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Abstract—During the past decade, the popularity and avail-
ability of drones have increased drastically. This is a concern
for airports worldwide as unauthorized drone traffic is also
increasing. Because of this, there is a need for robust and accurate
drone detection systems. Multiple drone detection techniques al-
ready exist in literature, each with their respective shortcomings.
In this paper, we implement a proof-of-concept in which the
accuracy of a RADAR system is expanded with an acoustic array
that can differentiate between objects based on their ultrasonic
emissions. This approach allows for a robust active sensing system
with a decreased number of false positives (e.g., birds). Outdoor
tests have been carried out with off-the-shelf components against
multiple variants of drones. Both the strengths and weaknesses of
this approach are identified and discussed, along with potential
improvements that can aid the practical implementation of this
concept.

Index Terms—RADAR, Acoustics, arrays, signal processing,
drone detection

I. INTRODUCTION

Low prices and ease of use have increased the popularity

and availability of multi-rotor drones in recent years. The

total market size for personal use was valued at 3.6 billion

dollars in 2021 and is expected to grow at a compound

annual growth rate of 20.8% from 2022 to 2028 [1]. This

is a concern for many airports worldwide as unauthorized

traffic in restricted zones is also increasing. In a report by the

UK Civil Aviation Authority, which investigates aerial near-

miss incidents, they state that there is a 10% year-on-year

rise of unmanned aerial vehicle near-miss incidents in 2021

[2]. In the following years, drones will become even more

prevalent as they can be used for applications in surveillance,

disaster relief, agriculture, health care, or emergency response.

However, they do not come without risks and dangers, such

as the possible usage in terrorist attacks, illegal spoofing,

collision hazard or surveillance of security-sensitive areas.

Due to increasing concern of the involved industries, this is

an active area of research. At the moment, there are multiple

techniques that can be used to detect drones: RADAR, radio-

frequencies (RF), and cameras being the most common [3]. As

every technique has advantages and limitations, sensor fusion

can combine the strengths of multiple techniques for a more

robust and accurate system. In literature, there are already

many of these multi-technique drone detection systems present

[4]. However, the exclusive combination between RADAR and

passive acoustic arrays has not yet been explored at the time

of writing.

The reasoning behind the fusion of RADAR and acoustic

arrays is based on two characteristics that are inherent to these

multi-rotors. First, RADAR’s short wavelength allows for the

detection of small objects but it is not able to distinguish

between e.g., a drone or a bird. The acoustic array will allow

the system to focus on that second inherent characteristic,

sound. Multi-rotors are well known for emitting a high pitched

whining noise, which is an aspect that will be investigated in

this paper. The combination of these two sensors will then

make up a system capable of detecting and identifying a drone

on its own, without relying on external signals such as RF

communication.

The rest of this paper is structured as follows: In section II

drone detection techniques existing in literature are described

to give an overview of what is possible, along with the

advantages and limitations. Section III will dive deeper into the

system architecture used for the measurements in this paper.

In section IV the results are given and discussed. Finally, a

conclusion is given along with possible future work in section

V.

II. CURRENT DRONE DETECTION TECHNIQUES

1) Vision Based: A popular and intuitive way to detect

drones is by using RGB cameras. Using machine learning

techniques for object detection, objects in the sky can be de-

tected, and through analyzing consecutive frames, the motion

features can be determined and the object identified [5], [6].

This relies on having clear frames, which is influenced by the

weather, the distance between the drone and the camera, and

available lighting. The latter requires vision-based methods to

be combined with other methods if night-time operation is

needed.

2) Radio Frequency Based: The ubiquity of RF-signals

used for wireless communication makes them the go-to option

for companies in the field. These signals can also be exploited

to achieve localization, both in an active or passive sensing

approach. An example of using active RF can be found in [7],



where drone detection is achieved using WiFi signals emitted

by the localization system that are reflected by the drone’s

propellers. For passive sensing, both drones and controllers

communicate multiple times per second using RF. As most

drones use the 2.4 GHz and 5 GHz frequency channels, these

channels can be captured and further processed to detect the

presence of drones. This can be done using Machine Learning

(ML) [8] or Deep Learning (DL) [9]. Both approaches require

training data. An attempt for a large open-source database

was made by [10]. Although, in the same way as an acoustic

database [11], it is impossible to capture all different drone

and background RF signals. Furthermore, if a drone uses a

frequency that is not in the trained frequency range, it cannot

be detected. These RF-based methods do have a blind spot.

When the drone is flying autonomously, there are no RF

signals, and thus, the drone cannot be detected.

3) RADAR: Also using radio frequency signals, but now

only for detection and ranging, RADAR is often used for

applications just like this one. With a long standing reputation

in aviation and maritime applications, they are capable of

recognizing small objects at long ranges [12]. Detection of

drones, however, poses significant challenges as small drones

typically have very low Radar Cross Sections (RCS), i.e.,

the measure of how detectable an object is by RADAR [12].

Researchers in [13] show that mini-drones are hard to detect

if they are more than 3000 m away. While this range might

already be sufficient for applications like this one, a more

powerful RADAR unit might be needed. The main limitation

of RADAR is that it cannot differentiate objects of roughly

the same size. Accordingly, as drones and birds are roughly

the same size, they cannot be differentiated. For this reason,

the RADAR used in this paper will only be used for object

detection.

4) Sound Based: Drones are known for producing a typical

high-pitched whining sound. This acoustic signal generated

by the propellers, motor, and mechanical vibrations of the

drone is sufficiently unique to be recognized by humans. In

ideal conditions, people can pick up drone sounds from up

to 500 m away [13]. This makes it interesting to see whether

microphone arrays are a useful tool for tracking down these

systems. Instead of using the original audio signal being picked

up by microphones, the focus is placed on the signal’s acoustic

features in the frequency domain, which is more reliable for

tasks such as this. In [14], researchers have already proven

to be able to distinguish between different types of drones

based on these features. However, in this context, binary

classification (drone or no drone) is sufficient from a security

standpoint. The main limitation of a system based solely on

sound is limited range, as sound attenuation in air is poor

[15] and sensitive to noise. Therefore, it also makes sense to

combine the acoustic method with one that performs better at

longer range.

III. PROPOSED SYSTEM ARCHITECTURE

A. RADAR

The RADAR part of the system is implemented using the

Texas Instruments AWR1843 Boost module, chosen because

of its availability in the lab. This module uses Frequency Mod-

ulated Continuous Wave (FMCW), which sends a frequency-

modulated signal continuously in order to measure range,

angle, and velocity. The AWR1843 operates at 76-81 GHz,

which corresponds to a wavelength of about 4 mm, and thus

should have the ability to detect objects that are as small as

a millimeter [16]. However, due to the high frequency, the

path loss will be higher, limiting the effective range of the

unit. Another limitation to keep in mind is the RCS of the

drones used, influenced by the material and size of the drone

as well as the wavelength, incident, and reflected angle of the

RADAR signal [12]. In our experiments, we have used the DJI

Tello and the Parrot Bepop 2 drones. We assume that the RCS

values of these drones are in line with the results of Semkin

et al. [17]. These results were interpolated, leading to an RCS

of 0.01 m2 and 0.1 m2 for the DJI Tello and Parrot Bepop 2

drones, respectively.

B. Microphone Array

The microphone array used for this proof-of-concept is

taken from an embedded real-time imaging SONAR, the

eRTIS from Cosys-Lab [18]. The module features a 32 element

pseudo-random MEMS microphone array with a sampling

frequency of 450 kHz, which allows us to measure well into

the ultrasonic range. As the RADAR module is responsible for

object detection, the eRTIS’ emitter will not be used. A band-

pass filter between 20 kHz and 100 kHz is also applied to

filter any low and high frequency noise and keep the focus of

the algorithm in the ultrasound region. The advantage of using

a microphone array is the ability to implement beamforming

algorithms that will allow for optimized Signal to Noise Ratios

(SNR) in predetermined directions. As the range of sound is

limited, enhancing the SNR is crucial to increase the distance

at which drones can be detected. In this paper a Delay-and-

Sum (DAS) beamformer is used. The directions in which the

array will be steered are determined by the points detected by

the RADAR, limiting the number of calculations that would

other wise be necessary when scanning in every direction.

C. Classification Algorithm

Following an approach similar to [19], we also assume that

drones emit a significant amount of ultrasonic frequencies.

Figure 1 shows the results of measurements made using

the eRTIS microphone array, which confirm this hypothesis.

Figure 1a shows that when the drone is present, the frequency

band between 20 to 45 kHz contains a significant amount of

energy which is absent when no drone is flying nearby as seen

in figure 1b. Additional peaks can be seen around 50 kHz and

100 kHz, which is system noise found in all measurements.

In this paper, the energy between 20 to 45 kHz will be used

as the discerning factor to define the presence of a drone.

However, in order to be able to use the system at places
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Fig. 1. a) Power spectral density plot of a sound recording made at a parking
lot with a drone flying at 1 m distance. b) Power spectral density plots of the
highway, planes and the train.

where more ambient noise is present, we need to investigate

if this frequency range is not contaminated by other sound

sources. Ambient measurements were made of amateur planes,

commercial planes, trains, and the highway around the city of

Antwerp (Belgium). All the measurements contained an equal

amount of energy in the 20 to 45 kHz range. The spectra

can be seen in figure 1b. The next step is finding a threshold

that can reliably indicate whether a drone is present. In doing

this, it is important to remember the DAS beamformer is not

ideal and that, besides the main lobe, it also has sidelobes.

In figure 2a, the energy across the 20 and 45 kHz range at

different beamforming angles is plotted when a drone is flying

at 2 m. It is important to have a setting for the threshold

that accounts for these sidelobes so as to reduce chances of

detecting ‘ghost’ drones that are not actually present at those

angles. For the current setup, the following method is used to

define an adaptive treshold:

threshold(d) =

{

n·10

d
, if 0 < d ≤ 10

n+ 50, otherwise
(1)

Where n is the noise floor obtained during the calibration

of the system. In figure 2b, this sits at around 450 au. n+50
has experimentally proven to be a safe offset above the noise

floor.

IV. RESULTS & DISCUSSION

As mentioned in the previous section, the low RCS poses

problems for the detection of drones using the AWR1843

RADAR. When hovering at less than 1 m distance to the

sensor, the drone is detected around 80% of the time. When

this distance is increased, the drone is only detected during its

movement. This is likely because the tilt of the system during

movement results in less specular reflections, increasing the

(   )

a) b)

Fig. 2. a) DAS Beam Pattern when beamforming from -90° to 90° on the
azimuth and a drone is present at 2 m. b) Total energy in the 20 kHz to 45
kHz range for a drone flying at different distances.

effective RCS and increasing the detectable range to 8 m. This

indicates that for drone detection, automotive FMCW RADAR

units are not suitable to capture small drones at large distances

and researchers should focus on more powerful systems that

are better at detecting objects with an RCS below 0.1 m2. In

figure 2, the acoustic energy in the frequency-band between

20 kHz to 45 kHz for a drone flying at increasing distances is

shown. The detections between 0.5 m and 10 m lie above the

calculated threshold value and thus will be detected correctly.

For larger distances, the SNR prevents the current system

to identify sounds originating from the multirotor drone. As

a result, the maximum range at which the current proof-of-

concept can detect and identify a drone is 10 m. This can be

improved using a larger beamforming array, a more complex

beamforming algorithm, and other methods for increasing

SNR.

V. CONCLUSION & FUTURE WORK

This paper started with an overview of the strengths and

weaknesses of the current most common drone detection

techniques. Then a system making use of the Texas Instru-

ments AWR1843 mmWave RADAR and an acoustic array was

constructed. The RADAR will detect objects and then feed

the coordinates to the microphone array. The system will then

use beamforming methods to increase the SNR in the objects’

directions located by the RADAR, searching for the typical

high frequency noise being emitted by multi-rotor drones.

This allows for a robust system that can localize objects and

differentiate between drones and other suspects, such as birds,

which are not seen as a threat. Tests were conducted, where

we identified the RADAR module for automotive applications

to be the main limitation, limiting the practical range to 8

m when the drone is moving. This is due to the low RCS

of drones and can be solved by using a RADAR module

capable of reliably detecting objects with an RCS below 0.1

m2. Another bottleneck using the current setup is the range

at which drone ultrasound can be differentiated from noise,

being 10 m. While sufficient for proving this concept, steps

must be taken before any practical implementation can be

made. The authors encourage future work to include using

a more powerful RADAR module. Also, more advanced

beamforming algorithms and larger microphone arrays would

further increase the SNR and range of the system.
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