 provides a brief overview of the relevant literature,

highlighting the explainability considerations in terms of

interaction [A], comprehensiveness [B], semantics [C],

intelligence [D], and abnormal data [E] discussed in their

respective studies.

4.2 Disruptive challenges

The requirements for DT engineering previously presented

bring with them a set of open research challenges. We discuss

those that from an M&S perspective appear as potentially

disruptive.

4.2.1 Dynamic State Estimation

State estimation is the challenge of determining the actual

state of the system in operation. Dynamic state estimation
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Ref. A B C D E

Zhu et al.80 x x x

Shao et al.39 x

ITU52 x

Zhang et al.68 x x x

Sjarov65

Wang67 x

Wagner et al.50 x x

Rasheed et al.60 x

Sjarov et al.65 x x x

Table 4. Explainability Considerations.

refers to the process of determining how a system is

operating when its state is changing dynamically based

on real-time observation data. Dynamic state estimation

is required because, in most circumstances, noisy and

incomplete observation data from dynamic systems make

it impossible to derive the system state directly from the

observation data.

One of the key features of the DT is the integration

of real-time data with a digital model to support real-time

prediction/analysis of the system under study (similarly to

RtS14,18–21,81). Most of the DTs model the dynamic behavior

of the corresponding physical systems. Therefore, they need

the dynamic state estimation.

To enable simulation-based real-time prediction/analysis,

Hu proposes a framework of data assimilation for dynamic

systems in operation82. The goal of the framework is to

support real-time decision-making for the system under

study. To accomplish this, simulation-based future behavior

prediction and analysis of the system is required. The

simulation-based prediction and analysis depends on a

precise evaluation of the system under study’s current state in

real-time, which asks for dynamic state estimation, therefore

a simulation-based prediction can be used. Moreover, to

accurately characterize the system in operation through

simulation-based prediction and analysis, the simulation

model becomes essential. This requirement calls for online

model calibration of the model parameters based on real-

time data gathered from the system. The data assimilation

approach addresses both dynamic state estimation and online

model calibration activities by merging information from

real-time data and the simulation model.

Data assimilation has been recently used for discrete-

event and discrete-time systems, including agent-based

models. The particle filter (PF) approach is frequently a

viable choice for stochastic simulation models of discrete

systems due to its non-linearity and non-Gaussianity83. But

it is computationally expensive because of the probability

distributions of model runs. In their findings, they observe

that the choice of time intervals, rather than the number

of particles, more strongly influences the estimation

accuracy of such a system utilizing PF. When measurement

errors are underestimated, state estimates are poorer than

when measurement errors are overestimated. Better state

estimations are not a given just because one has a proper

understanding of the measurement errors. In addition, over-

estimation of errors yields better state estimation and is more

sensitive to rapid system changes.

4.2.2 Online and Continual Validation Continual valida-

tion is the process of continually ensuring a DT, or more con-

cretely the model(s) in the DT, remains a valid representation

of their real-world counterpart. When the model becomes

invalid, e.g., due to changes in the real-world system, a

recalibration is needed to match the DT to the real world

once again, as was shown in stage 2.9 in Figure 5. This is

conceptually different from model validation in M&S where,

typically, a calibration attempt is performed first, after which

the model is subjected to the validation procedure. Once

positively validated, the model is generally also assumed

“finished”. Besides this conceptual difference, there is a high

level of similarity between traditional model validation and

the validation of models in DTs. As such, the model vali-

dation techniques from M&S can largely be carried over84.

However, one faces several challenges when continually

attempting to apply those model validation techniques. They

stem from the fact that only the runtime data of the system in

operation is available. This leads to the following challenges:

• In traditional model validation, a validation experi-

ment is carefully defined. With DTs however, data

is streamed continuously from the physical system.

Therefore, one must define which part of this data

stream can be considered an experiment for validation.

Stated differently, you need to delineate the experi-

ment in the data stream.

• In traditional model validation, experiment replica-

tions are controlled by the experimenter. With DT

data, we are relegated to grouping or batching data

from equal “experiments” (which have been delineated

as stated previously). In this batching procedure, it

is important to choose a proper time horizon, e.g.,

when using data from the last month, there is a risk of

averaging out any of the changes that we would want

to observe and check against.

• In a traditional validation experiment, the

bounds/ranges are carefully controlled. With a

DT, we are limited to the bounds that occur naturally

from the system’s routine/regular operation. A

problem with these bounds is that they are usually

only a subset of the entire range for which the utilized

simulation models were validated at design time. As

such, the range you can continuously validate against

is limited. A potential workaround for this problem

is that of “experimental runs” where we instruct the

system to perform an experimental execution, which

must still achieve the regular goal but in such a way

that it yields additional information content85.

Continually validating a model has its benefits; the model

can be continually checked for correctness. However, the

available data is not as information-rich as those gained

from a specifically crafted model validation experiment.

For physics-based models, traditional literature on this topic

therefore ought to be reviewed42,45,86.

In the case of DTs of production facilities/smart

manufacturing, the used models are often discrete-event

queuing models, with arrival times and processing times

characterized by stochastic distributions. In such cases,
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perhaps new validation techniques are needed. In literature,

different metrics are calculated on periods in the data

streams, combined with thresholding to trigger model

updating38,87,88. The use of stochastic simulation also

adds another caveat, which is that both the arrival/input

distribution and the logic/model itself could become invalid,

and a good validation ought to be able to pinpoint exactly

which of these two has changed87.

This idea of pinpointing errors at runtime leads us to

another mature field where methods could be found to aid

in this challenge of continual validation: the field of fault

detection and diagnosis. Recall that the goal is to detect

divergence between the model in the DT and the twinned

system, with a recalibration in case of divergence. This

is conceptually not that different from fault detection and

diagnosis, where the goal is to detect faults in a physical

system, diagnose/isolate them and take corrective action

based on their identification89, the main difference being

that with the DT, we assume the real-world system is the

ground truth and any faults occurring in it should propagate

back to the digital model. Not all techniques from this field

carry over, e.g., physical redundancy techniques cannot be

applied to DTs. Still, model-free techniques such as trace

inspection with limit checking90 or model-based techniques

do carry over. Model-free techniques operate on the traces of

the model and combine the filtering of those traces with limit

checking to detect faults, similar to Lugaresi et al.’s work87.

Model-based methods use a digital model that produces

traces in parallel to the physical system, and through trace

comparison, faults can be detected.

Furthermore, these techniques find their application

for continuous89, hybrid91 and discrete-event92,93 systems.

Normally, these techniques were also designed to operate at

system runtime; as such, they are generally not particularly

heavy on the computational side, making them useable for

real-time applications.

The previously discussed validation techniques rely on the

transmission of data from the physical twin to the virtual

space. It’s therefore also paramount that this data is flawless.

With this in mind, we can state that not only should we

validate the models in the digital twin, we ought to also

validate the data as it arrives at the digital twin. The initial

culprit to blame for faulty data would be the sensors on the

physical system that collect the data. Therefore, any digital

twin system could benefit from sensor fault detection and

isolation94–96. In fault detection and isolation, the sensor

faults are generally classified as incipient or abrupt failures.

In an incipient failure, the sensor is working in an abnormal

or deteriorated way. In an abrupt failure, the sensor suddenly

stops working. Various diagnosis methods can be applied to

detect and isolate the fault, such as model-based, knowledge-

based, and deep learning based approaches. In96, a set of

machine learning techniques are applied for the sensor fault

detection in a digital twin specifically. While a likely culprit

for faults, the sensor is not the only place where faults can be

introduced, so is the communication network, and any layers

of software that perform processing/packing/unpacking of

data95. As such, perhaps the data validation should be

performed right before it is fed into the digital twin. We see

this idea applied in the field of machine learning, where data

is aggregated from multiple sources before being fed into

a machine learner97. These techniques should be integrated

into the digital twin’s data pipeline, for the digital twin to

work optimally, but also for the continual validation to work

correctly.

In summary, more work is needed to get to continual

validation, but because of the similarity to stage 1.5 in the

M&S workflow of Figure 4, there exist techniques that can

help us along. We also make one note regarding the use of

continual over the generally accepted continuous (such as in

continuous testing, integration, and deployment). Nowadays,

continuous has the implication that it is an everlasting

process, whereas continual implies some periodicity in the

process but with pauses. We think that this is a more correct

representation of how the process is to be implemented,

which is why we opt for continual.

4.2.3 Automated Recalibration and Co-evolution

When a model no longer accurately represents the behavior

of the real-world system it models, changes must be made

to that model. Two scenarios are possible: (a) either the

parameters of the model no longer accurately reflect the

system and its environment, in which case a parameter

calibration within the model’s range of validity suffices. (b)

the system is no longer within the valid context of the model,

in which case a new model must be selected/developed

that again fits the system’s current context. In either case,

reinitialization of the model is necessary. In98, this problem

is described along with an accompanying workflow, but no

solution is given for the reinitialization step that brings the

model back in synchronization with the real system.

One way to deal with the second scenario is to use

meta-information about the validity of a model in a certain

context. In literature, Zeigler43 defined the concept of the

experimental frame as “The conditions under which the

system is observed and experimented with”. The idea of the

experimental frame is to make the contextual information

about the simulation model explicit. In doing so, it gains

a dual purpose: it implements meta-data that is needed to

specify the range of validity, and it defines an operational

view of the experiment using a generator, transducer, and

acceptor. The concept was further refined by Traore and

Muzy99. The experimental frame could be used to check if

the context of the model is still valid. Denil et al.100 looked

at the uses of such an experimental frame: checking for a

new context, calibration, searching for a model in a library of

simulation models, reproducibility, etc., and concluded that

it might not be defined well enough for these purposes. In

the context of DTs, no processes are defined to allow for

automated calibration experiments. Validity frames100–102

evolve the concepts defined in the experimental frame (the

experimental frame is embedded within). It has the meta-data

needed to reason over the model and run simulations (such

as initial conditions, parameter ranges, model architecture

and rationale, etc.) and the operational view where signal

monitors are generated to check the model’s bounds at run-

time. It also adds workflows for different activities within the

M&S process, such as calibration and validation. This could

be used as a starting point for checking if the model could

be recalibrated, if a new model should be selected from the

model library, or if a new model should be developed.
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Similar methods and tools have been created in the

co-simulation community that can be used as a starting

point: Otter et al.103 propose to annotate the parameters

of a Modelica model with traceability, uncertainty, and

calibration information to improve model quality, thus

increasing correct use of models. Instead of relying on

external data formats, they insert this machine-readable

metadata within the models. The Modelica association also

developed a standard for creating co-simulation packages:

System Structure and Parameterisation (SSP)104. The SSP

could be extended to allow for structure verification,

parameter verification and boundary adequacy testing.

Another source of inspiration is the control community.

For example, the MAPE-K loop which is a high-level

feedback control loop from IBM105 for self-adaptive

systems, has been integrated in DTs106. This approach

is based on the principle of changing the DT model

when an anomaly is detected. The MAPE-K architecture

makes a distinction between the domain-specific system, the

managed system, and the system manager. The managing

system contains four phases that use common knowledge to:

(a) monitor the managing system and its context, (b) analyze

the situation and decide if adaptations are required, (c) plan

the adaption to this new configuration and (d) execute the

transition to this new configuration using a mode-changing

protocol. In this situation, the change of model happens when

an anomaly is detected; the new model requires calibration

and the controller needs re-optimization.

However, automatically creating a new model seems

to be a difficult problem. One way to deal with this is

by searching for alternative models based on the current

model. David et al. use reinforcement learning techniques

for this specific purpose107. Another approach is that of the

control community, which has long worked on the system

identification problem. In system identification, statistical

methods are used to create a black-box model of the

system108. These techniques can be integrated into the DT

if a new white box model needs to be created.

4.2.4 Real-time adaptive operations

Real-time aspects pertain to the fact that there may be

some factor of timeliness required from the data used in

the DT. The stringency of this requirement depends on

the goals of the DT. When the DT acts in some form of

process control, soft or hard real-time constraints may be

required. Otherwise, the non-strict, human, notion of real-

time suffices109.

Some real-time aspects require investigation in the DT

concept:

The availability of quantitative data and advanced

analytics in real-time via DT enables better-informed and

faster decision-making. In particular situations, decision-

making processes must adhere to real-time constraints. As

a result, the DT model should be sufficiently fast to make

decisions within the specified timescale while also accurate

enough35. The computational cost of using a more complex

model is often excessively expensive, and the system might

fail to meet the deadline. There are several approaches to

dealing with computationally expensive models:

• Multi-resolution modeling (MRM) is the process

of creating a single model, a family of models,

or both to represent the same phenomenon at

several resolution levels while allowing users to enter

parameters at each level according to their needs.110.

MRM is also known as variable- or selectable-

resolution modeling. Sometimes the word fidelity is

used instead of resolution. MRM is closely related

to model abstraction, which is a way of simplifying

models while keeping the essence of a phenomenon

concerning the application at hand111.

• Franceschini et al.112 present an adaptive abstraction

approach. They utilize a specified trigger to deter-

mine when to transition between abstraction lev-

els. A dynamic abstraction simulation that alternates

between an agent-based formalism and a discrete

event formalism is presented by the author in prior

work. The statistical analysis of the observed emergent

behavior serves as the basis for the decision to change

abstraction levels. A more rigorous framework113

extends the adaptive abstraction technique to decide

when and where to switch between abstraction levels.

• Some research recommends employing an abstracted

and/or approximated model instead of a more

detailed model. The self-Adaptive Abstraction and

Approximation technique114 is based on the MAPE-

K loop previously presented to adapt a real-time

system under study by changing the model and using

an approximated and/or abstracted model instead of

the more detailed model. However, the validation

of the substitute model is an essential issue that

needs more investigation. One approach is to look at

the model behavior, calculate the deviation, and find

tolerances115,116. Another approach is using the ESS

(EMF-Based Simulation Specification) technique117.

Real-time communication is another challenging part of

the real-time aspect. The communication rate between the

real world and the system is something to consider, as it is

not feasible to communicate at every microsecond.

4.2.5 Sustainability

This relates to the observation that DTs use large

amounts of computational resources to provide their different

services. Computing as an industry is currently responsible

for 2%118 to 6%119 of the emissions of greenhouse gasses

globally, with a predicted share of 6%120 (22%119) in

2040 (2030), therefore we must require future DTs to be

sustainable in regard to energy consumption. Reasoning over

energy and power consumption and their associated models

can include several levels of impact121:

• First order impacts: Impact via the design and

operation of the DT.

• Second order impacts: Secondary impact related to the

effect of DTs on, e.g., production and product usage.

For example, the decrease of energy consumption of

a device because of the optimization possible by the

digital twin.

• Third order impacts: indirect effects caused by DTs,

e.g., impacting an industry’s structure or the lifestyle

of persons.
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To create sustainable DTs, all the above aspects should be

considered. Bellis et al. propose an additive model where the

consumption of the energy occurs122:

Etotal = Edesign + Elocal + Enetwork + Ecloud + Eupdate

where:

• Edesign is the energy consumed for creating the digital

twin. Building a simulation model of a digital twin

might not greatly impact this factor. However, this

term might have a significant impact when using data-

driven methods.

• Elocal is the energy consumption at the analogue side

of the system (e.g., by storing the data, pre-processing

the data, and executing a part of the digital twin model

locally).

• Enetwork is the system’s energy consumption by

sending and receiving messages on the network.

• Ecloud is the energy consumption by executing the

digital twin in the cloud environment.

• Eupdate is the energy necessary to redesign and update

the model during the system’s life cycle.

For the construction of DTs, each of the different sources

of energy loss should be further examined. Modeling and

simulating the full infrastructure and the design process

seems a logical first step.

5 Conclusion and Perspectives

The Digital Twin concept has surfaced with the prominence

of data and virtual technologies for the analysis, design,

and control of smart systems in the ever-growing context

of “smart everything”, from industrial and health sectors to

educational and urbanization sectors. However, as new fields

usually take time to coalesce to form generally accepted

definitions, the concept of DT is differently approached and

defined by different professional communities.

In this paper, we approach the DT concept from the

viewpoint of M&S practitioners. In some ways, we see the

DT concept as a natural extension of M&S practices, and

we give an overview of how this evolution happened. We

also see the apparent divergence of understandings of the DT

concept as the potential that there is something revolutionary

to it in M&S. We discuss some of the disruptive challenges

to be addressed in that context.

Numerous research efforts are being conducted in

the M&S field towards more developments of the DT

technology. Among them, we retain the following ones, for

they seem to draw innovative (and potentially disruptive)

perspectives for the next years:

• Paredis and Vangheluwe123 introduced the concept of

Digital Z. A novel method of recognizing twinning

frameworks is identified by the term, which refers to

the demographic generation naming convention such

as Generation X, Generation Z, Generation Alpha, etc.

Digital Z is defined where Z can be a model, shadow,

twin, passport, avatar, etc. Systems engineering uses

multiple Digital Zs, frequently in combination, for

many different kinds of goals. For this reason, a variety

of architectures are provided for various Digital Zs.

The engineers’ goals guide the construction of each

Digital Z architecture. The idea is to use each Digital

Z for each property of interest such as safety, average

energy consumption and so on.

• Niyonkuru and Wainer124 introduced the concept

of Digital Quadruplet in order to improve the

development of Embedded Real-Time Systems: a 3D

virtual replica of the real world under study (which

is called here the DT), a discrete-event formal model

of the system of interest that can be used for formal

analysis as well as simulation studies (called the

Triplet), and a physical model of the real system under

investigation for experimentation (called Quadruplet).

• Traoré and Ducq125 introduced the concept of Digital

Industrial Territories (DITs), to be foreseen as the

next step in the on-going industrial revolution. The

technological ambition of this approach is to realize

an effective vision of Digital Enterprises (DTs of

Enterprises) within Digital Supply Chains (DTs of

supply chains). Indeed, the Information Technology

environments within industrial companies, ranging

from embedded systems on shop floor level to

operations and manufacturing execution systems or

resource planning systems, form a basis for the

vision of a digital management of the production

plants. Each profile is a digital enterprise with

DTs that can be coupled with the DTs of other

profiles, leading to the digital supply chain of the

network of enterprises then created. In that way,

geographically distributed enterprises can form larger

DT-driven consortia, abolishing spatial constraints on

the monitoring and control actions, and the overall

management of operations.

• David and Syriani107 proposed an approach for

the automated construction of simulators based on

the inference of DEVS (Discrete Event System

Specification) models by reinforcement learning. The

reinforcement learning agent has an action list to

build a DEVS model and its reward is obtained by

comparing the traces of the built DEVS model with

the traces of the system. The agent is based on the trial

and error approach to Markov decision.

When we started this discussion, the question raised by

the title of the paper had two explicit alternatives (is DT an

evolution or a revolution in M&S?), but also an implicit one

(is it just another buzzword?). We leave it to the reader to

answer the question based on the background provided in

this paper.
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