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Abstract—Crowd size estimation has become of even greater
significance than before COVID-19 restrictions. At the same time,
wireless technologies are ubiquitous and change rapidly; we hy-
pothesise that we can estimate crowd sizes from electromagnetic
(EM) activity, agnostic from the used communication technology.
In this experimental study, we investigate crowd size estimation
based on the activity that ambient WLAN devices generate inside
specific WLAN channels. By recording and analysing this EM
activity, we tested if this corresponds to the crowd size at a
large music festival with thousands of attendees. We identify
and compare trends within a data set of 186 samples over three
consecutive days. We demonstrate a significant correlation be-
tween our approach and the data of three other crowd estimation
systems: entrance and exit counts, MAC address counts, and
device-free sensing using sub-GHz attenuation. Our study is the
first step to passively and technology agnostic estimate large
crowd sizes by capturing the electromagnetic activity inside the
2.4 GHz band with Software Defined Radios.

Index Terms—passive sensing, crowd size estimation, JC&S

I. INTRODUCTION

The estimation of crowd sizes has sparked a lot of attention

during COVID-19 and in post-pandemic times. Crowd sizes

are of great importance to safeguard public safety. Many

solutions already have been deployed and studied in the past. A

popular solution for estimation are optical cameras that apply

image analysis. Nevertheless, they have several constraints.

They are sensitive to lighting and weather conditions, field

of view and there are privacy concerns about the saving and

usage of the camera footage. Another technique is the use of

Wi-Fi counters that collect MAC-addresses. Privacy concerns

regarding the captured data do exist here as well.

Nevertheless, there are new upcoming techniques that can

tackle these issues. The growing physical layer capabilities of

Wi-Fi such as Orthogonal Frequency Division Multiplexing

(OFDM) in combination with Multiple-Input Multiple-Output

(MIMO) systems, induce a new trend in the way that Wi-

Fi signals are used for high bandwidth communication and

sensing purposes. Within the conceptual idea of Wi-Fi sensing,

we expect that a moving person or object will affect the Wi-

Fi radio waves. This can be in terms of signal attenuation,

frequency shifts and through various propagation paths [1].
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Fig. 1. We captured electromagnetic (EM) samples in WLAN bands 1, 6, and
11 at an environment that held 1500 people at full capacity. Our hypothesis
is that we can estimate the crowd size directly from EM activity in contrast
to typical CSI approaches based on Wi-Fi pilots.

We define passive sensing as the detection of objects or

persons via wireless signals, without relying on the users

or objects to be equipped with any sort of transceiver. Also

referred to as device-free or non-invasive sensing. According

to [2], the current and most popular passive Wi-Fi sensing

methods can be categorised into Received Signal Strength

Indicator (RSSI), Wi-Fi radar and Channel State Information

(CSI). The RSSI is a channel quality indicator. It is the strength

of a received signal measured at the receiver’s antenna. This

value is determined by the transmission power, the distance be-

tween transmitter and receiver, and the radio environment [3].

Wu et al. demonstrate that the variance of RSSI values from

a static receiver can be up to 5 dB per minute and is very

sensitive to multipath effects [4]. These high fluctuations are

the reason why this method is applied less frequently. Zaidan

et al. present a people counting system based on passive Wi-Fi

RSSI which was tested in a conference room with one access

point achieving an accuracy of 93.17% while maintaining line

of sight [5].

A Passive Wi-Fi Radar system (PWR) commonly uses

synchronised Software Defined Radios (SDRs) to sense. Usu-



ally, the reference signal is expected to be received from a

direct path with the signal source without strong multipath

impact and reflection components. The surveillance signals are

expected to be received from the other paths, which potentially

contain the reflections from targets of interest. The differences

between the reference signal and the surveillance signals are

then extracted by applying the Cross Ambiguity Function

(CAF). The CAF calculates range (bistatic distance) and

Doppler (bistatic velocity) information. However, the Doppler

information is used more often since it provides fine-grained

information while the range resolution is rather coarse-grained.

The acquired time and frequency domain differences can be

eventually converted into Doppler spectrograms [6]–[9].

In passive Wi-Fi sensing, plenty of research is also aimed to-

wards the investigation of CSI characteristics [4]. The CSI in-

formation describes how a signal propagates from a transmitter

to a receiver and represents the combined effect of scattering,

fading, and power decay with distance. Therefore, it is possible

to adapt transmissions to current channel conditions [10]. CSI

obtains the amplitude and phase information of a signal at the

sub-carrier level. The retrieved values essentially characterise

the Channel Frequency Response for each subcarrier between

each transmit-receive antenna pair. Therefore, it can deliver

very fine-grained information about a communication channel.

Furthermore, it is possible to simultaneously extract the CSI

of multiple channels [4].

The use of these techniques in passive Wi-Fi sensing has

been investigated thoroughly over the years. It has many

application fields e.g. health monitoring, gesture recognition,

through-the-wall sensing, biometric measurements and sign

language recognition [11], [12]. Singh et al. for example

present a proof of concept setup where they use the RSSI

values of LoRaWAN and a multilayer perceptron artificial

neural network to predict the weekly plant growth in green-

houses [13]. Recently, it has even become possible to sense

micro-activities such as respiration and sleep monitoring, lip-

motion and keystroke recognition using CSI [2]. However, the

research of people counting and crowd size estimation using

the current techniques of passive Wi-Fi sensing is very scarce.

The available literature only shows experiments for small scale

scenarios. Remarkably, there are no studies available where

this is tested on a large scale and we do not know what the

crowd size estimation and accuracy can be. Here, our novelty

is to explore passive Wi-Fi sensing in large crowds.

Concretely, we propose a new approach to passive Wi-Fi

sensing by using SDRs to capture the EM waves of ambient

WLAN devices. This will be translated to activity in the

frequency spectrum and subsequently can be correlated to

crowd size. The goal is to estimate large crowd sizes with

a minimal amount of data in a privacy-preserving manner.

More specifically, we conducted measurements at a large

music festival with thousands of attendees. Figure 1 depicts an

overview of the area where we executed these measurements.

Our findings show that we can see a change in activity

when comparing opening and closing hours of the festival.

In addition, a moderate correlation can be found when we

compare our data with two validated data sets.

The remainder of this paper is organised as follows. In

Section II, we present our experimental setups and data

collection sequence at the festival followed by an explanation

and equipment setup of the validation system in Section III.

Subsequently, in Section IV, we examine the achieved results

with an in depth discussion. Finally, we conclude this paper

and have an outlook on the future work in Section V.

II. METHODS

The measurements took place at the music festival To-

morrowland, organised during three weekends in July 2022

that hosts almost 200,000 attendees per weekend. We con-

ducted measurements at the “Business to Business” (B2B)

environment, which is part of a three-storey temporary VIP

environment. The VIP environment consists of the “Main

Comfort” at the ground floor; the B2B at the first floor; and

the “Skybox” at the second floor.

To enter these environments, each festival attendee needs

to scan their festival bracelet. Each subsequent floor requires

a higher tier of VIP access to enter, so that each floor has a

separate entrance and exit. Each floor covers an area of about

1500m2 and is half-open with a view of the main stage of

the festival. Our measurement setups were partially placed

behind the bar of the specific floor, separated by a wooden

wall construction. We deployed three measurements setups.

One consisted out of an SDR Data Capture Unit (DCU).

The second measurement setup consisted out of four Wi-Fi

counters. These devices scan each 2.4 GHz WLAN frequency

band in a random manner while the software collects the MAC

addresses of the ambient wireless devices and anonymises

them in order to safeguard the privacy of the festival attendees.

The third setup consists out of a Wireless Sensor Network

(WSN) which we used for validation. A fourth measurement

setup that scans the festival bracelets of the attendees, was

provided by the organisation and was used as ground truth

reference and as validation data set.

To measure EM activity, we build a DCU that is based on

SDRs. This unit was placed at a height of 1.8 metres, contain-

ing two Ettus Research Universal Software Radio Peripheral

(USRP) B210 SDRs and an Intel NUC. It is equipped with

four omnidirectional dipole antennas which indicates that we

use the two RX channels of each SDR simultaneously. The RF

front end chip inside the B210s has an instantaneous real-time

bandwidth of 56 MHz allowing us to capture two 20 MHz

bands concurrently. This unit collects the electromagnetic

activity in the Wi-Fi bands but will not gain us the number of

people that are present in the B2B environment. Denis et al.

show that the amount of persons can be derived by correlations

and thereafter by linear extrapolation [14]. Figure 2a depicts

the system overview of the DCU while Figure 2b depicts the

measurement setups at the B2B environment.

For the data capturing, we made use of the open-source

tools GNU Radio, the USRP Hardware Driver (UHD) and

several Python scripts for the automation of the data capturing

process. The communication link between GNU Radio running
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Fig. 2. Data Capture Unit (DCU) used to measure electromagnetic activity in the WLAN frequency bands. (a) System overview of the DCU. (b) Deployment
of the DCU and four Wi-Fi counters behind the bar of the B2B environment.

at the host machine and the SDRs happens through the use of

the UHD. Scanning the entire Wi-Fi band continuously would

be a costly and bandwidth intensive operation. Therefore,

we focus on the three most used Wi-Fi channels in the 2.4

GHz band that do not overlap and do not interfere with one

another, namely channel 1 at 2412 MHz, channel 6 at 2437

MHz and channel 11 at 2462 MHz. Note that we redundantly

record channel 1, since we have four RX channels at our

disposal. We configure the SDRs to capture samples at a rate

of 20 MS/s for a duration of 10 seconds per channel. The

current measurement setup does not allow us to record raw I/Q

samples i.e. electromagnetic waves continuously due to storage

limits. Therefore, we chose to record samples in a random

manner within a predefined time frame. This approach allows

us to collect a limited amount of samples while representing

a valid unbiased data set. The software that is running on the

NUC, compares a timestamp list with the current time and

starts a sampling procedure when needed. The data collection,

started each festival day from 10:00 until 02:00 the next day.

Table I gives a brief overview of the used measurement setups.

TABLE I
COMPARISON OF THE USED COUNTING METHODS.

Bracelet scanners Wi-Fi counters DFS system EM waves DCU

2 entrance and
2 exit scanners per floor

4 Wi-Fi scanners 26 nodes
1 DCU with

2 SDRs

Entrance and
exit counts

No. MAC
addresses

Node-to-node
mean attenuation

Mean attenuation
in a WLAN channel

III. VALIDATION

We have two reference data sets to validate our captured

EM waves data with, namely: the bracelet scan system and

the Device-Free Sensing (DFS) system. The bracelet scan

system is used to allow or deny access to one of the three

VIP areas. Therefore, each floor has its own bracelet scan

system. A festival attendee will get scanned when entering

and exiting a certain VIP area. Essentially, it can act as a

good reference regarding the amount of persons present at a

certain VIP environment. We do need to note that not every

bracelet could be scanned. Specific VIP guests of the festival

had a different bracelet with a specific number on it in order

to enter. These bracelets were visually checked when entering.

Besides that, crew members and staff members were also not

scanned. A final note, at the end of the festival it seemed that

nobody got scanned anymore. This is to ensure smooth people

flow management and avoid congestion. Another validation

system is the DFS system. Denis et al. started investigating

crowd estimation in large areas using sub-GHz transceivers

in 2016. They have created and tested several device-free

crowd estimation setups at Tomorrowland [14]–[18]. Kaya et

al. explain how the setup of this system works and have made

three data sets publicly available [19]. The system is based

upon setting up a wireless radio frequency sensor network

around the edges of a measurement environment. The network

contains several battery-powered boxes called “nodes”. These

nodes contain an RF transceiver that operates in the sub-GHz

band using the DASH7 Alliance Protocol. The nodes broadcast

messages in a cyclic fashion and receive messages while other

nodes are transmitting. Additionally, the network contains a

“controller” that also acts as a transceiver and coordinates

the cycles of the nodes in the network. Furthermore, it stores

the messages received from the nodes. These payloads can

be further processed eventually. Lastly, the network contains

a “configurator” that sends configuration data to the nodes

in the network upon request. The payload that is sent by

every node to the controller is a vector consisting out of all

the RSS values measured across the links between a node

and its peers in the network. These signal strength values are

then individually compared to their initial signal strengths in

the environment with virtually no people present in order to

attain the mean signal strength attenuation over time across the

entire sensor network. For the setup at the B2B environment,

we respectively placed 24 DFS nodes around the borders

and behind the bars accompanied with a configurator and a

controller. The nodes, except for the controller were placed

at a height of about 1.1 m. Data was collected for the three



weekends, running the system continuously for about 19 days.

IV. RESULTS AND DISCUSSION

In this section, we investigated only the data set of weekend

two to maintain clarity and overview. We have to note that we

lost six sample points at the end of day three due to a crash

of the DCU.

A. Short-time Fourier transform

As mentioned in Section II, the collected data is saved in a

complex valued manner. To make sense of this data collection,

we need to apply digital signal processing techniques. By

applying the Fast-Fourier Transform (FFT) to each sample,

we can achieve a rough indication of the activity in a specific

WLAN channel. The FFT provides detailed spectral and

magnitude information of the samples but does not reveal

more context about the frequency changes that occur over

time. To get a better insight into these frequency changes

over time, we can apply the short-time Fourier transform

(STFT). This technique segments a time-domain input signal

into several frames and multiplies the signal with a specific

window function and eventually applies an FFT to each frame

while gaining us the temporal and spectral information of

the data [20]. This combination can be depicted as several

amplitude variations that can be seen as activity markers. In

this way, we can get a spatial representation in the form of a

spectrogram or waterfall plot which is a visual representation

of the signal strength of a sample plotted over time at specific

frequencies.

B. Background subtraction

Another technique that we applied is background subtrac-

tion. A technique that is also used in radar based applications

to remove undesired signals [21]. While many methods can be

applied to achieve this, we chose to apply a mean background

removal. The mean attenuation difference per channel after

applying a STFT is depicted with and without background

subtraction at the bottom graph of Figure 3. The raw captured

data shows a relative flat response with subtle fluctuations

occurring in the four Wi-Fi channels. When we subtract

the background, we see a more fluctuating response with

noticeable slopes at the start and end of each festival day. To

achieve these results, we apply an STFT on each background

sample where we divide it into 16,384-sample segments. Each

sample segment is fitted with a Hamming window and a DFT

is applied on each segment. Eventually these complex values

are converted to magnitudes. The STFT itself returns a matrix

where,

S ∈ R
t×f (1)

in which t is the time dimension represented by 12,207 time

instants and f is the frequency dimension representing 16,384

frequency points. The mean attenuation of the I/Q background

samples, Sbg is calculated by:

Sbg =

B∑

i

S(i)

B
(2)

where B is the number of samples used to calculate the

background and i is the index of each sample in the set of

background samples. This background data set consists out

of samples recorded on a weekday between weekend 1 and

weekend 2. On these days we know that there was little to no

activity at the B2B environment.

Subsequently we need to find the mean attenuation of our

I/Q data samples i.e. a¬bg that will gain us the EM activity

per Wi-Fi channel. The following calculation is applied,

a¬bg =
∑

t,f

(S − Sbg)

N
(3)

where, S is the short-time Fourier transform of the I/Q data

samples in which these complex samples are converted to

magnitude values while N is the number of elements in S.

Notice that we apply almost the same process to this data set as

shown in (1) but we subtract the background mean attenuation.

The STFT parameters for the background samples and data

samples were chosen identically. There are four parameters

that have an effect on the final STFT results we achieve.

These are the FFT size, the segment size, the window type

and the amount of overlap. The FFT size and segment size

where equally chosen, namely 16,384. Subsequently, we chose

a Hamming window to fit each segment and defined a 0%

window overlap.

When looking ahead, a thorough investigation of these

parameters needs to be conducted to obtain the best trade-

off parameters for this specific data set. Also applying the

Discrete Wavelet Transform (DWT) could gain more detailed

information when compared to the STFT technique. We could

also apply blob counting detection within the spectrograms.

We do believe that the pixels in a spectrogram exceeding a

certain threshold level will have a specific correlation to the

DFS or bracelet scan data set.

C. DFS data

When inspecting the calibrated DFS data in Figure 3, we

see three distinct peaks representing the three festival days.

Also the opening, event and closing of each festival day can be

clearly seen. These peaks seem to increase and decrease rather

fast at the start and end of a festival day. During the festival, the

values seem to be quite steady with small variations between 1

to 3 dB. With 24 deployed DFS nodes, there is a large number

of unique links (276). Both this high number of links and the

rolling mean with a window of one minute contribute to the

relative steadiness of the graph.

When comparing this to the bracelet scan data as shown

at the top of Figure 3, we see similarities in the peaks and

troughs occurring. These similarities can also be found in the

Wi-Fi counts graph. We need to note that the effects of the

highs and lows are more pronounced, which is due to the

cumulative count of the four Wi-Fi counters. When we look

into the EM signal data shown at the bottom of Figure 3, we

see that the values fluctuate heavily before the start and at the

end of the festival. During the festival, fluctuations between

1 and 10 dB can be observed. These high fluctuations are



TABLE II
COMPARISON OF THE PEARSON AND KENDALL CORRELATIONS BETWEEN

THE DFS SYSTEM, BRACELET SCANS AND WI-FI COUNTS.

DFS system &
Bracelet scans

DFS system &
Wi-Fi counts

Bracelet scans &
Wi-Fi counts

Pearson’s r 0.904 0.854 0.774

Kendall’s τ 0.605 0.604 0.445

TABLE III
PEARSON AND KENDALL CORRELATIONS OF THE EM WAVES DATA SET

COMPARED TO THE DFS SYSTEM, BRACELET SCANS AND WI-FI COUNTS.

EM
CH 1 (1) CH 1 (2) CH 6 CH 11

Bracelet scans
Pearson’s r 0.730 0.439 0.533 0.604
Kendall’s τ 0.394 0.156 0.283 0.272

Wi-Fi counts
Pearson’s r 0.733 0.664 0.617 0.634
Kendall’s τ 0.471 0.416 0.310 0.336

DFS
Pearson’s r 0.843 0.732 0.773 0.777
Kendall’s τ 0.512 0.374 0.396 0.384

expected when measuring ambient EM waves. Also notice

that the mean attenuation for CH 6 and CH 11 is higher in

comparison to CH 1 over the weekend.

D. Correlation

While our main reference is the bracelet scans data set,

the DFS data does provide changes in the data that are not

captured by the bracelet scans. For instance, we can see

that the bracelet scans lack the ability to provide reliable

people counts when the flow of people is too high (e.g. the

outflow at the end of the festival). As for the timestamps with

data available for both the DFS and bracelet scans, we see

a very strong positive Pearson r correlation as depicted in

Table II. This correlation is comparable to the values reported

in earlier research, when a similar DFS setup was used for

the Main Comfort environment at the 2018 edition of Tomor-

rowland [14]. This very strong positive Pearson r correlation

can be also seen when compared to the Wi-Fi counts. The

correlation between bracelet scans and Wi-Fi counts is smaller

but still strong and significant. However, the three methods

show positive Kendall correlations that are significantly small

which indicates that the relationships between the data sets are

moderate monotonic. In Table III, the Pearson and Kendall

ranking coefficients of the bracelet scans, Wi-Fi counts and

DFS system are compared with the EM wave activity per

channel which is measured over the entire weekend. Note

that the Pearson r correlations are moderate to strong when

compared to the three measurement setups but still show a

significant correlation. These lower correlation values are due

to the way the measurement systems work. The DFS system

scans only the B2B environment while the EM waves system

and Wi-Fi counters will pick up ambient activity that happens

within a specific network on a specific channel and can even

be affected by a specific event happening in the vicinity of the

measurement environment e.g. dinner, a dance act or a specific

artist playing at a nearby stage. A noteworthy occurrence is

the remarkable correlation difference between CH 1 (1) and

CH 1 (2). This could be due to a bad antenna connection or

a configuration setting of the SDR. The probability value p is

overall small (p < 0.05) in both tables which indicates that the

correlation is statistically significant. We do need to note that

the Kendall p values for correlation of the bracelet scans and

EM activity are larger than 0.05. The Kendall’s τ coefficients

in both tables are positive but indicate a weak to moderate

rank relationship. This is due to the wide dispersion of the

data points as can be seen in the scatter plots of Figure 4.

We need to note that directly mapping these correlations to

a specific number of people is not possible. Additionally, we

notice a bizarre occurrence on the beginning of day two and

three where the mean attenuation of several Wi-Fi channels is

not rising directly. This could be due to some activity of the

personnel on site or a channel that is not used or disabled for

a limited period of time. Furthermore, sequentially capturing

data samples will gain us a continuously data set which might

gain more insights. Additionally, a thorough investigation of

the background samples could also provide more insight into

the behaviour of the channels while there is no human activity

affecting the ambient Wi-Fi activity.

V. CONCLUSION

In this paper we introduced a new technique that fits within

the field of passive Wi-Fi sensing. This device-free sensing

method is based on capturing the electromagnetic activity that

is available in a specific 2.4 GHz band. By applying several

data analysis techniques, more detailed information can be

revealed and shows moderate to strong positive correlations

when compared to different data sets. However, the ranking

correlations are overall relatively weak. This implies that there

are variations in the data sets that are not explained by the

number of people through the proxy of the EM waves data

set. Additionally, the DFS data set, Wi-Fi counts and bracelet

scan data set contain many more samples in comparison to

the EM waves data set. This may be the reason why certain

variations in the attenuation are seemingly not caught by the

ambient EM waves. Another bias in the Wi-Fi counts and EM

waves data set is that we pick up WLAN activity outside of the

B2B environment. The activity we see, relies on the activity

that is happening in a specific network on a specific channel.

For future work, we believe more random and smaller sam-

ples need to be taken during these events since the measure-

ment area is subject to fast changes which is hard to capture

with only four samples per hour. Further investigation regard-

ing the data analysis e.g. optimising the STFT parameters

and applying DWT is needed for this new measuring method.

Capturing LTE cellular signals simultaneously can serve as a

valuable reference data set. Additionally, adding strategically

placed DCU’s to the environment will generate more data and

can give more insights regarding the environmental activity.

Eventually, fitting multiple DCU’s with directional antennas to

pinpoint a specific measurement environment is another track

to investigate.
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