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Abstract

Outliers contaminating data sets are a challenge to statistical estimators. Even a small fraction
of outlying observations can heavily influence most classical statistical methods. In this paper we
propose generalized spherical principal component analysis, a new robust version of principal compo-
nent analysis that is based on the generalized spatial sign covariance matrix. Theoretical properties
of the proposed method including influence functions, breakdown values and asymptotic efficien-
cies are derived. These theoretical results are complemented with an extensive simulation study and
two real-data examples. We illustrate that generalized spherical principal component analysis can
combine great robustness with solid efficiency properties, in addition to a low computational cost.

Keywords: Principal component analysis, Robustness, Influence functions, Efficiency, Breakdown value

1 Introduction

A well-known and frequently used technique to
analyze the structure of data sets is principal
component analysis (PCA). The objective of this
technique is usually to construct a new, smaller
set of uncorrelated variables using linear combina-
tions of the original variables. These new variables
are obtained by preserving as much as possible of
the variation present in the original data. Equiva-
lently, they are obtained by projecting the original
data on the PCA loading vectors of the data set,
i.e. the directions in which the data has the great-
est variability. PCA is a key building block in
statistical data analysis and is widely used as a
first step in clustering, discriminant analysis and
regression.

In classical PCA (CPCA), the principal com-
ponents can be calculated through a spectral
decomposition of the covariance matrix. However,
it is well-known that this matrix is very sensitive
to outliers and potentially heavily influenced by
anomalous observations. As a result, the directions
of greatest variability are easily attracted towards
these outliers, distorting the output of PCA. In
order to avoid this, robust PCA methods have
been developed which are resistant to such out-
lying observations. Many different approaches to
robust principal component analysis exist, and we
provide a brief overview here.

One approach is to use a spectral decom-
position of a robust estimate of the covariance
matrix. For affine equivariant covariance matri-
ces, this approach was studied by Campbell
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(1980) and Boente (1987) who used M-estimators,
which unfortunately cannot withstand many out-
liers. Croux and Haesbroeck (2000) revisited
this approach, suggesting instead to use high-
breakdown estimators of location and scatter such
as S-estimators (Davies, 1987; Rousseeuw and
Yohai, 1984) or the MCD (Rousseeuw, 1984). In
particular, they derive general expressions for the
influence functions and efficiencies of the resulting
eigenvector and eigenvalue estimates. A drawback
of the approach is that many highly robust covari-
ance estimators are computationally demanding.
Additionally, some of them can only be computed
when the number of samples is (substantially)
larger than the dimension.

A second approach works incrementally by
starting from the principal component corre-
sponding with the largest projected robust vari-
ance. Each new principal component is then esti-
mated as a maximizer of the projected robust
variance conditional on being orthogonal to the
already estimated components. This approach
is detailed in Li and Chen (1985); Croux and
Ruiz-Gazen (2005); Croux et al. (2007). The
approach works well when a relatively small num-
ber of principal components is required. How-
ever, it can also be computationally demand-
ing as the number of projections needed should
increase rapidly with the dimension of the data
to guarantee a stable performance. A combina-
tion of the two approaches mentioned above was
used by Hubert et al. (2005) to develop the
ROBPCA algorithm. ROBPCA often outperforms
the projection-pursuit based methods as well as
the covariance-based methods. It remains fairly
slow to compute, especially on larger data sets.

To mitigate the computational burden of the
previously mentioned approaches to robust princi-
pal component analysis, one elegant and popular
approach for robust PCA is spherical principal
component analysis (SPCA), introduced indepen-
dently by Marden (1999) and Locantore et al.
(1999). Spherical PCA starts by projecting the
centered data onto a unit sphere before perform-
ing classical principal component analysis on this
transformed data set. It was studied by, among
others, Visuri et al. (2001); Taskinen et al. (2012);
Croux et al. (2002). This procedure is equivalent
to performing PCA on the spatial sign covariance

matrix (SSCM)

SSSCM(X) = E

[
(X−µ)(X−µ)⊺

∥X−µ∥2

]
,

with X a p-variate random variable, µ the loca-
tion of the distribution ofX and ∥.∥ the Euclidean
norm. Under mild assumptions on the underly-
ing distribution, the SSCM is a Fisher consistent
estimator of the eigenvectors and it preserves the
order of the eigenvalues. The SSCM was studied
in detail in Magyar and Tyler (2014); Dürre et al.
(2014, 2016); Boente et al. (2019).

In Raymaekers and Rousseeuw (2019) a gen-
eralisation to the SSCM was introduced, namely
the generalized spatial sign covariance matrix
(GSSCM). They identified SSCM as a part of
a larger class of orthogonally equivariant scat-
ter estimates, namely the generalized spatial sign
covariance matrices. Whereas in the SSCM all cen-
tered data vectors xi are given the weight 1/∥xi∥,
the generalized SSCM assigns different weights,
depending on the distribution of the random
variable:

SgX (X) = E[gX(X−µ)gX(X−µ)⊺] (1)

with gX(t) = t ξX(∥t∥),

where ξX : R+ → R
+ is the radial function. This

radial function plays the role of a weight func-
tion which assigns weights based on the Euclidean
norm of the observation. In principle, any func-
tion can be used here as long as the resulting
SgX (X) exists and can be computed on finite sam-
ples. In Section 2 we will elaborate on the choice
of radial function. By using the Euclidean norm,
the GSSCM becomes an orthogonally equivariant
scatter estimator. In Raymaekers and Rousseeuw
(2019), it is shown that the GSSCM inherits the
consistency properties of the SSCM in that it is a
Fisher consistent estimator of the eigenvectors for
elliptical distributions and preserves the ranks of
the eigenvalues under the same assumptions.

A new robust method for principal component
analysis emerges when we combine the idea of
spherical PCA with the GSSCM. Instead of com-
puting the principal components from the SSCM,
we can compute them from the generalized SSCM.
We refer to this method as generalized spherical
principal component analysis (GSPCA).
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In this paper, we introduce and investigate
the GSPCA method from a robustness perspec-
tive. The rest of the paper is organized as follows.
Section 2 formally introduces GSPCA. Section
3 covers the theoretical properties of the new
method, including breakdown values, influence
functions and asymptotic variances. Section 4
presents an extensive simulation study comparing
GSPCA with the state-of-the-art competitors. An
illustration of GSPCA on two real datasets is pre-
sented in Section 5. Finally, Section 6 concludes.

2 Generalized spherical
principal component
analysis

The GSPCA method computes the principal
component directions as the eigenvectors of the
GSSCM given in Equation (1). For a finite, p-
variate data set X containing {x1,...,xn} the
sample GSSCM becomes

SgX (X)

=
1

n

n∑

i=1

ξ2
X
(∥xi−T (X)∥) (xi−T (X))(xi−T (X))⊺

=
1

n
gX(X)⊺gX(X),

where T is a (orthogonally equivariant) location
estimator for the center of the data matrix X ∈
R

n×p. In Raymaekers and Rousseeuw (2019), it is
suggested to use the k-step least trimmed squares
(LTS) estimator. This estimator starts from the
spatial median, but adds additional iterative steps
to improve robustness against outliers. The k-
step LTS estimator has a breakdown value of
⌊(n+1)/2⌋/n for any fixed value of k.
In this paper we will consider the following

five radial functions suggested in Raymaekers and
Rousseeuw (2019), apart from the evident radial
functions ξ(r) = 1 and ξ(r) = 1/r, respectively
corresponding to the classical covariance matrix
and the SSCM.

1. Winsorizing (Winsor):

ξX(r) =

{
1 if r ≤ Q2

Q2/r if Q2 < r
(2)
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Fig. 1: The different radial functions introduced in
Equations (2)-(6).

2. Quadratic Winsor (Quad):

ξX(r) =

{
1 if r ≤ Q2

Q2
2/r

2 if Q2 < r
(3)

3. Ball:

ξX(r) =

{
1 if r ≤ Q2

0 if Q2 < r
(4)

4. Shell

ξX(r) =





0 if r < Q1

1 if Q1 ≤ r ≤ Q3

0 if Q3 < r

(5)

5. Linearly Redescending (LR):

ξX(r) =





1 if r ≤ Q2
Q∗

3
−r

Q∗

3
−Q2

if Q2 < r ≤ Q∗
3

0 if Q∗
3 < r

(6)

The cutoffs Q1,Q2,Q3 and Q∗
3 are robust esti-

mates of the first, second and third quartile of
the distribution of the Euclidean distances. We
will come back to these in the next section.
Figure 1 illustrates the above radial functions. It
is clear that they all go to zero as their argu-
ment increases, which is what makes GSPCAmore
robust than the classical covariance matrix.
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For a given data set X we can now use the
spectral decomposition of the sample GSSCM to
obtain the GSPCA loading vectors:

SgX (X) = V̂ gΛ̂gV̂
⊺

g .

Here the matrix Λ̂g is the diagonal matrix contain-

ing the eigenvalues λ̂g,i of SgX (X) in descending

order (λ̂g,1 > ··· > λ̂g,p) and the columns of

the matrix V̂ g consist of the corresponding eigen-
vectors v̂g,i. The GSPCA loading vectors then
coincide with these eigenvectors and the principal
components correspond to the data projected onto
these vectors.

Alternatively we can also state that the prin-
cipal components are the uncorrelated vectors
maximizing the variance of the transformed data.
In particular, the i-th loading vector v̂g,i can be
defined as

v̂g,i = argmax
a∈A

{var(gX(X)a)},

where A = {a ∈ R
p |∥a∥2 = 1 and a⊺v̂g,j = 0

for all j = 1,...,i−1}.

It should be clear from the definition that
GSPCA generally has a fairly low computational
cost. The only uncertain factor is the computa-
tion and evaluation of the radial functions g. In
the cases considered above however, it requires
the computation of the Euclidean norms of the
observations followed by robust estimates of the
quantiles of these norms. The first can be done
in O(np) time, and the latter in O(n). Therefore,
GSPCA has a computational complexity given by
O(n+np+np2+p3) = O(np2+p3), the same as
classical PCA.

Additionally, like CPCA, GSPCA has the
property that it can be computed through the sin-
gular value decomposition (SVD) as well as the
spectral composition of the GSSCM. In order to
use the SVD for GSPCA, we first need to trans-
form the observations using the function gX of
Equation (1) after which we can apply SVD to the
transformed data gX(X). More precisely, we first
compute the singular value decomposition

gX(X) = ÛD̂V̂
⊺

,

where the orthogonal matrices Û and V̂ respec-
tively contain the left and right singular vectors
of gX(X) and the diagonal matrix D̂ contains

the corresponding singular values δ̂g,i. Next it can

easily be shown that the columns v̂g,i of V̂ cor-
respond to the GSPCA loading vectors and the
values δ̂2g,i/n correspond to the GSPCA eigenval-
ues:

SgX (X) =
1

n
gX(X)⊺gX(X) =

1

n
V̂ D̂Û

⊺

ÛD̂V̂
⊺

=
1

n
V̂ D̂D̂V̂

⊺

= V̂ diag(δ̂2g,1/n,...,δ̂
2
g,p/n)V̂

⊺

= V̂ gΛ̂gV̂
⊺

g .

The SVD procedure has the advantage that the
computational cost of GSPCA can be lowered
if the required number of principal components
is known in advance. In this scenario we can
use truncated singular value decomposition on
the GSSCM to calculate only the first k singu-
lar vectors, which correspond with the first k
eigenvectors of the matrix SgX (X). This not only
avoids the calculation of the remaining princi-
pal components, but also does not require the
explicit construction of the p×p covariance esti-
mate SgX (X).

3 Theoretical properties

In this section we study the robustness and effi-
ciency of GSPCA. To evaluate robustness, we
derive the breakdown value and influence function
of GSPCA. We additionally study efficiencies and
potential corrections for the eigenvalues.
We emphasize that the results of this section
assume the dimension p to be fixed. A word of
caution is in place when we consider GSPCA on
(ultra-) high-dimensional data with p

n ̸→ 0. It
is known that classical PCA and related meth-
ods can behave very unexpectedly in such settings
(Bickel et al., 2018; Johnstone and Paul, 2018;
Pires and Branco, 2019) and GSPCA is no dif-
ferent. In fact, to a certain extent the behavior
of GSPCA resembles that of classical PCA as
the dimension grows for the following reason. For
many distributions, we have ∥X∥22 = OPr(p),
causing most radial functions in the GSSCM to
give roughly equal weight to all data points as
p → ∞, which is exactly what the classical covari-
ance matrix does.
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The most commonly discussed issue of PCA in
high-dimensions is that without further assump-
tions, the parameters can no longer be estimated
consistently. This means that classical estimators
of eigenvectors, eigenvalues, and functions of these
quantities tend to be inconsistent (Baik et al.,
2005; Baik and Silverstein, 2006; Paul, 2007; John-
stone et al., 2009; Cai et al., 2015).
A second issue in high-dimensional PCA is the
attainability of equivariance properties. Whereas
in classical statistics, orthogonal equivariance is
a natural property of PCA estimators, in high-
dimensional statistics this may no longer be rel-
evant as it cannot be reconciled with sparsity
assumptions.
When one is concerned about consistent estima-
tion, GSPCA should thus primarily be considered
when a regime with p

n = o(1) is the most natu-
ral one. In case another regime is more natural,
one should proceed with caution. One approach is
to make sparsity assumptions on the estimands to
guarantee the possibility of consistent estimation.
GSPCA can easily be made sparse by multiply-
ing the centered observations with their radial
functions before applying any sparsity-inducing
PCA method. Another approach is to use it as
an exploratory tool or a method for detecting cer-
tain types of anomalies. As we will see in our
simulation studies and real-data examples, there
are still situations with p ≥ n where GSPCA
can provide insight even though the asymptotic
properties may be subpar.

3.1 Breakdown value

The breakdown value is a global measure for
robustness defined by Hampel based on an idea
of Hodges (Hampel et al., 1986). For a given
estimator, it is defined as the smallest fraction
of observations in the data set that needs to
be changed to carry the estimate arbitrarily far.
More specifically, for a scatter estimator S, it is
defined as the minimal amount of contamination
required to make the largest eigenvalue λ1 arbi-
trarily large (explosion) or the smallest eigenvalue
λp arbitrarily close to zero (implosion):

ε(S,X) =

min

{

m

n
: sup
X∗

m

max[λ1(S(X
∗
m)),λ−1

p (S(X∗
m))] = ∞

}

,

with X∗
m the data set X where m observations

have been replaced.

While in many applications, implosion of the
covariance matrix is undesirable, in the context
of PCA, it is the explosion breakdown that is
more relevant. After all, PCA is often most use-
ful when there are indeed directions with (nearly)
zero variance which allows for effective dimension
reduction. In such a case, the smallest eigen-
value(s) would be (close to) zero and would thus
have “breakdown” if we were to use the definition
above. In Raymaekers and Rousseeuw (2019) it is
shown that the breakdown value of the GSSCM is
⌊(n−p+1)/2⌋/n. This seems unsatisfactory, since
it is in contrast with the SSCM which has a higher
breakdown value, namely ⌊(n+1)/2⌋/n. Fortu-
nately, the lower breakdown value of the GSSCM
is due to the implosion breakdown value of the
“hard redescending” radial functions such as Ball,
Shell and LR, in combination with the estima-
tion of the cutoffs Q1,Q2,Q3 and Q∗

3 used in these
radial functions.

If we are no longer concerned with the implo-
sion breakdown value, we can take a slightly
different approach. Denote di := ∥xi−T (X)∥. We
estimate the cutoffs using the estimators

Q1 =
[
medi

(
d
2/3
i

)
−MADi

(
d
2/3
i

)]3/2
,

Q2 = medi(di),

Q3 =
[
medi

(
d
2/3
i

)
+MADi

(
d
2/3
i

)]3/2
,

Q∗
3 =

[
medi

(
d
2/3
i

)
+1.4826·MADi

(
d
2/3
i

)]3/2
.

In these definitions med and MAD are the median
and the median absolute deviation. Unlike in Ray-
maekers and Rousseeuw (2019), these estimators
for the cutoffs no longer depend on the order
statistic h = ⌊(n+p+1)/2⌋, which was required
to prove the implosion breakdown value of the
GSSCM. The dependence on the h-th order statis-
tic which depends on p is undesirable in the
context of PCA.

The theorem below states that for our adapted
GSSCM, with cutoffs based on the median and
MAD, we obtain an explosion breakdown value
independent of p, equal to that of the SSCM. The
proof can be found in the Supplementary material.

Theorem 1 (Explosion breakdown value) Given
X = {x1,...,xn} an n×p dimensional data set and a
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location estimator T (X) with a breakdown value of at
least ⌊(n+1)/2⌋/n. Suppose that

1. The radial function takes values in [0,1].
2. ∀ data sets X : #{i : ξ(di) = 1} ≥ ⌊(n+1)/2⌋.
3. ∀t : ∥g(t)∥ = ∥t∥ξ(∥t∥) ≤ medi(di)+1.4826·

MADi(di).

Then the explosion breakdown value ε of the GSSCM
is ⌊(n+1)/2⌋/n.

Note that the conditions in the theorem are
all satisfied for the radial functions in Equations
(2) – (6). In addition, the k-step LTS estimator
has a breakdown value of ⌊(n+1)/2⌋/n. Hence,
we conclude that GSPCA based on the GSSCM is
robust up to ⌊(n+1)/2⌋

n ≈ 50% contamination.

3.2 Influence functions of the

loading vectors

We now consider the influence functions relevant
for GSPCA. The influence function for a statistical
functional T at distribution F is defined as (see
Hampel et al. (1986)):

IF(x,T ,F ) = lim
ε→0

T (Fε,x)−T (F )

ε
(7)

=
∂

∂ε
T (Fε,x)

∣∣∣
ε=0

,

with Fε,x = (1−ε)F+ε∆x the distribution con-
taminated by x where ∆x is the distribution
putting all its mass in x.

In contrast to the breakdown value, the influ-
ence function is a local measure of robustness
instead of a global one. Informally, it can be
interpreted as a measure for the effect that an
infinitesimal small amount of contamination has
on the functional. Therefore it is a complemen-
tary measure and describes a different aspect of
our method.

In the context of PCA, the relevant functionals
T in Equation (7) are the eigenvector and eigen-
value functionals, which we denote by Vg,j and
Lg,j for j = 1,...,p. In this section specifically, we
will study the eigenvector functionals, for which
the relevant influence function is given by

IF(x,Vg,j ,F ) = lim
ε→0

Vg,j(Fε,x)−Vg,j(F )

ε
.

In what follows, we assume that F is a distribution
with the center at the origin and covariance matrix
Σ which has distinct eigenvalues. Furthermore, we
denote the spectral decomposition of Σ by Σ =
V ΛV ⊺ where V is a matrix with the eigenvectors
vi in its columns and Λ is a diagonal matrix with
the eigenvalues λ1 > ... > λp on its diagonal.

Note that the functionals Vg,j inherit the
Fisher consistency properties of the GSSCM in
case of elliptically symmetric distributions, see
Raymaekers and Rousseeuw (2019). We say that
a distribution FX has an elliptically symmetric
density if the density can be written as

fX(x) = det(Σ)−1/2 ·h((x−µ)⊺Σ−1(x−µ)),

where h is a positive decreasing function acting on
the whitened observations. For such distributions,
we thus have that Vg,j(F ) = vj .

We now state the expression for the influence
functions corresponding to the loading vectors of
GSPCA, for which the proof can be found in
Section A.2 of the Supplementary material:

Theorem 2 (Influence functions of the eigenvectors of
the GSSCM) For the influence functions of the eigen-
vectors resulting from GSPCA we have the following
analytical expression:

IF(x,Vg,j ,F ) =

p
∑

k=1,k ̸=j

1

λg,j−λg,k

[

(v⊺

g,kg(x))(v
⊺

g,jg(x))

+v
⊺

g,k

∫

(

dge(X)g(X)⊺

+ g(X)dge(X)⊺
)

dF (X) vg,j

]

vg,k, (8)

where dge(X) = ∂
∂εgε(X)

∣

∣

∣

ε=0
. Here it is assumed

that F has location µ = 0 and that the GSSCM and
its influence function exist.

While the above expression looks rather
involved, we can simplify it further without
(much) loss of generality. First, note that we can
assume that F has a diagonal covariance matrix
since the GSSCM is orthogonally equivariant.
In that case, the eigenvectors of the covariance
matrix are the standard unit vectors, i.e. vj = ej .
Additionally, we can assume that F is ellipti-
cally symmetric. This assumption is very natural
since it is required for the Fisher consistency of
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the eigenvector functionals Vg,j of the GSSCM,
yielding Vg,j(F ) = vj . We then obtain the result
below, the proof of which is in Section A.3 of the
Supplementary material.

Corollary 1 Assume that F is a centered elliptically
symmetric distribution, that it has a density function
and a diagonal covariance matrix Σ, then the following
holds

IF(x,Vg,j ,F ) =

p
∑

k=1,k ̸=j

1

λg,j−λg,k

(

g(x)kg(x)j
)

vk,

where g(x)k is the kth element of the vector g(x).

We thus see that, under reasonable assump-
tions, the influence function of the eigenvectors
of GSPCA reduces to a fairly simple expression.
In particular, if we plug in the identity func-
tion for g, we obtain the influence function of
the loadings of classical PCA. In particular, we
obtain

∑p
k=1,k ̸=j

xkxj

λj−λk
vk, corresponding to the

result obtained in Croux and Haesbroeck (2000).
Having obtained analytical forms for the influ-

ence functions of the loading vectors resulting
from GSPCA, we will now visualize them to com-
pare the different radial functions in Equations (2)
– (6) and illustrate their robustness. We consider
a bivariate normal distribution, F = N2(02,Σ)
with Σ = diag(1,0.5), and plot the norm of the
influence function of the largest eigenvector for the
different radial functions resulting in the 3D-plots
shown in Figure 2.

First, we observe that the eigenvectors of
the classical covariance matrix are the only ones
with an unbounded influence function. Second, all
GSSCM radial functions are redescending to zero,
except for Winsor, whose influence function looks
like a smoothed version of the influence function
of the SSCM, suggesting that Winsor will attain
higher efficiency than the SSCM. Further, we see
that the norms of the influence functions of LR,
Ball and Shell look quite similar, all three demon-
strate four large spikes whereafter each influence
function descends to zero. This is due to their cut-
offs at the second or third quantile. Quad only
descends to zero in the limit, making it more
robust than Winsor, but not quite as robust as
the redescending radial functions. Overall these
results suggest high robustness for the LR, Ball
and Shell radial functions.

To summarize influence function in a single
number, we consider its supremum, the gross-
error sensitivity (GES). For a functional T at
distribution F , it is defined as:

γ∗(T ,F ) = sup
x

|IF(x,T ,F )|.

The gross-error sensitivity measures the maxi-
mal influence an infinitesimally small amount of
contamination can have on a functional T . There-
fore it should be finite for robust estimators and
preferably small.

For the loading vectors of GSPCA, we now
compute the gross-error sensitivities per radial
function. We again consider the bivariate nor-
mal distribution N2(02,diag(1,0.5)) and study the
first loading vector. We compute the gross-error
sensitivity as the supremum of the norm of the
corresponding influence function. This results in
Table 1.
Once again, we observe that CPCA is not robust,

Table 1: Gross-error sensitivities of the
largest eigenvector at N2(02,diag(1,0.5)).

classical SSCM Winsor Quad

γ
∗

∞ 2.914213 3.100523 6.569927

LR Ball Shell

10.74909 29.27686 12.42133

its GES is unbounded. In contrast, GSPCA has
bounded GES for each radial function, implying
robustness. The smallest values are attained by
SSCM and Winsor. While this may suggest these
are the superior methods, the plots of the influ-
ence functions do show that the Quad, LR, Ball
and Shell methods will have a smaller influence
function for most values of the contamination x.

3.3 Asymptotic variances and

asymptotic relative efficiencies

of the loading vectors

We will now use the results on the influence func-
tions to study the asymptotic variances and effi-
ciencies of GSPCA. This will allow us to compare
precision among the different radial functions.
Following Hampel et al. (1986), we obtain that
for well-behaved functionals T , the corresponding
estimator Tn = T (Fn) is asymptotically normal:
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Fig. 2: Norm of the influence function of the largest eigenvector at N2(02,diag(1,0.5)) for different
radial functions.

√
n(Tn−T (F ))

D−→ N (0,ASV(T ,F )) where

ASV(T ,F ) = EF [IF(x,T ,F )IF(x,T ,F )⊺].

In order to simplify the exposition, we con-
sider the case of a bivariate normal distribution

N2(02,diag(1,γ)). Since we are interested in eigen-
vectors for PCA, we first calculate the asymptotic
variance (ASV) of the second element of the
largest eigenvector, given that it is important that
we estimate this second element close to zero to
get a good estimation of the first eigenvector. This
is similar to the approach taken in Croux et al.
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(2010). We denote the asymptotic variance of the
second element of the largest eigenvector simply
as ASVg per radial function.

In Section 3.2 we found analytical expressions
for the influence functions of the eigenvectors.
Hence, we can use them to calculate the asymp-
totic variances.

For the second component of the influence
function of the first eigenvector, which we denote
by Vg,(1,2), we obtain the following expression:

IF(x,Vg,(1,2),F ) =
1

λg,1−λg,2
g(x)1g(x)2.

Using this, we obtain the asymptotic variance:

ASVg(F ) (9)

=
1

(λg,1−λg,2)2

∫
(g(X)1g(X)2)

2
dF (X).

When we assume that F is distributed as
N2(02,diag(1,γ)), we can evaluate the asymptotic
variance of Equation (9) for different values of γ.
The results of this computation are presented in
Figure 3.
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Fig. 3: Asymptotic variance of the second component
of the largest eigenvector for different values of γ at

bivariate normal distribution N2(02,diag(1,γ)).

From the plots in Figure 3, it is clear that
Ball performs the poorest of all radial functions by

a large margin. LR and Shell perform somewhat
average. The lowest ASV is evidently obtained by
classical PCA. However, Winsor’s ASV is quite
close to it, followed by SSCM. Quad also has a low
asymptotic variance.

We now use these asymptotic variances to
calculate the asymptotic relative efficiency in com-
parison to the classical method as follows:

Effg(F ) =
ASVclass(F )

ASVg(F )
,

where g refers to the chosen radial function. The
closer this value is to one, the more efficient is our
method based on the corresponding radial func-
tion g. This yields Figure 4. It is immediately clear
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Fig. 4: Asymptotic relative efficiencies of the second
component of the largest eigenvector for different

values of γ at bivariate normal distribution
N2(02,diag(1,γ)).

that the highest efficiency is obtained by Win-
sor, it seems to converge to 0.7 for higher values
of γ. SSCM is inferior, but still achieves values
around 0.5. This is interesting, since it suggests
that we can improve on the efficiency of the popu-
lar SSCM without sacrificing robustness (in terms
of having a bounded influence function). Next we
observe Quad, attaining values around 0.3. Shell,
LR and Ball have low efficiencies at bivariate



Springer Nature 2021 LATEX template

Component Analysis

normal distributions. Overall Winsor clearly out-
performs the other radial functions in terms of
relative efficiency.

The high variance of Ball translates into the
lowest efficiency. This does not come as a surprise,
as Ball bears similarities to the affine equivari-
ant robust covariance estimators which use only
half of the data such as the minimum covari-
ance determinant and minimum volume ellipsoid
estimators (Rousseeuw, 1984). These are known
to have fairly low efficiencies on Gaussian data
but strong robustness properties (Davies, 1992;
Butler et al., 1993; Croux and Haesbroeck, 1999;
Cator and Lopuhaä, 2012). Ball is also similar to
the BACON algorithm (Billor et al., 2000), which
also has strong robustness but weak efficiency
properties.

The efficiencies obtained in the discussion
above may be off-putting at first sight. How-
ever, one should keep in mind that these are
calculated on multivariate Gaussian data. If more
heavy-tailed distributions are considered, the pic-
ture can look very different. To illustrate this,
we have replicated the analysis for the multivari-
ate Student’s t3-distribution in Section A.6. For
this heavy-tailed distribution, the performance of
the GSPCA variants has remained stable, but the
asymptotic variance of classical PCA exploded.
As a result, the asymptotic relative efficiencies
of GSPCA all become larger than 1. In Section
4 we present additional evidence that GSPCA
does in fact outperform classical PCA when the
distributions have heavy tails.

3.4 Influence functions of the

eigenvalues

In addition to the eigenvectors, we also study the
influence functions of the eigenvalues obtained by
GSPCA. Denoting these functionals by Lg,j for
j = 1,...,p, we could be interested in

IF(x,Lg,j ,F ) = lim
ε→0

Lg,j(Fε,x)−Lg,j(F )

ε
.

The problem with using the expression above how-
ever, is that the eigenvalue functionals are not
Fisher consistent for elliptical distributions unlike
their eigenvector counterparts. Otherwise stated,
in general we have Lg,j(F ) ̸= λj , as well as
Lg1,j(F ) ̸= Lg2,j(F ) for two different functions g1

and g2. As a result, we cannot directly compare
these influence functions for different functions g
which makes them less interesting. Instead, we can
correct the estimated eigenvalues to make them
Fisher consistent. We then compare the influ-
ence functions of these corrected estimators for
different radial functions.

3.4.1 Modification of GSPCA for

Fisher consistent eigenvalues

To adapt our method for Fisher consistency, we
will use the approach suggested in Croux and
Ruiz-Gazen (2005). The idea proposed there is
that we can correct the eigenvalues by first pro-
jecting the data onto the eigenvectors before
calculating the eigenvalues. More specifically we
proceed as follows:

1. First, we calculate the eigenvectors v̂g,j

through GSPCA as done before. We know
that the corresponding functionals are Fisher
consistent provided that we have an elliptical
distribution.

2. Second, we project the data onto these eigen-
vectors after which we can use a robust,
equivariant scale estimator s to calculate the
eigenvalues:

λ̂
(s)
g,j = s2(v̂⊺

g,jX).

Provided that the functional s corresponding
with the estimator s is Fisher consistent, this
procedure yields Fisher consistent eigenvalue

functionals L(s)
g,j at elliptically symmetric dis-

tributions (see, e.g., Croux and Ruiz-Gazen
(2005)).

3. Lastly, should we be interested in the covari-
ance matrix, we can combine the two steps
above to obtain a new estimator with func-
tional Scomb for the covariance matrix:

Scomb(F ) =

p∑

k=1

L(s)
g,k(F )Vg,k(F )Vg,k(F )⊺.

For elliptically symmetric distributions, this
covariance matrix is Fisher consistent for Σ.

In summary, we can correct our method to obtain
Fisher consistency for the eigenvalues and the
resulting covariance estimate at elliptically sym-
metric distributions. Next, we will take a look at
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the corresponding influence functions and asymp-
totic variances to evaluate the robustness and
efficiency of the adapted GSPCA.

3.4.2 Influence functions of the new

eigenvalues

In order to obtain the influence function for the
corrected eigenvalue functionals, we need a general
property of projections of elliptically symmetric
distributions. Denote the distribution of the ran-
dom vector projected on a as Ha, i.e., if X ∼ H
then a⊺X ∼ Ha. We will make use of following
lemma from Croux and Ruiz-Gazen (2005) on the
distribution of this projection Ha.

Lemma 1 (Projected distributions) Assume H is
an elliptically symmetric distribution with location
parameter µ and covariance matrix Σ. Then there
exists a univariate symmetric distribution F0 such that

Ha(z) = F0

(

z−µ⊺a√
a⊺Σa

)

.

Lemma 1 ensures that all projections of a
random vector with an elliptically symmetric dis-
tribution follow the same symmetric distribution
F0 after proper scaling and centering.

We can now obtain an expression for the influ-
ence functions of the corrected eigenvalue func-
tionals. The proof can be found in Section A.4 of
the Supplementary material.

Theorem 3 (Influence functions of the new eigen-

values) For the modified eigenvalue functional L(s)
g,k

with s an equivariant scale functional, we have follow-
ing expression for the influence function at elliptically
symmetric distributions

IF
(

x,L(s)
g,k,H

)

= 2λk IF

(

x⊺vk√
λk

,s,F0

)

. (10)

This is the same expression as the one obtained
by Croux and Ruiz-Gazen (2005) in the con-
text of robust PCA based on projection-pursuit.
In particular, note that the expression does not
depend on the influence function of any of the
eigenvectors.

From the expression of the influence function
of the eigenvalues, we readily obtain the asymp-
totic variance of the new eigenvalues at elliptically

symmetric distributions:

ASV(L(s)
g,k,H) = E[IF(X,L(s)

g,k,H)2]

= E

[
4λ2

k IF

(
v
⊺

kX√
λk

,s,F0

)2
]

= 4λ2
k ASV(s,F0).

Note that the expression for the influence func-
tion of the eigenvalues is proportional to the
influence function of the scale functional used.
This means that known optimality properties of
equivariant scale functionals carry over to the
estimation of these eigenvalues. In particular, we
can leverage the theory on M-estimation to find
optimal M-estimators of scale for estimating the
eigenvalues. This is stated in Corollary 2, which
follows from Theorem 3 and Hampel et al. (1986)
(Section 2.5e), and leads us to the use of the
median absolute deviation (MAD) defined by

MAD(X) = c·med|X−med(X)|.

Here c = 1/Φ−1
(
3
4

)
≈ 1.4826 is a consistency

factor at normal distributions, hence we obtain
Fisher consistency for the estimated eigenvalues.

Corollary 2 If F0 = N (0,1), the median abso-
lute deviation is the most B-robust M-estimator of
the eigenvalues, i.e. it has the lowest gross error
sensitivity among all (well-behaved) Fisher consistent
M-estimators of scale. Similarly, Huber’s M-estimator
is the optimal B-robust M-estimator of the eigenvalues
as it has the highest efficiency for a given bound on
the gross error sensitivity.

We visualize the influence function of the new
eigenvalue for the multivariate normal distribution
below. Suppose H ∼ N2(02,diag(1,γ)) and thus
F0 ∼ N (0,1) = Φ. The influence function of the
MAD is given by (Hampel et al. (1986), p. 107):

IF(x,MAD,Φ) =
sign

(
|x|−Φ−1

(
3
4

))

4Φ−1( 34 )φ(Φ
−1

(
3
4

)
)
.

The influence function of the largest eigenvalue
λ1 = 1 then becomes 2 IF(x1,MAD,Φ), which is
shown in Figure 5.
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Fig. 5: Influence function of the largest (new)
eigenvalue for x ∈ [−3,3].

3.4.3 Influence function of the new

covariance estimator

Finally, as an additional result, we compute the
influence function of the new estimate for the
covariance matrix Scomb (see Section A.5 of the
Supplementary material for the proof).

Theorem 4 (Influence function of the new covariance
matrix Scomb) Let H be an elliptically symmetric dis-
tribution with a diagonal covariance matrix and s an
equivariant scale functional. Then

IF(x,Scomb,H) = 2

p
∑

k=1

λk IF

(

v
⊺

kx√
λk

,s,F0

)

vkv
⊺

k

+

p
∑

k=1

λk

p
∑

j=1,j ̸=k

1

λg,k−λg,j
(g(x)jg(x)k)(vjv

⊺

k+vkv
⊺

j ).

Next we compare the influence functions of
the new covariance functional using MAD as
scale estimator s with the common GSSCM. For
this we plot the influence functions for H ∼
N2(02,diag(1,γ)) and focus on the off-diagonal
element. For that, we obtain:

IF(x,Scomb,H)1,2 =
1−γ

λg,1−λg,2
g(x)1g(x)2.

This corresponds to a rescaling of the influence
function of the common GSSCM. For γ = 0.5 and
contamination in the direction of (x,x)⊺ this yields
Figure 6.

As we can see from the comparison of the raw
GSSCM and our proposed correction, the rela-
tive performances among different radial functions
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Fig. 6: Influence function of the uncorrected GSSCM
S (top) and the corrected GSSCM Scomb (bottom) for

contamination in the direction of (x,x)⊺: the
off-diagonal element.

remain relatively stable. However, the influence
function of Winsor is now similar to that of SSCM
except in the center where it is lower. This again
speaks in favor of Winsor instead of the popular
SSCM. Contamination in the direction of (x,0)⊺

results in a zero influence function for each radial
function since g((x,0)⊺)2 = 0.
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4 Simulation study

In this section we conduct a simulation study on
synthetically sampled data to investigate the per-
formance of generalized spherical PCA using the
five radial functions defined in Equations (2) – (6).
We compare them with classical PCA, spherical
PCA based on the SSCM and ROBPCA.

The ROBPCA method was published by
Hubert et al. (2005). It is based on the projection
pursuit and the minimum covariance determinant
estimator. For our simulation, we will largely base
ourselves on the methodology of the study con-
ducted in the prior mentioned ROBPCA paper
(Hubert et al., 2005).

4.1 Setting

In the simulation, we will look at uncontaminated
data (ε = 0) and data with different levels of con-
tamination (ε = 0.1, ε = 0.2) obtained from the
following p-variate Gaussian distribution and the
p-variate Student’s t-distribution with five degrees
of freedom:

(1−ε) Np(0p,Σ)+ε Np(µ̃,Σ̃),

(1−ε) t5(0p,Σ)+ε t5(µ̃,Σ̃).

From these distributions, we will repeatedly gen-
erate 500 data samples of size n. As the GSSCM
scatter estimator is orthogonally equivariant, we
only need to look at diagonal covariance matrices
Σ. More in specific, we consider the following two
situations, just as in the ROBPCA paper (Hubert
et al., 2005):

1. Low-dimensional data:
n = 100, p = 4,Σ = diag(8,4,2,1), µ̃ = f1 ·e4 =
(0,0,0,f1)

⊺, Σ̃ = Σ/f2.
2. High-dimensional data:

n = 50, p = 100, Σ =
diag(17,13.5,8,3,1,0.095,...,0.002,0.001),
µ̃ = f1 ·e6, Σ̃ = Σ/f2.

In the low-dimensional case we compute k =
3 principal components, whereas in the high-
dimensional case we compute k = 5 components,
as we want our principal component analysis to
explain at least 90% of the total variance. Param-
eter f1 ∈ {6,8,10,...,20} determines the location
shift for the contaminated data in the direction
of the k+1th principal component, e4 or e6. This

location of the contamination is typically the hard-
est to deal with for (robust) scatter and PCA
estimators (see Hubert et al. (2014) and Lemma
2 of Louvet et al. (2023)). Simulations on alter-
native locations for the contamination confirmed
this behavior. Parameter f2 ∈ {1,15} specifies the
concentration of the contaminated data. For the
k-step LTS estimator we use 5 successive C-steps.

4.2 Maxsub measure

To evaluate performance in our simulation, we will
compute the maxsub measure, which calculates
the maximal angle between the estimated PCA
subspace and the space spanned by {e1,e2,...,ek}.
This can be computed as follows (Hubert et al.,
2005):

maxsub = arccos(
√

λk)/(π/2),

where λk represents the smallest eigenvalue of
I
⊺

p,kV p,kV
⊺

p,kIp,k with Ip,k = [e1 e2 ··· ek] and
V p,k = [v1 v2 ··· vk]. We divide by π/2 to stan-
dardize the value of the angle. The ideal value of
the maxsub measure is zero, the worst value is one.

4.2.1 Uncontaminated data

In a first step, we simulate uncontaminated data
(ε = 0). As discussed, we sample from the
multivariate normal distribution and the Stu-
dent’s t-distribution. We however do not limit
ourselves here to five degrees of freedom for the
t-distribution, we also consider t3, t2 and t1. The
mean of the maxsub measure for 500 samples is
shown in Table 2.

When there is no contamination, we see that
for the normal and for the t5-distribution the
best values are attained by classical PCA and
GSPCA with the Winsor radial function. This
result is in line with the computed efficiencies
in Section 3.3, where Winsor attained the high-
est efficiency of all radial functions for Gaussian
data. ROBPCA, SPCA and Quad perform almost
as good. The worst results are those of GSPCA
with the Ball function, making this method least
efficient at no contamination. Shell also performs
poorly, especially in the high dimensional case.
The low efficiency at no contamination for Ball
and Shell is due to the fact that a lot of data points
are given a zero weight, see Equation (4) and (5).

For the more heavy-tailed t1-, t2- and t3-
distributions, the results are different. As the
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Table 2: Maxsub measure at uncontaminated data.

n p CPCA SSCM Winsor Quad LR Ball Shell ROBPCA

Normal 100 4 .100 .137 .113 .132 .163 .257 .149 .138
50 100 .216 .275 .227 .243 .272 .332 .311 .245

t5 100 4 .134 .131 .113 .137 .163 .243 .170 .138
50 100 .303 .274 .254 .277 .313 .395 .378 .281

t3 100 4 .185 .122 .113 .135 .159 .222 .174 .140
50 100 .419 .272 .267 .294 .332 .416 .407 .305

t2 100 4 .249 .129 .119 .142 .162 .235 .186 .156
50 100 .554 .280 .285 .318 .358 .455 .445 .354

t1 100 4 .403 .120 .117 .155 .173 .236 .204 .183
(Cauchy) 50 100 .710 .277 .304 .366 .403 .494 .497 .495

degrees of freedom in the t-distribution decrease,
making it more heavy tailed, the performance
of CPCA deteriorates. GSPCA with Winsor and
SPCA on the other hand, are not affected by the
heavy tails. Hence in this scenario, the use of
Winsor or the SSCM is preferred over the use of
CPCA, even if there is no contamination.

4.2.2 Contaminated data

In a second step, we look at the mean of the max-
sub measure for 500 samples of data with different
levels of contamination (ε = 0.1 and ε = 0.2).
The results for even higher levels of contamination
are qualitatively similar and discussed in Section
A.7 of the Supplementary material. Figures 7 to
10 present the results for multivariate normal and
t5-data in the low- and high-dimensional case.

Low-dimensional, normal data:

For the low-dimensional, multivariate normal data
(Figure 7) we can clearly observe that CPCA,
SPCA and Winsor fail. Their maxsub measure is
close to one, implying that outliers influenced the
estimated PCA subspace to the extent that one of
the estimated principal components is orthogonal
to span{e1,...,ek}.

The poor result for these radial functions
can be explained by their influence functions in
Section 3.2, where we saw that the influence func-
tions of the eigenvectors of the classical covariance
matrix, the SSCM and the GSSCM of Winsor did
not redescend to zero in contrast with the others.
The maxsub measure of Quad also attains some
high values, especially for ε = 0.2 and with f1
rather small. When f1 is larger, indicating that
the outliers are shifted far enough from the center
of the distribution, Quad performs better. In con-
trast, we attain very good maxsub measure results
for LR, Shell and Ball, whose values are as good

as the values for ROBPCA. These three radial
functions have redescending influence functions.

High-dimensional, normal data:

In the high-dimensional normal case (Figure 8),
Quad performs worse and fails, just as CPCA,
SPCA and Winsor. LR, Shell and Ball are able to
distinguish the outliers when f1 ≥ 10, in which
case their results are comparable to ROBPCA.
However, for f1 < 10, only ROBPCA achieves low
values.

Low-dimensional, t5-data:
For t5-data in the low-dimensional case (Figure 9),
the results are similar to low-dimensional normal
data. The only difference is that for ε = 0.2 and
f1 = 6, all methods perform poorly, except for
Ball who still attains a low value for the maxsub
measure. So in this situation, when the outliers
are very close to the regular observations, Ball is
the only one who can distinguish them.

High-dimensional, t5-data.
Lastly, for the high-dimensional multivariate t5-
data (Figure 10), we observe that once again
CPCA, SPCA, Winsor and Quad fail. However,
Ball and ROBPCA perform well once f1 is greater
than 10. LR and Shell attain higher values, and
they only achieve good results when f1 exceeds 12
or 14.
In summary, we can conclude that for the mul-
tivariate normal data GSPCA with radial func-
tions LR, Shell and Ball performs comparable
to ROBPCA. For the t5-data, Ball achieves the
same results as ROBPCA. LR and Shell perform
somewhat worse, but can still be considered as
good alternatives. The fact that GSPCA with the
Ball radial function achieves such great results is
somewhat surprising, since from its definition in
Equation (4) it follows that half of the data points
get weight zero and therefore do not contribute
anymore. However, this cutoff makes Ball very
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Fig. 7: Maxsub measure for low-dimensional, multivariate normal data.

robust, as can be seen by the quickly redescending
influence functions of its eigenvectors in Section
3.2.

4.3 Computation time

One of the biggest advantages of our new PCA
method is its computational speed. It has the
same computational complexity as classical PCA,
while ROBPCA is a significantly slower method.
To illustrate this, we will compare the computa-
tion time of CPCA and ROBPCA with GSPCA
using the radial functions Ball and LR.

We will use the same setting as previously and
sample multivariate normal data, from the low-

and high-dimensional case, with the mean vector
and covariance matrix as specified in Section 4.1.
We set ε = 0 (no contamination) and measure
the total computational time for 100 runs. The
computations were done on a 2.50 GHz core i5
processor (7th gen) and results are shown in Table
3 and 4.

From both tables it is clear that GSPCA
outperforms ROBPCA when we consider the com-
putation time. The time required for GSPCA is
comparable to that of classical PCA for both the
low- and high-dimensional situation. However, the
time needed for ROBPCA increases significantly
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Fig. 8: Maxsub measure for high-dimensional, multivariate normal data.

when the sample size n becomes larger. We con-
clude that a lot of time can be saved by using
GSPCA instead of ROBPCA.

5 Data Examples

In this section we illustrate the performance of
GSPCA on two real data sets: the Top Gear car
data set and a surveillance video of a beach, previ-
ously studied in a different context in Rousseeuw
et al. (2018).

5.1 Top Gear data

The first data set is the Top Gear car data set
from the R package RobustHD, which has been
studied frequently in the context of robustness and
PCA. We consider the numeric variables Price,
Displacement, BHP, Torque, Acceleration, Top-
Speed, MPG, Weight, Length, Width and Height
and remove incomplete observations, retaining 245
observations. Next we scale the data and per-
form CPCA and GSPCA combined with the LR
radial function, retaining 3 principal components
to explain at least 85% of the total variance. To
illustrate the robustness of GSPCA, we use the
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Fig. 9: Maxsub measure for low-dimensional, multivariate t5-data.

Table 3: Total computational time for 100 runs (in seconds) for low-dimensional, multivariate normal data
(p = 4, k = 3) for various values of n.

n 50 100 150 200 250 300 350 400 450 500
CPCA 0.38 0.25 0.36 0.32 0.33 0.35 0.34 0.37 0.47 0.41

GSPCA LR 0.25 0.22 0.5 0.47 0.46 0.6 0.55 0.58 0.61 0.73
GSPCA Ball 0.23 0.23 0.38 0.37 0.41 0.45 0.52 0.58 0.62 0.71
ROBPCA 1.66 4.74 13.18 28.61 54.52 92.37 146.24

diagnostic plot defined by Hubert et al. (2005) to
classify the flagged outliers, resulting in Figure 11.

We observe that GSPCA identifies many bad
leverage points, outlying in score distance and
orthogonal distance, while CPCA only flags 2 of

them as bad leverage points. This suggests that
CPCA was heavily influenced by the bad lever-
age points identified by GSPCA. We also ran
ROBPCA on the data, and its results were very
similar to those of GSPCA.
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Fig. 10: Maxsub measure for high-dimensional, multivariate t5-data.

Table 4: Total computational time for 100 runs (in seconds) for high-dimensional, multivariate normal data
(p = 100, k = 5) for various values of n.

n 50 100 150 200 250 300 350 400 450 500
CPCA 0.89 1.34 1.88 2.28 2.86 2.93 3.58 3.88 4.18 4.6

GSPCA LR 1.11 1.38 1.65 2 2.3 2.56 3.41 3.66 3.76 4.56
GSPCA Ball 1.14 1.4 1.58 2 2.19 2.67 3.11 3.45 4.11 4.35
ROBPCA 2.78 9.34 23.78 50.18 95.04 154.86 240.79

5.2 Video data

The second data set is comprised of a surveil-
lance video of a beach, consisting of 633 frames of
160×128 pixels in the RGB color model. The data
was previously studied in the context of outlier

detection for functional data analysis (Rousseeuw
et al., 2018) and originates from Li et al. (2004). In
the video we see a beach scenery, where in frame
483 a man comes into view, in frame 489 he dis-
appears behind a tree and in frames 493 to 633 he
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Fig. 11: Diagnostic plots for CPCA and GSPCA on
the Top Gear data.

remains in view, see for example Figure 12. Hence
from a robustness perspective, we consider frames
489 to 633 as outliers, while frames 1 to 488 are
considered normal observations.

To test GSPCA, we run our new method using
the LR radial function and the classical method
on the high dimensional, video data. As the video
is color coded in the RGB model, we have three
data sets (X1, X2 and X3) of 633 observations
with 20480 variables. We select the number of
principal components to explain at least 85% of
the variance. The resulting diagnostic plots of the
principal component analyses are shown in Figure
13 for the three colors.

Figure 13 shows that GSPCA distinguishes
the normal observations (no man, black points)
from the outliers (man in view, colored points).
The method flags all outliers as orthogonal out-
liers or bad leverage points. It also separates the

frames where the man is behind the tree (green).
For CPCA, the distinction between the outliers
and the normal observations is less clear. Many
of the frames containing the man are flagged as
good leverage points, indicating that CPCA was
strongly influenced by these points. CPCA also
doesn’t separate the frames where the man is
behind the tree.

It is also worth noting that GSPCA distin-
guishes one point with a large score distance of
20. This observation corresponds to the first frame
which is a bit lighter compared to the others, prob-
ably due to starting the video recording. CPCA
also separates this point, but as a point with a
large orthogonal distance.

To illustrate the effect of the outliers on the
analysis, we calculate the predicted values X̂(k) of
the principal component analysis

X̂(k) = (Xn,p−1nT (X)⊺)V p,kV
⊺

p,k+1nT (X)⊺,

with k the number of principal components to
explain 85% of the variance, and T the location
estimator. From these, we compute the residuals
from CPCA and GSPCA to detect outlying pixels
and to study the difference between the original
frames and the predictions:

r = X−X̂(k).

We also standardize the residuals per frame using
the mean and standard deviation for CPCA, and
the median and MAD for GSPCA. In Figure 14
we show them for frames 108 (no man), 487 (man
left), 491 (man behind tree) and 564 (man right).
Here all scaled residuals below outlier cutoff 2.5
are given the same color.

From the residual plot we observe that CPCA
only has few mild residuals, consisting mostly of
noise around the man. In GSPCA, on the con-
trary, the entire man has very high residuals and
is clearly detected by the analysis. The waves of
the sea also have significant residuals as they move
throughout the video.

6 Conclusion

We proposed and studied generalized spherical
principal component analysis as a new robust
version of PCA. GSPCA calculates the loading
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Fig. 12: Video frames 108, 487, 491 and 564.
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Fig. 13: Diagnostic plots for CPCA and GSPCA on the video data in RGB color.

vectors on the generalized spatial sign covari-
ance matrix (GSSCM) instead of on the classical
covariance matrix. The GSSCM can be used with
different radial functions, and we compared five in
this work: Winsor, Quad, LR, Ball and Shell.

We studied the robustness properties of
GSPCA by deriving influence functions and break-
down values. It turns out that GSPCA has a
breakdown value of ⌊(n+1)/2⌋/n, meaning that
GSPCA can resist up to 50% contamination in a
data set. We demonstrated that all radial func-
tions except Winsor, had bounded influence func-
tions which redescended to zero, implying the

robustness of GSPCA. In addition to robustness
properties, we studied the efficiency of GSPCA on
Gaussian data. It turns out that Winsor is the
most efficient version of GSPCA, followd by Quad,
LR, Shell and Ball. A simulation study comple-
ments the theoretical results and confirms the
robustness properties of GSPCA. Additionally, it
showed that the efficiency properties of GSPCA
greatly improve when the data is heavy-tailed.

GSPCA was further illustrated on two real-
data examples. The first data set was the well-
studied, moderately sized Top Gear data set.
The second data set consisted of high-dimensional
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Fig. 14: Scaled residuals of data set X2 for
frames 108, 487, 491 and 564.

video data. For both examples, GSPCA demon-
strated favorable robustness properties, whereas
CPCA was clearly influenced by outliers.

In summary, we conclude that GSPCA is a
valuable alternative for robust PCA. It is however
important to combine GSPCA with the appropri-
ate radial function. As a general advice without
much information on the specific use case the LR
radial function strikes a good balance between
robustness and reasonable efficiency. In case effi-
ciency is key, Winsor is advised whereas Ball
would only be advised when very large amounts
of contamination could be present in the data.

Further research directions could include using
GSPCA to test the dimension of the subspace
(Nordhausen et al., 2022), using GSPCA in prin-
cipal component regression, or the development
of higher-order GSPCA in the style of PARAFAC
(Bro, 1997).
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Appendix A Supplementary
material

A.1 Proof of Theorem 1

We follow the train of thought of the proof in
Raymaekers and Rousseeuw (2019):

Proof Part 1: ε ≥ ⌊(n+1)/2⌋/n:
Given an m < ⌊(n+1)/2⌋, change m of the obser-

vations in X obtaining the contaminated data set
X∗

m. As location estimates we have T (X) and T (X∗
m)

and we define c1 = maxi∥xi−T (X)∥ < ∞. Since
m/n is smaller than the breakdown value of the loca-
tion estimator, we have that there exist a constant
c2 such that ∥T (X)−T (X∗

m)∥ ≤ c2 < ∞. Hence by
the triangle inequality, we get d∗i := ∥xi−T (X∗

m)∥ ≤
c1+c2 < ∞. Therefore we get medi(d

∗
i ) ≤ c1+c2

and hence medi(d
∗
i )+1.4826·MADi(d

∗
i ) ≤ 2.4826·

medi(d
∗
i ) ≤ 2.4826·(c1+c2). Using condition 3, this

yields ∥g(t)∥ ≤ 2.4826·(c1+c2). Now we compute:

λmax = sup
∥u∥=1

u
⊺Sg(X

∗
m)u

= sup
∥u∥=1

1

n

n
∑

i=1

u
⊺g(x∗

i −T (X∗
m))g(x∗

i −T (X∗
m))⊺u

= sup
∥u∥=1

1

n

n
∑

i=1

[

u
⊺g(x∗

i −T (X∗
m))

]2

≤ sup
∥u∥=1

1

n

n
∑

i=1

∥u∥2
∥

∥g(x∗
i −T (X∗

m))
∥

∥

2

≤ (2.4826·(c1+c2))
2 < ∞.

Hence we have shown that the largest eigenvalue of
Sg(X

∗
m) is bounded.

Part 2: ε ≤ ⌊(n+1)/2⌋/n:
Given an m > ⌊(n+1)/2⌋, replace the last m

observations from X yielding the contaminated data
set X∗

m = {x1,...,xn−m,x∗
n−m+1,...,x

∗
n}. WLOG, by

using location equivariance, we can assume that the
mean of x1,...,xn−m is zero. For the other data points,
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j ∈ {n−m+1,...,n}, we put x∗
j = λaj , with aj such

that mini∈{n−m+1,...,n}

∥

∥aj−ai

∥

∥ ≥ 1 and such that

for all λ > 1: mini∈{1,...,n−m}

∥

∥λaj−xi

∥

∥ ≥ λ. We can
do this by placing the aj ’s outside of the convex hull
of X, far enough apart from each other.

Further, we consider an increasing sequence
(λk)k > 1. Then for every λk the set {x∗

n−m+1,...,x
∗
n}

must contain at least one point such that
ξ(∥x∗

i −T (X∗
m)∥) = 1 by condition 2, say x∗

b . The
set X∗

m contains other points with weight 1, take
one arbitrarily and call it x∗

c . By the previous
paragraph, we then have ∥x∗

b−x∗
c∥ ≥ λ and hence

∥x∗
b−T (X∗

m)∥+∥x∗
c−T (X∗

m)∥ ≥ λ and further

∥x∗
b−T (X∗

m)∥2+∥x∗
c−T (X∗

m)∥2 ≥ λ2/2. We can
then compute:
∑

p
j=1λj(Sg(X

∗
m)) = trace(Sg(X

∗
m))

=
1

n

n
∑

i=1

trace
[

g(x∗
i −T (X∗

m))g(x∗
i −T (X∗

m))⊺
]

=
1

n

n
∑

i=1

∥

∥g(x∗
i −T (X∗

m))
∥

∥

2

≥ 1

n

(

∥

∥x
∗
b−T (X∗

m)
∥

∥

2
+
∥

∥xc∗−T (X∗
m)
∥

∥

2
)

≥ λ2/(2n).

For an unbounded increasing sequence of λ’s this
becomes arbitrarily large and hence ε ≤ ⌊(n+1)/2⌋/n.

□

A.2 Proof of Theorem 2

To proof the theorem, we use the following expres-
sion for the influence function of the GSSCM
found in the paper of Raymaekers and Rousseeuw
(2019):

IF(x,Sg,F ) = g(x)g(x)⊺−Sg(F )

+
∂

∂ε

∫
gε(X)gε(X)⊺dF (X)

∣∣∣
ε=0

. (A1)

Here the last term can be expanded as:

∂

∂ε

∫

gε(X)gε(X)⊺dF (X)
∣

∣

∣

ε=0
=

∫

(

{

∂

∂ε
gε(X)

∣

∣

∣

ε=0

}

g(X)⊺+g(X)

{

∂

∂ε
gε(X)⊺

∣

∣

∣

ε=0

}

)

dF (X)

To ease the notational burden, we write dge(x)
for the derivative to ε of gε(x) in ε = 0, for which
we have:

dge(x) =
∂

∂ε
gε(X)

∣∣∣
ε=0

= X
∂

∂ε
ξε(∥X∥)

∣∣∣
ε=0

. (A2)

Explicit expressions for Equation (A2) per
radial function can be found in appendix A.3 of
the GSSCM paper (Raymaekers and Rousseeuw,
2019).
Additionally, we make use of following lemma pub-
lished in Croux and Haesbroeck (2000) to compute
the influence functions of the eigenvectors of the
GSSCM:

Lemma 2 (Croux & Haesbroeck 2000) Given S :
F → SPD(p) a statistical functional such that
IF(x,S,F ) exists. Let vg,1,...,vg,p and λg,1,...,λg,p be
the eigenvectors and eigenvalues of S(F ). Then the
influence function of vg,j is given by:

IF(x,Vg,j ,F ) =

p
∑

k=1,k ̸=j

1

λg,j−λg,k

(

v
⊺

g,kIF(x,S,F )vg,j

)

vg,k.

The proof for this lemma follows from Lemma 2.1
in Sibson (1979). We are now ready to proof the
theorem.

Proof Making use of Lemma 2 and Equation (A1) for
the influence function of the GSSCM, we note:

IF(x,Vg,j ,F )

=

p
∑

k=1,k ̸=j

1

λg,j−λg,k

(

v
⊺

g,kIF(x,Sg,F )vg,j

)

vg,k

=

p
∑

k=1,k ̸=j

1

λg,j−λg,k

(

v
⊺

g,kg(x)g(x)
⊺
vg,j−v

⊺

g,kSg(F )vg,j

+v
⊺

g,k

∂

∂ε

∫

gε(X)gε(X)⊺dF (X)
∣

∣

∣

ε=0
vg,j

)

vg,k

=

p
∑

k=1,k ̸=j

1

λg,j−λg,k

(

(v⊺

g,kg(x))(v
⊺

g,jg(x))−v
⊺

g,kλg,jvg,j

+v
⊺

g,k

∂

∂ε

∫

gε(X)gε(X)⊺dF (X)
∣

∣

∣

ε=0
vg,j

)

vg,k

=

p
∑

k=1,k ̸=j

1

λg,j−λg,k

(

(v⊺

g,kg(x))(v
⊺

g,jg(x)) − 0

+v
⊺

g,k

∫

(

{

∂

∂ε
gε(X)

∣

∣

∣

ε=0

}

g(X)⊺

+g(X)

{

∂

∂ε
gε(X)⊺

∣

∣

∣

ε=0

}

)

dF (X) vg,j

)

vg,k

=

p
∑

k=1,k ̸=j

1

λg,j−λg,k

(

(v⊺

g,kg(x))(v
⊺

g,jg(x))
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+v
⊺

g,k

∫

(

dge(X)g(X)⊺

+g(X)dge(X)⊺
)

dF (X) vg,j

)

vg,k.

□

A.3 Proof of Corollary 1

Proof When we assume that F is a centered ellipti-
cally symmetric distribution with diagonal covariance
matrix, we have that vg,j = vj = ej . Hence Equation
(8) simplifies to:

IF(x,Vg,j ,F ) =

p
∑

k=1,k ̸=j

1

λg,j−λg,k

(

g(x)kg(x)j

+

∫

{dge(X)k g(X)j+g(X)k dge(X)j}dF (X)
)

vk.

(A3)

Next we proof that the above integral in the sec-
ond term equals zero. For this, we first know that
g(x) = x·ξ(∥x∥), hence g(x)i = xi ·ξ(∥x∥). Sec-
ond, if we study appendix A.3 of the GSSCM paper
(Raymaekers and Rousseeuw, 2019), one can find that
for every suggested radial function dge(x) is of the
form dge(x) = scalar·x·f(∥x∥). Therefore, we have
that dge(x)i = scalar·xi ·f(∥x∥). Last, the density
function of a centered elliptically symmetric distribu-
tion has the following form: fX(x) = det(Σ)−1/2 ·
h(x⊺Σ−1x) with Σ diagonally assumed here, hence it
is an even function in each of its variables xi. Putting
all this together, the integral in the second term of
Equation (A3) is of following form
∫ +∞

−∞
···
∫ +∞

−∞
xkxj ·f(∥x∥)ξ(∥x∥)·ω(x)·dx1dx2...dxp

for k ̸= j,

where ω(x) is an even function in each variable. Then
one has that this integral is equal to zero because of
symmetry reasons. Hence the second term in Equation
(A3) becomes zero for centered elliptically symmetric
distributions. □

A.4 Proof of Theorem 3

Using Lemma 1, we can find an expression for the
influence functions of our new eigenvalues:

Proof

L(s)
g,k(H) = s2(v⊺

g,kX) = s
2(Hvg,k )

=⇒ IF(x,L(s)
g,k,H) =

d

dε

(

s
2
(

H
vg,k(Hε,x)
ε,x

))∣

∣

∣

ε=0

=
d

dε

(

s
2(Hvk

ε,x)
)∣

∣

∣

ε=0

+

(

d

da

(

s
2(Ha)

)∣

∣

∣

a=vg,k

)⊺

·IF(x,Vg,k,H).

We can use that s2(Ha) = a⊺Σa, as s is equivariant,
which yields:

d

da

(

s
2(Ha)

)∣

∣

∣

a=vg,k

=

(

d

da

(

a
⊺
Σa
)

∣

∣

∣

a=vg,k

)

= 2Σvg,k = 2Σvk = 2λkvk.

We can then continue our calculation:

IF(x,L(s)
g,k,H) =

d

dε

(

s
2(Hvk

ε,x)
)∣

∣

∣

ε=0
+2λkv

⊺

k ·IF(x,Vg,k,H)

= IF(v⊺

kx,s
2,Hvk )+2λkv

⊺

k ·IF(x,Vg,k,H).

When we calculated the influence function of the
eigenvector Vg,k of the GSSCM, we saw that this
function had no component in the direction of vk.
Therefore we can remove the second term. Hence we
obtain:

IF(x,L(s)
g,k,H) = IF(v⊺

kx,s
2,Hvk )

= v
⊺

kΣvk IF





v
⊺

kx
√

v
⊺

kΣvk

,s2,F0





= 2λk IF

(

v
⊺

kx√
λk

,s,F0

)

.

□

A.5 Proof of Theorem 4

Proof

IF(x,Scomb,H)

=
d

dε

(

p
∑

k=1

L(s)
g,k(Hε,x)Vg,k(Hε,x)Vg,k(Hε,x)

⊺

)

∣

∣

∣

ε=0

=

p
∑

k=1

[

IF(x,L(s)
g,k,H)vkv

⊺

k

+ λk IF(x,Vg,k,H) v⊺

k+λkvk IF(x,Vg,k,H)⊺
]

.

Assuming that the original covariance matrix is
diagonal and that H is elliptically symmetric, we can
use Corollary 1 and Equation (10) to obtain:

IF(x,Scomb,H)

=

p
∑

k=1

[

IF(x,L(s)
g,k,H)vkv

⊺

k+λk IF(x,Vg,k,H) v⊺

k

+λkvk IF(x,Vg,k,H)⊺
]

=

p
∑

k=1

2λk IF

(

v
⊺

kx√
λk

,s,F0

)

vkv
⊺

k

+

p
∑

k=1

λk

[

p
∑

j=1,j ̸=k

1

λg,k−λg,j
(g(x)jg(x)k)vjv

⊺

k
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+

p
∑

j=1,j ̸=k

1

λg,k−λg,j
(g(x)jg(x)k)vkv

⊺

j

]

= 2

p
∑

k=1

λk IF

(

v
⊺

kx√
λk

,s,F0

)

vkv
⊺

k

+

p
∑

k=1

λk

p
∑

j=1,j ̸=k

1

λg,k−λg,j
(g(x)jg(x)k)(vjv

⊺

k+vkv
⊺

j ).

□

A.6 Efficiency on heavy-tailed

distributions

We repeat the analysis of Section 3.3 on the
asymptotic variance and relative efficiency of
GSPCA for heavy-tailed distributions. We focus
in particular on the multivariate t3-distribution.
For this, we need a variation on Proposition 5
of Raymaekers and Rousseeuw (2019). For X a
p-dimensional t-distributed random variable with
scale matrix Σ and ν degrees of freedom we have:

∥X∥2 =
∥∥∥
√

ν/U Y

∥∥∥
2

= ν/U ∥Y ∥2,

with U ∼ χ2
ν and Y ∼ N (0p,Σ). The dis-

tribution of ∥Y ∥2 is a convolution of gamma
distributions. We thus obtain that the distribu-
tion of the Euclidean distance for a multivariate
t-distribution is a scaled ratio of a convolution
of gamma distributions and a chi-square distribu-
tion. Using this result, we can compute the asymp-
totic variances of GSPCA for the multivariate
t-distribution. For a bivariate t3-distribution with
covariance matrix diag(1,γ), we obtain the asymp-
totic variances and relative efficiencies shown in
Figure A1. We can clearly see a very different
picture now. While the relative performances of
the GSPCA variants have remained stable, the
asymptotic variance of classical PCA exploded.
As a result, the asymptotic relative efficiencies of
GSPCA all become larger than 1. The relative effi-
ciencies are somewhat wobbly due to the tricky
numerical integration, but the overall picture is
clear.
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Fig. A1: Asymptotic variances (top) and
relative efficiencies (bottom) for a bivariate

t3-distribution with covariance matrix diag(1,γ).

A.7 Simulations for increasing

contamination levels

Given that the asymptotic explosion breakdown
value of GSPCA is 50%, it is interesting to inves-
tigate how GSPCA reacts to contamination levels
close to that number. Of course, the higher the
contamination level, the more difficult the prob-
lem gets in general. In order to illustrate this
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empirically, we rerun part of the simulation study
with increasing levels of contamination.

Figure A2 below shows the result for
low dimensional Gaussian data with ε ∈
{0.2,0.25,0.3,0.4,0.45,0.49}. It is clear that all
methods slowly deteriorate when we increase the
level of contamination ε. ROBPCA with the
default robustness parameter α = 0.75 fails when
ε ≥ 0.25. LR, Shell, Ball and ROBPCA with α =
0.5 maintain a high level of resistance until con-
tamination reaches 40%, beyond which they start
to fail as we approach the asymptotic breakdown
value of 50%.
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Fig. A2: Low dimensional, multivariate normal
data with increasing levels of contamination.

We repeated the same exercise for the high-
dimensional Gaussian setting, the results of which
are presented in Figure A3. We can see that the
relative performances are largely similar. To have
any chance at obtaining a reasonable estimate in

this setting, the radial function needs to be hard-
redescending. As we reach the breakdown point,
all methods start to fail. ROBPCA performs best
here, which is somewhat expected given its use of
the MCD and Stahel-Donoho outlyingness.
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Fig. A3: High dimensional, multivariate normal
data with increasing levels of contamination.
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